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Time-modulated meta-atoms

G. Ptitcyn,* M. S. Mirmoosa,† and S. A. Tretyakov
Department of Electronics and Nanoengineering, Aalto University, P.O. Box 15500, FI-00076 Aalto, Finland

(Received 22 May 2019; published 12 September 2019)

Interaction of electromagnetic radiation with time-variant objects is a fundamental problem whose study
involves foundational principles of classical electrodynamics. Such study is a necessary preliminary step for
delineating the novel research field of linear time-varying metamaterials and metasurfaces. A closer look to the
literature, however, reveals that this crucial step has not been addressed and important simplifying assumptions
have been made. Before proceeding to studies of linear time-varying metamaterials and metasurfaces with
their effective parameters, we need to rigorously describe the electric and magnetic responses of a temporally
modulated meta-atom. Here, we introduce a theoretical model which describes a time-variant meta-atom and its
interaction with incident electromagnetic waves in time domain. The developed general approach is specialized
for a dipole emitter/scatterer loaded with a time-varying reactive element. We confirm the validity of the
theoretical model with full-wave simulations. Our study is of major significance also in the area of nanophotonics
and nano-optics because the optical properties of all-dielectric and plasmonic nanoparticles can be varied in time
in order to achieve intriguing scattering phenomena.
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I. INTRODUCTION

The physical properties of metamaterials [1] and meta-
surfaces [2] can be engineered by proper selection of mate-
rials, sizes, shapes, and mutual orientations of meta-atoms.
These custom-designed artificial materials and surfaces have
recently enabled significant advances in controlling electro-
magnetic radiation and realizing new physical phenomena,
especially in electromagnetics and optics. Time-varying exter-
nal modulation is an important degree of freedom which can
potentially open new interesting possibilities in microwave
techniques, optoelectronics, photonics, and other fields
(see, e.g., Refs. [3–21]). Known studies consider phenomena
in materials with time-varying parameters (usually assum-
ing that material permittivity [22–27] or conductivity [28]
depends on time due to some external force), but do not
explore the possibilities of shaping material response by time
modulations of constituent meta-atoms. We expect that, by
using time modulations at the microscopic level of meta-
atoms, radically new approaches can be found to shape the
effective properties of materials formed by these meta-atoms,
see illustration in Fig. 1. Furthermore, such novel approaches
can be applied for rather general manipulations and optimiza-
tions of resonant and nonresonant small objects (antennas,
plasmonic and dielectric nanoparticles, quantum dots, etc.)
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However, there are two fundamental issues which need to
be addressed before this novel research area can be properly
developed and explored. The known approaches assume that
the effective material or surface parameters depend on time,
while the fundamental constituent of metamaterials is the
meta-atom. By imposing some arbitrary time-dependence to
a property such as permittivity, one has to make dramatic
simplifying assumptions, namely assume that the modulation
is slow [29–32] and usually assume that the material response
is instantaneous. Obviously, a material cannot polarize instan-
taneously in response to an applied field. Polarization at a
given moment of time t0 depends on the field and electric
susceptibility at previous times, t < t0, such that for linear
and stationary media the polarization is a convolution of
susceptibility and the electric field. Instantaneous response
corresponds to a susceptibility in form of Dirac delta function.
Using time-domain models with time-varying permittivity
[D(t ) = ε(t )E(t )] one assumes instantaneous response, there-
fore such approach does not allow studies of dispersive time-
modulated media. Using frequency-domain models with the
permittivity dependent both on the frequency and time (due to
external modulation), one assumes that the modulation is very
slow at the scale of all polarization processes in the material.
It appears that only for lossless plasma described by the
Drude model there are known models which take into account
frequency dispersion of material response under external time
modulations of material parameters (the plasma frequency,
in this case) [33]. In addition, studies of time-modulated
materials, metamaterials and metasurfaces, have been limited
mostly to time-harmonic modulations [30–32] or to sharp,
stepwise [34] changes in the material parameters.

The intriguing question is: can we find such (nonharmonic,
arbitrary) time modulations of meta-atoms which will en-
able new phenomena which are not achievable with conven-
tional time-harmonic pumping? In other words, in addition
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FIG. 1. Schematic view of a metamaterial formed by time-
varying meta-atoms. Here, the meta-atom is assumed to exhibit only
electric response determined by its electric dipole moment p(t ).
The excitation and temporal variations of the dipole moment can be
controlled and engineered using time modulation of the meta-atom.

to studying phenomena in media which are time modulated
in a particular (usually time-harmonic) way, one can possibly
create and optimize desired effects by choosing an appropriate
time-modulation function. It appears that this question has
not been posed and addressed till today, and there is a clear
need for fundamental investigations in this direction. This
paper makes a step in this direction by studying arbitrary
time modulations of dipolar meta-atoms. Here, we consider
one single meta-atom which is modulated by an external
force and create a theoretical model for its description in
time domain. Using this model, we discuss several new ap-
plication scenarios where the time dependence of induced
polarization and meta-atom scattering response can be fully
engineered by an external time modulation. When these meta-
atoms are assembled into a metamaterial, they all become
coupled and materials’ spatial and temporal characteristics
become dependent on interactions between the inclusions.
This significantly complicates the analysis of electromagnetic

response. Conventional homogenization models are applica-
ble for static composites and are formulated in frequency
domain. To properly understand time-modulated metamate-
rials, especially with arbitrary time modulations, it will be
necessary to develop effective media models in time domain.
We hope that, similarly to static metamaterials, interactions
between the inclusions in a metamaterial sample can be used
as an additional degree of freedom in engineering material
properties and can lead to amplification of weak responses of
individual meta-atoms.

II. CIRCUIT ANALOGY

An analogy between an RLC circuit and a meta-atom is
well known in the context of time-harmonic excitation and
response [35,36]. The dissipation of energy including radia-
tion is modeled by R (resistance) and the reactive elements L
(inductance) and C (capacitance) are associated with storing
of magnetic and electric energies, respectively. The electric
current flowing through the resistor of the equivalent circuit
is related to the induced dipole moment of the meta-atom.
The meta-atom can be excited either by external electric
fields or by an internal source (voltage or current source).
This analogy motivates us to contemplate the scenario where
one of the reactive elements of the circuit is temporally
modulated. Let us examine an RC circuit, shown in Fig. 2,
and draw a possible inference assuming that the capacitance
is time-varying C0 = f (t ). Generalizing the conventional
theory of parametric circuits with time-harmonic pumping,
we suppose that function f (t ) is arbitrary. We expect that
selecting the modulation function will make it possible to
engineer the current flowing through the circuit in rather
general ways, for any given external electromotive force v(t ).
Indeed, for this circuit, the electric current can be expressed as
i(t )= exp (− ∫

a(t )dt )(
∫

b(t ) exp (
∫

a(t )dt )dt+A), where a(t )
is a function of C0 = f (t ) and of the time derivative of f (t ).
Parameter b(t ), in addition, depends on the voltage source and
on the time derivative of the external voltage (see Appendix).
We can expect that properly choosing the time-varying
capacitance will result in a desired temporal function for the
electric current. Here, we emphasize that the exciting voltage

(a) (b) (c)

FIG. 2. Engineering of electric current in a series RC circuit. (a) Schematic view of the RC circuit. [(b) and (c)] Time-varying capacitance
and the corresponding electric current flowing through the electric circuit described by (a). In this example, R0 = 1 �, V0 = 1 V, and
ω = 1 rad/s. The resistance and the capacitance of the circuit are connected to a time-harmonic voltage source v(t ) = V0 cos(ωt ).
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v(t ) can be time-harmonic, still allowing for arbitrary shaping
of the time dependence of the current. Figure 2 shows two
examples of current time dependencies for different temporal
modulations of capacitance. The electric current flowing in
the circuit is not time-harmonic and, in principle, it can be an
arbitrary function. For example, in Ref. [37], it is shown that
properly modulating inductive load, reflections from the load
can be completely eliminated.

In the time-harmonic scenario and in the frequency do-
main, interactions of small meta-atoms with electromagnetic
waves can be studied using an antenna model of an electrically
small dipole [36] and its equivalent circuit. On the basis of this
model, the electric current carried by the dipole is determined
in terms of the frequency-dependent input impedance (Zin)
of the dipole and the impedance of the load connected to
the dipole center (Zload) as I = Einc · l/(Zin + Zload ), where
Einc is the complex amplitude of the incident electric field
impinging on the Hertzian dipole (meta-atom) and l is the
effective length of the dipole. The numerator Einc · l models an
ideal voltage source: the electromotive force induced by the
incident wave. Close to the resonance of small meta-atoms,
we can model the dipole as a series RLC circuit. Now, it
can be readily perceived what can happen if the reactive load
of the dipole is time-varying, since the system is similar to
what we discussed above: an RLC circuit with a time-varying
reactive element. In consequence, it can be expected that
one can engineer the electric current of the meta-atom in the
desired fashion or, in other words, we are free to manipulate
the response of the meta-atom to the incident electromagnetic
wave. Note that the electric current is proportional to the time
derivative of the electric dipole moment (p) which is related
to the incident wave field (Einc) by the electric polarizability
(αee). In this sense, the electric current induced in the meta-
atom defines the effective permittivity of a medium, because
that is determined by the polarizablities of meta-atoms.

However, as we will show next, solutions for arbitrary
time-modulated meta-atoms cannot be in general found using
the Fourier transform of the frequency-domain solutions. The
main reason is that the conventional expression for the radia-
tion resistance of the dipole is valid only for time-harmonic
fields and gives only time-averaged radiated power. In the
literature, the problem of calculation of instantaneous power
radiated from dipoles was addressed in [38–44]. However, the
attention was mostly on instantaneous reactive power around
dipole. The known results do not self-consistently consider
the source of radiation and therefore do not allow writing
time-domain dynamic equations for currents on radiating and
time-modulated dipole scatterers. More general models are
necessary, which we develop here.

III. INSTANTANEOUS POWER BALANCE

Conventionally, the problem of small or Hertzian dipole
under time-harmonic excitation is treated through the method
of phasors which allows to express the fields in the far and
near zones in a simple way [45,46]. Using these expressions,
it is possible to describe the radiation via fundamental param-
eters of radiators and scatterers such as the radiated power or
radiation resistance on the basis of antenna theory [46]. Such
characterization utilizes quantities that are averaged in time

over a period, making this approach suitable only for time-
harmonic current densities or for slowly modulated meta-
atoms. In this study, we treat a problem of arbitrary temporal
modulations which means that the electric current is not
necessarily close to time-harmonic and can have an arbitrary
periodical or nonperiodical time dependence. Therefore we
must find alternative methods providing us with the ability to
describe the interaction of the dipole with the electromagnetic
radiation in time domain, without the use of time averaging
in calculations of radiated power and radiation resistance. We
will approach this problem using the principle of conservation
of energy.

In the circuit theory, there is the law of instantaneous power
balance which is basically an expression of the conservation
of energy at each moment of time. According to this law, the
summation of all instantaneous powers, related to resistance,
capacitance, inductance and the sources of the circuit, must
be zero (

∑
k Pk (t ) = 0). The Kirchhoff current and voltage

laws can be derived from the instantaneous power balance. For
small dipoles, according to the analogy with the RLC circuit,
we can also use the instantaneous power balance equation.
The external instantaneous power Pin(t ) supplied to the dipole
splits into three parts: the radiated power Prad(t ), the reactive
power Preac(t ) and the dissipated power Pdiss(t ) (if the dipole
contains some resistance; from the meta-atom point of view, it
is the absorbed power due to the inherent losses in the particle
materials). Therefore we can write the following equation
which represents the power balance for the dipole:

Pin(t ) + Preac(t ) + Prad(t ) + Pdiss(t ) = 0. (1)

As mentioned above, in the case of time-harmonic excitation
and time-invariant elements, we use the values of power that
are averaged over a period. Average of the reactive power is
always zero and it does not contribute to the power balance
in the frequency domain. However, for time-modulated meta-
atoms, the instantaneous reactive power even in the case of
a time-harmonic source is not zero and, since we treat the
problem in the time domain, the reactive power cannot be
dropped out. This issue is important because the reactive
energy represents the stored energy near the dipole in the form
of electric and magnetic field energies.

Regarding the radiated power, it is defined as the surface
integral of the Poynting vector over a closed surface including
the dipole [46,47]. According to the antenna theory termi-
nology, the radiation of the dipole is described through the
concept of radiation resistance Rrad = 80π2(l/λ)2, where l
is the effective dipole length and λ denotes the wavelength
[46]. This result stems from the time-harmonic calculation
of the time-averaged radiated power and the time average
of the square of the instantaneous electric current carried by
the dipole. In other words,

Rrad = 〈Prad〉/〈i(t )2〉, (2)

where the brackets denote time averaging over one period.
Obviously, this model is applicable only for time-harmonic
currents or for modulations which are very slow as compared
with the carrier frequency. For arbitrary time modulations,
this description of radiation is not suitable and we must
find a general expression for the radiation resistance or the
instantaneous radiated power such that the expression for the
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radiated power is valid for any moment of time. To this end,
it is not enough to calculate the fields created by the dipole
and subsequently compute the instantaneous Poynting vector.
Later, we numerically show that such computation can give
rise to wrong interpretations even in the case of time-harmonic
excitation and no time modulation.

Let us consider the general scenario of radiation from
currents, i.e., the electric current density can be an arbitrary
function of time and space (bound inside a small volume,
so that the dipole model is valid). Is it possible to derive
a general expression for the radiated power? We show that
it is possible if we consider the fields inside the volume
containing all radiating currents and determine how much
energy and momentum from moving charges are transferred
to electromagnetic fields at any moment of time. In this way,
we can rigorously determine the instantaneous radiated power.
For this purpose, we express the Poynting theorem in the form

−
∫

Vc

J · E dv = P + dU

dt
. (3)

Here, E is the electric field generated by J and Vc is the
volume of the radiating system. The above expression states,
in fact, the conservation of energy: the time rate of change of
energy which flows out through the boundary surface of the
volume (P) plus the time rate of change of energy within the
volume (dU/dt) is equal to the time rate at which the energy is
transferred to the electromagnetic fields (the negative of work
done by the fields on J).

Let us consider radiation from a known distribution of
current density, bound to a small volume. Knowing the current
density, we can find the exact electric field E distribution
inside the radiating volume. The electric field is expressed via
the gradient of the scalar potential φ and the vector potential
A (i.e., E = −∇φ − ∂A/∂t), in which

φ(r, t ) = 1

4πε0

∫
ρ
(
r′, t − 1

c |r − r′|)
|r − r′| dr′,

A(r, t ) = μ0

4π

∫
J
(
r′, t − 1

c |r − r′|)
|r − r′| dr′. (4)

Here, ρ denotes the charge density, and c is the speed of light.
Within the nonrelativistic approximation and assuming that
the radiating current volume is electrically small, expansion of
the charge and current densities as power series of |r − r′|/c
allows us to find the dipolar radiated power. These expansions
are explained in detail in Appendix of this paper. Making
those expansions, some algebraic manipulations result in

−
∫

Vc

J · E dr

≈ − μ0

6πc
ṗ(t ) · ˙̈p(t ) + d

dt

[
1

8πε0

∫
Vc

ρ(r, t )ρ(r′, t )

|r − r′| dr dr′

+ μ0

16π

∫
Vc

∂ρ(r, t )

∂t

∂ρ(r′, t )

∂t
|r − r′| dr dr′

+ μ0

8πc

∫
Vc

J(r, t ) · J(r′, t )

|r − r′| dr dr′
]
, (5)

where p = ∫
Vc

r′ρ(r′, t ) dr′ denotes the electric dipole mo-
ment (recall the assumption that the source volume is small

on the scale of all relevant wavelengths). The above equation
must include the total stored electromagnetic energy U and
the radiated power P [see Eq. (3)]. The full time derivative
terms written inside brackets [. . . ] are associated with the
electromagnetic energy (note that the singularity seen in these
terms is resolved by using the method of principal value [48]).
Therefore the radiated power can be written as

P(t ) = − μ0

6πc
ṗ(t ) · ˙̈p(t ). (6)

This equation is of major significance because it reminds
us the Lorentz friction force [49] describing the fact that radi-
ation exerts a reaction force back on the source. Interestingly,
the above expression can be written as a summation of two
terms:

ṗ(t ) · ˙̈p(t ) = −p̈(t ) · p̈(t ) + d

dt
(ṗ(t ) · p̈(t )). (7)

In the literature [44,47,50,51], the first term, p̈(t ) · p̈(t ), is
considered as the dipole radiation power which propagates
infinitely far, while the second term is usually set aside
because it is a full time derivative and therefore it vanishes in
the time-averaged scenario. However, here, we cannot discard
this term since we are interested in the instantaneous power
balance. Below, we present example full-wave simulations to
confirm this important statement. Note that in the typical time-
harmonic case, the first term results in the expression ω4 p/2,
where ω is the angular frequency and p is the amplitude of the
oscillating electric dipole moment [47], corresponding to the
conventional radiation resistance (2).

The established time-domain power balance equation can
be used as the governing time-domain equation for currents on
radiating and scattering time-modulated meta-atoms. Within
the dipolar approximation, we can write the complete version
of the instantaneous power balance equation

− μ0

6πc
ṗ(t ) · ˙̈p(t ) + Q(t )

C
i(t ) + L

di(t )

dt
i(t ) + Q(t )

Cload(t )
i(t )

+ d

dt
(Lload(t )i(t ))i(t ) − E (t )i(t ) = 0 (8)

in terms of the effective capacitance C and inductance L of
the meta-atom. Here, Cload(t ) and Lload(t ) are the time-varying
load capacitance and inductance, respectively. The load is in
series connection with the reactive elements of the antenna,
C and L. Charge at one arm of the dipole is denoted as Q(t ).
The electromotive force E (t ) can be created by either external
electric field of waves illuminating the meta-atom or by an
external source connected to the dipole arms. Solutions of
this equation give accurate relations for the time dependence
of induced electric dipole moment of a radiating meta-atom
which is arbitrarily modulated in time.

IV. NUMERICAL STUDY

In order to check the validity of our model, we do full-wave
simulations (employing CST Microwave Studio) and assume
time-harmonic excitation with no temporal modulation. We
consider two different regimes: transmitting regime and re-
ceiving regime. In the first one, we connect an ideal source
at the center of a short wire dipole in order to excite it. We
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(a) (b) (c)

FIG. 3. Instantaneous power balance for transmitting regime regarding two different dipoles. (a) Electric dipole is fed in the center by a
time-harmonic source representing transmitting regime. (b) Resonant dipole: the length of the cylindrical wire, made of perfect conductor, is
l = 93.9 mm and the radius of the wire is r = 0.3 mm. (c) Nonresonant dipole: the length of the wire is l = 15 mm in this case, which is much
smaller than the wavelength that is 200 mm. The radius of the wire remains the same r = 0.3 mm. In both (b) and (c), the red solid curve shows
the instantaneous radiated power, while the blue dot-dashed curve corresponds to a sum of the reactive and supplied powers. Additionally, the
dashed orange curve represents the conventional interpretation of the instantaneous radiated power, i.e., P(t ) = (μ0/6πc)p̈(t ) · p̈(t ), which is
seen to be incompatible with the instantaneous conservation of energy. In (b), the total reactive power is zero due to the resonance, and the
blue dot-dashed curve simply describes the power that is supplied to the resonant dipole.

numerically calculate the input power Pin(t ), the reactive
power Preactive(t ), and the radiated power P(t ). Since we nu-
merically have the electric current density, the dipole moment
is readily found by integration of the current [36].

Figure 3 shows the power balance for a resonant dipole.
The length of the dipole is chosen so that the dipole res-
onates at about 1.5 GHz. Notice that by a simple scaling, the
resonance can be shifted to other wavelengths. The reason
to operate at microwave wavelengths is the fact that for
simplicity we consider the dipole as a cylinder made of perfect
electric conductor. The radius of the cylinder is supposed to
be considerably smaller than the total length. As the figure
shows, the instantaneous input power Pin(t ) (blue dot-dashed
curve) and the radiated power P(t ) (red solid curve) are equal
in magnitude with a 180◦ phase difference. Therefore the
summation of the radiated power and the input power is zero.

For the resonating dipole, the instantaneous reactive power
vanishes since an equal exchange of electric and magnetic
energy happens. An explicit analogy is drawn to a resonant
LC circuit, where capacitance and inductance continuously
exchange energy, keeping the total stored energy constant.

In the receiving regime, we excite the same resonant dipole
by an incident electromagnetic plane wave. In this regime,
the dipole is connected to a load instead of a source. Based
on the load, three different cases are tested: The load is short
circuited, the load is resistive, and the load is inductive. The
results for instantaneous power balance are shown in Fig. 4.
In the first case, the radiated power must be out of phase
with the power which is equal to the negative of the electro-
motive force E (t ) multiplied by the electric current flowing
through the load i(t ). In other words, P(t ) − E (t )i(t ) = 0. The
electromotive force is analytically calculated since we know

FIG. 4. Instantaneous power balance for a resonant dipole in receiving regime. The cylindrical wire is illuminated by a normal incident
electromagnetic plane wave. The length and the radius of the cylindrical wire is l = 93.9 mm and r = 0.3 mm, respectively. (a) The wire is
short circuited (zero-ohm load). (b) the wire is loaded by a resistance Rload = 50 �. (c) The wire is loaded by an inductance Lload = 10 nH.
In both (b) and (c), the loads are lumped elements connected in a small gap at the center of the wire. Red solid curve always expresses the
instantaneous radiated power and the blue dot-dashed curve shows the summation of the reactive power, the dissipated power by the load
resistance, and the power that is supplied to the dipole by the incident field.
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(a)

(d) (e)

(b) (c)

FIG. 5. Applications for meta-atoms modulated using time-varying reactive elements. Electrically short dipole (l = 15 mm and
r = 0.3 mm) is illuminated by a normally incident plane wave. (a) Schematic representation of a dipole loaded with a time varying inductance
that cancels scattering. (b) Current through the inductance and function for the inductance that realize nonscattering regime shown in (a). Note
that the current that does not radiate is a linearly growing function. (c) Power balance in the case of linearly growing current. Reactive power
grows proportionally to t3 (orange dotted line), amplitude of supplied power grows linearly (blue dot-dashed line) and the power produced
by the time-varying inductance (red solid line) is such that it compensates both supplied and reactive powers. The inset figure shows region
near zero, when reactive power is negligible. (d) Schematic representation of a dipole loaded with a time varying capacitance that changes the
frequency of the scattered wave. (e) Current through the capacitance and function for the capacitance that realize frequency shifting regime in
(c). The frequency of the scattered wave is shifted from 1.5 to 0.15 GHz.

the incident electric field and the current distribution along
the resonant dipole [36]. In the second case, in addition to the
radiated power, we have dissipation due to the resistive load,
and therefore we must add the corresponding active power.
Thus, me have P(t ) + Pload

resistance(t ) − E (t )i(t ) = 0. Finally, in
the last case in which there is a reactive load, the instantaneous
reactive power is not zero anymore and we should expect that
P(t ) + Pload

inductance(t ) − E (t )i(t ) = 0. As the figure illustrates,
for all three cases, the summation of all powers is zero at all
times confirming the validity of the instantaneous power bal-
ance approach. The important point is that the radiated power
shown by red solid curve is exactly out of phase with the sum-
mation of other powers considered in blue dot-dashed curve.

V. APPLICATIONS

Let us now discuss some examples of intriguing effects
provided by time-modulated meta-atoms. The first example
is about cancellation of dipole scattering. Regarding this
case, we consider a small dipole antenna illuminated by a
time-harmonic plane wave and select the time modulation
of the load impedance so that the induced electric current
is a linear function of time. Figure 5(b) shows the proper

modulation function for a time-varying inductance as the load
of the dipole. Recall that the term responsible for radiation is
ṗ(t ) · ˙̈p(t ). Therefore linearly growing or decaying current
produces no radiation into the far zone: all the energy supplied
to the dipole from the incident wave and via the time-
modulated reactance is locked in the near field, although the
dipole is located in free space. In the case of a linearly growing
current, reactive energy stored in the antenna near field
increases in time proportionally to ∼t3 [orange dotted line in
Fig. 5(c)]. Most of this energy is pumped into the system via
the time-modulated inductance, with permanent energy ex-
change between the external field and the modulation source.
The power supplied to the antenna from the incident wave is
proportional to ∼t cos(ωt ) [blue dot-dashed line in Fig. 5(c)].
Power supplied by the modulating force [red solid line in
Fig. 5(c)] is such that it compensates both powers: reactive
and incident. At the moment of time near zero, reactive power
is negligibly small and almost does not participate in the
power balance. It means that all the input energy is exchanged
almost exclusively with the load. However, at later moments
of time, reactive energy becomes rather significant. As long
as the inductance is modulated according to this prescribed
rule, the current in this receiving antenna as well as the energy
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stored in its near field will grow, without any loss to radiation.
When the modulation will stop, this antenna will act as a usual
transmitting antenna, radiating a high-amplitude pulse with
the center frequency at the resonant frequency of the dipole.
Conceptually, one can store reactive energy in such an open
system without any limitation, increasing the modulation
time.

The second example is about shifting the wavelength of
the excitation such that the scattering happens at a different
wavelength. Figure 5(e) shows the required time-modulated
capacitance of a small dipole antenna which allows us to
shift the frequency from 1.5 to 0.15 GHz, 10 times smaller.
Since the time-modulated load provides full control over the
currents flowing in the meta-atom, it is possible to realize
upshifts or downshifts to any frequency, therefore, such de-
vice can be named as any-frequency multiplier or divider. In
addition to that, the amplitude of the current can be chosen
arbitrary, therefore, the time-modulated load provides control
over the strength of the scattered field, which can be used in
order to realize amplification or suppression of scattering at
any frequency.

These are just two arbitrarily selected examples for show-
ing the potential of dynamic meta-atoms for engineering their
response. Practical realization of such devices has limitations
due to the limited range of possible modulations of parameters
of electronic or optical components. There are many possible
physical mechanisms of modulation, applicable for different
frequency ranges, each with its specific advantages and lim-
itations. For instance, varactors are useful in the radio and
microwave ranges, but the modulation speed of a varactor is
limited typically to several gigahertz. Shifting this method to
higher frequencies should utilize other ways of modulation,
such as laser pumping.

VI. CONCLUSIONS

We have introduced a theoretical model for studying time-
varying meta-atoms on the basis of the instantaneous power
balance. We have derived the general time-domain equation
for radiating dipole moments and, in particular, considered
a time-modulated cylindrical wire antenna as an example.
The validity of the proposed model was confirmed in two
different regimes: Transmitting regime where the wire an-
tenna is excited by an external lumped source, and receiving
regime where the antenna is excited by an incident elec-
tromagnetic plane wave and loaded by time-variant lumped
elements. Next, for the receiving regime, we have assumed
temporally modulated reactive elements, such as time-varying
capacitance or inductance connected as a load to the cylin-
drical wire antenna. We have shown that properly choosing
temporal modulations of the reactive elements, such dynamic
scatterer can act as an invisible accumulator of energy or
it can convert energy of an incident wave at the excitation
frequency into scattered waves at an arbitrarily chosen other
frequency. This is our first step towards understanding meta-
materials/metasurfaces/metalines whose meta-atoms are time-
variant. As the next step, it appears important to develop this
model taking into account also magnetic response of dynamic
meta-atoms.

FIG. 6. Schematic view of an RC circuit with time-modulated
capacitance.
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APPENDIX A: AN RC CIRCUIT WITH
TIME-VARYING CAPACITANCE

Let us assume a resistance R0 and a time-varying capaci-
tance C0(t ) which are connected to a voltage source v(t ) in
series, as shown in Fig. 6. The current i(t ) flowing through
the capacitance and the voltage vC0 (t ) over the capacitance
are related as

i(t ) = d

dt
[C0(t )vC0 (t )]. (A1)

Since we can write

v(t ) = vR0 (t ) + vC0 (t ), (A2)

the electric current can be readily found via the following first-
order differential equation:

di(t )

dt
+ a(t )i(t ) = b(t ), (A3)

in which

a(t ) = 1 + R0
dC0(t )

dt

R0C0(t )
,

b(t ) =
dC0(t )

dt v(t ) + C0(t ) dv(t )
dt

R0C0(t )
. (A4)

Coefficients a(t ) and b(t ) depend on the time-varying capaci-
tance and its time derivative. It means that by proper choosing
C0(t ), we have a possibility to manipulate the electric current
in the desired fashion. We can rewrite the above differential
equation in order to determine the required capacitance for
realizing the desired electric current. After some algebraic
manipulations, we find

dC0(t )

dt
+ m(t )C0(t ) = n(t ), (A5)

where

m(t ) =
dv(t )

dt − R0
di(t )

dt

v(t ) − R0i(t )
, b(t ) = i(t )

v(t ) − R0i(t )
. (A6)

Recall that the general solution of the above differential
equation can be expressed as

C0(t ) = exp

(
−

∫
m(t )dt

)[∫
n(t ) exp

(∫
m(t )dt

)
dt + Y

]
,

(A7)

in which Y depends on the initial condition.
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APPENDIX B: INSTANTANEOUS RADIATED POWER
FOR A HERTZIAN DIPOLE FROM THE INDUCED

ELECTROMOTIVE FORCE PERSPECTIVE

Here, we provide an alternative derivation for the instan-
taneous radiated power based on the induced electromotive
force method. Let us consider an oscillating Hertzian dipole
with the current density

J = Ilδ(r) az. (B1)

The dipole has the length l and carries the electric current
whose amplitude is I [here we consider the time-harmonic
regime: i(t ) = I cos(ωt )]. The dipole is oriented along axis z
(az is the unit vector along the z axis), and located at the origin
of the spherical coordinate system r = 0. Using the induced
electromotive force method, we find the instantaneous radi-
ated power from such Hertzian dipole. We know that the theta
component (aθ ) of the electric field generated by the Hertzian
dipole is expressed as

E = jωμ0
Il

4π

[
1 + c

jωr
− c2

ω2r2

]
e( − jωr

c )

r
sin θ aθ , (B2)

where ω is the angular frequency, μ0 and ε0 represent the
permeability and permittivity of vacuum, respectively, and c
denotes the speed of light. We are interested in examining the
electric field at very small distances from the dipole: r → 0.
While the total electric field is singular at the source location,
there is a nonsingular component. It can be found expanding
the exponential function in the above equation:

e− jωr/c ≈ 1 − j
ωr

c
− ω2r2

2c2
+ j

ω3r3

6c3
. (B3)

Keeping these four terms in the expansion is sufficient to find
the nonsingular part. To do that, we substitute Eq. (B3) into
Eq. (B2) and obtain

Ens = ( jω)2μ0

6πc
Il az. (B4)

At this point, we can use the inverse Fourier transform to
return to the time domain. In Eq. (B4), ( jω)2 corresponds to
the second time derivative of the electric current. Thus

Ens(t ) = μ0

6πc

d2i(t )

dt2
l az. (B5)

Knowing the time-domain expression of the nonsingular com-
ponent of the electric field parallel to the dipole moment,
we obtain the corresponding electromotive force (assuming
that the dipole size is negligibly small as compared with all
relevant wavelengths):

E (t ) = −
∫

l
Ens(t ) · dl = − μ0

6πc

d2i(t )

dt2
l2. (B6)

Expressing the electric current in terms of the corresponding
electric dipole moment,

d3 p(t )

dt3
= l

d2i(t )

dt2
, (B7)

the formula for the electromotive force reduces to

E (t ) = − μ0

6πc

d3 p(t )

dt3
l. (B8)

After some simple algebraic manipulations and recalling that
i(t ) = (1/l )d p(t )/dt , finally, we derive the instantaneous ra-
diated power radiated from the Hertzian dipole:

Prad(t ) = E (t )i(t ) = − μ0

6πc

dp(t )

dt
· d3p(t )

dt3
, (B9)

which is the same as Eq. (6). Note that the direct inverse
Fourier transform of the usual expression for power radiated
from a time-harmonic dipole source gives a different result,
where the oscillating part of the power is missing.

In the following section, we present a general derivation
considering any dipolar source of radiation, and we prove that
the above equation holds for any kind of current distribution.
However, before that, we are interested in elucidating what we
derived for the Hertzian dipole. The radiation-reaction force
associated with a nonrelativistic electron as it accelerates is

Freaction(t ) = μ0

6πc
q2 da

dt
, (B10)

where a denotes the acceleration and q represents the electron
charge. Since the acceleration is the second time derivative of
the position vector, the radiation-reaction force is proportional
to the third time derivative of the dipole moment:

Freaction(t ) = μ0

6πc

d3p(t )

dt3
q. (B11)

If we compare this force with what is written in Eq. (B8), we
see that the concept of the induced electromotive force is quite
similar to that of the radiation-reaction force. We can also
perceive this fact from the way how we derive the radiated
power. To find the total power radiated by the accelerated
electron, we calculate Pelectron = −Freaction(t ) · v(t ), where v
is the velocity of the electron. Notice that qv(t ) = dp(t )/dt .
Thus we have

Pelectron = − μ0

6πc

dp(t )

dt
· d3p(t )

dt3
, (B12)

which is exactly the same expression as for the power radiated
from the Hertzian dipole. To obtain the total power radiated
by the Hertzian dipole, we have multiplied the electromotive
force by the electric current: PHertzianDipole = E (t )i(t ), in which
the electric current is related to the charge velocity.

APPENDIX C: INSTANTANEOUS RADIATED
POWER FOR AN ELECTRIC DIPOLE MOMENT

FROM A GENERAL PERSPECTIVE

The charge and current densities are expanded into power
series of |r − r′|/c, assuming that |r − r′|/c is small com-
pared to the characteristic time of variation of the charged-
particle system (nonrelativistic approximation). Under this
assumption, the expansion for the potentials results in

φ(r, t ) ≈ 1

4πε0

[ ∫
Vc

ρ(r′, t )

|r − r′|dr′ −
∫

Vc

ρ̇(r′, t )

c
dr′

+
∫

Vc

ρ̈(r′, t )

2c2
|r − r′|dr′

−
∫

Vc

˙̈ρ(r′, t )

6c3
|r − r′|2dr′ + · · ·

]
(C1)
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and

A(r, t ) ≈ μ0

4π

[ ∫
Vc

J(r′, t )

|r − r′|dr′ −
∫

Vc

J̇(r′, t )

c
dr′ + · · ·

]
. (C2)

Let us start from the scalar potential and consider the first four
terms in the expansion. The first term is the static contribution
and accordingly we can write that∫

Vc

J · ∇φ |term 1 = d

dt

[
1

8πε0

∫
Vc

ρ(r, t )ρ(r′, t )

|r − r′| drdr′
]
. (C3)

Notice that we use the equation of continuity:

∇ · J = −∂ρ

∂t
, (C4)

for deriving expression Eq. (C3). The second term in the
expansion does not contribute to the energy transfer since for
the dipole radiation we have

1

c

∫
Vc

∂ρ(r′, t )

∂t
dr′ = 0. (C5)

The third term, which is related to the second derivative of
the charge density, is certainly a dynamic term, and we can
calculate the contribution of this term into the energy transfer
in a similar way as we do for the first term. Hence,∫

Vc

J · ∇φ |term 3

= d

dt

[
μ0

16π

∫
Vc

∂ρ(r, t )

∂t

∂ρ(r′, t )

∂t
|r − r′|drdr′

]
. (C6)

The fourth term is important since it is associated with the
dipole radiation. The gradient of this term is the dynamic force
exerted on one unit charge:

∇
[ ∫

Vc

˙̈ρ(r′, t )

6c3
|r − r′|2dr′

]
= 1

3c3

∫
Vc

|r − r′| ˙̈ρ(r′, t )dr′.

(C7)

Since the dipole moment is defined as

p =
∫

Vc

r′ρ(r′, t ) dr′, (C8)

Eq. (C7) is simplified and reduces to

∇
[
−

∫
Vc

˙̈ρ(r′, t )

6c3
|r − r′|2dr′

]
= 1

3c3
˙̈p(t ). (C9)

Having the time derivative of the dipole moment:

dp
dt

=
∫

Vc

J dr, (C10)

we can finally write∫
Vc

J · ∇φ |term 4 = μ0

12πc
ṗ(t ) · ˙̈p(t ). (C11)

Next is the vector potential whose study appears easier. The
first term in the expansion in Eq. (C2) corresponds to the static
part and therefore we can readily conclude that∫
Vc

J · ∂A
∂t

|term 1 = d

dt

[
μ0

8π

∫
Vc

J(r′, t ) · J(r, t )

|r − r′| dr′dr
]
. (C12)

However, similar to the fourth term related to the scalar
potential, here the second term is associated with the radiated
power. The time derivative of the vector potential is the
second time derivative of the second term in expansion which
indeed means the third time derivative of the dipole moment.
Therefore ∫

Vc

J · ∂A
∂t

|term 2 = − μ0

4πc
ṗ(t ) · ˙̈p(t ). (C13)

From the above equations, the transferred energy can be
obtained as

−
∫

Vc

J · E dr

= −
∫

Vc

J ·
(

− ∇φ − ∂A
∂t

)
dr ≈ − μ0

6πc
ṗ(t ) · ˙̈p(t )

+ d

dt

[
1

8πε0

∫
Vc

ρ(r′, t )ρ(r, t )

|r − r′| dr′dr

+ μ0

16π

∫
Vc

∂ρ(r, t )

∂t

∂ρ(r′, t )

∂t
|r − r′| dr dr′

+ μ0

8π

∫
Vc

J(r′, t ) · J(r, t )

|r − r′| dr′dr
]
, (C14)

which is Eq. (5) of the main text.

APPENDIX D: NUMERICAL METHODS

All the numerical simulations are performed in CST STUDIO

SUITE. The transmitting regime of the dipoles was studied
using a discrete port in the gap of the antenna. Current through
the port and voltage over the port are extracted explicitly. In
the receiving regime, in the gap of the antenna was placed a
lumped element port with a negligibly small resistance, so that
the current through the antenna center can be extracted. The
voltage over the antenna gap is obtained using the electromo-
tive force principle. Loaded dipoles in the receiving regime are
modeled using lumped ports with specified values for L and
C. The dipole moment of the antenna is calculated integrating
surface currents over the antenna surface.
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