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Activity induced synchronization: Mutual flocking and chiral self-sorting
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Synchronization, the temporal coordination of coupled oscillators, allows fireflies to flash in unison, neurons
to fire collectively, and human crowds to fall in step on the London millenium bridge. Here, we interpret active
(or self-propelled) chiral microswimmers with a distribution of intrinsic frequencies as motile oscillators and
show that they can synchronize over very large distances, even for local coupling in two dimensions (2D). This
opposes canonical nonactive oscillators on static or time-dependent networks, leading to synchronized domains
only. A consequence of this activity-induced synchronization is the emergence of a “mutual flocking phase,”
where particles of opposite chirality cooperate to form superimposed flocks moving at a relative angle to each
other, providing a chiral active matter analogue to the celebrated Toner-Tu phase. The underlying mechanism
employs a positive feedback loop involving the two-way coupling between oscillators’ phase and self-propulsion
and could be exploited as a design principle for synthetic active materials and chiral self-sorting techniques.
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I. INTRODUCTION

Populations of motile entities, from bacteria to synthetic
microswimmers, can spontaneously self-organize into phases
which are unattainable in equilibrium passive matter. Ex-
amples range from the spectacular murmuration of starlings
and bacterial swarming [1-4], to collective behavior of syn-
thetic self-propelled grains [5,6], emulsion droplets [7], and
assemblies of robots [8]. Active colloids [9], in particular,
spontaneously form living clusters in low-density suspensions
which, unlike equilibrium clusters, continuously break up
and reform [9-15]. Remarkably, when active particles align
with their neighbors, they can self-organize into a polarly
ordered phase, featuring long-range order in two dimensions
(2D) [16-21]. Thus, motile entities, like wildebeests or sheep,
can order at long distances and all run in the same direc-
tion, whereas immotile entities like spins in a 2D magnet
cannot display (true) long-range order when locally coupled
[22,23]. Likewise, oscillators which are localized in space,
like metronomes or neurons [24,25], can synchronize only
locally in 2D or three dimensions (3D) when coupled to their
neighbors [26-28].
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Here, we consider ensembles of chiral active particles, such
as certain microorganisms [29-33], cell components [34-36],
and synthetic microswimmers [37—-44]. We interpret them as
active oscillators and ask for their large-scale and long-time
synchronization behavior: (i) In active matter, previous studies
on chiral active particles have focused on pattern formation
[44-49] but leave the synchronization behavior (frequency
locking) of large ensembles essentially open, irrespective of
previous work focusing on phase locking in monofrequent
ensembles [50] and on similarities between the Kuramoto
and Vicsek models [51]. Notice that the understanding of the
large-scale synchronization in generic chiral active particles
with a frequency distribution is a fundamentally different
problem than the emergence of long-range order in a system
of identical active particles as studied, e.g., in the Vicsek and
the Toner-Tu models. To see this, consider that for “passive
oscillators” (Kuramoto model with local coupling), the lower
critical dimension D, = 2 for the emergence of synchroniza-
tion but D, = 4 for oscillators with a frequency distribution
D, =4 [26-28]. Therefore, while we know that identical
chiral active particles can synchronize over long distances in
2D [16,17,44], it is fully unclear if generic ensembles can
synchronize in fewer than four dimensions. (ii) In the field
of synchronization, in turn, much is known on the large-
scale synchronization of oscillators which are localized in
space [24,25,52] or move in a way that is unaffected by
their phases [53-56]—but not for active oscillators showing
a two-way coupling between phase and displacement through
space.

Here, we show that generic active oscillators featuring a
frequency distribution can synchronize over large distances
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FIG. 1. (a) Trajectories of particles with opposite chirality. (b) Late-time snapshot of N = 10> mobile Kuramoto oscillators with a Gaussian
frequency distribution, after relaxation from a completely synchronized state (Var(2) = 0.4 and gpy = 2.8). Colors represent oscillator phases.
The dispersion of natural frequency spontaneously destabilizes the initially ordered state. (c) Mutual flocking: N = 3 x 10* chiral active
particles with 2 = £0.6 and gpy = 40 forming a globally polarized and synchronized phase; panel (d) shows a detailed view. Small arrows
show particle orientations; large ones show the average polarization direction of both species represented in red and blue (arrow lengths are
arbitrary). (e) Phase diagram of active oscillators. Symbols show simulation results for the phase boundaries (red symbols for two species,
black ones for a normal distribution) using two different densities (o = 10, 20 in black crosses and squares); lines show analytical predictions
(gpo = 2[1 + Var(2)] and gpy = 2). The weak deviation between simulations and the gpoy = 2 line comes from a reduction of the growth rate
of unstable modes as 2 increases (see the Supplemental Material [57]). Insets show snapshots in the chiral phase for two species (f) and a
Gaussian distribution (g) both for Var(2) = 2; gpy = 2.8; colors show intrinsic frequencies.

even in 2D. We call this phenomenon “activity-induced syn-
chronization” and note that it can by no means be concluded
directly from the well-known fact that identical active parti-
cles can show long-range order [16,17] and synchronize in 2D
[44]. Instead, it appears surprising since generic ensembles of
static oscillators with a frequency distribution can synchronize
only locally in 2D and in 2D [26-28]. The mechanism creating
activity-induced synchronization is rooted in the two-way
coupling between phase and direction of motion of the os-
cillators. This key ingredient in our model, which is naturally
present in chiral active particles, triggers a positive feedback
loop between synchronization and coordinated oscillator mo-
tion, enhancing the interaction time of the active oscillators.
This feedback determines the phase diagram of generic active
oscillators, leading to phases having no counterpart in either
identical active oscillators [44] or in immotile oscillators: For
comparatively small frequency distributions, active oscillators
self-organize into a mutual flocking phase. Here, active oscil-
lators with opposite chirality cooperate to move coherently
at a relative angle, forming two nonrotating superimposed
flocks mutually stabilizing each other. This phase is akin to
the celebrated Toner-Tu phase in linear active matter [17—-19]
[see Fig. 1(e), orange domain, and the snapshots Figs. 1(c)
and 1(d)]. For ensembles with a comparatively large fre-
quency dispersion, the active oscillators spatially segregate
according to their chirality and form rotating macroscopic
clusters (see Fig. 1, green domain), featuring internal syn-
chronization [see snapshots Figs. 1(f) and 1(g)] and growing
linearly with system size. This chiral phase constitutes a
second example where activity leads to synchronization on
the macroscale. Notice that the chiral self-sorting underlying
this phase allows active particles to segregate by chirality,
without requiring chemical reactions [58], external flows, or
environmental chirality [40].

To demonstrate the impact of the feedback between
phase and displacement on the large-scale synchronization of
coupled oscillators, we consider N overdamped particles with
2D positions r, and alignment interactions of strength K in
a square box of length L, which self-propel with a constant
speed v along direction n, = (cos6,, sinf,), as described by

iot = VR, (1)

. K ]
b = 0o+ — D SN0y —6) +V2Dia. ()

VEy

Here, 1 represents Gaussian white noise with unit variance
and zero mean. The intrinsic frequencies w, are randomly
drawn from a distribution A(w). Note that, unlike more
complicated models, involving, e.g., hydrodynamic interac-
tions, excluded volume effects, or sophisticated couplings, the
present model focuses on the essential ingredients required to
demonstrate the generic synchronization scenario shown by
active oscillators. Moreover, direct experimental realizations
of the present model are also possible, e.g., using 3D-printed
granular particles on vibrated plates [6,59,60]. For example,
disk-shaped granulates featuring asymmetric legs [6] both
swim in circles and locally align with each other [6,59].
References [35,61,62] provide other very recent setups con-
taining the key ingredients of the present model. Since we
want to understand the synchronization behavior arising from
the competition between the distribution of natural frequen-
cies and the coupling for chiral active particles, we consider
only distributions with zero mean. Indeed, here we establish
the role played by the frequency dispersion [through its vari-
ance Var(w)] on the collective behavior of active oscillators.
The sum of Eq. (2) runs over all the neighbors of particle «,
defined by the cutoff distance R. For v = 0, our model reduces
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FIG. 2. Mutual flocking phase. Detailed view of a late-time
configuration for = +1.5 at gpy = 5.6 (a). Thick arrows show
the average polarization of both species, while small arrows show
particle orientations. Angle A®(|€2|) between the two flocks (b) and
partial polarization P(|€2|) (c) of each species. Lines show Eq. (5)
and points simulation results for Pe = 2; py = 200. (d) C(r) (in
linear-log scale) of a system of active oscillators (Pe = 2, plain red
line), static oscillators (in green), Brownian oscillators (in orange),
and underdamped velocity-aligning oscillators (in blue) (in all cases
Var(2) = 0.4 and gp, = 40) (see Ref. [57] for details). The dotted
black line shows an exponential decay to the asymptotic value P

to the noisy Kuramoto model of locally coupled oscillators,
which is known to show only local synchronization in 2D
[27,28]. For w, = 0, in turn, the model is equivalent to (a
smooth variant of) the Viscek model [63,64] for which it
is known that self-propulsion induces long-range order in
2D. The key feature of this model is that it identifies the
oscillators’ phase with their direction of self-propulsion. In
the spirit of the Kuramoto model [65] and simple models
of self-propelled particles (like the Vicsek and smooth vari-
ants of it [63,64,660] or the active Brownian particle model
[67-69]), the model provides a minimal framework to study
the generic behavior emerging in systems of nonidentical
active oscillators. We demonstrate the generality of our results
by considering a multifrequent extension of the underdamped,
velocity-aligning (but not self-propelled) particles introduced
in Ref. [50]. These nonequilibrium particles feature the same
two-way coupling between orientation (phase) and displace-
ment and show an analogous synchronization behavior as we
obtain for chiral active particles (see Fig. 2(d) and Ref. [57]).

Notice that most previous studies on synchronization in
dynamic networks have focused on identical oscillators whose
phase does not affect their motion in space [53-56], showing
that the absence of global synchronization (and other scaling
properties) for Kuramoto oscillators in 2D is generically pre-
served, even if carried by active particles. Note that despite
this recent boost of activity on synchronization of motile os-
cillators, the dispersion of natural frequencies, a main feature
in synchronization problems, has not been explored in detail.
Therefore, to better understand the fundamental synchroniza-
tion mechanisms involved in active systems, we have carried
extensive simulations of our model in the absence of the
back-coupling between the phase of the oscillators and their
direction of motion—i.e., a model of nonidentical oscillators
attached to self-propelled particles for which n, performs a
free diffusion (see the Supplemental Material [SM] [57] for
further details). As illustrated in Fig. 1(b) and shown in more

detail in the SM [57], global phase synchronization cannot
be achieved in the absence of the back-coupling between
phase and motility. Models considering agents whose phase,
or a different internal state, affect the way they move in
space appeared recently [70-74] but did not consider particles
self-propelling in the direction of their phase (with a distribu-
tion of natural frequencies and local coupling), which is the
key ingredient of the present model. To understand the key
control parameters of the present system, we express times
and lengths in units of 1/D, and R, respectively, leading to
the dimensionless quantities: (i) g = K/(7R*D,), the reduced
coupling; (ii)) Pe = v/(D,R), the rotational Péclet number;
(iii)) ; = w;/D,, the reduced rotation frequency; and (iv)
po = NR?/L?, the average number density. We denote by
p" =N®R?/L? the density of particles with natural fre-
quency €; (species i), where N counts particles sharing the
same natural frequency. For simplicity, we exemplify our key
results for two species with equal overall density and opposite
chirality. As we will show, the synchronization behavior is
controlled by Var(£2), such that this distribution is largely
representative of cases of several species and continuous
frequency distributions.

II. HYDRODYNAMIC THEORY

We first derive a set of field equations, describing the
collective dynamics of chiral active particles, mainly fol-
lowing Refs. [64,75-77]. Here, we assume that the system
contains M different species with frequencies Q2; (i = 1...M)
and describe the dynamics of species i particles using the
density field p = p®(x, t) and the polarization density w =
w(®(x,1), where w/|w| is the average self-propulsion direc-
tion of particles of species i. The resulting equations read (see
the SM for details [57]):

p=—PeV.-w (3)

M
; P
W= —w-{-z%w(’)—i—le—;Vp

i=1

Q
VZWJ_

Q M :
n ;”)(Zw@) FOovw)) ()

i=1

Here, b = 2(4 + Q%), w, = (—wy, w,), and O(VW?) repre-
sent terms which are both nonlinear in w and involve gradi-
ents, and these are not of interest for our purposes. Equation
(3) simply reflects that particles on average self-propel in the
direction of w. The first term in Eq. (4) represents a decay
of the polarization due to rotational diffusion of the particles,
which happens in competition with the second term, creating
alignment among all species; the third term represents a
rotation of the average (local) polarization direction with a
species-specific frequency while the fourth term expresses
a statistical tendency for self-propulsion away from high-
density regions; remaining terms “smear out” regions of high
and low polarization and lead to saturation. For weak interac-
tions, the system is in a disordered uniform phase, given by
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(0, W) = (po, 0), which is a solution of Egs. (3) and (4) and
represented by the blue domain in the phase diagram Fig. 1(e).

III. MUTUAL FLOCKING PHASE

To understand the onset of synchronization, we perform a
linear stability analysis for a bimodal frequency distribution
Q) = —Q,= Q of the uniform disordered phase (p® =
po0/2, wi = wy = 0) [57]. It is instructive to first focus on
the zero wave-number limit (¢ = 0). Here, we find that the
uniform phase loses stability if goy > 2(1 + Q?), suggesting
the existence of a nontrivial ordered uniform phase. We indeed
find an exact solution of our field equations (3) and (4) repre-
senting such a phase: a state of uniform density p() = p@® =
po/2, but with a finite polarization, spontaneously breaking
the symmetry of the disordered phase. In this state, circle
swimmers of both species cooperate and form two individual
and superimposed flocks moving linearly and at a relative an-
gle A to each other. We thus call it the mutual flocking phase.
Defining the overall polarization P = |w; + W;|/p9, where

[wi| = |Wa| = poP/+/2(1 + cos AD), the exact expressions

representing the mutual flocking phase read

V2
P = gz\//(gpo)2 + 6Q2(gpo — 6) + gpo +2Q* — 4,

20(6 — ) + 41y W2 4 302(% 3
gpo(2 + 2i)

A® = —iln

&)

At low frequency, Q < 1/+/2, this solution exists (is real and
positive) if gpy > 2(1 4+ Q2?), i.e., precisely when the field
equations show a linear instability at ¢ = 0.

Brownian dynamics simulations at high coupling and high
density confirm the existence of the mutual flocking phase. As
shown in Fig. 1(e), we find the mutual flocking phase essen-
tially in the whole parameter regime, where it exists according
to our field theory. Figure 2 shows in turn a close quantita-
tive agreement between theoretical predictions [Egs. (5)] and
our simulations, both for the angle between the two flocks
and for the overall polarization (see movie 1 [57]). (In our
simulations, we measure the partial and overall polarization,
P =[P, where P; = 2 3" 0480,.0,, and P = %[>, ngl,
respectively.) In Fig. 2(d), we show the orientational self-
correlation function C(r) = (n; - n;), strongly suggesting the
emergence of global synchronization only for systems of
oscillators whose phase directly affects their motion, in con-
trast to immobile oscillators [v = 0 in Eq. (1)] or systems of
mobile oscillators which move independently of their phase
(see Ref. [57]).

IV. ACTIVITY-INDUCED SYNCHRONIZATION

To understand when the disordered phase loses stability, we
now explore its linear stability at finite wave number g # 0.
This is equivalent to accounting for the impact of motility on
the onset of synchronization, as the coefficients of all gradient
terms in (3) and (4) are nonvanishing only if Pe # 0. While
static oscillators need a stronger coupling to synchronize as
the frequency dispersion increases [25,65], our linear stability

E 0.5
Q
0
0.75
0.5
Ry
0.25
0
1 2 3
gpo

FIG. 3. Chiral phase: (a) spatial correlations for gpy = 2.8,
Var(Q2) = 2 and several system sizes (N = 10°, .. ., 3.10%, from left
to right). The inset shows the corresponding correlation length £ as a
function of v/N. We show for comparison a linear growth o +/N in
dotted line. (b) Partial polarization P as a function of gp, for several
frequency dispersions.

calculation shows that coupling phase and motility generally
induces an instability for any gpop > 2 [57], independently
of Var(€2). Activity thus induces phase ordering even in
parameter regimes where a corresponding nonmotile system
(Pe = 0) would simply show asynchronous oscillations of the
individual particles. As the present instability emerges for
localized perturbations, we do not expect a uniform phase
but rather the emergence of localized synchronous structures.
Our particle-based simulations confirm this. Above the critical
value gpy 2= 2 [Fig. 1(e)], we find large rotating clusters of
opposite chirality featuring internal phase synchronization,
as illustrated by the snapshots in Figs. 1(f) and 1(g) (and
movie 2 [57]). From C(r), we extract a characteristic length
&, which, as shown in Fig. 3(a), grows linearly with N (at
fixed pp), meaning that clusters are macroscopic in this regime
and tend to phase separate. Thus, the chiral phase represents
a second example where activity induces (long-range) phase
synchronization among species. As shown in Fig. 3(b), above
a critical coupling strength, P starts to increase, allowing us to
locate the phase boundaries [Fig. 1(e)]. (Particle segregation,
quantified by the probability W to find an excess of particles
of one chirality, offers an alternative route to identify the
emergence of the chiral phase; see Ref. [57].)
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V. CONTINUOUS FREQUENCY DISTRIBUTIONS

To demonstrate the generality of our results, we now sim-
ulate active oscillators with Gaussian distribution of natural
frequencies [with zero mean and variance Var(£2)]. As for two
species, we predict the stability threshold of the disordered
phase at goy > 2 for three and four species using linear stabil-
ity analysis (see SM [57]) and confirm with simulations that
the stability threshold of the disordered state does not change
as compared to the two-species case, up to numerical accuracy
[Fig. 1(e)]. At goy 2= 2, we find the same two phases as for
two species: a mutual flocking phase, further illustrated in the
SM [57], and a phase composing synchronized macroclusters
scaling linearly with system size (see Fig. 1(g) and movie
3 [57]). Now, the macroclusters involve a continuos range
of frequencies and feature frequency synchronization across
species.

VI. PHYSICAL MECHANISM

What is the physical mechanism allowing motility to qual-
itatively change the synchronization of oscillators? It is well
known that oscillator motion itself does not affect the absence
of global synchronization in D < D, =4 [56,57]. Hence,
compared to oscillators on dynamic networks, the crucial
ingredient of active oscillators (circle swimmers, Eqgs. (1) and
(2) and the underdamped, velocity aligning ones [50,57]) is
that their phase influences their direction of motion. It follows
that two circle swimmers sharing the same phase are aligned
and move together, enhancing their interaction time, which
in turn enhances their alignment and fosters synchronization.
This can be viewed as a positive feedback between align-
ment (local synchronization) and interaction time, mutually

supporting each other, which is absent for oscillators on
dynamic networks but plays a fundamental role for synchro-
nization of active oscillators. The impact of such feedback on
the emergence of order is even more dramatic than in linear
active matter: The critical dimension for the occurrence of
global phase synchronization seems to change from D, = 4
(passive oscillators) to D, = 2 for active oscillators.

VII. CONCLUSIONS

Chiral active particles, here interpreted as 2D active 0s-
cillators, can synchronize over very long distances, even for
a purely local coupling. This contrasts the synchronization
behavior of the huge class of nonactive oscillators in 2D or 3D
structures [25], which can only synchronize within domains.
A consequence of global synchronization in active oscillators
is the emergence of the mutual flocking phase as a new active
matter phase, akin to the celebrated Toner-Tu phase in linear
active matter. Our results transcend a knowledge boundary at
the interface of active matter physics and synchronization and
could be useful, e.g., to sort active enantiomers.
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