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Signatures of quantized coupling between quantum emitters and localized surface plasmons
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Confining light to scales beyond the diffraction limit, quantum plasmonics supplies an ideal platform to
explore strong light-matter couplings. The light-induced localized surface plasmons (LSPs) on the metal-
dielectric interface acting as a quantum bus have wide potential in quantum information processing; however, the
loss nature of light in the metal hinders their application. Here we propose a mechanism to make the reversible
energy exchange and the multipartite quantum correlation of a collective of quantum emitters (QEs) mediated
by the LSPs persistent. Via investigating the quantized interaction between the QEs and the LSPs supported by a
spherical metal nanoparticle, we find that the diverse signatures of the quantized QE-LSP coupling in the steady
state, including the complete decay, population trapping, and persistent oscillation, are essentially determined
by the different number of bound states formed in the energy spectrum of the QE-LSP system. Enriching our
understanding on the light-matter interactions in a lossy medium, our result is instructive in the design of quantum
devices using plasmonic nanostructures.
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I. INTRODUCTION

Hybrid systems composed of metal nanoparticles (MNPs)
and quantum emitters (QEs) have drawn intense attention in
physics, chemistry, and materials and life sciences [1–5]. By
confining light within regions far below the diffraction limit
in modes of localized surface plasmons (LSPs), the strong
light-matter interaction is realizable in the vicinity of the
MNPs [6–14]. Recently, dramatic progress has been made
to reveal the modified radiative properties of QEs by the
LSPs in quantum plasmonics. Fascinating effects, including
the superradiance of an ensemble of dipoles [15], the surface
plasmon amplification by stimulated emission of radiation
[16], the quantum statistics control of photons [17], and the
suppression of quantum fluctuations of light [18], have been
found. These effects have led to a wide application of the
LSPs in quantum information processing and quantum device
designing. However, the dissipation of the LSPs induced by
the loss nature of light in metal severely restricts their practical
applications [4,19].

It has been found that a QE residing near the metal is
quenched by its decay through the nonradiative electromag-
netic modes absorbed by the metal [20–23]. Such quenching
hampers the complete quantum control in plasmonic sys-
tems, where a persistent quantum coherence is of importance

*anjhong@lzu.edu.cn
†haiqing0@csrc.ac.cn

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[23,24]. In the systems of a collective of QEs, the coopera-
tive effect makes the strong coupling between the QEs and
the radiative mode dominate the metal absorption [25] and
suppresses quenching to the QEs [26]. It endows the multiple-
QE system coupled to metal nanostructures with a promising
route to suppress the loss of LSPs in metal [27,28]. Going
beyond the weak-coupling description of QE-LSP interactions
[29–31], it has been found that the LSPs can act as a quantum
bus to mediate the coherent interactions and generate the
entanglement among QEs [32–34]. However, such quantum
coherence is dynamically transient and tends to vanish in the
long-time limit. In terms of practical applications, persistent
quantum coherence and entanglement of the QEs are desired.
On the other hand, a widely used description of strong QE-
LSP coupling is based on the pseudomode method [24,25,35–
38], which decomposes the spectrum into a sum of discrete
resonant modes with Lorentzian expansion and succeeds in
mapping the non-Markovian dynamics into a Markovian one
[39]. When the coupling is strong enough, the QEs and
LSPs are highly hybridized, and thus the pseudomode method
is insufficient and a rigorous continuous-mode theory is
needed.

In this paper, going beyond the pseudomode method, we
study exactly the dissipative dynamics of a collective of QEs
interacting with the LSPs supported by a MNP. A mechanism
to overcome the loss effect of the LSPs in the metal is dis-
covered. We find the diverse signatures of the strong QE-LSP
couplings, including complete decay, population trapping,
and persistent oscillations, in the long-time steady state. Our
analyses reveal that they are determined by the formation of
different numbers of QE-LSP bound states. We also find that,
as a consequence of the suppression of loss effect of the LSPs,
a persistent entanglement among the QEs can be mediated by
the LSPs. Such bound-state-favored persistent entanglement
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FIG. 1. Schematic diagram of N QEs positioned at rl on the
equator plane of the MNP with radius R and permittivity εm(ω). The
system is put in a homogeneous and isotropic medium with dielectric
constant εd.

among the QEs plays a constructive role in applying the LSPs
as a quantum bus in quantum information processing.

II. SYSTEM AND QUANTIZATION

The system is composed of a MNP surrounded by N QEs.
The QEs labeled by l are positioned at rl on the equator plane
of the MNP (see Fig. 1). Each QE is modeled as a two-level
system with frequency ωl and dipole moment μμμl . The MNP
has a radius R and a dielectric permittivity denoted by a com-
plex Drude model εm(ω) = ε∞ − ω2

p/[ω(ω + iγp)], where ωp

is the bulk plasma frequency, ε∞ is the high-frequency limit
of εm(ω), and γp is the Ohmic loss of light in the MNP [40].
The whole system is embedded in a homogeneous medium
with dielectric constant εd. We consider that both the dielectric
and the metal are nonmagnetic and thus their permeability
μd = μm ≡ 1.

Besides propagating into the dielectric as a radiative mode
and being absorbed by the MNP as a nonradiative mode,
the optical field emitted by the QE also induces a confined
hybrid mode which consists of LSPs localized near the metal-
dielectric interface [41]. The LSPs enable a confinement of
light within the subwavelength areas on the interface, which
supplies an ideal platform to explore the strong quantized
light-matter coupling [39,42]. A quantization method of light
in the absorbing medium has been proposed based on the
dyadic Green’s function, where the absorption of the medium
to light is described by a Langevin noise [43,44]. Then the
electric field reads

Ê(r, ω) = ic−2ω2

√
πε0/h̄

∫
d3r′√Im[εm(ω)]G(r, r′, ω) · f̂ (r′, ω),

where ε0 is the vacuum permittivity, c is the speed of light, and
f̂ (r, ω) satisfying [f̂ (r, ω), f̂†(r′, ω′)] = δ(r − r′)δ(ω − ω′)
is the annihilation operator of light. The Green’s func-
tion G(r, r′, ω) satisfying the Helmholtz equation [∇∇∇ ×
∇∇∇ × −ω2c−2εm(ω)]G(r, r′, ω) = Iδ(r − r′), with I being the
identity matrix, denotes the field in frequency ω evaluated at r
due to a point source at r′. The spatial distribution of all of the
three modes has been incorporated in G(r, r′, ω) by solving

the Helmholtz equation subject to the boundary condition of
the system geometry. It allows for a complete description of
the quantized light-matter coupling by calculating G(r, r′, ω).
For a spherical MNP, the Green’s function is analytically
solvable. For more details see Appendix A.

The Hamiltonian of the full QE-MNP system under the
dipole and rotating-wave approximations reads [45]

Ĥ =
N−1∑
l=0

h̄ωl σ̂
†
l σ̂l +

∫
d3r

∫
dω h̄ω f̂†(r, ω) · f̂ (r, ω)

−
N−1∑
l=0

∫
dω[μμμl · Ê(rl , ω)σ̂ †

l + H.c.], (1)

where σ̂l = |gl〉〈el | is the transition operator from the excited
state |el〉 to the ground state |gl〉 of the lth QE. The valid-
ity of the rotating-wave approximation in a related system
was revealed in [31]. The dipole approximation works when
the QE size is sufficiently small [46–48]. Conventionally,
the LSPs are viewed as a few discrete pseudomodes with
Lorentzian expansion. Then one can use the standard cavity
QED method to describe the QE-LSP coupling [24,25,35–38].
It neglects the non-Lorentzian features of the spectrum and
may be insufficient when the QE is close to the interface [42],
where the hybridization of the QEs and the LSPs dominates.

III. EXACT DYNAMICS

We can see that the total excitation number N̂ =∑
l σ̂

†
l σ̂l + ∫

d3r
∫

dω f̂†(r, ω) · f̂ (r, ω) is conserved. In the
single-excitation subspace, the time-evolved state can
be expanded as |�(t )〉 = [

∑
l cl (t )σ̂ †

l + ∫
d3r

∫
dωdr,ω(t )

f̂†(r, ω)]|G; {0ω}〉, where |G〉 denotes all the QEs in the
ground state and |{0ω}〉 is the vacuum state of the total modes.
It can be derived that cl (t ) obeys (see Appendix B)

ċ(t ) + iω0c(t ) +
∫ t

0
dτ

∫ ∞

0
dω e−iω(t−τ )J(ω)c(τ ) = 0, (2)

where c(t ) = (c0(t ), . . . , cN−1(t ))T is a column vector, with
cl (t ) the excited-state probability amplitude of lth QE,
and J(ω) is a matrix, with Jl j (ω) = ω2μμμl · Im[G(rl , r j, ω)] ·
μμμ∗

j/π h̄ε0c2 the correlated spectral densities between the
lth and jth QEs. Thus all the actions of the metal-
dielectric structure on the QEs have been collected in
J(ω). We have chosen the QEs having identical frequency
ωl = ω0 and used

∫
d3s ω2

c2 Im[εm(ω)]G(r, s, ω)G∗(r′, s, ω) =
Im[G(r, r′, ω)] [45]. The convolution in Eq. (2) renders the
QE dynamics non-Markovian. The correlation of different
cl (t ) indicates that, although direct couplings of QEs in Eq. (1)
are absent, their indirect couplings can be effectively induced
by exchanging the virtual excitations of the photons.

The solution of Eq. (2) can be analyzed by a Laplace
transform, which yields c̃(s) = Vc̄(s)V−1c(0), with c̄(s) =
[s + iω0 + ∫ ∞

0 dω D(ω)
s+iω ]−1. We have used the Jordan de-

composition of J(ω) = VD(ω)V−1, with V and D(ω) =
diag[D0(ω), . . . , DN−1(ω)] its similarity matrix and Jordan
canonical form, respectively. Then c(t ) is obtainable by an
inverse Laplace transform to c̄(s), which can be done by
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finding its poles from

yl (
 ) ≡ ω0 −
∫ ∞

0

Dl (ω)

ω − 

dω = 
, 
 = is. (3)

It can be proven that the roots 
 multiplied by h̄ are just
the hybrid eigenenergies of the QEs and the LSPs in the
single-excitation subspace (see Appendix C). Since yl (
 ) is
a monotonically decreasing function when 
 < 0, each one
of Eqs. (3) has one discrete root 
 b

l if yl (0) < 0. We call the
discrete eigenstate with eigenenergy h̄
 b

l the bound state. In
the region 
 > 0, it has an infinite number of roots, which
form a continuous energy band. Determined by the system
parameters, at most N independent bound states could be
formed. Using Cauchy’s residue theorem, we readily have
c(t ) = Vc̄(t )V−1c(0) with the elements of c̄(t ) as [42]

c̄l (t ) = Zle
−i
 b

l t +
∫ iε+∞

iε+0

d


2π
c̄l (−i
 )e−i
 t , (4)

where the first term with Zl = [1 + ∫ ∞
0

Dl (ω)
(
 b

l −ω)2 dω]−1 is from

the bound state and the second term is from the energy band.
Oscillating with time in continuously changing frequencies,
the second term behaves as a decay and tends to zero due
to out-of-phase interference. Thus, if the bound state is ab-
sent, then limt→∞ c(t ) = 0 characterizes a complete decay,
while if the bound states are formed, then limt→∞ c(t ) =
V(Ze−i


 bt )V−1c(0), with x = diag(x0, . . . , xN−1) for x = Z
and 


 b, implies decoherence suppression. This indicates that
the dynamics of the QEs in the long-time limit is intrinsically
determined by the energy-spectrum character of the whole
QE-LSP system. Generally, solving V and D(ω) needs numer-
ical calculations. Here, for concreteness, we choose that all the
QEs have identical dipole moments and uniform coordinates
rl = (r, π/2, 2π l/N ) such that J(ω) is a symmetric circulant
matrix with Jl j (ω) = Jmn(ω) ≡ J|l− j|(ω) for |l − j| = |m −
n| (see Appendix A). Because J(ω) is a symmetric circulant
matrix, we readily have Dl (ω) = ∑N−1

j=0 Jj (ω)λN− j
l and V =

(υ0, . . . , υN−1), with υl = 1√
N

(1, λl , . . . , λ
N−1
l )T and λl =

exp(−2π il/N ) [49].

IV. RESULTS AND DISCUSSION

It was previously found that the reversible energy exchange
between the QEs induced by a common surface plasma tends
to vanish in the long-time limit under the Born-Markovian
approximation [50]. Different from that result, we will show
that such mediated coherent coupling can induce a persistently
reversible energy exchange between the QEs even in the
steady state when the approximation is relaxed. We choose
silver for the metal with h̄ωp = 9.01 eV, ε∞ = 3.718, and
h̄γp = 0.09 eV in the interested frequency range [51] and the
QEs with h̄γ0 = 0.1 meV. We focus on the QE dynamics by
studying the initial-state fidelity P(t ) = |〈�(0)|�(t )〉|2.

First, taking N = 2, we consider that only one of the
QEs is excited initially, i.e., |�(0)〉 = σ̂

†
0 |G; {0ω}〉. We can

calculate that with time evolution the fidelity reads P(t ) =
|c0(t )|2. Figure 2(a) shows the evolution of P(t ) in three
characteristic values of r. As a result of the near-field en-
hancement of the LSPs, a significant oscillation appears in the
dynamics for all three cases. Absent in the Born-Markovian

FIG. 2. (a) Evolution of P(t ) in different r obtained by numer-
ically solving Eq. (2). (b) Energy spectrum of the whole system in
different r. Two branches of bound states are formed in the band
gap. (c) Long-time values of P(t ) obtained from the exact dynamics
(red dots) and from Eq. (5) (solid lines). The cyan region covers
the values of P(∞) during its persistent oscillation. (d) Evolution
of concurrence obtained by solving Eq. (2). The other parameters are
N = 2, h̄ω0 = 0.8 eV, and R = 5 nm.

approximate result, this is entirely the non-Markovian effect,
which represents a reversible energy exchange and thus man-
ifests the strong coupling between the QEs mediated by the
LSPs [39]. It is interesting to see that the non-Markovian
effect manifests its action on the QEs not only in its transient
dynamics, but also in its steady state. When r = 9.5 nm,
P(t ) tends to zero accompanying the QEs decay completely
to the ground state, which is consistent with the previous
results [52,53]. However, a remarkable difference appears
with further decreasing r. One can see that P(t ) tends to a
nonzero value when r = 9.0 nm, which represents a stable
population trapping in the system, while when r = 8.0 nm,
P(t ) tends to a lossless oscillation with a constant frequency,
which is quite like the Rabi oscillation [54] and represents a
persistent energy exchange among QEs caused by the QE-LSP
interaction. These diverse signatures can be explained by our
bound-state analysis. From Eq. (4) we have (see Appendix D)

lim
t→∞ |P(t )|2 =

⎧⎨
⎩

0, M = 0
Z2/4, M = 1[
Z2

0 + Z2
1 + D(t )

]
/4, M = 2,

(5)

where M is the number of formed bound states and D(t ) =
2Z0Z1 cos[(
 b

1 − 
 b
0 )t] is the interference between the two

bound states. This conclusion can be confirmed by the energy
spectrum shown in Fig. 2(b). The two branches of bound states
formed in the band gap divide the spectrum into three regions:
without a bound state when r � 9.0 nm, one bound state when
8.5 � r � 9.0 nm, and two bound states when r � 8.5 nm.
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The regions match well with the ones where P(∞) shows
different behaviors [see Fig. 2(c)], i.e., complete decay, pop-
ulation trapping, and persistent oscillation, as expected from
Eq. (5). Such bound-state-favored behaviors are constructive
to generate entanglement between the QEs. Different from the
asymptotic vanishing in the Born-Markovian approximation
[50] and in the absence of the bound state, the generated
entanglement can be preserved as long as the bound states are
formed [see Fig. 2(d)]. This is helpful for utilizing plasmonic
nanostructures in designing quantum devices. Our results
can be generalized to the case of a large number of QEs.
With more of the bound states being formed in the large-N
case, the persistent oscillations will be complicated, but the
mechanism is the same as in the present case. In Appendix E,
the dynamics for N = 4 is provided. Note that the similar
bound-state-induced decoherence suppression for the single-
QE case has been found in Refs. [30,42].

Next we consider that the QEs are initially in a W -class
state |�(0)〉 = 1√

N

∑N−1
l=0 σ̂

†
l |G; {0ω}〉, which is a multipartite

entangled state widely used in quantum information pro-
cessing [55,56]. The canonical transformation V can convert
Eq. (2) into ˙̄c(t ) + iω0c̄(t ) + ∫ t

0 dτ
∫

dω e−iω(t−τ )D(ω)c̄(τ ) =
0, with c̄(t ) ≡ V−1c(t ). Its initial condition can be calculated
as c̄(0) = (1, 0, . . . , 0), under which only the c̄0(t ) compo-
nent of this matrix equation has a nonzero solution. Thus its
dynamics has the same equation of motion as the one of a
single QE coupled to the LSPs [42]. This indicates that the N
QEs collectively act as a two-level superatom to interact with
the LSPs with the spectral density characterized by D0(ω).
This notion of a superatom is a powerful concept in designing
single-photon quantum sources [57–60]. We can calculate the
initial-state fidelity P(t ) = |c̄0(t )|2.

In the same mechanism as the case of N = 2, the en-
tanglement of the QEs can be preserved in the steady state
due to the formation of the bound state. Figure 3(a) shows
the evolution of P(t ) for a different number N of QEs. It
shows that P(t ) tends to a finite value for large N , where
the QEs remain entangled. It can be understood from the
bound-state analysis. As discussed above, we readily obtain
limt→∞ c̄0(t ) = Z0e−i
 b

0 t when Eq. (3), with l = 0, has an
isolate root in the region 
 < 0. Figures 3(b) and 3(c) show
that the region where P(t ) tends to a stable value matches
well with the one where a bound state is formed in the
energy spectrum of the whole system. This verifies again
our conclusion that it is the formation of a bound state that
preserves the entanglement in the steady state. We also plot
in Fig. 3(d) the spectral density D0(ω), which measures the
coupling strength of the QEs and the LSPs. We can see that
the contribution of the resonant dipole mode ω1 = 3.77 eV
is entirely canceled, while the one of the quadrupole mode
ω2 = 3.94 eV is enhanced by increasing N (see Appendix A).
This is due to the destructive interference of the undistin-
guished coupling channels between different QEs and the
LSPs [25,60,61].

We note that, although we consider only the case that the
dipole moments of the QEs are polarized along the radial
direction, our result can be generalized to other cases. Some
quantitative difference might occur, but the constructive role
played by the bound states in overcoming the loss effect

FIG. 3. (a) Evolution of P(t ) with r = 9.5 nm in different N ob-
tained by the exact dynamics. (b) Long-time values of P(t ) obtained
by the exact dynamics (red dots) and the bound-state analysis (green
crosses). (c) Eigenenergy in different N . (d) Spectral density D0(ω)
and frequencies of the dipole and quadrupole modes of the LSPs
(gray dashed lines). The other parameters are the same as in Fig. 2.

of the LSPs in the MNP does not change. We emphasize
that our finding is realizable in the state-of-art technique of
experiments. The parameters used in our calculation are near
the ones of silver as the MNP and the J aggregates as the
QEs. Their strong coupling has been studied [62–65]. The
bound state and its distinguished role in the non-Markovian
dissipative dynamics have recently been observed in both
photonic crystal [66] and ultracold-atom systems [67]. This
means that our finding is completely realizable in quantum
plasmonics system, where the strong light-matter coupling is
more manifest than in other systems.

V. CONCLUSION

We have proposed a mechanism to overcome the loss effect
of LSPs in metal by investigating the exact dynamics of N
QEs coupled to LSPs supported by a MNP. It has been found
that, in sharp contrast to the previous approximate result that
the reversible energy exchange and the entanglement of the
QEs mediated by the LSPs exclusively tend to vanish due to
the loss effect of LSPs in metal, the persistent quantum co-
herence and entanglement can be established among the QEs
by the LSPs. Our analysis indicates that it is the formation
of hybrid bound states in the energy spectrum of the QE-LSP
system that governs this lossless behavior. Such bound-state-
assisted behavior is helpful in the application of LSPs as a
quantum bus. The further study of the multipartite W -class
state demonstrates the collective suppression of the resonant
dipole mode and the enhancement of the quadrupole mode in
the QE-LSP coupling. Within the present experimental state
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of the art, our finding supplies a guideline for experiments to
design quantum devices using the plasmonic nanostructures.

ACKNOWLEDGMENTS

The work was supported by the Natural Science Founda-
tion of China (Grants No. 11704103, No. 11875150, and No.
11834005), by the Doctoral Scientific Research Foundation
of Henan Normal University (Grant No. 5101029170296),
and by the Fundamental Research Funds for the Central
Universities of China.

APPENDIX A: GREEN’S FUNCTION OF THE
SPHERICAL METAL NANOPARTICLE

In this Appendix we give the derivations of the Green’s
function of the spherical MNP in calculating the exact dynam-
ics of QEs coupled to LSPs.

Given a spherical MNP with permittivity εm(ω) and radius
R embedded in a homogeneous medium with dielectric con-
stant εd, the Green’s functions contributed by the free-space
radiation sources and by the MNP-QE interaction are given
by [33,68,69]

G0(r, r′, ω) = − r̂r̂δ(r − r′)
k2

1

+ ik1

4π

∑
e,o

∞∑
n=1

n∑
m=0

(2 − δ0m)
2n + 1

n(n + 1)

(n − m)!

(n + m)!

×
{[

M(1)
mne

o
(k1r)Mmne

o
(k1r′) + N(1)

mne
o
(k1r)Nmne

o
(k1r′)

]
, r̂ > r̂′[

Mmne
o
(k1r)M(1)

mne
o
(k1r′) + Nmne

o
(k1r)N(1)

mne
o
(k1r′)

]
, r̂ < r̂′,

(A1)

GR(r, r′, ω) = ik1

4π

∑
e,o

∞∑
n=1

n∑
m=0

(2 − δ0m)
2n + 1

n(n + 1)

(n − m)!

(n + m)!

×[
RH M(1)

mne
o
(k1r)M(1)

mne
o
(k1r′) + RV N(1)

mne
o
(k1r)N(1)

mne
o
(k1r′)

]
, (A2)

where RH and RV are the scattering coefficients corresponding to the transverse electric field Mmne
o

and the transverse magnetic
field Nmne

o
with even and odd contributions. According to the boundary conditions at the surface, RH and RV are given by

RH = τ2∂τ1 − τ1∂τ2

κ1∂τ2 − τ2∂κ1
, RV = k2

1τ1∂τ2 − k2
2τ2∂τ1

k2
2τ2∂κ1 − k2

1κ1∂τ2
, (A3)

where τi = jn(kiR), κi = h(1)
n (kiR), ∂τi = ∂ρ[ρ jn(ρ)]ρ=kiR, and ∂κi = ∂ρ[ρh(1)

n (ρ)]ρ=kiR. Here jn(x) and h(1)
n (x) are the spherical

Bessel functions and the Hankel functions of the first kind, respectively, with k1 = ω
√

εd/c and k2 = ω
√

εm(ω)/c the wave
vectors in the dielectric and the metal. The vector functions in spherical coordinates are defined as

Me
mn(kr) = − jn(kr)

[
m

sin θ
Pm

n (cos θ ) sin mϕθ̂θθ + dPm
n (cos θ )

dθ
cos mϕϕ̂ϕϕ

]
, (A4)

Mo
mn(kr) = jn(kr)

[
m

sin θ
Pm

n (cos θ ) cos mϕθ̂θθ − dPm
n (cos θ )

dθ
sin mϕϕ̂ϕϕ

]
, (A5)

Ne
mn(kr) = n(n + 1)

kr
jn(kr)Pm

n (cos θ ) cos mϕr̂ + 1

kr

d[r jn(kr)]

dr

[
dPm

n (cos θ )

dθ
cos mϕθ̂θθ − m

sin θ
Pm

n (cos θ ) sin mϕϕ̂ϕϕ

]
, (A6)

No
mn(kr) = n(n + 1)

kr
jn(kr)Pm

n (cos θ ) sin mϕr̂+ 1

kr

d[r jn(kr)]

dr

[
dPm

n (cos θ )

dθ
sin mϕθ̂θθ + m

sin θ
Pm

n (cos θ ) cos mϕϕ̂ϕϕ

]
, (A7)

where Pm
n (x) are the associated Legendre polynomials. In Eqs. (A1) and (A2), the superscript (1) denotes that jn(x) has to be

replaced by h(1)
n (x).

In the case that the dipole moments of the QEs are polarized along the radial direction, only the rr component of the Green’s
function contributes to the interactions. In the structure studied, the QEs labeled by l are located at rl = (r, π/2, 2π l/N ), with
l = 0, . . . , N − 1. We obtain

Grr (rl , r j, ω) = −δ(rl − r j )

k2
1

+ ik1

4π

∞∑
n=1

n∑
m=0

cmn cos

(
2πm(l − j)

N

)
h(1)

n (k1r)
[

jn(k1r) + RV h(1)
n (k1r)

]
[
k1r/Pm

n (0)
]2 , (A8)

where cmn = (2 − δ0m)n(n + 1)(2n + 1)(n − m)!/(n + m)! and the contributions from both the free-space field and the scattered
field have been incorporated. From the definition, the spectral density characterizing the coupling strength between QEs and LSPs
can be calculated as

Jl j (ω) = 3γ0ω
3√εd

4πω3
0

Re

[ ∞∑
n=1

n∑
m=0

cmn cos

(
2πm(l − j)

N

)
h(1)

n (k1r)
[

jn(k1r) + RV h(1)
n (k1r)

]
[
k1r/Pm

n (0)
]2

]
. (A9)
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Defining Jl j (ω) ≡ J|l− j|(ω), we can verify that the spectral
densities are periodic with Jl (ω) = JN−l (ω).

When the radius of the MNP is very small compared to the
wavelength, i.e., |k2R| � 1, |k1R| � 1, the Green’s function
can be further simplified. Substituting the limits

lim
ρ→0

jn(ρ) = ρn

(2n + 1)!!
, (A10)

lim
ρ→0

∂ρ[ρ jn(ρ)] = (n + 1)ρn

(2n + 1)!!
, (A11)

lim
ρ→0

h(1)
n (ρ) = −i

(2n − 1)!!

ρn+1
, (A12)

lim
ρ→0

∂ρ

[
ρh(1)

n (ρ)
] = in(2n − 1)!!

ρn+1
(A13)

into Eq. (A3), we can readily have RH = 0 and RV =∑∞
n=1 RV

n , with

RV
n = −i(k1R)2n+1(n + 1)

(2n + 1)!!(2n − 1)!!

εd − εm(ω)

nεm(ω) + (n + 1)εd
. (A14)

Then the scattered Green’s function can be decomposed into

GR(r, r′, ω) =
∞∑

n=1

GR
n (r, r′, ω), (A15)

with the scattering coefficient in Eq. (A2) replaced by RV
n .

The poles of RV
n determine the resonance frequency of the

LSPs. In this manner, the LSPs are expressed as a series of
resonant modes labeled by n with eigenfrequency determined
by

nεm(ωn) + (n + 1)εd = 0, (A16)

from which the contributions of the different resonant modes
of LSPs to the light-matter interaction can be studied.
In the low-frequency condition, the resonant frequencies
can be determined by Re[εm(ωn)] = −(n + 1)εd/n due to
Re[εm(ω)] � Im[εm(ω)] [40]. The first resonant mode is
called the dipole mode and the second one is the quadrupole
mode [25]. Using the parameters in our system, we can
calculate the frequencies of the dipole and quadrupole modes
ω1 = 3.77 eV and ω2 = 3.94 eV.

APPENDIX B: DERIVATION OF THE
EVOLUTION EQUATIONS

In this Appendix we give the derivation of Eq. (2).
In the single-excitation subspace, the time-evolved
state can be expanded as |�(t )〉 = [

∑
l cl (t )σ̂ †

l +∫
d3r

∫
dω dr,ω(t )f̂†(r, ω)]|G; {0ω}〉. According to the

Schrödinger equation ih̄|�̇(t )〉 = Ĥ |�(t )〉, we have

ċl (t ) = −iωl cl (t ) −
∫

dω

∫
d3r

c−2ω2

√
πε0h̄

√
Im[εm(ω)]μl ĵG ĵî(rl , r, ω)dr,ω(t ), (B1)

ḋr,ω(t ) = −iωdr,ω(t ) +
∑

l

c−2ω2

√
πε0 h̄

√
Im[εm(ω)]μ∗

l k̂
G∗

k̂î
(rl , r, ω)cl (t ), (B2)

with l, j = 0, . . . , N − 1 and î, ĵ, k̂ = x, y, z. Using dr,ω(0) = 0, Eq. (B2) can be formally solved as

dr,ω(t ) =
∑

l

∫ t

0
dτ e−iω(t−τ ) c−2ω2

√
πε0h̄

√
Im[εm(ω)]μ∗

l k̂
G∗

k̂î
(rl , r, ω)cl (τ ). (B3)

Substituting this into Eq. (B1), we have

ċl (t ) + iωl cl (t ) +
∑

j

∫ t

0
dτ

∫ ∞

0
dω e−iω(t−τ )Jl j (ω)c j (τ ) = 0, (B4)

with Jl j (ω) = ω2μμμl · Im[G(rl , r j, ω)] · μμμ∗
j/π h̄ε0c2 the spec-

tral density. We have used
∫

d3s ω2

c2 Im[εm(ω)]G(r, s, ω)G∗
(r′, s, ω) = Im[G(r, r′, ω)] [45].

For simplify, we choose the QEs having identical
frequency ωl = ω0. Introducing a column vector c(t ) =
(c0(t ), c1(t ), . . . , cN−1(t ))T and a spectral density matrix
J(ω) = Jl j (ω), we obtain the evolution equation as Eq. (2).

APPENDIX C: EIGENENERGIES OF THE SYSTEM

In this Appendix we give the derivation of the energy spec-
trum of the whole system in the single-excitation subspace
and the proof that they are exactly the same as the poles in the
evolution equation under the Laplace transform in the main
text.

The eigenstate |�〉 of the QE-LSP system in the single-
excitation subspace can be expanded as |�〉 = [

∑N−1
l=0 cl σ̂

†
l +∫

d3r
∫

dω dr,ω f̂†(r, ω)]|G; {0ω}〉. According to the stationary
Schrödinger equation Ĥ |�〉 = E |�〉, with E the eigenenergy,
we have

Ecl = h̄ω0cl − ih̄
∫

dω

∫
d3r′ c−2ω2

√
πε0 h̄

√
Im[εm(ω)]

×μl ĵG ĵî(rl , r′, ω)dr,ω, (C1)

Edr,ω = h̄ωdr,ω + ih̄
N−1∑
j=0

c−2ω2

√
πε0 h̄

√
Im[εm(ω)]

×μ∗
jk̂

G∗
k̂î

(rl , r, ω)cl , (C2)
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with l, j = 0, . . . , N − 1 and î, ĵ, k̂ = x, y, z. Solving dr,ω
and substituting it into Eq. (C1), it is easy to obtain

(E − h̄ω0)cl − h̄2
N−1∑
j=0

∫
dω

Jl j (ω)

E − h̄ω
c j = 0 (C3)

or

(E − h̄ω0)c − h̄2
∫

J(ω)dω

E − h̄ω
c = 0, (C4)

expressed in a matrix form. Using the Jordan de-
composition of J(ω) = VD(ω)V−1, with V and D(ω) =
diag[D0(ω), . . . , DN−1(ω)] its similarity matrix and Jordan
canonical form, Eq. (C4) can be expressed as[

E − h̄ω0 − h̄2
∫

D(ω)

E − h̄ω
dω

]
c̄ = 0, (C5)

where c̄ = V−1c. The equations have nontrivial solutions if
and only if the determinant of the coefficient matrix is zero.
Therefore, the eigenvalues of the QE-LSP system in the
single-excitation subspace are determined by

E = h̄ω0 + h̄2
∫

Dl (ω)

E − h̄ω
dω. (C6)

Equation (C6) takes the same form as the equation to deter-
mine the bound state obtained in the main text. This clearly
demonstrates that the dynamics of QEs essentially depends on
the energy-spectrum character of the whole QE-LSP system.

APPENDIX D: SOLUTION IN THE STEADY STATE

Suppose M bound states form outside the continuous
energy band. Then, according to the completeness of the
eigenstates, the time evolution of |�(0)〉 = σ̂

†
0 |G; {0ω}〉 can

be expanded as

|�(t )〉 =
M∑

α=1

xb
αe−i
 b

α t
∣∣�b

α

〉 + ∑
E∈CB

xE e−iEt/h̄|�E 〉, (D1)

where xb
α = 〈�b

α|�(0)〉 and xE = 〈�E |�(0)〉. The first term
is contributed by the bound eigenstates and the second one
is from the continuous-band eigenstates. Its overlap with the
initial state reads

〈�(0)|�(t )〉 =
M∑

α=1

∣∣xb
α

∣∣2
e−i
 b

α t +
∑

E∈CB

|xE |2e−iEt/h̄. (D2)

The initial-state fidelity defined as P(t ) = |〈�(0)|�(t )〉|2

reads

P(t ) =
∣∣∣∣∣

M∑
α=1

∣∣xb
α

∣∣2
e−i
 b

α t

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

E∈CB

|xE |2e−iEt/h̄

∣∣∣∣∣
2

+ 2
M∑

α=1

∑
E∈CB

∣∣xb
α

∣∣2|xE |2 cos

(

 b

α − E

h̄

)
t . (D3)

Both the second and the third term contain the oscillating
frequencies E/h̄, which are continuously summed in the
continuous energy band. Such terms in the continuous energy
band tend to vanish due to the out-of-phase interference of
the different components in the long-time limit. Thus only

the isolated bound states survive in the long-time limit. For
the N = 2 case, at most two bound states can be formed.
Therefore, we have

lim
t→∞ P(t ) =

⎧⎨
⎩

0, M = 0
|xb|4, M = 1∣∣xb

1

∣∣4 + ∣∣xb
2

∣∣4 + F (t ), M = 2,

(D4)

with F (t ) = 2|xb
1|2|xb

2|2 cos(
 b
1 − 
 b

0 )t .
To determine xb

α , we solve the stationary Schrödinger equa-
tion Ĥ |�〉 = E |�〉. From Eqs. (C1)–(C3) we have

(E − h̄ω0)c0 =
∫ ∞

0
dω

h̄2[J0(ω)c0 + J1(ω)c1]

E − h̄ω
, (D5)

(E − h̄ω0)c1 =
∫ ∞

0
dω

h̄2[J1(ω)c0 + J0(ω)c1]

E − h̄ω
, (D6)

(E − h̄ω)dr,ω = ih̄
∑

l

c−2ω2

√
πε0h̄

√
Im[εm(ω)]

×μ∗
l k̂

G∗
k̂ ı̂

(rl , r, ω)cl . (D7)

Equation (D7) leads to

∫
d3r|dr,ω|2 = h̄2[J0(ω)(|c0|2 + |c1|2) + J1(ω)(c1c0 + c1c0)]

(E − h̄ω)2
.

(D8)

Equations (D5) and (D6) have nontrivial solutions if and only
if

y±(E ) ≡ h̄ω0 +
∫ ∞

0
dω

h̄2[J0(ω) ± J1(ω)]

E − h̄ω
= E . (D9)

If y±(0) < 0, two bound states with the eigenenergies
Eb = h̄
 b

+ and h̄
 b
− determined by Eq. (D9) can be

formed in the band-gap area. Focusing on these bound
states, we calculate their corresponding excited-state pop-
ulations |cb

0,±|2 in the first QE. Substituting Eqs. (D5),

(D6), and (D8) into the normalization condition
∑1

l=0 |cl |2 +∫
d3r

∫ ∞
0 dω|dr,ω|2 = 1 and repeatedly using Eb − h̄ω0 −∫ ∞

0 dω h̄2J0(ω)
Eb−h̄ω

= ± ∫ ∞
0 dω h̄2J1(ω)

Eb−h̄ω
obtained from Eq. (D9) for

the bound states, we obtain

∣∣cb
0,±

∣∣2 = 1

2

[
1 +

∫ ∞

0
dω

h̄2[J0(ω) ± J1(ω)]

(Eb − h̄ω)2

]−1

. (D10)

It can be verified that xb
1,2 = cb∗

0,±. According to the forms of
Zl obtained by the Laplace transform in the main text, we can
readily see that |xb

1,2|2 = Z0,1

2 .
The above process gives the analytical proof to Eq. (5)

from the bound states. From this proof we can clearly see
the distinguished role of the formed bound states in lossless
steady-state behaviors. Such suppression to the decay in the
lossy medium is guaranteed by the character of the bound
states as stationary states with isolated eigenenergies of the
whole system.
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APPENDIX E: EXACT DYNAMICS FOR N = 4

The spectral density matrix for N = 4 reads

J(ω) =

⎡
⎢⎣

J0(ω) J1(ω) J2(ω) J1(ω)
J1(ω) J0(ω) J1(ω) J2(ω)
J2(ω) J1(ω) J0(ω) J1(ω)
J1(ω) J2(ω) J1(ω) J0(ω)

⎤
⎥⎦, (E1)

where the periodic condition Jl (ω) = JN−l (ω) has been used.
As a symmetric and circulant matrix, J(ω) = VD(ω)V−1,
where D(ω) = diag[J0(ω) + 2J1(ω) + J2(ω), J0(ω) −
J2(ω), J0(ω) − 2J1(ω) + J2(ω), J0(ω) − J2(ω)] and

V = 1

2

⎡
⎢⎣

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤
⎥⎦

[49]. Note that the eigenvalues are degenerate with D1(ω) =
D3(ω). The canonical transform c̄(t ) = V−1c(t ) can convert
the integro-differential equation into

˙̄c(t ) + iω0c̄(t ) +
∫ t

0
dτ

∫
dω e−iω(t−τ )D(ω)c̄(τ ) = 0, (E2)

with

c̄(t ) = 1

2

⎡
⎢⎣

c0(t ) + 2c1(t ) + c2(t )
c0(t ) − c2(t )

c0(t ) − 2c1(t ) + c2(t )
0

⎤
⎥⎦ (E3)

and c̄(0) = 1
2 [1, 1, 1, 0]T under the initial condition |�(0)〉 =

σ̂
†
0 |G; {0ω}〉, where c1(t ) = c3(t ) has been used. Equation (E2)

is analytically solvable by the Laplace transform. As shown in
the main text, its solution in the long-time limit reads

lim
t→∞ c̄l (t ) =

{
(Ze−i
 b

l t )c̄l (0), yl (0) < 0
0, yl (0) > 0.

(E4)

This clearly shows that the dynamics of the system in the
long-time limit is determined by the formation of a bound
of the whole system. It is easy to find that the initial-state fi-
delity equals P(t ) = |c0(t )|2, with c0(t ) = 1

4 [c̄0(t ) + 2c̄1(t ) +
c̄2(t )].

FIG. 4. (a) Evolution dynamics of P(t ) in different r obtained
by numerically solving Eq. (E2). (b) Details of the dynamics in
long-time limit. The circles, squares, and diamonds denote the long-
time values of P(t ) obtained from the bound-state analysis, which
correspond with the numerical results. (c) Energy spectrum of the
whole system. The parameters are the same as in Fig. 2, but with
N = 4.

Figure 4(a) plots the evolution of P(t ) in different r. The
different behaviors, i.e., complete decay, population trapping,
and persistent oscillation, are present depending on the value
of r. Details on the long-time behaviors are shown in Fig. 4(b).
Such phenomena are associated with the formation of the
bound state of the QE-LSP system. Figure 4(c) shows the
energy spectrum of the whole system. If no bound state
is formed, then P(t ) tends to zero, which characterizes the
complete decoherence. If one bound state is formed, then
P(t ) tends to a finite value, which describes the population
trapping. If two or more bound states are formed, then P(t )
tends to the Rabi-like persistent oscillations in the long-time
limit. Such behaviors coincide with our analytical analysis.
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