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We propose a qubit efficient scheme to study ground-state properties of quantum many-body systems on
near-term noisy intermediate-scale quantum computers. One can obtain a tensor network representation of the
ground state using a number of qubits smaller than the physical degrees of freedom. By increasing the number
of qubits, one can exponentially increase the bond dimension of the tensor network variational ansatz on a
quantum computer. Moreover, we construct circuits blocks which respect U(1) and SU(2) symmetries of the
physical system and show that they can significantly speed up the training process and alleviate the gradient
vanishing problem. To demonstrate the feasibility of the qubit efficient variational quantum eigensolver in a
practical setting, we perform first-principles classical simulation of differentiable programming of the circuits.
Using only six qubits, one can obtain the ground state of a 4 × 4 square lattice frustrated Heisenberg model with
fidelity over 97%. Arbitrarily-long-range correlations can also be measured on the same circuit after variational
optimization.
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I. INTRODUCTION

Studying ground-state properties of quantum many-body
systems is a promising native application of quantum com-
puters. Given limited qubit resources and noisy realizations
of near-term quantum devices [1,2], a practical approach is
to employ the variational quantum eigensolver (VQE) [3–8],
which runs in a classical quantum hybrid mode.

In this scheme, a parametrized quantum circuit provides
a variational ansatz for the ground state. A classical opti-
mizer tunes the circuit parameters to reduce the expected
energy of the target Hamiltonian of the output quantum state.
There are already several small-scale experimental demon-
strations of the VQE for molecules and quantum magnets
[9–13]. These early experiments mostly employed gradient
free or Bayesian approaches for classical optimization. Re-
cent progress on unbiased gradient estimation on quantum
circuits [14–25] breaks the information bottleneck between
classical and quantum processors, thus providing a route to-
wards scalable optimization of circuits with a large number of
parameters.

There are nevertheless more challenges in the training of
variational quantum circuits. The gradients of an unstruc-
tured, randomly parametrized circuit vanish exponentially
as a function of the number of parameters [26] due to the
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concentration of measure in high-dimensional spaces [27,28].
Intuitively, this could be understood from the fact that the
overlap between a random initial quantum state and a target
state is exponentially small in the many-body Hilbert space.
This difficulty motivates one to design the circuit architecture
and initialize the circuit parameters with insights from clas-
sical tensor networks [29–31] and quantum chemistry ansatz
[32–34]. Furthermore, since the number of required qubits is
the same as the problem size in the standard VQE applica-
tions, one has to push up the number of controllable qubits
way beyond the current technology to convincingly surpass
the classical simulation approach in finding the ground states
of quantum many-body systems. Related approaches such as
the quantum approximate optimization algorithm [35] and
related field such as quantum machine learning [15,16,36]
suffer from the same problem.

We address these problems by adopting the qubit effi-
cient circuit architecture [29,37] for the variational quantum
eigensolver. By measuring qubits sequentially and reusing
the measured qubit, one can produce quantum states for an
arbitrarily large system with a fixed number of qubits. This
approach amounts to generating matrix product states (MPSs)
[38–40] on a quantum computer [41,42]. Note that, although
it is well known that an MPS with small bond dimension
can be efficiently simulated classically [39], having quantum
resources allows one to reach an exponentially large bond
dimension that is inaccessible to classical computers. Despite
its one-dimensional geometry, the MPS is a versatile varia-
tional ansatz that has been successfully applied to systems
with diverse lattice geometry and topology [43]. The success
lies in the fact that many physics and chemistry systems of
interest exhibit relatively small entanglement entropy in their
ground states [44,45].
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A natural extension of MPSs to higher dimensions is
projected entangled pair states (PEPSs) [46], which are able to
represent many area law entangled two-dimensional quantum
states with only a polynomial number of parameters. How-
ever, the classical algorithm for exact contraction of a finite-
size PEPS shows exponential complexity with the problem
size. We propose a PEPS-inspired quantum circuit ansatz
for the ground states of two-dimensional quantum systems.
The ansatz can capture the area law entanglement entropy.
Although classical simulation of this ansatz is exponentially
difficult, one can estimate the unbiased energy expectation of
the ansatz on a quantum computer efficiently.

Variational optimization of MPSs generated on an actual
quantum device has been demonstrated previously in an ex-
periment [47]. The experiment exploits the fact that the radi-
ation field of a cavity QED naturally realizes [48] the contin-
uous MPS [49] with a few tuning parameters. Here we focus
on variational MPS and PEPS calculation on programmable
gate model quantum computers. This setup provides us with
more systematic and precise control of the bond dimension
and the number of variational parameters. Moreover, crucial
technical advances such as gradient-based learning [14–25]
and quantum number preserving circuit design greatly speed
up the training process and make it practically useful for
solving challenging quantum many-body problems.

This paper is organized as follows. In Sec. II we introduce
a qubit efficient scheme of preparing MPSs and PEPSs on
quantum circuits and a gradient-based variational training
approach for obtaining the ground state of generic quantum
many-body Hamiltonians. In Sec. III we demonstrate the
utility of this scheme by numerically simulating the VQE of
a frustrated Heisenberg model using fewer qubits than the
system size. In Sec. IV we carry out a detailed gate counting to
estimate the timing of actual experiments, followed by a dis-
cussion in Sec. V which points to future research directions.
Codes and pretrained circuit parameters can be found in the
Github repository [50].

II. CIRCUIT ARCHITECTURE
AND TRAINING APPROACH

Considering a generic quantum many-body Hamiltonian
written in terms of the Pauli operators

H =
∑

iα

hi
ασα

i +
∑
i jαβ

hi j
αβσ α

i σ
β
j + · · · , (1)

where i, j = 1, 2, . . . , N are site indices with N the system
size and α, β = x, y, z are indices of the Pauli axis. We show
only the first few terms for the sake of concreteness, although
higher-order polynomials of Pauli operators are allowed. In
the variational quantum eigensolver approach [3], the ground
state |ψ (θ)〉 is represented by the output of a parametrized
quantum circuit, where θ = {θi} are the circuit parameters.
The variational energy is a summation of expectation values
of Hamiltonian terms in the variational ground state,

〈H〉θ =
∑

iα

hi
α〈ψ (θ)|σα

i |ψ (θ)〉

+
∑
i jαβ

hi j
αβ〈ψ (θ)|σα

i σ
β
j |ψ (θ)〉 + · · · . (2)

FIG. 1. Variational training of an MPS/PEPS prepared on a
parametrized quantum circuit in the qubit efficient scheme. Shown
at the top left is the quantum circuit with R reusable qubits for the
physical degrees of freedom and V qubits for the virtual degrees
of freedom. Green triangles represent the input single-qubit state
initialized to |0〉 and the yellow square qαk

k is the kth output bit
measured on the Pauli basis αk . After measurement, the first qubit
is reset to |0〉 and then entangled with the remaining V qubits
before the next measurement. Each gray box represents a multilayer
parametrized quantum circuit detailed in Fig. 2. Each block has a
similar circuit structure and the circuit parameters θ1, θ2, . . . , θN−V

are independent.

To estimate the expected energy, one can identify maximally
commuting sets of Hamiltonian operators and measure all the
commuting terms together on the corresponding bases.

One can prepare an MPS/PEPS as a variational state
of N qubits using a smaller number R + V � N of qubits
[29,41,42], which will be dubbed QMPS/QPEPS henceforth.
The idea is to treat R (for QMPS, R = 1) of them as the phys-
ical qubit and use the remaining V qubits as virtual degrees
of freedom to mediate quantum entanglement. Sequentially
measuring and reusing the physical qubits allows for pro-
ducing an arbitrarily long MPS/PEPS. The circuit structure
is illustrated schematically in the top left corner of Fig. 1.
First, one initializes the R + V qubits to the product state
|0〉R ⊗ |0〉V and applies a circuit block parametrized by θ1 to
all qubits. Then one measures the physical qubits on the Pauli
basis σ

α1
1 and stores the output qα1

1 to a classical memory. Next
one recycles the measured qubit and resets it to state |0〉R.
One then entangles them with the remaining V qubits again by
applying a second circuit block with parameters θ2. After re-
peating these procedures until one has collected N − (R + V )
bits of classical information, one measures all qubits to collect
the last R + V bits. This sequential measure-and-reuse scheme
is equivalent to sampling this N-qubit MPS/PEPS on the same
basis. In contrast to the qubit saving scheme for generative
modeling in Ref. [29], here one performs measurements on
multiple different bases for the VQE calculation.

The proposed scheme directly applies to Hamiltonians
with arbitrarily long-range interaction. In particular, fermionic
systems can be easily studied using the Jordan-Wigner trans-
formation [51]. A general quantum chemistry problem is more
challenging than the quantum spin problem considered here
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since they contain O(N4) terms in the Hamiltonian. Neverthe-
less, the total number of measurements can be reduced using
the techniques of [8,52,53]. In the Appendix we provide a
concrete example of preparing and sampling a cluster state
in the qubit efficient scheme.

Given the variational circuit, we aim at solving the opti-
mization problem θopt = arg minθ〈H〉θ . Gradient-based opti-
mization algorithms are crucial to scaling to a large number of
variational parameters [16]. Suppose that all the parameters of
the quantum circuit appear in the form e−iθi�/2 with �2 = 1.
The analytical expression of the gradient with respect to the
parameter θi reads [15]

∂

∂θi
〈H〉θ = 1

2

(〈H〉θ+(π/2)ei − 〈H〉θ−(π/2)ei

)
. (3)

One can thus estimate the energy gradient by tuning the
parameters to θi ± π/2 and use it for gradient descent op-
timization of the energy. Unlike numerical differentiation,
Eq. (3) is an exact gradient estimator, which is crucial for
unbiased stochastic optimization with a noisy estimate of the
gradients [54].

To recapitulate, the key point of the proposed variational
algorithm is to estimate the energy gradient of an N-qubit
Hamiltonian with respect to an QMPS/QPEPS with fewer
(R + V � N) qubits. The steps are shown in Fig. 1. 1© Tune
a selected circuit parameter θi to θi + π

2 and collect bit strings
by repeated measurements on various bases according to the
Hamiltonian terms. Then we repeat for θi − π

2 . 2© Estimate
the energy expectation value by assembling the statistics of
all Hamiltonian terms. 3© Estimate the gradient of all pa-
rameters via Eq. (3). Feed the gradient information into a
classical optimizer. 4© Update the circuit parameters according
to suggestions of the classical optimizer. This completes one
training epoch. The training stops when a prescribed conver-
gence criterion is met. After reaching convergence, one may
measure physical observables of interests on the optimized
circuits.

III. APPLICATION TO THE HEISENBERG MODEL

As a concrete example, we apply the approach detailed in
the preceding section to the frustrated Heisenberg model on a
square lattice

H = 1

4

⎡
⎣∑

〈i, j〉
σ x

i σ x
j + σ

y
i σ

y
j + σ z

i σ z
j

+ J2

∑
〈〈i, j〉〉

σ x
i σ x

j + σ
y
i σ

y
j + σ z

i σ z
j

⎤
⎦, (4)

where 〈i, j〉 and 〈〈i, j〉〉 denote nearest- and next-nearest-
neighbors pairs, respectively, and J2 > 0 is the strength of the
frustration term that suppresses the Néel order. The energy
expectation value and its gradient can be efficiently evaluated
by sampling the circuit output on three bases σ x, σ y, and σ z.
In the following discussion, we consider the model on an open
square lattice of the size N = 4 × 4 with J2 = 0.5. These sites
are zigzag ordered in our ansatz as shown in the bottom right
of Fig. 1.

Frustrated quantum spin models are crucial to the study of
quantum magnets with many open problems [55,56]. Classical
computational approaches to these problems are limited by
either the sign problem [57] or the high computational cost
at larger bond dimensions [58]. Variational optimization of
QMPS/QPEPS on near-term quantum computers is a promis-
ing approach which may deliver valuable insights into open
problems in this field.

A. MPS-inspired ansatz with conserved quantum numbers

Figure 2(a) shows the general internal structure of the
variational circuit which can be implemented efficiently on
quantum hardware [11]. Each layer contains 3(V + 1) param-
eters in the rotational gates Rx

θ and Rz
θ . We use controlled-NOT

(CNOT) gates with no variational parameters as the entanglers
to generate entanglement between qubits. We repeat this
construction d times within each circuit block. Thus there are
M = 3d (V + 1) parameters in each block. As we show below,
taking into account the physical symmetries in designing of
the VQE ansatz can reduce the number of parameters and
increase the training performance.

The Heisenberg model (4) has U(1) symmetry with a
good quantum number Sz. To preserve this symmetry [34,59],
we construct a circuit block consisting of e−iθσ z

i /2 and

FIG. 2. Internal structure of circuit blocks shown in Fig. 1.
(a) General unstructured setup. Here Rα

θi
= e−iθiσiα/2 represents a

parametrized single-qubit rotation gate. (b) The U(1) preserving
block. The leftmost X gate is applied only for odd steps to flip
the input state to |1〉. The double crosses are the SWAPα gates [60].
(c) The SU(2) preserving block. The left and right panels are for odd
and even steps, respectively. The last qubit is an ancilla for creating
singlets between consecutive steps. The gates enclosed in the dashed
box are repeated for d times, where d denotes the depth of the
block.
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FIG. 3. Expanded view of the SU(2) symmetric quantum circuit ansatz shown in Fig. 2(c) for the N = 4 × 4 Heisenberg model. The
blocks inside a dashed box are repeated by d times. In the qubit efficient scheme, the 1st–12th qubits are the same physical qubit which is
reused after measurement. The 13th–16th qubits are the V = 4 qubits which mediate entanglement in the final output state. The 17th qubit is
the ancilla qubit for constructing the singlet product initial state. The operations for generating singlets (i.e., X , H , controlled gates, and SWAP

gates) commute with parametrized SWAP gates in the dashed box, so that can be moved to the beginning of the circuit.

e−iθSWAP(i, j)/2 gates.1 The latter gate is equivalent up to a
phase factor to the SWAPα gate with α = θ/π [60]. Viewing
the setup as a wide circuit with N qubits, it is clear that the
quantum number of the initial state is conserved during the
evolution. To obtain the ground state in the Sz = 0 sector, we
prepare a spin-balanced initial state for the variational calcula-
tion. Figure 2(b) shows that by applying an additional X gate
before the variational gates in the odd steps, one has an anti-
ferromagnetic product state |1010 . . . 10〉 as the initial state.

One can further exploit the full SU(2) symmetry of the
Heisenberg model (4). While there are sophisticated ap-
proaches [61,62] to implement this non-Abelian symmetry in
classical simulations, the implementation is straightforward
on quantum circuits. As shown in Fig. 2(c), we first prepare
the input state in the total spin S2 = 0 sector, where the sim-
plest choice is the singlet product state |ψ0〉 = ⊗N/2

i=1 | ↑↓ −
↓↑〉. To prepare |ψ0〉, we use an additional ancilla qubit
to carry the entanglement of the physical qubit in the odd
and even steps.2 In the odd step, we prepare a spin singlet
between the physical qubit and the ancilla qubit |↑↓ − ↓↑〉 =
CNOT(1, a)H (1)X (1)|0〉1 ⊗ |0〉a. Here CNOT(1, a) is the in-
verse controlled-NOT gate, which flips the ancilla qubit when
the physical qubit is in state |0〉. In the even step, we swap the
ancilla and physical qubits. The physical qubits in the odd and
even steps thus form a spin singlet. Then we repeatedly apply
parametrized SU(2) symmetric operations to the initial state
to generate the variational output. We choose the generators
to be the SWAPα gate [60] between a collection of qubits

1We note that these two gates are not sufficient to represent all U(1)
symmetric operations, e.g., the controlled-Z (CZ) gate. A general
U(1) ansatz which covers the whole symmetry sector will need all
generators such as

∏
i σ

z
i and

∏
i j SWAP(i, j), where i runs over a

subset of qubit indices.
2The ancilla qubit increases the bond dimension of the MPS to

2V +1.

pairs.3 Figure 3 shows the expanded view of the SU(2)
symmetric quantum circuit. Parallel measurement of the final
quantum state yields the same outcomes as the sequential
measurement in the qubit efficient scheme shown in Fig. 2(c).

The SU(2) symmetric variational state reads |ψ (θ)〉 =∏
k e−iθk SWAP(ik , jk )/2|ψ0〉, where the product is ordered by the

circuit architecture. This variational ansatz resembles the
classical variational ansatz for quantum spins in the valence
bond basis [64]. However, in general, the state could not be
sampled efficiently using the classical Monte Carlo method
due to the appearance of complex weights [65]. Moreover,
since the SWAP operations are not commuting within each
other, there is an additional difficulty in devising an efficient
classical Monte Carlo scheme to sample from the variational
ansatz. Therefore, variational optimization of this ansatz on a
quantum device highlights the possible quantum advantage of
the proposed qubit efficient VQE scheme.

To assess the feasibility of the qubit efficient VQE scheme
on near-term quantum devices, we perform a faithful classical
simulation of the training process. We simulate a circuit of
V + 1 qubits instead of an equivalent N-qubit circuit without
qubit reusing. Therefore, even in the classical simulation, we
do not have direct access to the final wave function but only
to the measured bit strings. We sample the energy and its gra-
dient on samples of batch size 4096. Note that we purposely
do not exploit the classical backpropagation algorithm [which
reduces the complexity of gradient estimation from O(M2) to
O(M ), where M is the number of variational parameters] to be
in line with the repetitive experimental measurement [16].

We use V = 4 qubits for the virtual degrees of the MPS.
The maximum entanglement entropy of the ansatz is thus
4 ln 2 given the full capacity of the variational blocks. We
employ the Adam optimizer with a learning rate 0.1 [66] for

3We note that the variational ansatz may have a connection to the
Bethe ansatz [63] construction of the QMPS, where the scattering
matrix has the same form as the parametrized SWAP gates.

023025-4



VARIATIONAL QUANTUM EIGENSOLVER WITH FEWER … PHYSICAL REVIEW RESEARCH 1, 023025 (2019)

FIG. 4. (a) Variational energy and (b) fidelity with respect to
the exact ground state of a 4 × 4 frustrated Heisenberg model as
a function of gradient descent steps. The dashed line is the exact
ground-state energy. The circuit consists of V + 1 = 5 qubits. For
the SU(2) ansatz there is one additional ancilla qubit [see Fig. 2(c)].

the stochastic gradient descent training. We compare three
different circuit blocks, shown in Fig. 2. All of them have
fixed depth d = 5. The variational parameters are randomly
initialized with a uniform distribution in [0, 2π ]. As shown in
Fig. 1, there are in total N − V = 12 circuit blocks.

The general circuit structure shown in Fig. 2(a) con-
tains M = 3(V + 1)(N − V )d = 900 variational parameters.
In 500 steps of training, the energy per site decreases to
−0.416. For comparison, the exact ground-state energy per
site is Eexact = −0.469 097 31, the density matrix renormal-
ization group result for bond dimension 2V = 16 is EDMRG =
−0.465 326 70.4 As the energy decreases, its fidelity with
respect to the exact ground state increases from 5.7 × 10−3

to 0.69.
Next, the U(1) symmetric circuit structure in Fig. 2(b)

contains ten single-qubit gates and five two-qubit gates in
each layer. Hence the number of circuit parameters is also
900. However, the training efficiency increases significantly
as shown in Fig. 4. The ground-state energy per site reaches
−0.454, with a ground state fidelity of 0.92.

Finally, the SU(2) symmetric circuit structure in Fig. 2(c)
gives the best variational energy despite that it has only
M = (V + 1)(N − V )d = 300 variational parameters. Using
the same hyperparameters for training, the variational energy
decreases to −0.463 and the fidelity reaches 0.97. After
obtaining the variational state, we can measure physical ob-
servables on the circuit. For example, the spin-spin correlation
in the z direction 〈σ z

i σ z
j 〉 is measured on the SU(2) symmetry

preserving circuit shown in Fig. 5(a). As a comparison, using
the same training hyperparameters, we obtain a ground state
with fidelity 0.98 using the SU(2) symmetric variational cir-
cuit ansatz [Fig. 2(c)] for an unfrustrated Heisenberg lattice
with J2 = 0. As shown in Fig. 5(b), the checkerboard pattern
for the antiferromagnetic correlation is more visible in the
unfrustrated case. These results suggest that even with a
moderate number of qubits, the qubit efficient VQE scheme
is able to offer useful physical insights.

4For bond dimension 32, EDMRG = −0.468 680 64, which repre-
sents the entanglement upper bond for the SU(2) symmetry preserv-
ing ansatz.

FIG. 5. Spin-spin correlation 〈σ z
i σ z

j 〉 for (a) the frustrated
Heisenberg model with J2 = 0.5 and (b) the unfrustrated Heisenberg
model with J2 = 0. Here the ground state is obtained by using the
SU(2) symmetric circuit shown in Fig. 2(c).

This result benefits from the fact that the QMPS structure
alleviates the gradient vanishing problem for studying low
entangled physical systems. The gradients of an unstructured,
randomly parametrized circuit vanish exponentially as a func-
tion of the number of parameters [26] due to the concentration
of measure in high-dimensional spaces [27,28]. Intuitively,
this could be understood from the fact that the overlap be-
tween a random initial quantum state and a target state is
exponentially small in the many-body Hilbert space. Related
approaches such as the quantum approximate optimization
algorithm [35] and related fields such as quantum machine
learning [15,16,36] suffer from the same problem.

We inspect the variance of the gradient signal for various
system sizes to investigate the gradient vanishing problem in
the training variational quantum circuits [26]. To compute the
gradient variance, we sample 1000 gradients of random circuit
parameters.

First, we consider an unfrustrated Heisenberg model on
an open chain of length N . Here N should be regarded as
the effective circuit width since the output bit strings lie in the
Hilbert space of size 2N . Figure 6(a) shows the variance of the
gradient for circuit blocks with U(1) and SU(2) symmetries
with V = 4. Interestingly, the variance of the gradient shows a
power-law decay in contrast to the exponential decay found in
a circuit with generic structure [26]. Therefore, it appears that

FIG. 6. Variance of the gradient as a function of (a) system size
N and (b) number of virtual qubits V for random initialized circuit
parameters of structures shown in Fig. 2. The Hamiltonian is an open
Heisenberg chain. The dashed lines are linear fits; however, in (b) we
only use V � 6 for fitting.
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FIG. 7. A projected pair of states inspired a variational quantum circuit ansatz with a 4 × 4 square lattice layout. Yellow squares with the
symbol � are measure (on basis α = X,Y, Z) and reset operations. The other yellow squares are measurements without reset.

the QMPS structure alleviates the gradient vanishing problem
at least for the problem under consideration. We attribute this
to the fact that the low-entropy variational ansatz captures the
right inductive bias for the ground state of the target problem.

Next, for an N = 20 Heisenberg chain, we examine the
scaling of the gradient variance with the number of virtual
qubits V . Again, we see that using symmetry greatly enhances
the gradient in Fig. 6(b). We observe an exponential decrease
of the gradient in the regime V � N , while the gradient
increases with V for V � N . Their values are still much
smaller than the values in the small-V limit, which shows that
the QMPSs are easier to train compared to an unstructured
quantum circuit of a generic structure.

An exponentially decreasing gradient with respect to V
also warns us that it is not possible to get something for
nothing. Although a quantum circuit is able to represent an
MPS with exponentially large bond dimension, the number
of parameters in the ansatz should also scale exponentially in
order to compensate for the vanishing gradient. What is worse,
the sampling error can smear out too-small gradient signals.
To really make the ansatz scalable for a highly entangled two-
dimensional system, we need a parameter efficient design.

B. PEPS-inspired ansatz

The PEPS is much more parameter efficient for represent-
ing the ground states of a two-dimensional (2D) quantum
lattice Hamiltonians. It is able to represent many area law
entangled high-dimensional states with a polynomial number
of parameters with respect to the system size. However, there
is no polynomial time algorithm to contract a PEPS exactly
for energy expectation values. Moreover, there is no efficient
scheme to prepare a QPEPS on a quantum circuit. This task
is probably impossible due to the computational complexity
argument [67]; otherwise, a quantum computer would be able
to solve the #P-hard problems [68–70]. Nevertheless, it is pos-
sible to design a variational ansatz that shares the appealing
properties of PEPSs, such as the 2D area law entanglement
entropy.

The SU(2) symmetric QPEPS ansatz for a 4 × 4 square
lattice is shown in Fig. 7. The entanglement in this ansatz
satisfies the two-dimensional area law, which can be seen

from the red dashed box enclosing a 2 × 2 region, where the
number of bonds crossing the boundary is proportional to the
circumference of the box. In the entangle layer enclosed in the
black dashed box, we first entangle each physical qubit with
its own virtual qubit(s), then neighboring (periodic boundary
condition) physical qubits, and finally neighboring virtual
qubits. This completes a single entangle layer. We repeat
this layer for d times to increase the number of trainable
parameters. Unlike the case in QMPSs, where we do not
distinguish between virtual qubits, here we assign a constant
number of virtual qubits for each physical qubit so that V/R
stays as a constant as the system size grows. These physical
qubits can be measured in parallel instead of one by one.

The simulation results reported in Fig. 8 demonstrate the
scalability of this structure on a 2D lattice. In the simulation,
we fix the ratio V/R to 1 and depth d to 5. So the number
of parameters contained in a 4 × 4 QPEPS is 180, which is
the same as that in a depth d = 3 QMPS. The comparative
study of two models in Fig. 8(a) shows a similar (or slightly
better) performance. However, when we scale up the lattice
size to 6 × 6, the ground-state energy obtained by the QPEPS
is much lower, indicating better scalability in solving two-
dimensional lattice Hamiltonians. One should note that by
increasing the lattice size from 4 × 4 to 6 × 6, the size of the
full Hilbert space is increased by a factor of 220.

The batch size in the above simulation is B = 1024; as
it grows, the standard deviation of measured gradients σs

will decrease as ∼1/
√

B. We can also define the variance of

FIG. 8. Energy as a function of training steps, with training
parameters listed in Table I.
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TABLE I. Parameters used in the numerical experiment in Fig. 8.
The number of shots used in sampling is 1024, the optimizer is
Adam with learning rate 0.1. Here E and EG are the lowest ground-
state energy obtained in training and exact ground-state energy,
respectively.

Lattice Model Gates Depth d R + V E/N EG/N

4 × 4 QMPS 180 3 6 −0.4596 −0.4691
4 × 4 QPEPS 180 5 8 −0.4681 −0.4691
6 × 6 QMPS 420 2 8 −0.4147 −0.4791
6 × 6 QPEPS 450 5 12 −0.4707 −0.4791

gradients as

σ 2
g = Var

θi

(
∂〈H〉
∂θi

)
, (5)

where circuit parameters θi are randomly sampled. If these
values are too small, then the gradient vanishes. In a
momentum-based classical optimizer, the learning rate can
be automatically adjusted to utilize small gradients. However,
what matters here is not the absolute value of gradients,
but the ratio between the standard deviation of gradients
rgs = σg/σs. When rgs � 1, the gradient information will be
smeared out and the training will probably fail; then we have
to either increase the number of shots B or change the ansatz.
Scalable training relies on how rgs varies as the system size
grows. If we fix the batch size to 4096, at a system size
4 × 4, rgs = 0.142/0.021, while at a system size 6 × 6, it
is 0.088/0.032, i.e., the gradient is decreasing and sampling
error is increasing. Due to the limit of classical computational
power, it requires a quantum device to verify the scalability
and fully exploit its power.

IV. COMPLEXITY ANALYSIS BY GATE COUNTING

The wall clock time of both the classical simulation and
actual experiment can be estimated by counting the gate oper-
ations, as summarized in Table II. In the classical simulation,
the operation time Tgate scales exponentially with the number
of virtual qubits V . We employ the differentiable quantum
simulator Yao.jl [71] and its GPU backend CuYao.jl [72]
in order to boost the classical simulation efficiency. With
native CUDA programming support [73,74], one can parallelize
the circuit simulation both for the Hilbert space (of size 2V +1)
and for the batch dimension (of size 4096 in our case). It
takes 11–48 h (varies for various blocks shown in Fig. 2) for

TABLE II. Gate count for training a QMPS with M parameters.

Factor Note

1. 500 training iterations
2. ×M for each variational parameter
3. ×4096 batch size for sampling
4. ×2 gradient evaluation
5. ×3 Pauli bases
6. ×M parametrized gates
7. ×Tgate time for each gate
8. ≈107M2Tgate

TABLE III. Variational energy expectation and fidelity of frus-
trated Heisenberg model with J2 = 0.5 for various block depths d
shown in Fig. 2(c). We count only the number of parametrized gates
in the table.

Depth Gates Energy Fidelity

1 60 −0.454 0.917
2 120 −0.458 0.923
3 180 −0.463 0.968
4 240 −0.464 0.971
5 300 −0.463 0.968
exact −0.469 1.0

a typical parameter reported in this paper, V = 4, d = 5, and
N = 16, on a single Nvidia Titan V GPU card.

The gate time of an actual quantum device shows constant
scaling with respect to the qubit number. For experiments
on SQUID qubits, Tgate ≈ 25 ns [75] for a SWAPα gate. Thus,
solving the 4 × 4 Heisenberg model with circuit depth d = 1
and the same hyperparameters as our numerical experiments
will take approximately 18 min on a single quantum process-
ing unit (QPU) without considering readout time. On the other
hand, the typical gate time for ion traps is Tgate ≈ 0.5–250 μs
[76,77], which means a longer time is required to solve the
same model.

Furthermore, we note that gate operations in lines 2–5 of
Table II are also trivially parallelizable on QPUs. Therefore,
we envision that building a cluster of QPUs [5,6] may provide
a further advantage for high-throughput gradient estimation
of the VQE calculation. In this case, one only needs clas-
sical communications to collect the gradients measured on
all QPUs. Technically, having intermediate-scale quantum
circuits running in parallel is also easier than building a
fully entangled large-scale quantum computer. In this way, we
expect that running the variational algorithm on parallel QPUs
will soon win over classical processors with an exponential
gate time.

A practical issue is that the total running time MTgate should
be less than the coherence time of the qubits, which limits the
block depth of the variational ansatz to be shallow circuits
on near-term devices. Table III shows the variational energy
and fidelity for various depths d obtained for the N = 4 × 4
frustrated Heisenberg model at J2 = 0.5. One sees that it is
possible to reach fidelity 0.917 with only 60 parametrized
gates, which is within the reach of the present-day quantum
technology. For larger problem size, one would need to in-
crease the circuit depth linearly with N . Assuming area law
entanglement entropy scaling of the system, one also needs to
scale the circuit width V linearly with the boundary size for
an accurate variational description of the ground state.

A crucial step for the qubit efficient QMPS preparation
scheme is the measure and reset operation. The cost of this
step is device dependent. It is straightforward for trapped ions.
However, for superconducting quantum interference devices
(SQUIDs), a single-qubit measurement and reset can take
several microseconds, which is even slower than applying a
gate. Fabricating low-latency quantum circuits that support
fast measure and control is a rewarding direction in light
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of the proposed qubit efficient VQE scheme. Alternatively,
one can employ the same circuit architecture without reusing
the measured qubits. In this case, one still has the benefit of
enhanced gradient signal.

V. DISCUSSION

Classical quantum many-body computation approaches
provide valuable insights to quantum algorithms. Using the
proposed qubit efficient VQE scheme, one can access the
ground-state properties of quantum systems using fewer
qubits than the system size. Moreover, by exploiting the physi-
cal symmetries in the quantum circuit architecture design, one
can alleviate the gradient vanishing problem and speed up the
convergence to the ground state.

The use of a conserved quantum number in circuit con-
struction also allows one to have access to excited states in
various quantum number sectors. In this regard, it is interest-
ing to consider what the universal gate sets are with respect to
various physical symmetry constraints. In addition to internal
symmetries, the spatial translational symmetry may be taken
into account via parameter sharing in the circuit blocks. Then
it naturally raises the question of whether one can study in-
finitely large periodic systems with a finite number of qubits.

Another interesting direction is to perform time evolu-
tion or measure time-dependent quantities in the qubit ef-
ficient scheme. Since one does not have access to the full
wave function directly in the qubit efficient scheme, the
Trotter decomposition-based time evolution [78,79] may not
be directly applicable. Variational quantum algorithms for
time evolution [80,81] appear to be good candidates for this
purpose.
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APPENDIX: QUBIT EFFICIENT SCHEME
FOR CLUSTER STATE

We provide a concrete example of preparing and sampling
a cluster state in the qubit efficient scheme. The 1D cluster
state [82] can be prepared by the circuit shown in Fig. 9. One
first prepares the N qubits to |+〉 by applying a Hadamard
gate on |0〉 and then sequentially applies a CZ gate between
the nearest-neighbor qubits. Thus, the N-qubit 1D cluster state

FIG. 9. (a) Circuits for preparing and measuring on a five-qubit
cluster state. (b) Preparing and measuring the same state in the qubit
efficient scheme using only two qubits.

can be written as

|ψcl〉 =
N−1∏
i=1

CZi,i+1|+〉⊗N . (A1)

This 1D cluster state has an equivalent MPS representation
with bond dimension 2 [83],

|ψcl〉 =
∑

i1i2···iN
tr
[
A(1)

i1
A(2)

i2
· · · A(N )

iN

]|i1i2 · · · iN 〉, (A2)

where the left and right boundaries are A(1)
0 = 1√

2
〈+|, A(1)

1 =
1√
2
〈−| and A(N )

0 = |0〉, A(N )
1 = |1〉, while for the remaining

ones A(i)
0 = 1√

2
H, A(i)

1 = 1√
2
HZ (2 � i � N − 1).

One can prepare the same N-qubit 1D cluster state using
only two qubits. The key is to mediate the entanglement
between the physical qubits in different steps using one virtual
qubit. As shown in Fig. 9(b), we initialize both qubits to
|0〉 ⊗ |0〉 and then apply Hadamard gates to create a |+〉 ⊗ |+〉
state. By applying CZ gates on them, we can measure the
physical qubit. We then reset the physical qubit to |0〉 and
reuse it. The SWAP gate then exchanges its state with the
virtual qubit. We then apply the Hadamard and CZ gates and
measure the physical qubits. Repeating these steps to the end,
we will obtain the same statistics of the measured bits as in
the case of N physical qubits [Fig. 9(a)].

All two-point Pauli correlation functions vanish on the
1D cluster state. The nonzero correlation functions will
emerge if one performs the stochastic local operations
and classical communication (SLOCC) [84], e.g., measur-
ing the ith qubit in the Z basis and considering only the
states with measurement outcome 0. In the general case,
for an N-qubit 1D cluster state with an SLOCC operator
S [S = DHRz(γ ), D = cos θ |0〉〈0| + sin θ |1〉〈1|] acting on
the ith qubit, the next-nearest-neighbor correlation function
〈σ z

i−1σ
z
i+1〉 = cos 2θ sin γ [83] and other two-point correla-

tions vanish. In order to measure the correlation function, e.g.,
〈σ z

2σ z
4 〉, the estimation protocol is 1© measuring the second

and fourth qubits in the Z basis; 2© performing the HRz(π/2)
operation on the third qubit, measuring it in the Z basis, and
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only keeping the states with measurement outcome 0; and
3© choosing randomly the measuring bases of the remaining

qubits for the final estimation. Repeat the above procedure
until a good estimation of 〈σ z

2σ z
4 〉 ≈ E[σ z

2σ z
4 ] is obtained.
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