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Topological Floquet engineering of twisted bilayer graphene
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We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the so-
called magic angle driven by circularly polarized laser pulses. Employing a full Moiré-unit-cell tight-binding
Hamiltonian based on first-principles electronic structure, we show that the band topology in the bilayer, at
twisting angles above 1.05◦, essentially corresponds to the one of single-layer graphene. However, the ability to
open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological
phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces
a transition to a topologically nontrivial Floquet band structure with the Berry curvature analogous to a Chern
insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic
bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or midinfrared photon-energy
regimes. This implies that Moiré superlattices are an ideal playground for combining twistronics, Floquet
engineering, and strongly interacting regimes out of thermal equilibrium.
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I. INTRODUCTION

Light-matter coupled systems are emerging as an impor-
tant research frontier bridging condensed matter physics [1],
quantum optics [2–6], and cold atoms in optical lattices [7–9].
In ultrafast materials science, intriguing phenomena have
been explored, including but not limited to ultrafast switch-
ing between different phases of matter [10–12], light con-
trol of important couplings in solids [13–15], and light-
induced superconductivity [16,17]. In cavities, spectacular
effects have been observed or predicted, such as dramati-
cally enhanced conductivity in polymers [18], cavity-modified
materials properties [19–22], novel spectroscopies using the
quantum nature of light [5], and light-controlled chemical
reaction pathways [23]. Finally, in optical lattices, period-
ically driven quantum systems are investigated within the
realm of Floquet engineering, in which the driving is used
as a tool to generate effective Hamiltonians with tunable
interactions [24–28], which has also been demonstrated in
purely photonic systems [29].

In solids, key progress has been made, for instance, in
observing Floquet-Bloch states in time-resolved photoemis-
sion spectroscopy [30] or with the recently demonstrated
light-induced anomalous Hall effect in graphene under circu-
larly polarized laser driving [31–33]. However, the concept
of Floquet engineering of a material’s topological proper-
ties [34–43] has been limited to very few material systems
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so far. The reason for this is that the time and energy scales
often cause problems in avoiding resonant excitations and
accompanying heating effects that are usually detrimental for
the observation of interesting light-induced states of matter,
unless full thermalization is delayed [44,45] or unless the laser
is only used as a means to break the symmetry for transient
intermediate states, such as in the case of laser-controlled
superconductors [12]. It is therefore an important task to
identify material platforms in which crucial energy scales,
such as the relevant effective electronic bandwidth, can be
tuned with respect to the photon energy of the pump laser. This
is exactly the case in twisted van der Waals heterostructures
forming Moiré superlattices [46]. In particular, twisted bilayer
graphene (TBG) has recently attracted considerable attention
due to the discovery of superconductivity [47] along with
correlated insulating phases in its vicinity [48]. In TBG, the
Fermi velocity and electronic bandwidth of the Dirac bands
can be tuned by changing the twisting angle, leading to flat
bands at particular magic angles and opening the possibility
of twistronics [49] and tunable energy absorption spectra [50].
In addition, this paves the way to tune the role of interactions
in a materials setting [51], similar to the case of artificial
lattices, in which more exotic Floquet Hamiltonians have been
generated [52], and recently also a cold-atom realization of
twisted bilayers has been proposed [53]. In the context of
TBG, this might, for instance, open the possibility to study
strongly correlated Floquet-engineered phases of matter such
as the proposed fractional Floquet-Chern insulator [54].

In this work, we perform a full tight-binding model calcu-
lation for TBG for an intermediate rotation angle, � = 7.34◦,
with a unit cell containing 244 sites, in order to investigate its
electronic and topological properties in and out of equilibrium
above the magic angle regime in a microscopic picture. This
choice of the twist angle is motivated by the fact that the Dirac
bandwidth is 2.23 eV, which corresponds to a realistic laser
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FIG. 1. Atomic structure and tight-binding model bands of equilibrium twisted bilayer graphene. (a) Real-space atomic lattice. Red (blue)
points denote the carbon atoms of the bottom (top) layer of one supercell. The black dotted line indicates the mirror-symmetry line which
maps the in-plane atomic coordinates of both layers onto each other. The origin is chosen on an AA-stacked carbon site. The twist angle is
� = 7.34◦, which corresponds to a supercell with 244 atoms. The full (dashed) circle indicates a region of A-A (A-B) stacking. (b) Equilibrium

band structure along �-K1-M, where |� − K1| = 0.22 Å
−1

. The dashed lines show the single-layer band structure without interlayer coupling
but folded back into the reduced zone. The bandwidth at � (M) is indicated by a red (blue) arrow. (c) Equilibrium bandwidth of the valence
and conduction bands at � (red line) and M (blue line) for different twist angles, � (� = 7.34◦ values colored black). The inset shows small
angles, whose associated bandwidths lie within the midinfrared photon energy range.

driving frequency attainable in pump-probe experiments. A
circularly polarized laser field with 2.23 eV frequency, tuned
to the bandwidth of the lowest energy band manifold, breaks
time-reversal symmetry and induces a topologically nontrivial
phase, which is tracked by the Berry curvature of Floquet
bands projected onto the bare energy eigenstates. We find
that the topology of TBG above the magic angles ultimately
corresponds to two copies of single-layer graphene. For cir-
cularly polarized driving, we find a topologically nontrivial
band structure (corresponding to a Chern number C = 4),
while in equilibrium, the system exhibits trivial topology
with cancellations of valley Berry curvature when inversion
symmetry is broken by a back-gate bias voltage between
the layers. This offers the unique opportunity, in contrast
to single-layer graphene, to study the transition between the
topologically trivial and nontrivial phases, as originally en-
visioned by Haldane in his seminal work on the quantum
anomalous Hall effect [55]. Notably, this is unlike the case of
time-reversal symmetry breaking by a magnetic field, where
the large magnetic unit cell and corresponding small Bril-
louin zone cause dramatically different effects such as the
emergence of a Hofstadter butterfly [56]. Our results confirm
that for angles larger than the highest magic angle (1.05◦)
the interlayer interactions can be captured by perturbative
treatment, which maintains the linear band dispersions while
renormalizing the Fermi velocities, as stated in Refs. [57,58].
Furthermore, we explicitly show that this is not only true for
the electronic band energies but also for the system topology.
Thus, we expect a time-resolved Hall current measurement, in
the time-reversal symmetry-broken state, to show a nonzero

Hall conductance [34,55] approaching a quantized value of
4e2/h for completely filled valence bands and empty conduc-
tion bands, where the factor of 4 reflects two valence bands,
two spin species, and two valleys.

The paper is organized as follows. In Sec. I, we explain
the basic properties of our tight-binding model. In Sec. II, we
investigate the electronic properties of our starting point, par-
ticularly the equilibrium topology of the system. Section III
outlines the Floquet electronic band structure and its key
differences, compared to equilibrium. In Sec. IV, we present
our main result of the Floquet-engineered Berry curvature and
explore the Floquet-topological phase space in dependence of
driving amplitudes and different choices of local potentials.
We finish with a brief conclusion in Sec. V.

II. TIGHT-BINDING MODEL

Our starting point are two A-A-stacked graphene lay-
ers [59]. Choosing the origin of the Cartesian coordinate
system at an atomic site, we construct the bilayer by a rotation
of the top layer by a twist angle, � = 7.34◦. This rotation
amounts to a reflection of the bottom layer within the x-y
plane along the supercell diagonal, as depicted in Fig. 1(a).
Using the commensurability condition derived in Ref. [57],
this results in a supercell of 244 carbon atoms, which has
regions of A-A and A-B stacking, respectively. We use a
general tight-binding hopping Hamiltonian of the form

H =
∑

i

εic
†
i ci +

∑
i �= j

ti jc
†
i c j, (1)
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where c†
i (ci) creates (annihilates) an electron in the pz orbital

at the atomic position ri. The variables εi and ti j denote the
local potential and hopping matrix elements, respectively. The
model parameters are given in Appendix A.

The equilibrium band structure along the symmetry path
�-K1-M in the mini-Brillouin zone (mBZ) of the Moiré
superlattice is presented in Fig. 1(b). It shows a linear Dirac-
cone dispersion around one Dirac point K1 with a renormal-
ized Fermi velocity, vF /v0

F = 0.9, compared to the one in
single-layer graphene (dashed lines). The renormalized �-
point bandwidth �� and M-point energy difference �M for
the bottom conduction and top valence bands are indicated by
colored arrows.

Envisioning periodic laser driving at specific photon en-
ergies with the goal to Floquet engineer a light-induced
anomalous Hall effect [31,32], we now address the relevant
electronic energy scales as a function of twisting angle. To
this end, we show in Fig. 1(c) both �� and �M for different
commensurate rotation angles above the magic-angle regime.
As discussed in various references, such as Ref. [46], the
low-energy Dirac bands can be rescaled to exhibit a desired
bandwidth by tuning to particular twist angles. In the inset of
Fig. 1(c), we focus on the range of angles for which the �

values lie in the range attainable in an existing ultrafast trans-
port setup [31]. This opens up the possibility of a Floquet-
engineered band structure with a light-induced anomalous
Hall effect if the laser breaks time-reversal symmetry (see
below) with electronic energy scales tunable near the photon
energy. This might, for instance, be possible for a twist angle
of 1.7◦ and photon energy of 200 meV, which matches roughly
the low-energy bandwidth in this case.

III. EQUILIBRIUM TOPOLOGY

Before turning to Floquet-engineered bands and topology,
we first discuss the equilibrium Berry curvature near the Dirac
points when different onsite potentials are applied to TBG.
This can be seen as a direct generalization of the Haldane
model for single-layer graphene [55] with broken inversion
symmetry and intact time-reversal symmetry.

For the onsite potentials, we choose from three different
options, detailed in Appendix A: (i) a back-gate voltage
which corresponds to an energetic difference VBG between
the top and bottom layers; (ii) an asymmetric A-B potential
with energetic difference V asym

AB between A and B sublat-
tice in one layer and −V asym

AB in the other layer; and (iii)
a symmetric A-B potential with energetic difference V sym

AB
between A and B sublattice in both layers. As we will see,
different combinations of these potentials (i) and (ii) and (i)
and (iii), respectively, lead to different band structures and
different Berry curvatures within the bands. We notice that
for the real TBG device, V sym

AB = 0 and V asym
AB = 0. These

onsite potentials should be seen as fictitious, primarily un-
physical potentials that illustrate how the topology changes for
different ways in which inversion symmetry can be broken,
similar in spirit to the Haldane model [55]. Notice, though,
that encapsulation of TBG between hexagonal boron nitride
layers might lead to an induced A-B potential even in TBG.
Moreover, other hexagonal two-dimensional materials, such
as transition-metal dichalcogenides, have an effective A-B

potential. Finally, the cold-atom realization of twisted bilay-
ers paves the way to implement such potentials in artificial
TBG [53]. On the other hand, the back-gate potential can
be readily applied experimentally, as has been demonstrated
for conventional A-B-stacked bilayer graphene [60,61]. Un-
like the case of A-B-stacked bilayer graphene, which has
a parabolic energy dispersion, TBG does have a Dirac-like
dispersion, which offers the unique opportunity to experimen-
tally study the competition between broken time-reversal and
broken inversion symmetries.

Figure 2 shows the evolution of band structures and Berry
curvatures (see Appendix C) near both Dirac points K1 and
K2 in the mBZ for twist angle � = 7.34◦. First, we focus
on infinitesimally small V asym

AB = VBG = 0.0001 eV [Figs. 2(a)
and 2(b)]. Both the valence and conduction bands are still
almost twofold degenerate and a small energy gap of order
0.0001 eV opens at K1 and K2, inducing a nonvanishing Berry
curvature. Figure 2(b) shows the Berry curvature in the two
valence bands. For one valence band (green solid line), the
Berry curvature is negative at K1 and positive at K2, while
it is exactly the opposite for the other valence band (purple
dashed line). Thus, the Berry curvature integrated within each
valley (K1 and K2) vanishes. The same qualitative behavior
is observed for increased values of the asymmetric potential
V asym

AB = 0.01 eV larger than the back-gate potential VBG =
0.001 eV [Figs. 2(e) and 2(f)] as well as asymmetric po-
tential V asym

AB = 0.01 eV smaller than the back-gate potential
VBG = 0.05 eV [Figs. 2(i) and 2(j)]. In these cases, the Berry
curvature is spread out a bit more in momentum space. In the
latter case with larger back-gate potential, one can observe
additional band crossings to the left and right of the Dirac
points [Fig. 2(i)] with vanishing Berry curvature [Fig. 2(j)].

We now study what happens for the case of a sym-
metric A-B potential V sym

AB . For infinitesimally small poten-
tials V sym

AB = VBG = 0.0001 eV [Figs. 2(c) and 2(d)], both
valence bands show the same Berry curvature being posi-
tive near K1 and negative near K2. Thus, in the symmetric
case, as opposed to the asymmetric case, there is a non-
vanishing total valley Berry curvature but vanishing overall
Berry curvature due to cancellation between both valleys
in the mBZ. The same qualitative behavior is observed for
increased values of the symmetric potential V sym

AB = 0.01 eV
larger than the back-gate potential VBG = 0.001 eV [Figs. 2(g)
and 2(h)]. This behavior is switched when the back-gate
potential VBG = 0.05 eV is larger than the symmetric potential
V asym

AB = 0.01 eV [Figs. 2(k) and 2(l)]. In this case, the Berry
curvature is analogous to the one for the asymmetric case with
vanishing valley Berry curvature for each valley individually.
This finding is particularly interesting as it opens up the
possibility of starting from a topologically trivial insulating
phase for VBG �= 0 and VAB = 0, which is the realistic scenario
for TBG. Below, we will show that by applying circularly
polarized light, one can light induce the transition from topo-
logically trivial to topologically nontrivial insulating band
structures at a nonvanishing critical field strength, which is
not possible for single-layer graphene.

Overall, we note that TBG obviously offers more possi-
bilities for combinations of Berry curvature than single-layer
graphene. In particular, the Berry curvature can vanish per val-
ley when summed over all valence bands, while being nonzero
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FIG. 2. Equilibrium band structure and corresponding valence-band Berry curvatures in close proximity to the Dirac points of the mBZ

along �-K1-M-K2-� (interval of length 0.022 Å
−1

around K1 and K2) for different onsite potentials VAB and backgate voltages VBG. [(a), (c),
(e)] Antisymmetric ±/∓ sublattice potential within the layers. [(g), (i), (l)] Symmetric ±/± sublattice potentials. [(b), (f), (j), (l)] Local and
valley band curvature shows opposite sign, respectively. [(d), (h)] Nonvanishing valley Berry curvature but zero integrated Berry curvature
due to sign flip between valleys. We use the following values for the potentials: [(a), (b)] V asym

AB = 0.0001 eV, VBG = 0.0001 eV, [(c), (d)]
V sym

AB = 0.0001 eV, VBG = 0.0001 eV, [(e), (f)] V asym
AB = 0.01 eV, VBG = 0.001 eV, [(g), (h)] V sym

AB = 0.01 eV, VBG = 0.001 eV, [(i), (j)]
V asym

AB = 0.01 eV, VBG = 0.05 eV, and [(k), (l)] V sym
AB = 0.01 eV, VBG = 0.05 eV.

for each band separately within a valley, for broken inversion
symmetry due to an asymmetric A-B potential or due to a
symmetric A-B potential when the back-gate voltage exceeds
this A-B potential. This scenario obviously does not exist for
single-layer graphene, which has only one valence band (per
spin, which is suppressed here) in the Dirac bands. In all cases
discussed here, the total Berry curvature and thus the valence
band Chern number vanishes when time-reversal symmetry is
intact, like in single-layer graphene or the Haldane model with
time-reversal symmetry. Importantly, we do not make a claim
about the topology of the regime at and below the highest
magic angle around 1.05◦, for which there have been several
predictions for the effective Berryology [62–65].

IV. FLOQUET BAND STRUCTURE

We now turn to the case of laser-driven TBG with circularly
polarized light in which Floquet bands are formed. Focusing
again on a twist angle � = 7.34◦, used here and in all that
follows, we choose a photon frequency � = 2.23 eV tuned to

the bandwidth �� for this particular twist angle. This choice
is motivated by the fact that Floquet sidebands overlapping
with the original bands are not created in this case within the
low-energy Dirac bands but only with higher lying bands. The
laser field is described by a time-dependent, spatially homoge-
neous vector potential A(t ) = Amax[ex sin(�t ) + ey cos(�t )],
and is coupled to the electrons in TBG via Peierls substitution,

ti j → t̃i j (t ) = ti je
iA(t )ri j . (2)

From the resulting time-dependent Hamiltonian, we compute
the Floquet bands by expanding in Floquet harmonics [66–68]
and diagonalizing the Floquet Hamiltonian with a cutoff in the
Floquet index and checked convergence in this cutoff. In order
to plot the resulting bands and their topology, we choose to
project the Floquet bands onto the original energy eigenstates
of the bare Hamiltonian, i.e., to compute the square of the
wave function overlap and color the resulting Floquet bands
with a color scale according to this overlap (see Appendix B).

In Fig. 3, we show the original equilibrium bands (dashed
lines) and the projected Floquet bands for a relatively strong
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FIG. 3. Floquet band structures for a strong circularly polarized driving field with Emax = 13.7 MV/cm (Amax = 0.15 a−1
0 at � = 2.23 eV)

for different onsite potentials and back-gate voltages: (a) V sym
AB = 0.0001 eV, VBG = 0.0001 eV, and (b) VAB = 0, VBG = 0.05 eV. The gray

dashed lines indicate the equilibrium bands. The overlap between the Floquet bands and the equilibrium bare bands is denoted by the red color
as indicated in the color bars. In both cases, the breaking of time-reversal symmetry adds mass to the Dirac bands, which results in a finite
energy gap at the Dirac points. Additionally, gaps open away from the Dirac points, due to resonant coupling between Floquet bands. The inset
in panel (b) shows a closeup of the region near K2.

laser field (Emax = 13.7 MV/cm). We choose this large field
strength to make the Floquet sidebands and corresponding
level crossings clearly visible. We investigate two cases,
the one of infinitesimal potentials V sym

AB = VBG = 0.0001 eV
[Fig. 3(a), for which the Floquet bands are essentially those
of pristine TBG] and the one of vanishing A-B potential but
nonvanishing back-gate potential VBG = 0.05 eV [Fig. 3(b)].
The circularly polarized driving field opens a sizable energy
gap at both Dirac points K1 and K2 and creates a variety of
Floquet bands, most of them with relatively small overlap with
the equilibrium bands. Nevertheless, a number of avoided
band crossings are visible in the chosen energy window,
leading to a more complicated structure than for single-layer
graphene [40]. Similarly, for the case in Fig. 3(b), the main
feature induced by the laser driving is a band gap opening
at K1 and K2 but now with visibly split Floquet valence
and conduction bands due to the sizable back-gate potential.
Interestingly, in both cases the relatively strong field leads
to a suppression of band overlap between Floquet bands and
bare bands at the top of the conduction bands at the M point,
because there are many higher and lower lying bands whose
Floquet replicas happen to match the bare bands at this point
and hybridize with them. Together these results show that
relatively complex Floquet bands can in principle be induced
in TBG. Recent combined experimental-theoretical studies
of the light-induced anomalous Hall effect in single-layer
graphene have demonstrated the importance of avoided band
crossings for signatures of Hall currents as a function of
chemical potential [31,33], which is why our results presented
here serve as a guide to the understanding of potential future
transport measurements on laser-driven TBG.

V. FLOQUET-ENGINEERED TOPOLOGY

Finally, the obvious follow-up question to address is the
one of the light-induced Berry curvature and correspond-
ing Floquet-band topology. To this end, we focus on the
low-energy Floquet-Dirac bands near K1 and K2 and color
these bands according to their respective Berry curvatures.
The resulting Floquet-engineered Berry curvatures are pre-
sented in Fig. 4. Figures 4(a)–4(d) shows the evolution for

infinitesimal potentials V sym
AB = VBG = 0.0001 eV as a func-

tion of increasing driving field strength Emax. Here, in contrast
to Fig. 3, we choose much weaker driving field strengths in
order to keep the Floquet band structures simpler and the
light-induced Berry curvature well localized near the Dirac
points. They are initially in equilibrium [Fig. 4(a)], and one
observes a nonzero Berry curvature in each valley but with
flipped sign between valleys [cf. Fig. 2(d)]. This immediately
changes when a driving field is applied [Fig. 4(b)], which
leads to a band inversion and sign change of the Berry curva-
ture around K1 and a nonvanishing total Berry curvature in the
valence bands (conduction bands) due to broken time-reversal
symmetry exceeding the breaking of inversion symmetry.

We remark here that the complexity of the Floquet band
structure, with replicas and avoided crossings as discussed
above, renders the discussion of a Chern number of Floquet
bands somewhat meaningless. The important physical ingre-
dient to understand the consequences of local Berry curvature
is the effective winding number that emerges around the Dirac
points, and this is locally analogous to a Chern insulator
with Chern number C = 4. However, it is well known that
this does not necessarily imply a fully quantized Hall con-
ductance in the driven state, as discussed by some of us in
Ref. [32]. Nevertheless, if a sweet spot for driving the system
such that heating is largely avoided could be identified, our
results would imply a light-induced anomalous Hall effect
similar to single-layer graphene, but with an additional double
degeneracy due to the bilayer instead of single-layer structure
(4e2/h instead of 2e2/h). We stress here that this quantization
is strictly only valid in the limit where the Berry curvature is
highly localized in the two valence and two conduction bands
very close to the Dirac points. In fact, this is only strictly true
in the weakest-field case [Fig. 4(a)] and becomes less clear
when some Berry curvature also develops at avoided band
crossings. The observed band gap and spreading of the Berry
curvature in momentum space become more pronounced as
the field strength increases [Figs. 4(c) and 4(d)]. We now turn
to the case of vanishing A-B potential and nonzero backgate
potential VBG = 0.05 eV [Figs. 4(e)–4(h)]. Initially, the Berry
curvature vanishes identically everywhere [Fig. 4(e)]. Turning
on the laser field, a nonvanishing Berry curvature is induced
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FIG. 4. Floquet-engineered Berry curvature near the two Dirac points of the mBZ along �-K1-M-K2-� for different onsite potentials
VAB, back-gate voltages VBG, and increasing circularly polarized field amplitudes Emax. The size of the points indicate the overlap with
the original equilibrium bands. Throughout, �� = 2.23 eV is chosen as Floquet driving frequency. [(a), (e), (i), (m)] Equilibrium case. In
panel (e), the Berry curvature is not defined at K1 (K2), due to band degeneracy, and zero otherwise. (b) For infinitesimally small potentials,
a finite driving amplitude immediately opens a gap and induces a nontrivial Floquet-band topology. [(f), (i), (j), (m), (n)] Topologically
trivial phase, characterized by zero integrated Berry curvature of the valence (conduction) bands. [(g), (k), (o)] Topological transition
indicated by gap closing. (g) Trivial shift of bands while the sign of associated Berry curvature is preserved. (k) Gap closing and flow
of Berry curvature between lowermost conduction band and uppermost valence band. (o) Gap closing and flow of Berry curvature both
between bottom conduction band and valence band and between top conduction band and valence band, respectively. [(b), (c), (d), (h),
(i), (p)] Topologically nontrivial phase, characterized by reopened gaps and a finite integrated Berry curvature in the valence (conduction)
bands. We choose the following parameter sets: [(a)–(d)] V sym

AB = VBG = 0.0001 eV, Emax = 0.0, 0.9, 1.8, 2.7 MV/cm, [(e)–(h)] VAB = 0,
VBG = 0.05 eV, Emax = 0.0, 2.7, 7.7, 8.2 MV/cm, [(i)–(l)] V asym

AB = 0.01 eV, VBG = 0.001 eV, Emax = 0.0, 2.7, 3.6, 4.6 MV/cm, and [(m)–(p)]
V sym

AB = 0.01 eV, VBG = 0.001 eV, Emax = 0.0, 2.7, 3.6, 4.6 MV/cm.

but with compensation between the two valence bands (con-
duction bands) for a moderate field [Fig. 4(f)]. Increasing the
field strength more, one reaches a critical field [Fig. 4(g)]
at which the top valence band and bottom conduction band
invert and the net valence band Berry curvature as well as the
net conduction band Berry curvature become nonzero. This
topological phase transition is completed at even larger field
strength [Fig. 4(h)].

A topological Floquet-engineered phase transition is in-
duced at smaller field strength when the back-gate voltage
is smaller, VBG = 0.001 eV [Figs. 4(i)–4(l)], where we also
include an asymmetric A-B potential V asym

AB = 0.01 eV larger
than the back-gate potential. This is the same as the scenario
discussed before where the valley Berry curvature vanishes
when integrated over all valence bands in the absence of the
laser field. This is changed by the laser driving and a band
inversion, and flow of Berry curvature between top valence

and bottom conduction bands is observed simultaneously in
both valleys at a critical field strength [Fig. 4(k)].

By contrast, for VBG = 0.001 eV and a larger symmetric
onsite potential V sym

AB = 0.01 eV [Figs. 4(m)–4(p)], we have a
net nonzero valley Berry curvature [Fig. 4(m)], qualitatively
equivalently to the case of the single-layer Haldane model. In
this case, a moderate driving field creates asymmetric energy
gaps at K1 versus K2 [Fig. 4(n)], where one of the gaps at K2

increases due to the laser while the other one at K1 decreases.
A gap closing and band inversion are then observed at K1 for
a critical field strength [Fig. 4(o)] with a completed transition
to a topologically nontrivial Floquet band structure above the
critical field strength [(Fig. 4(p)].

We note that these Floquet-engineered Berry curva-
tures could be measured in a momentum-, energy-, and
time-resolved fashion using circularly polarized time- and
angle-resolved photoemission spectroscopy [69]. Finally, we
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FIG. 5. Floquet topological gaps and phase diagrams. (a) Energy gap at K as a function of the driving field amplitude with vanishing
local potentials. The red line shows the band gap extracted from the Floquet band structure. The blue (black) line shows the quadratic
dependence of the gap on the driving amplitude, Amax, and the equilibrium TBG (monolayer graphene) Fermi velocity, vF (v0

F ), in the
low-amplitude, high-frequency limit. The vertical black dotted line indicates the field strength chosen in panel (b). (b) Energy gap as a function
of twist angle for a fixed field strength. The value used throughout the paper, � = 7.34◦, is indicated by red color. The black dashed line
indicates the corresponding single-layer Floquet band gap. The blue dashed line shows the gap values which would be naively expected
from the renormalized Fermi velocity. [(c), (d)] The pink (light blue) area indicates the topologically nontrivial (trivial) phase. (c) With
symmetric sublattice potential and a small backgate voltage, VBG = 0.001 eV. Because of the additional back-gate voltage, the topologically
nontrivial phase always requires nonzero driving amplitude. (d) With back-gate voltage only. Throughout, a photon frequency, � = 2.23 eV, is
assumed.

summarize our findings for the Floquet-engineered band gaps
and topology in Fig. 5. The red curve in Fig. 5(a) shows
the Dirac point band gap at zero onsite potentials (pristine
TBG) as a function of laser driving field strength, or as
a function of peak vector potential, respectively. The blue
(black) line shows 2(vF Amax)2/� [2(v0

F Amax)2/�], respec-
tively, with vF the renormalized Fermi velocity of TBG and v0

F
the bare Fermi velocity of single-layer graphene. Interestingly,
the light-induced band gap scales essentially with the bare
Fermi velocity of single-layer graphene as opposed to the
renormalized one in TBG (see Appendix D for an extended
discussion). For small twist angles, however, deviations from
scaling with v0

F appear. The origin of this scaling behavior
presumably lies in the fact that the renormalization of the
Fermi velocity stems from interlayer hoppings, which are
predominantly perpendicular to the plane of the individual
graphene layers. In contrast, the light field is chosen to have
in-plane polarization, thus not coupling to the out-of-plane
currents. Therefore, the single-layer Fermi velocity is the key
ingredient for the light-induced band gap.

Figure 5(b) shows the Floquet band gap at the Dirac points
for vanishing onsite potentials at different intermediate twist
angles. The peak electric field strength, Emax = 9.1 MV/cm,
and the driving frequency, � = 2.23 eV, are kept constant.
The gap increases as a function of twist angle at small twist
angles and then reaches a plateau approaching the gap value
for single-layer graphene. Clearly, for 7.34◦ the size of the gap
is very close to the single-layer value [70].

Figure 5(c) shows the Floquet phase diagram with the triv-
ial phase (vanishing valence band integrated Berry curvature)
and nontrivial phases (nonzero integrated Berry curvature)
as a function of field strength for varying symmetric A-B
potential and a small back-gate voltage. Because of the back-
gate voltage, as seen already in Fig. 4, a finite critical field
strength is required to switch the system to the topologically
nontrivial phase. This changes in the case of a vanishing A-B
potential and a finite back-gate voltage, shown in Fig. 5(d).
Here, essentially the shape of the phase boundary exhibits the
same quadratic dependence on field strength as the energy gap
in Fig. 5(a).
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VI. CONCLUSION AND OUTLOOK

We have shown how the Berry curvature in twisted bilayer
graphene is affected by different types of inversion-symmetry
breaking. The effects of circularly polarized light on the full
tight-binding model of twisted bilayer graphene are found
to be essentially as expected for two copies of single-layer
graphene. Importantly, the light-induced energy gap is not
strongly affected by interlayer coupling at twist angles much
larger than the largest magic angle. Moreover, the opportunity
to break inversion symmetry by back-gating allows us to tune
the phase transition between topologically trivial and nontriv-
ial states, in distinct contrast with single-layer graphene. This
opens up the realistic prospect of a finite-field topological
transition in solid-state experiments. A future task is to study
theoretically the ultrafast light-induced transport properties of
TBG for realistic driving pulses especially in the midinfrared
and for smaller twisting angles near 1.7◦, including heating
effects by fully taking into account excitation and dissipation
in real time, which is a much more formidable task for TBG
compared to a single branch of Dirac fermions [32,33]. In
particular, real-time signatures of tunneling into topological
edge states might provide additional insights [71]. An intrigu-
ing opportunity opens up for small twist angles, at which the
distance between both Dirac points in the mini-Brillouin zone
becomes very small. In this case, the laser field strength could
realistically lead to a peak vector potential that exceeds the
distance |K2 − K1|. In this case, the band gap induced initially
by a moderate field amplitude could close again, leading to
a second topological phase transition, which should lead to a
signature in the Hall transport experiment. Moreover, it is also
interesting to address the question of light-induced topology
without classical driving fields by encapsulating TBG in a
cavity, as recently proposed for single-layer graphene [72].

Finally, the possibility to not only tune single-particle
bandwidth and Berry curvature but also interaction ef-
fects [51,54] could pave the way for solid-state platforms with
exotic nonequilibrium phases of matter analogous to Floquet-
engineered interaction phases in artificial lattices [52]. More-
over, the concept of twistronics can also be extended to
other two-dimensional materials, such as hexagonal boron
nitride [73] and GeSe [74], and it is an intriguing subject
for future study to investigate Floquet engineering in these
materials.
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APPENDIX A: MODEL

The tight-binding Hamiltonian is of the general form

H =
∑

i

εic
†
i ci +

∑
i �= j

ti jc
†
i c j, (A1)

intralayer Vppπ

x,y

z

a 
x,y

z
interlayer Vppσ

x,y

z
interlayer Vppπ

a1

rij|z=0

pz
pz

pz

(a) (b) (c)

a1

pz

(c)

FIG. 6. Tight-binding hopping elements. Only pz orbitals are
taken into account. (a) Intralayer hopping is restricted to ppπ terms.
There are two channels for interlayer hopping: Vertical hopping is
dominated by the ppσ term (b). For nonvertical transitions, also ppπ
terms (c) contribute.

where c†
i (ci) creates (annihilates) an electron in the pz orbital

at the atomic position ri. We use hopping matrix elements as
introduced in Ref. [58]:

ti j = n2Vppσ (ri j ) + (1 − n2)Vppπ (ri j ). (A2)

In the above equation, ri j = ||ri − r j || refers to the distance
between two sites at positions ri and r j . The real number
n = zi j/ri j defines the ratio between the distance along the
z direction and the total distance. Vppπ and Vppσ denote the
π - and σ -orbital-related Slater and Koster parameters, respec-
tively. For intralayer hopping, only the Vppπ term contributes,
as zi j = 0. For interlayer hopping, both the Vppπ and the Vppσ

terms are nonzero (zi j = a1). A detailed illustration is shown
in Fig. 6. Both hopping contributions are assumed to decay
exponentially as a function of distance:

Vppπ = γ0 exp [qπ (1 − ri j/a)],

Vppσ = γ1 exp [qσ (1 − ri j/a1)]. (A3)

Here, a = 1.418 Å is the intralayer nearest-neighbor dis-
tance, and a1 = 3.364 Å is the interlayer distance. The
monolayer lattice constant of the triangular Bravais lat-
tice is a0 = 2.445 Å. For the nearest-neighbor hopping,
γ0 = −3.24 eV, we add 20% to the DFT-fitted value in order
to compensate for many-body effects beyond the employed
DFT functional and in order to fit the van Hove singularity in
the tunneling density of states reported in Ref. [75]. For the
σ -related hopping, we find γ1 = 0.55 eV. For the exponential
decay, we find fitting parameters, qπ = 3.15 and qσ = qπ

a1
a .

For the fictitious local potentials on the A and B sublattices
that break inversion symmetry, εi, we assume different sym-
metry configurations, as shown in Fig. 7. We assume periodic
Born–von Kármán boundary conditions within in the x-y
plane. The Hamiltonian in momentum space is then calculated
by a Fourier transforms, c†(k) =

√
V −1

BZ

∑
i c†

i exp(ikri ) and

c(k) =
√

V −1
BZ

∑
i ci exp(−ikri ), where VBZ is the volume of

the two-dimensional Brillouin zone.

APPENDIX B: FLOQUET DYNAMICS

A circularly polarized laser driving field is included
by coupling to a time-dependent external gauge field,
A(t ) = Amax[ex sin(�t ) + ey cos(�t )], where ex and ey denote
the unit vectors in the spatial in-plane directions, via Peierls
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0

+VBG/2

- VBG/2

A
B

+VAB/2

symmetric

- VAB/2

A
B

+VAB/2

- VAB/2

0

+VBG/2

- VBG/2

A
B

+VAB/2

asymmetric

- VAB/2

A
B

+VAB/2

- VAB/2

(a) (b)

FIG. 7. Onsite potentials that break inversion symmetry. The
back-gate voltage, VBG, is always chosen symmetric between both
layers. (a) Symmetric ±/± sublattice potential, V sym

AB . (b) Asymmet-
ric ±/∓ sublattice potential, V asym

AB .

substitution of the form

ti j → t̃i j (t ) = ti je
iA(t )ri j . (B1)

The main effect of the circularly polarized field is the breaking
of time-reversal symmetry, which induces a mass term to
the Dirac fermions, as has been investigated for single-layer
graphene [34,40]. The peak electric field strength is calculated
from the amplitude of the vector potential by the relation,
Emax = Amax

a0
�, where a0 = 2.445 Å is the monolayer lattice

constant. The resulting nonequilibrium state of the light-
matter coupled system is periodic in time and can thus be
analyzed by Floquet theory [66–68], which, by a Floquet-
Bloch decomposition, maps the bare time-dependent Hamil-
tonian, H (t + T ) = H (t ), to the time-independent Floquet
Hamiltonian,

Hnm = 1

T

∫
T

dtei(m−n)�t H (t ) + δmnm�11. (B2)

The integers m and n arise from the Floquet expansion of the
time-dependent solutions of the Schroedinger equation,

|�(t )〉 =
+∞∑

m=−∞
exp[−i(ε + m�)t]|um〉, (B3)

where ε is the Floquet quasienergy and |um〉 is the corre-
sponding Floquet eigenfunction of the Floquet Hamiltonian.
For the results shown in the main text, we truncate the
expansion after order |m| = 2 and use 200 sampling points to
perform the integral over one period T = 2π/� in Eq. (B2)
numerically with the trapezoidal rule. We ensure convergence
in the Floquet cutoff by means of the energy gap at the
Dirac points with error smaller than 10−5 eV. In order to
highlight the bands which overlap with the bare bands of
the undriven system, in contrast to Floquet sidebands, we
calculate the squared overlap,

∑
α |〈α|e j〉|2, of the Floquet

energy eigenstates, |e j〉, with the energy eigenstates of the
bare Hamiltonian, H |α〉 = Eα|α〉. Throughout this work, we
use units where e = h̄ = c = 1.

APPENDIX C: BERRY CURVATURE

The Berry curvature at a fixed momentum point can be
defined by the Berry flux of an infinitesimally small loop

(kx,ky)

1 2

34

(kx-Δk/2,ky-Δk/2) (kx+Δk/2,ky-Δk/2)

(kx-Δk/2,ky+Δk/2) (kx+Δk/2,ky+Δk/2)

F(n)x

y

FIG. 8. Calculation of the Berry flux. The Berry flux of the nth
band, F (n), for a quasimomentum k = (kx, ky ) is calculated by a
closed loop along the eigenstates at position 1 to 4 in momentum

space. Throughout, we use a grid spacing of �k = 10−5 Å
−1

.

around that point, divided by the enclosed area [76],

B(n) = lim
�kx,�ky→0

F (n)

�kx,�ky
, (C1)

where n refers to the corresponding band. On a discretized
grid, the flux can be written in the form [77]

F (n) ≈ Im

⎛
⎝ln

∏
j

〈un,k j |un,k j+1〉
⎞
⎠. (C2)

Here, un,ki refers to the nth energy eigenstate of the bare
Hamiltonian and the Floquet Hamiltonian, respectively, at
quasimomentum ki, where i ∈ {1, 2, 3, 4}, as depicted in

Fig. 8. We use a grid spacing of �k = 10−5 Å
−1

for which
the Berry curvature is sufficiently converged.

FIG. 9. Full energy gap at the Dirac point as a function of the
driving amplitude for different twist angles, � (colored dots). In
all three cases, the Floquet driving frequency is � = 2.23 eV. The
black dashed line indicates the monolayer dependence of the gap
on the driving amplitude and the Fermi velocity, 2(v0

F Amax)2/�.
The colored dashed lines indicate the corresponding relation for the
twisted case.
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APPENDIX D: LIGHT-INDUCED ENERGY GAPS

In Fig. 9, we show the light-induced energy gaps at the
Dirac point without inversion-symmetry breaking fields for
different twist angles as indicated. In all three cases, we
choose as the photon frequency the �-point low-energy band-
width, �� = 2.23 eV, which we extract from the equilibrium

band structure for � = 7.34◦. Importantly, we find almost
perfect scaling behavior with the bare Fermi velocity of
single-layer graphene, as opposed to the actual Fermi velocity
of the bilayer, for the largest twist angles of 7.34◦. For smaller
twist angles, we find a deviation and the actual gap lies in
between the one expected for single-layer graphene and the
one for the bilayer.
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