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Confinement of two-body systems and calculations in d dimensions
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A continuous transition for a system moving in a three-dimensional (3D) space to moving in a lower-
dimensional space, 2D or 1D, can be made by means of an external squeezing potential. A squeeze along one
direction gives rise to a 3D to 2D transition, whereas a simultaneous squeeze along two directions produces a
3D to 1D transition, without going through an intermediate 2D configuration. In the same way, for a system
moving in a 2D space, a squeezing potential along one direction produces a 2D to 1D transition. In this work
we investigate the equivalence between this kind of confinement procedure and calculations without an external
field, but where the dimension d is taken as a parameter that changes continuously from d = 3 to d = 1. The
practical case of an external harmonic oscillator squeezing potential acting on a two-body system is investigated
in detail. For the three transitions considered, 3D → 2D, 2D → 1D, and 3D → 1D, a universal connection
between the harmonic oscillator parameter and the dimension d is found. This relation is well established for
infinitely large 3D scattering lengths of the two-body potential for 3D → 2D and 3D → 1D transitions, and for
infinitely large 2D scattering length for the 2D → 1D case. For finite scattering lengths size corrections must be
applied. The traditional wave functions for external squeezing potentials are shown to be uniquely related to the
wave functions for specific noninteger dimension parameters, d .
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I. INTRODUCTION

The properties of quantum systems depend crucially on
the dimension of the space where they are allowed to move.
A clear example of this is the centrifugal barrier in the
radial Schrödinger equation, which, for zero total angular
momentum, is negative for a two-body system in two (2D)
dimensions, while it is zero in three (3D) dimensions [1].
An immediate consequence of this is that any infinitesimal
amount of attraction produces a bound state in 2D, whereas
in 3D a finite amount of attraction is necessary for binding
a system [2]. As an exotic example of recent interest we can
mention, at the three-body level, the occurrence in 3D of the
Efimov effect [3]. In 2D, this effect does not occur, neither
for equal-mass three-body systems [4] nor for unequal-mass
systems [5].

The transition from a three-dimensional to a lower-
dimensional space is commonly investigated by means of
an external trap potential that confines the system under
investigation in a certain region in the space. In this way, in
[6] a harmonic oscillator trap potential is used, and binary
atomic collisions are investigated under different confinement
regimes. This work focus on scattering properties in confined
spaces, not necessarily similar to the asymmetric squeezing
of only one or two spatial dimensions. More recently, the
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particle-physics formalism has been specifically extended to
connect d = 3 and d = 2 by continuously compactifying, by
means of an infinite potential well, one of the dimensions
[7–9]. Working in momentum space, the intentions were
to study three-body physics, but two-body subsystems are
then necessary ingredients. The physical interpretation of the
squeezing parameter in this procedure is a problem necessary
to be addressed to connect properly to measurements. The
same compactifying procedure along one or two directions
has been employed to investigate the S matrix for two-body
scattering [10], and again the focus is on scattering under
confining conditions. Another structure-related investigation
has appeared in the literature, that is, the superfluid phase
transition temperature in the crossover from three to two
dimensions [11]. This is necessarily a many-body effect al-
though prompted by two-body properties.

In all these works the procedure has been to perform
genuine 3D calculations where the external potential enters
explicitly in order to limit the space available. However, an
alternative can be to employ an abstract formulation where the
dimension d can take different values describing the different
possible scenarios. For instance, in [12] an expansion in terms
of 1/d is performed, where d is thought of as an integer,
allowing extrapolations between integers. The philosophy has
been to extrapolate obtainable results as function of 1/d for
very large d and first down to d = 3 for two or more particles
[13]. Going further down toward d = 2 is probably going too
far [13], both because 1/d = 1/2 is not very large, but espe-
cially because the properties change qualitatively from d = 3
to d = 2. Noninteger dimensions have also been employed
in various subfields of mathematics and physics; see, e.g.,
[14,15]. For many particles even mixed dimensions have been
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used to study exotic structures [9]. A practical continuous
connection between integer dimensions is interesting in order
to understand the related structure variations.

In this work the approach would be formulation in coor-
dinate space by simple analytic continuation of the abstract
formulation in terms of the dimension parameter d assuming
noninteger values. The limits of d = 1, 2, 3 are now well
defined in contrast to any value between these integers. A
practical interpretation can be found by use of deformed
external fields squeezing one or more dimensions to zero
spatial extension corresponding to infinitely high zero-point
energy. This method was used in a recent work [16], where
the continuous confinement of quantum systems from three to
two dimensions was investigated.

The confinement in [16] was treated by use of two different
procedures. In the first one the particles are put under the
effect of an external trap potential acting on a single direction.
This potential continuously limits the motion of the particles
along that direction, in such a way that for infinite squeezing
the system moves in a 2D space. In the second method
the external potential is not used, and the problem instead
is solved directly in d dimensions, where d is a parameter
that changes continuously from 3 to 2. This formulation has
the advantage that the numerical effort required is similar to
solving the ordinary problem for integer dimensions.

In [16] the 3D to 2D confinement was investigated for two-
body systems and external harmonic oscillator confining po-
tentials. The purpose of this work is to extend the investigation
to squeezing up to one dimension (1D). This can be done in
two different ways. In the first one we consider a simultaneous
squeezing along two directions, in such a way that the external
potential pushes the system, initially moving in 3D, to moving
in 1D without going through an intermediate 2D geometry.
The second procedure consists of two consecutive squeezing
processes along one direction, giving rise to a 3D to 2D
squeezing followed by a 2D to 1D squeezing. The obvious,
but complicated, extension to systems made of more than two
particles is left for a forthcoming work.

In all the confinement scenarios (3D → 2D, 2D → 1D,
and 3D → 1D) the problem will be treated by means of the
two procedures described above, i.e., by explicit use of the
confinement potential, and by use of the dimension d as a
parameter that changes continuously from d = 3 to d = 2
or d = 1. One of the main goals is then, for all the cases,
to establish the equivalence between a given value of the
confining harmonic oscillator frequency and the dimension d
describing the same physical situation.

The connection between the harmonic oscillator parameter
and the dimension d should preferentially be universal in the
sense of being independent of the details of the potential. It
is well known that necessary ingredients for the appearance
of universal properties of quantum systems are the existence
of two-body interactions with large scattering lengths, and, to
a large extent, the preponderance of relative s waves between
the constituents. The existence, under these conditions, of a
universal connection between the harmonic oscillator param-
eter and the dimension will be investigated. Here it is clear
that large squeezing confining a wave function to be inside
the two-body potential must depend on potential details.
However, comparing the two methods, it can still result in the

same universal dependence, since both are subject to the same
potential. To be practical, we have established such a highly
desirable connection between the wave functions obtained in
the two methods.

The overall purpose of the present work is therefore to
study a number of different transitions between integer di-
mensions, and to establish the universal connection between
the d-parameter results and those of the brute-force three-
dimensional calculation with a deformed external field. The
connection must allow the numerically simpler d method
to be self-sufficient, that is, in itself providing full infor-
mation including correspondence to an external field and
three-dimensional wave function. The paper is organized as
follows. In Sec. II we describe the procedure used to confine
a two-body system by use of an external harmonic oscillator
potential. In Sec. III we briefly describe the method used
to solve the two-body problem in d dimensions. Section IV
presents analytic results in the large squeezing limit, that
is, close to one or two dimensions. Sections V and VI
present and discuss the numerical results, and Sec. VII gives
the universal translation between the two methods. Finally,
Sec. VIII contains a summary, and the future perspectives are
briefly discussed. A mathematical connection between wave
functions from the two methods is given in the Appendix.

II. HARMONIC OSCILLATOR SQUEEZING

A simple way to confine particles is to put them under the
effect of an external potential with steep walls that forces them
to move in a confined space. Therefore, the problem to be
solved is the usual Schrödinger equation, but where, together
with the interaction between the particles, the confining one-
body potential has to be included.

In this work we shall consider an external harmonic oscil-
lator potential whose frequency will be written as

ω = h̄

mωb2
ho

, (1)

where mω is some arbitrary mass. Obviously, the smaller the
harmonic oscillator length bho, the more confined the particles
are in the corresponding direction.

In the following we describe how this harmonic oscillator
potential is treated for the three confinement cases, 3D → 2D,
2D → 1D, and 3D → 1D, considered in this work.

A. 3D → 2D

In this case the external harmonic oscillator potential is
assumed to act along the z direction. Therefore, the problem to
be solved here will be the usual three-dimensional two-body
problem but where, on top of the two-body interaction, each of
the two particles feels the effect of the external trap potential:

V (i)
trap = 1

2
miω

2r2
i cos2 θi = 1

2

mih̄
2

m2
ωb4

ho

r2
i cos2 θi, (2)

where Eq. (1) has been used, and where ri and θi are the radial
coordinate and polar angle associated with particle i with mass
mi. Eventually, for bho = 0 the particles can move only in the
two dimensions of the xy plane.
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As usual, the two-body wave function can be expanded in
partial waves as

�(r) =
∑
�m

u�(r)

r
Y�m(θ, ϕ), (3)

where r = r1 − r2 is the relative coordinate between the two
particles whose direction is given by the polar and azimuthal
angles θ and ϕ, respectively. For simplicity, in the notation we
shall assume spinless particles, although the generalization to
particles with nonzero spin is straightforward.

For two particles with masses m1 and m2 and coordinates
r1 and r2 we have that

r2 = m1

μ
r2

1 + m2

μ
r2

2 − m1 + m2

μ
r2

cm, (4)

where μ is the reduced mass and rcm is the position of the
two-body center of mass. This expression permits us to write
the full trap potential as

1
2 m1ω

2r2
1 cos2 θ1 + 1

2 m2ω
2r2

2 cos2 θ2

= 1
2μω2r2 cos2 θ + 1

2 (m1 + m2)ω2r2
cm cos2 θcm, (5)

where θcm is the polar angle associated with rcm. The expres-
sion above implies that, after removal of the center-of-mass
motion, the squeezing potential to be used in the relative
two-body calculation takes the form

Vtrap(r, θ ) = 1
2μω2r2 cos2 θ, (6)

whose ground-state energy is Eho = h̄ω/2.
The wave functions u� in Eq. (3) are the solutions of the

radial Schrödinger equation[
∂2

∂r2
− �(� + 1)

r2
− 2μ

h̄2 V2b(r) + 2μEtot

h̄2

]
u�

−2μ

h̄2

∑
�′m′

〈Y�m|Vtrap(r, θ )|Y�′m′ 〉�u�′ = 0, (7)

where V2b(r) is the two-body interaction (assumed to be
central), 〈 〉� indicates integration over the angles only, and
Etot is the total relative two-body energy. The energy E of
the two-body system will be obtained after subtraction of the
harmonic oscillator energy, i.e., E = Etot − h̄ω/2.

An important point is that the squeezing potential (6) is not
central, and therefore the orbital angular momentum quantum
number, �, is not conserved. In other words, the trap potential
is not diagonal in ��′. In particular we have

〈Y�m|Vtrap(r, θ )|Y�′m′ 〉� = 1
2μω2r2〈Y�m| cos2 θ |Y�′m′ 〉� (8)

and

〈Y�m| cos2 θ |Y�′m′ 〉�
= δmm′ (−1)m

∑
L

(2L + 1)
√

2� + 1
√

2�′ + 1

×
(

1 1 L
0 0 0

)2(
� L �′
0 0 0

)(
� L �′

−m 0 m

)
, (9)

where the brackets are 3 j symbols, L can then obviously only
take the values L = 0 and L = 2, and therefore � + �′ has to be
an even number (so, the parity is well defined). Note that the
angular momentum projection m actually remains as a good

quantum number throughout the transition to 2D. Therefore,
the value taken for m in Eq. (9) characterizes the solution in
2D obtained after infinite squeezing.

In the 3D limit (Vtrap = 0) the partial waves decouple, and
the 3D wave function has, of course, a well-defined orbital
angular momentum. In the calculations reported in this work
the 3D wave function will be assumed to have � = 0, which
therefore means that m = 0.

Note that if we take mω = μ, and we make use of Eqs. (1)
and (6), the coupled equations (7) can be written as[

∂2

∂r2
b

− �(� + 1)

r2
b

− 2V b
2b(r) + 2Eb

tot

]
u�

− r2
b(

bb
ho

)4

∑
�′m′

〈Y�m| cos2 θ |Y�′m′ 〉�u�′ = 0, (10)

where, taking b as some convenient length unit, we have de-
fined rb = r/b, bb

ho = bho/b, V b
2b = V2b/(h̄2/μb2), and Eb

tot =
Etot/(h̄2/μb2). In other words, when taking b and h̄2/μb2

as length and energy units, respectively, the two-body radial
equation, Eq. (10), is independent of the reduced mass of the
system.

B. 2D → 1D

The confinement from two to one dimensions can be made
in a way similar to that done in the previous subsection for
the 3D → 2D case, that is, solving the two-dimensional two-
body problem with an external squeezing potential along one
direction (which we choose along the y axis).

As before, when working in the center-of-mass frame, the
external potential will be given by

Vtrap = 1
2μω2r2 sin2 ϕ, (11)

where, as in Eq. (6), the radial coordinate r is the relative
distance between the two particles, but where now the polar
angle ϕ is such that x = r cos ϕ and y = r sin ϕ. In this way,
after infinite squeezing, the particles are allowed to move
along the x axis only.

In 2D the partial wave expansion of the wave function,
analogous to Eq. (3), is given by

�(r) =
∑

m

um(r)√
r

Ym(ϕ), (12)

where the angular functions

Ym(ϕ) = 1√
2π

eimϕ (13)

are the eigenfunctions of the 2D angular momentum operator
−ih̄∂/∂ϕ, whose eigenvalue h̄m can take positive and negative
values, where m is an integer.

Using the expansion in Eq. (12), the 2D radial Schrödinger
equation then reads[

∂2

∂r2
+

1
4 − m2

r2
− 2μ

h̄2 V2b(r) + 2μEtot

h̄2

]
um

−2μ

h̄2

∑
m′

〈Ym|Vtrap(r, ϕ)|Ym′ 〉�um′ = 0, (14)
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which is equivalent to Eq. (7). Using Eq. (13), it is not difficult
to see that

〈Ym|Vtrap(r, ϕ)|Ym′ 〉� = 1
2μω2r2〈Ym| sin2 ϕ|Ym′ 〉� (15)

and

〈Ym| sin2 ϕ|Ym′ 〉� = 1
2δm,m′ − 1

4δm,m′±2, (16)

which implies that, as in the 3D → 2D case, the squeezing po-
tential is again mixing different angular momentum quantum
numbers.

The procedure shown up to here is completely analogous
to the one described in the previous subsection for 3D → 2D
squeezing. However, in this case the starting point is the 2D
Schrödinger equation Eq. (14), which shows the important
feature that for s waves (m = 0) the “centrifugal” barrier
is actually attractive, and it takes the very particular form
of −1/4r2. This barrier happens to be precisely the critical
potential giving rise to the “falling to the center” or Thomas
effect [17]. As a consequence, the numerical resolution of the
differential equation (14) can encounter difficulties associated
with this pathological behavior.

To overcome this numerical problem, it is more conve-
nient to face the 2D → 1D squeezing problem solving the
Schrödinger equation directly in Cartesian coordinates:[

− h̄2

2μ

(
∂2

∂x2
+ ∂2

∂y2

)
+ V (x, y) + Vtrap(y) − Etot

]
� = 0.

(17)

This can be easily made after expanding the two-body relative
wave function, �, in an appropriate basis set where the Hamil-
tonian can be diagonalized. A possible choice for the basis
could be {|ψnx (x)ψny (y)〉}, with ψn being the harmonic oscil-
lator eigenfunctions. Needless to say, solving either Eq. (14)
or (17) is completely equivalent, although in (17) the prob-
lematic attractive barrier is not present, and the dependence
on the angular momentum m also disappears.

Again, as discussed in Eq. (10), after taking mω = μ in
Eq. (1), and b and h̄2/μb2 as length and energy units, respec-
tively, Eq. (14) [or (17)] becomes μ independent.

C. 3D → 1D

If the confinement procedures 3D → 2D and 2D → 1D
described in Secs. II A and II B are performed consecutively,
we are then obviously performing a 3D → 1D squeezing, but
going through an intermediate 2D geometry. However, this
is not really necessary, since it is always possible to squeeze
the system in two directions simultaneously, which will lead
to the same 1D space but without going through the 2D
configuration.

Let us consider that the particles, in principle moving in
a 3D space, are confined be means of two external harmonic
oscillator potentials acting on the x and the y directions simul-
taneously. The trap potential felt by each of the particles is
then

V (i)
trap = 1

2 miω
2
x x2

i + 1
2 miω

2
y y2

i , (18)

where xi and yi are the x and y coordinates of particle i, and
ωx and ωy are the harmonic oscillator frequencies of each
of the two external potentials. These frequencies determine

the independent squeezing on each of the directions, and of
course the infinitely many possible values of the ωx/ωy ratio
determine the infinitely many possible ways of squeezing
from 3D into 1D.

Let us here consider the simplest case in which ωx = ωy =
ω. After using spherical coordinates, we trivially get that

V (i)
trap = 1

2
miω

2r2
i sin2 θi = 1

2

mih̄
2

m2
ωb4

ho

r2
i sin2 θi, (19)

which, as one could expect, is identical to Eq. (2) but replacing
cos θi with sin θi. This simply means that the vector coordinate
ri is not projected on the z axis, but on the xy plane.

Therefore, the discussion below Eq. (2) still holds here, but
replacing cos θ with sin θ all over, which leads again to Eq. (7)
but where now

〈Y�m|Vtrap(r, θ )|Y�′m′ 〉� = 1
2μω2r2〈Y�m| sin2 θ |Y�′m′ 〉�, (20)

with

〈Y�m| sin2 θ |Y�′m′ 〉� = δ��′δmm′ − 〈Y�m| cos2 θ |Y�′m′ 〉�, (21)

and where the last matrix element is given by Eq. (9).
Since in this case we have included two harmonic oscillator

potentials, the energy provided by them, still assuming ωx =
ωy = ω, will be Eho = h̄ω, and therefore E = Etot − h̄ω.

III. TWO-BODY SYSTEMS IN d DIMENSIONS

An alternative to the continuous squeezing of the particles
by means of external potentials can be to solve the two-body
problem in d dimensions, where d can take any value within
the initial and final dimensions (3 � d � 2, 2 � d � 1, or
3 � d � 1). The idea is that, given a squeezed system by
means of an external potential with squeezing parameter
bho, it is then possible to associate this particular squeezing
parameter to some specific noninteger value of the dimension,
such that the properties of the system can be obtained by
solving the, in general simpler, d-dimensional problem. The
basic properties of two-body systems in d dimensions are
described in Appendix C of Ref. [1]. For this reason, in this
section we just collect the key equations relevant for the work
presented here.

A. Theoretical formulation

Let us consider a two-body system where the relative coor-
dinate between the two constituents is given by r. In principle
the components of the vector r in a d-dimensional space will
be given by the d Cartesian coordinates (r1, r2, . . . , rd ). As
is well known, when dealing with central potentials, it is
however much more convenient to use the set of generalized
spherical coordinates, which contain just one radial coordinate
r =

√
r2

1 + r2
2 + · · · + r2

d and d − 1 angles (for instance the
polar and azimuthal angles when d = 3). In this way, the
two-body wave function can be expanded in terms of the gen-
eralized d-dimensional spherical harmonics, which depend on
the d − 1 angles (see [1] for details):

�d (r) = 1

r
d−1

2

∑
ν

R(d )
ν (r)Yν (�d ), (22)
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where ν represents the summation over all the required quan-
tum numbers, �d collects the d − 1 angular coordinates, and
where

∫
Y ∗

ν Yν ′d�d = δνν ′ .
Of course, what is written above makes full sense provided

that d takes integer values. However, when d is not an integer,
which obviously will happen when changing the dimension
continuously from the initial down to the final dimension,
the meaning of the d − 1 angles in Eq. (22) is not obvious.
Nevertheless, in this work we are not having this problem,
since we are considering relative s waves only, which implies
that the wave function (22) is angle independent, and it can
actually be written as

�d (r) = 1

r (d−1)/2
Rd (r)Yd , (23)

where the constant s-wave spherical harmonic, Yd , can be
obtained simply by keeping in mind that in d dimensions we
have that [18] ∫

d�d = 2πd/2



(

d
2

) , (24)

which, making use of the fact that Y ∗
d Yd

∫
d�d = 1, immedi-

ately leads to

Yd =
[



(

d
2

)
2πd/2

]1/2

. (25)

Finally, the radial wave function, Rd (r), in Eq. (23) is ob-
tained as the solution of the d-dimensional radial Schrödinger
equation, which for s waves reads [1]{

∂2

∂r2
−

1
4 (d − 3)(d − 1)

r2
− 2μ

h̄2 [V2b(r) − E ]

}
Rd (r) = 0,

(26)

where, since the only potential entering is just the two-body
interaction, the energy E is the true two-body relative energy.

It is important to note that if we write d = 2 + x with −1 �
x � 1, the barrier in Eq. (26) takes the form (x2 − 1)/4r2,
which indicates that the equation to be solved is the same for
d = 2 − x and d = 2 + x. This might suggest that the bound-
state solutions of Eq. (26) should be symmetric around d = 2.
For instance, for d = 1 and d = 3 the barrier disappears, and
one could expect the same solution in the two cases. However,
as discussed below, this is not really like this.

Note that the centrifugal barrier in Eq. (26) can also be
written in the usual way, �∗(�∗ + 1)/r2, simply by defining
�∗ = (d − 3)/2. This means that Eq. (26) is formally iden-
tical to the usual radial two-body Schrödinger equation with
angular momentum �∗. Therefore, as is well known, Eq. (26)
has in general two possible solutions, each of them associated
with a different short-distance behavior:

R(1)
d (kr)

kr→0−→ kr j�∗ (kr)
kr→0−→ r�∗+1 = r

d−1
2 , (27)

R(2)
d (kr)

kr→0−→ krη�∗ (kr)
kr→0−→ r−�∗ = r

3−d
2 , (28)

where j�∗ and η�∗ are the regular and irregular spherical
Bessel functions, respectively, and k = √

2μ|E |/h̄. Within the
dimension range 1 � d � 3, these two radial solutions go to
zero for kr → 0, except for d = 1 and d = 3, where one of
the solutions goes to a constant value.

1 1.5 2 2.5 3
d

-2

-1.5

-1

-0.5

0

B
in

di
ng

 e
ne

rg
y

Gaussian Potential I

FIG. 1. Binding energies obtained from Eq. (26) as a function of
d . The two-body potential used is the Gaussian potential indicated as
potential I in Table I. The dashed line corresponds to the states to be
discarded due to the divergence of the solution at the origin.

However, as shown in Eq. (23), the full radial wave func-
tion is actually Rd (r)/r (d−1)/2. After dividing by the phase
space factor we immediately see that the solution in Eq. (27)
leads to a constant value of the full radial wave function at
r = 0 no matter the dimension d . Thus, the solution (27)
is valid in the full dimension range 1 � d � 3. However,
after dividing by the phase space factor, the radial solution
obtained from Eq. (28) behaves at short distances as r2−d . This
means that this solution is regular at the origin only for d < 2,
whereas it has to be disregarded for d > 2. For d > 2 only the
solution (27), whose short-distance behavior is determined by
the regular Bessel function, is physically acceptable.

Therefore the apparent symmetry of Eq. (26) around d = 2
is not real. The two-body problem has two solutions with
physical meaning for d < 2, and only one for d > 2. Further-
more, the solution to be disregarded for d > 2 corresponds to
a larger binding, which implies that the ground state of the sys-
tem will be more bound for d = 1 than for d = 3. This is illus-
trated in Fig. 1, where we show the two computed binding en-
ergies arising from Eq. (26) as a function of the dimension d .

Although not relevant at this stage, let us mention for com-
pleteness that the two-body potential used in the calculation is
the one that later on will be called Gaussian potential I. The
branch indicated in Fig. 1 by the dashed curve for d > 2 is the
one obtained after imposing on the solution the short-distance
behavior (28), which, as discussed above, cannot be accepted
as a physical solution due to the divergence of the full radial
wave function at the origin. As seen also in the figure, for
d = 2 the two solutions merge into a single one, as expected
due to the fact that the short-distance behavior (27) and (28)
is the same in this case.

B. Interpretation of the wave function

Once the d-dimensional radial wave function, Rd (r), has
been obtained, it is possible to compute different observables
in d dimensions, as for instance the root-mean-square radius,
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which is given by the simple expression

r2
d =

∫ ∞

0
r2|Rd (r)|2dr. (29)

However, the reliability of a direct use of a noninteger
d-dimensional wave function, �d , to compute a given ob-
servable, which unavoidably is measured in a three- or two-
dimensional space, is not obvious. It could actually look more
convenient to use instead the wave function obtained with
an external squeezing potential, which, although very often
more difficult to compute, is, in the strict sense, a three- or
two-dimensional wave function.

In order to exploit the simplicity in the calculation of the
�d wave function, it is necessary to obtain a procedure to
translate the noninteger d-dimensional wave function into the
ordinary three- or two-dimensional space.

To do so, let us start by noticing that a squeezing of the
system by an external field acting along one (for the 3D→2D
and 2D → 1D cases) or two (for the 3D → 1D case) di-
rections necessarily proceeds through deformed structures in
the initial dimension. It appears then necessary to provide
a reinterpretation of the total spherical wave function in
d dimensions, �d , as corresponding to a deformed three-
dimensional system (for the 3D → 2D and 3D → 1D cases),
or a deformed two-dimensional system (for the 2D → 1D
case). The simplest way to account for this is to deform the
radial coordinate r along the squeezed direction(s). In this
way, if we consider the usual Cartesian coordinates {x, y, z}
for an initial 3D system, or the {x, y} coordinates for an initial
2D system, we can interpret �d as an ordinary three- or two-
dimensional wave function, but where the radial argument, r,
is replaced by r̃, which is defined as

r → r̃ ≡
√

x2 + y2 + (z/s)2 ≡
√

r2
⊥ + (z/s)2, (30)

r → r̃ ≡
√

(x2 + y2)/s2 + z2 ≡
√

(r⊥/s)2 + z2, (31)

r → r̃ ≡
√

x2 + (y/s)2, (32)

for the 3D → 2D, 3D → 1D, and 2D → 1D cases, respec-
tively.

In the expressions above, s is a scale parameter, assumed
to be independent of the value of the squeezed coordinate, and
which, in principle, lies within the range 0 � s � 1. For s = 1,
the relative radial coordinate r̃ is the usual one in spherical
or polar coordinates, and the system is not deformed. For
s = 0, only z = 0 in Eq. (30), r⊥ = 0 in Eq. (31), and y = 0 in
Eq. (32) are possible; otherwise r̃ = ∞ no matter the value of
the nonsqueezed coordinate, and, since we are dealing with
bound systems, �d (r̃) = �d (∞) = 0. Therefore, the s = 0
situation corresponds to a completely squeezed system into
two dimensions when (30) is used (3D → 2D), or into one di-
mension when (31) or (32) is used (3D → 1D or 2D → 1D).

It is important to note that after the transformation of
the radial coordinate as defined in Eqs. (30) to (32), the
d-dimensional wave function, �d , has to be normalized in the
new three-dimensional space for the 3D → 2D and 3D → 1D
cases:

2π

∫
r⊥dr⊥dz|�̃d (r⊥, z, s)|2 = 1, (33)

or in the new two-dimensional space for the 2D → 1D case:∫
dxdy|�̃d (x, y, s)|2 = 1, (34)

where �̃d ∝ �d denotes the normalized wave function.
With this interpretation, where �̃d is a wave function in

the ordinary 3D (or 2D) space, one can obtain the expectation
value of any observable F (r) in the usual way, that is,

〈F (r)〉s =
∫

r⊥dr⊥dzdϕF (r)|�̃d (r⊥, z, s)|2 (35)

or

〈F (r)〉s =
∫

dxdyF (r)|�̃d (x, y, s)|2. (36)

The remaining point here is how to determine the value of
the scale parameter, s, corresponding to a specific squeezing
produced by an external field with a given oscillator param-
eter, bho. The interpretation of �d as an ordinary (deformed)
wave function using a constant s is very tempting. We believe
this must be correct to leading order. If the Schrödinger
equations are approximately solved by variation using single-
Gaussian solutions we can directly identify the matching
scale factor s. For instance, in case of squeezing along the
z direction, the two single-Gaussian solutions will have the
form Rext ∝ e−r2

⊥/2b2−z2/2b2
z when the external field is used, and

Rd ∝ e−r2/2b2
d after the d calculation. If, following Eq. (30),

we interpret Rd as a function of r̃, we easily get that Rext and
Rd are the same if b = bd and s = bz/bd . One way to improve
is to allow s to be a function of the squeezed coordinate. The
assumption is mostly that this dependence on the squeezed
coordinate is rather smooth, in such a way that the function
can be safely expanded around some constant average value,
which therefore is the leading term.

In any case, the scale parameter s has to be a function of
the noninteger dimension parameter, d , or equivalently, the
squeezing length parameter, bho. The value of the average
scale parameter, s, then has to be obtained by comparison
of the wave functions from a full external field, �bho (r),
with r2 = r2

⊥ + z2 (when squeezing from 3D) or r2 = x2 + y2

(when squeezing from 2D), and the normalized d-dimensional
wave function, �̃d (r̃), defined above.

Being more precise, we define the overlaps:

O3D(s) = 2π

∫
r⊥dr⊥dz�̃d (r⊥, z, s)�bho (r) (37)

and

O2D(s) =
∫

dxdy�̃d (x, y, s)�bho (r), (38)

which are valid for initial 3D and 2D spaces, respectively. The
scale parameter, s, is then determined such that the overlap
(37) for the 3D → 2D and 3D → 1D cases, or the overlap
(38) for the 2D → 1D case, is maximum.

In the Appendix we show, Eqs. (A7), (A12), and (A16),
that the scale factor, s, is actually given by

s =
( 〈z2〉s

〈z2〉s=1

)1/2

, s =
( 〈r2

⊥〉s

〈r2
⊥〉s=1

)1/2

, s =
( 〈y2〉s

〈y2〉s=1

)1/2

,

(39)
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for the 3D → 2D, 3D → 1D, and 2D → 1D squeezing cases,
respectively, where 〈 〉s are expectation values as defined in
Eqs. (35) and (36). This result says that s is nothing but the ra-
tio between the expectation value of the squeezing coordinate
for that value of s, and the one obtained without deforming
the wave function (s = 1). These expressions make evident
that the scale parameter, s, is a measure of the deformation
along the squeezing direction(s).

IV. LARGE SQUEEZING REGIME

The large-squeezing region corresponds to very small val-
ues of the oscillator parameter, bho, which implies that the
squeezing potential dominates over the two-body interaction
along the squeezing direction(s). As a consequence, the root-
mean-square value of a given squeezed coordinate u is, for
large squeezing, essentially given by the one corresponding
to the harmonic oscillator potential. In particular this implies
that, for a squeezing process diD → d f D, we can write, in a
compact way,

urms = 〈u2〉1/2 bho→0−→
√

di − d f

2
bho, (40)

where u can be z, r⊥, or y for the 3D → 2D, 3D → 1D, and
2D → 1D cases, respectively, and di and d f indicate the initial
and final dimension.

Let us now focus on the radius, rd , defined in Eq. (29). To
simplify ideas, let us consider first the case of a 3D → 2D
squeezing along the z coordinate, and write rd as

r2
d = 〈r2〉 = 〈r2

⊥〉 + 〈z2〉. (41)

Since the squeezing takes place along the z direction, the
expectation value 〈z2〉 is the one feeling the squeezing effect,
whereas 〈r2

⊥〉 to leading order does not. Following Eq. (39) we
can then write

r2
d = 〈r2

⊥〉 + s2〈z2〉s=1, (42)

where 〈z2〉s=1 is the expectation value of 〈z2〉 when �d is
interpreted as a non-deformed standard 3D wave function.
Furthermore, for a spherical 3D wave function we know that
〈x2〉 = 〈y2〉 = 〈z2〉, which means that 〈r2

⊥〉 = 〈x2〉 + 〈y2〉 =
2〈z2〉s=1, and we can then write

rd =
√

2 + s2〈z2〉1/2
s=1 =

√
2 + s2

s
〈z2〉1/2, (43)

for 3D → 2D, where Eq. (39) has again been used.
The same argument is valid for the 3D → 1D case, except

for the fact that now in Eq. (41) the squeezing is felt by 〈r2
⊥〉

and not by 〈z2〉. Therefore, using again Eq. (39), we can write
〈r2

⊥〉 = s2〈r2
⊥〉s=1, and 〈z2〉 = 〈r2

⊥〉s=1/2. In this way we get,
for 3D → 1D,

rd =
√

1 + 2s2

2
〈r2

⊥〉1/2
s=1 =

√
1 + 2s2

2s2
〈r2

⊥〉1/2. (44)

Finally, similar arguments for the 2D → 1D case, where
r2

d = 〈r2〉 = 〈x2〉 + 〈y2〉, assuming the squeezing along y, lead
to

rd =
√

1 + s2〈y2〉1/2
s=1 =

√
1 + s2

s
〈y2〉1/2. (45)

From Eqs. (43), (44), and (45) it is easy to obtain that, to
leading order,

s ≈
√

d f

di − d f

urms/rd√
1 − (urms/rd )2

, (46)

where urms ≡ 〈u2〉1/2, and u represents either z, r⊥, or y,
depending on what squeezing process we are dealing with.

At this point it is easy to replace in Eq. (46) the large
squeezing behavior of 〈z2〉, 〈r2

⊥〉, and 〈y2〉 given in Eq. (40),
and obtain the following expression for the scale parameter, s,
in the case of large squeezing:

s
bho→0−→

[
d f

( bho
rd

)2

2 − (di − d f )
( bho

rd

)2

]1/2

, (47)

where di and d f again denote the initial and final dimension.

V. POTENTIALS

Let us start the numerical illustration by first specifying
the chosen potentials along with a few of their characteristic
properties. In the following subsections we continue to present
results of the two methods described formally in Secs. II
and III.

A. General properties

To allow general and hopefully universal conclusions, we
shall use two different radial shapes for the two-body poten-
tial: a Gaussian potential, V2b(r) = Sge−r2/b2

, and a Morse-
like potential, V2b(r) = Sm(e−2r/b − 2e−r/b). The range of the
interaction, b, will be taken as the corresponding (in principle
different) length unit. Therefore, as discussed in Sec. II A,
taking mω = μ in Eq. (1) and h̄2/μb2 as the energy unit, the
Schrödinger equation is independent of the reduced mass.

For each of the potential shapes, three different interactions
will be considered, potentials I, II, and III. The potential
parameters for each of them are chosen such that the 3D
scattering length, a3D, is the same for both the Gaussian
and the Morse shapes. The a3D values are in all the cases
positive (therefore holding a 3D bound state), and change
from comparable to the potential range, b, for potential I, to
about 20 times b for potential II, and up to a value of about
40 times b for potential III.

The details of the potentials are given in Table I for the
employed Gaussian and Morse shapes, where the lengths are
in units of b, and the energies, including the strengths, Sg

and Sm, are in units of h̄2/μb2. The characterizing s-wave
scattering lengths, a3D, a2D, and a1D, are obtained in three-
dimensional, two-dimensional, and one-dimensional calcula-
tions, respectively. The two-dimensional scattering length a2D

is defined as given in Eq. (C6) in Ref. [1]. Furthermore, we
give in Table I the corresponding s-wave ground-state binding
energies, E3D, E2D, and E1D, together with their root-mean-
square radii, r3D, r2D, and r1D.

All the potentials given in Table I give rise to only one
bound state, i.e., the ground state. The only exception is
potential I with Morse shape in one dimension. The two-body
system described by this potential has a weakly bound excited
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TABLE I. Strengths corresponding to the three Gaussian, Sg, and
Morse, Sm, potentials used. For each of them we give the s-wave
two-body binding energies of the ground state in three, two, and one
dimensions (E3D, E2D, and E1D), the corresponding s-wave scattering
lengths a3D, a2D, and a1D, and the root-mean-square radii r3D, r2D,
and r1D. All the energies are given in units of h̄2/μb2 and the lengths
in units of b, where b is the range of either the Gaussian or the Morse
potential.

Potential I Potential II Potential III

Sg −2.71 −1.43 −1.38

E3D −0.269 −1.651×10−3 −3.144×10−4

E2D −0.908 −0.269 −0.249
E1D −1.734 −0.771 −0.736

a3D 2.033 18.122 40.598
a2D 1.103 1.883 1.942
a1D 0.063 0.899 0.928

r3D 1.508 12.823 28.710
r2D 0.926 1.398 1.439
r1D 0.572 0.747 0.759

Sm 1.294 0.474 0.434

E3D −0.189 −1.875×10−3 −3.325×10−4

E2D −0.450 −7.394×10−2 −6.088×10−2

E1D −0.811 −0.228 −0.203

a3D 2.033 18.122 40.598
a2D ∼10−8 3.536 3.872
a1D 14.0 0.986 1.243

r3D 2.235 12.870 28.741
r2D 1.458 2.739 2.947
r1D 0.875 1.366 1.428

state, such that the large value of the scattering length a1D is in
this case related to the appearance of this second state, whose
energy can be approximated by some constant divided by a2

1D
(Eq. (C9) in Ref. [1]).

B. External harmonic oscillator potential

Let us start with the case of confinement by means of an
external (harmonic oscillator) potential. The procedure is as
described in Sec. II, where it is shown how the trap potential,
which is not central, mixes different values of the relative
orbital angular momentum. This is made evident in Eqs. (9),
(16), and (21) for the three different squeezing processes
(3D → 2D, 2D → 1D, 3D → 1D) considered in this work.
Therefore, it is not difficult to foresee that the stronger the
squeezing, the larger the number of terms in the expansions
(3) and (12) required to get convergence. In fact, for no
squeezing, the orbital angular momentum is a good quantum
number and only one term in the expansion enters.

In order to illustrate the pattern of convergence, let us
consider the 3D → 2D case and call �max the maximum value
of � included in the expansion (3). In Fig. 2(a) we show the
convergence of the two-body energy as a function of �max for
the Gaussian potential I (Table I), and for different values of
bb

ho = bho/b in the squeezing potential. The energy shown,
E , is the two-body energy obtained after subtracting the har-
monic oscillator energy, i.e., E = Etot − Eho. The horizontal
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FIG. 2. Two-body energies (after subtracting the harmonic os-
cillator energy), in units of h̄2/μb2, for the Gaussian potentials in
a 3D → 2D squeezing, as a function of the �max value included in
the expansion (3). The results for bb

ho = bho/b = 0.1, 0.25, 0.5, 1, 2,
and 10 are shown. Panels (a), (b), and (c) refer to potentials I, II,
and III, respectively. In each panel, the upper and lower horizontal
dashed lines indicate the two-body energies in the 3D and 2D cases,
respectively, as indicated by the “3D” and “2D” labels.

dashed lines are the two-body energies obtained after a 3D
and a 2D calculation, respectively, which are given in Table I.

As expected, for small values of the oscillator parameter
we recover the computed 2D energy, whereas for large values
of bb

ho the 3D energy is approached. We can also see that the
smaller bb

ho, the larger the �max value needed to get conver-
gence. Partial waves with � values up to around 80 are at least
needed for bb

ho = 0.1, for which we get a converged energy
of −0.901, pretty close to the value of −0.908 obtained in
a 2D calculation. For large values of bb

ho the convergence is
obviously much faster. For bb

ho = 10 we obtain an energy of
−0.274, not far from the value of −0.269 corresponding to
the 3D calculation. This result is already obtained including
the � = 0 component only.

In Fig. 2(b) we show the same as in Fig. 2(a) for the
Gaussian potential II. The general features are the same
as before, although there are some remarkable differences
arising from the fact that now the scattering length is about 9
times bigger. First, for bb

ho = 10 we obtain a converged energy
of −5.43×10−3, which, although in the figure seems to be
very close to 3D energy, differs by more than a factor of
three (E3D = −1.65×10−3). To get a better agreement with
the 3D energy, bb

ho values of a few times the 3D scattering
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length are needed (as in fact observed for potential I). The
second important difference is that convergence is now slower
than before, and higher values of �max are needed to get
convergence for small oscillator lengths.

These facts are more emphasized when using the Gaus-
sian potential III, whose corresponding curves are shown
in Fig. 2(c). In this case we have obtained for bb

ho = 10 a
converged energy of −3.41×10−3, about an order of mag-
nitude more bound than the 3D energy (−3.14×10−4). For
bb

ho = 0.1, an �max value of at least 140 is needed in order
to get convergence. This is of course related to the large 3D
scattering length. In three dimensions the bound two-body
system is clearly bigger than with the other two potentials,
and, consequently, it starts feeling the confinement sooner
than in the other cases.

The convergence features for 2D → 1D and 3D → 1D
confinement, as well as for the Morse potentials, are the same
as the ones described in Fig. 2, namely, for large values of bb

ho
(little squeezing) a small number of partial waves is enough
to get convergence and the energy in the initial dimension, 2D
or 3D, is approached, whereas for small values of bb

ho (large
squeezing) a higher number of partial waves is required, and
the energy in the final dimension, 1D or 2D, is recovered.
For this reason we consider it to be unnecessary to show the
corresponding figures. In any case, as discussed in Sec. II B,
for 2D → 1D squeezing it is more convenient to solve directly
Eq. (17), where the partial wave expansion does not enter
explicitly.

In Figs. 3(a), 3(b), and 3(c) we show, for the 3D → 2D,
2D → 1D, and 3D → 1D cases, respectively, the converged
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Potential III
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(a)

(b)

(c)

FIG. 3. Converged two-body energies (normalized to the energy
in the final dimension) for the three Gaussian (thick curves) and
Morse (thin curves) potentials as a function of bb

ho. Panels (a), (b), and
(c) correspond to 3D → 2D, 2D → 1D, and 3D → 1D squeezing,
respectively.
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FIG. 4. Two-body energies (normalized to the energy in the
final dimension) for the three Gaussian (thick curves) and the three
Morse (thin curves) potentials used as a function of (d−df )/(di−d ),
where d is the dimension varying continuously from the ini-
tial dimension di to the final dimension df . Panels (a), (b), and
(c) correspond to 3D → 2D, 2D → 1D, and 3D → 1D squeezing,
respectively.

values of the two-body energy E for the Gaussian potentials
(thick curves) and the Morse potentials (thin curves), as a
function of the oscillator parameter, bb

ho. The energy is nor-
malized to the energy in the final dimension, either E2D or
E1D, given in Table I. Therefore, for small values of bb

ho all the
curves go to 1.

C. Two-body energy in d dimensions

As described in Sec. III, the continuous squeezing of the
system from some initial dimension di to some final dimen-
sion d f can also be made by solving the two-body problem in
d dimensions, where d f � d � di. We can therefore compute
the same observable as in Fig. 3 but solving the two-body
Schrödinger equation (26), where the dimension d is taken
as a parameter. It is important to remember that for d > 2 the
ground-state solution behaves for κr → 0 as given in Eq. (27),
whereas for d < 2 the ground state follows the behavior given
by Eq. (28).

The results are shown in Fig. 4 as a function of (d−d f )/
(di − d ) for the squeezing cases 3D → 2D [panel (a)], 2D →
1D [panel (b)], and 3D → 1D [panel (c)]. Again, the thick
and thin curves correspond to the results with the Gaussian
and Morse potentials, respectively. The choice of the abscissa
coordinate is such that the curves can be easily compared to
the ones in Fig. 3. In fact, a simple eye inspection of both
figures makes evident the existence of a univocal connection
between bb

ho and d .
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FIG. 5. Values of d as a function of bho/r∞
d f D, obtained by match-

ing the energies in Figs. 3 and 4, for the potentials in Table I. The
cases of 3D → 2D, 2D → 1D, and 3D → 1D squeezing are shown
in panels (a), (b), and (c), respectively. The thick and thin dashed
curves correspond to the results obtained for the Gaussian and Morse
potentials, respectively. The radius r∞

d f D is the root-mean-square
radius in the final dimension, df , obtained with a potential such that
a3D = ∞.

VI. COMPARING THE TWO METHODS

Although the parameters used in each of the two methods,
bho and d , have a very different nature, they both are used
to describe the same physics process of squeezing the system
into a lower-dimensional space. We shall first connect these
parameters by use of the energies leading from initial to
final dimension in the squeezing processes. Then we turn to
the crucial comparison of the related wave functions which
require an interpretation and a deformation parameter, as
described in Sec. III B.

A. Relation between bb
ho and d

The relation between bb
ho and d obtained directly from

Figs. 3 and 4 is shown in Fig. 5 for all the potentials. Panels
(a), (b), and (c) correspond to the 3D → 2D, 2D → 1D, and
3D → 1D cases, respectively. As in the previous figures, the
thick and thin curves are, respectively, the results obtained
with the Gaussian and Morse potentials.

In the figure we show d as a function of bho/r∞
d f D, where

r∞
d f D is the root-mean-square radius of the bound two-body

system in the final dimension obtained with an interaction
such that a3D = ∞. In particular r∞

1D and r∞
2D take the values

0.769 and 1.474, in units of b, for the Gaussian shape, and

1.478 and 3.128 for the Morse shape, respectively. This is
a way to normalize the size of the bound state in the final
dimension, d f , to the value corresponding to the potential,
which, in principle, is expected to provide a universal con-
nection between d and bho. In fact, as shown in the figure,
for each of the two potential shapes, the curves corresponding
to the potentials with large scattering length, potentials II
and III, are almost identical to each other. Furthermore, the
curves for these two potentials corresponding to the Gaussian
(thick curves) and Morse (thin curves) potentials are not very
different. Only the cases corresponding to potential I give rise
to curves clearly different from the other ones.

This result is consistent with the idea of relating universal
properties of quantum systems to the presence of relative s
waves and large scattering lengths. This has been established
as a universal parameter describing properties of weakly
bound states without reference to the responsible short-range
attraction. For this reason, the translation between bho and d
shown in Fig. 5 for the potentials with large scattering length
should be very close to the desired universal relation between
the two parameters.

B. Scale parameter

As discussed in Sec. III B, the wave function in d dimen-
sions can be interpreted as an ordinary wave function in three
dimensions (in the 3D → 2D or 3D → 1D cases) or in two
dimensions (in the 2D → 1D case), but with a deformation
along the squeezing direction, as shown in Eqs. (30), (31),
and (32). The value of the scale parameter, s, is obtained
as the one maximizing the overlap, O3D, in Eq. (37) for the
3D → 2D or 3D → 1D cases, or the overlap, O2D, in Eq. (38)
for the 2D → 1D case. These overlaps, which are functions
of the scale parameter, s, are just the overlap between the
wave function obtained with the external squeezing potential,
�bho , and the renormalized wave function, �̃d , obtained in d
dimensions, where bho and d are related as shown in Fig. 5.

The results obtained for the scale parameter are shown in
Fig. 6 for the three squeezing processes and the usual three
potentials for both the Gaussian (thick curves) and Morse (thin
curves) shapes. In all the cases the maximized overlap value is
very close to 1. In fact, in the most unfavorable computed case
(bb

ho = 0.1), the overlap value is, for all the cases, at least 0.98.
As expected, a large squeezing (bb

ho → 0) implies a small
value of s (s → 0), whereas a small squeezing (large bb

ho)
corresponds to s → 1. In fact, for bho = ∞, Eqs. (7) and (14)
are identical to Eq. (26) for d = 3 and d = 2, respectively.
This means that the wave functions, �bho and �d , are identical,
and the corresponding overlaps, O3D or O2D, are trivially
maximized and equal to 1 for s = 1.

Another feature observed in Fig. 6 is that when the squeez-
ing begins, for relatively large values of bb

ho, the scale param-
eter, s, can be bigger than 1. This is especially true for poten-
tials II and III in the 3D → 1D squeezing. This fact indicates
that in this region (d very close to the initial dimension) the
interpretation of the d-wave function as the three-dimensional
wave function, �̃d (r̃), gives rise to a state with the particles a
bit too confined along the squeezing direction, in such a way
that maximization of the overlap (37) or (38) requires a small
release of the confinement by means of a scale factor bigger
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FIG. 6. The scale parameter s as a function of bb
ho for the poten-

tials in Table I and the three squeezing scenarios considered in this
work.

than 1. This is very likely a consequence of using a constant
scale parameter, or equivalently, that the perpendicular and
squeezing directions are not completely decoupled for these
short-range potentials.

The differences between the curves shown in Fig. 6 are
related to the size of the two-body system in the initial
dimension. In panels (a) and (c), potential III describes a
two-body system in 3D clearly bigger than the other potentials
(see Table I), and therefore the curve corresponding to this
potential is the first one feeling the squeezing; i.e., it is the
first one for which s deviates from 1 when the squeezing
parameter, bb

ho decreases. For the same reason the second
potential feeling the squeezing is potential II, and for potential
I the deviation from s = 1 starts for even smaller values of bb

ho.
For the 2D → 1D case, Fig. 6(b), the curves corresponding
to potentials II and III are very similar, since these two
potentials describe systems with a very similar size in 2D
(see Table I).

For the same reason there is a clear dependence on the
potential shape. In general, given a squeezing parameter, the
root-mean-square radius is clearly bigger with the Morse
potential than in the Gaussian case, as seen for instance in
Table I with the r2D and r1D values. This fact implies that, for
a given bb

ho, the scale parameter in the case of using the Morse
potential is clearly smaller than when the Gaussian potential
is used.

A simple way to account for these size effects is to plot
the scale parameter, s, as a function of bho/rd , where rd is
the root-mean-square radius of the system for dimension d
as given in Eq. (29). This is shown in Fig. 7, where we can

0

0.5

1

0

0.5

1
Potential I
Potential II
Potential III

10-1 100 1010

0.5

1

(a)

(b)

(c)

FIG. 7. The scale parameter s as a function of bho/rd , see
Eq. (29), for the potentials in Table I and the three squeezing
scenarios considered in this work. Except for panel (c) in the vicinity
of s = 1, the curves corresponding to the Gaussian (thick curves) and
Morse (thin curves) potentials are, to a large extent, indistinguish-
able. The circles show the analytical expression (47) valid for large
squeezing.

see that for all three potentials and the Gaussian and Morse
shapes, the curves collapse into a single universal curve. The
only discrepancy appears in panel (c) in the region where the
squeezing begins to produce some effect, where the bump
shown by potentials II and III is not observed in the case of
potential I. This also happens, although to a much smaller
extent, in the 3D → 2D case shown in panel (a). We also show
in Fig. 7 (dots) the analytical expression given in Eq. (47),
which gives the relation between s and bho/rd in the case of
large squeezing, i.e., in the case of small bho values. As we
can see, the analytical expression can be used for values of
bho/rd � 0.5.

It is also interesting to show the scale parameter, s, as a
function of urms/rd , where urms = 〈u2〉1/2, and u corresponds
to z, y, or r⊥ depending on what squeezing process we are
dealing with, 3D → 2D, 2D → 1D, or 3D → 1D. Such rela-
tion should be governed by the expression given in Eq. (46).
The result is shown in Fig. 8, where the scale parameter
[×√

(di − d f )/d f ] is plotted as a function of urms/rd . As we
can see, all the curves for all the squeezing cases are very
similar to each other. The main difference appears in the low
squeezing region. In fact, in the case of no squeezing the value
of urms/rd is different for each case, 1/

√
3, 1/

√
2, or

√
2/3,

as indicated by the arrows in the figure. The dotted curve
is the analytical form in Eq. (46), which for urms/rd � 0.4
reproduces quite well the computed curves.
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FIG. 8. The scale parameter s [×√
(di − df )/df ] as a function of

urms/rd for the potentials in Table I, where u = z, u = y, and u = r⊥
for 3D → 2D, 2D → 1D, and 3D → 1D, respectively. The circles
show the analytical expression (46) valid for large squeezing.

Finally, it is clear from Figs. 7 and 8 that it is also
possible to relate bho/rd and urms/rd , simply by connecting
the values of these two quantities corresponding to the same
value of the scale parameter. For large squeezing, this rela-
tion should in fact be determined by Eq. (40). The result is
shown in Fig. 9, where the factors multiplying urms/rd and
bho/rd [

√
di/2 and

√
di/(di − d f )] have been chosen in such a

way that all the curves follow very much a rather universal
curve. Only some of the curves show some discrepancy in
the region of very small squeezing. In particular this is what
happens with potentials II and III in the 3D → 1D case, which
produce the bump that differs from the rest of the curves
for

√
di/(di − d f )〈r2

⊥〉1/2/rd ≈ 1. This is the same deviation
from the universal curve observed in Fig. 7(c) for these two
potentials. This universal behavior is quite well reproduced
using Eq. (40), which, as shown by the dotted line, follows

10-2 10-1 10010-2

100

102

104

Potential I, Gaussian
Potential II, Gaussian
Potential III, Gaussian
Potential I, Morse
Potential II, Morse
Potential III, Morse

FIG. 9. Value of bho/rd (×√
di/2) as a function of urms/rd

[×√
di/(di − df )] for the potentials in Table I, where u = z, u = y,

and u = r⊥ for 3D → 2D, 2D → 1D, and 3D → 1D, respectively.
The dotted line is obtained from Eq. (40).

the computed curves almost up to the region where the dis-
crepancy mentioned above shows up.

VII. UNIVERSAL RELATIONS

Some of the results shown in the previous section show
what we could consider a universal behavior. The curves
shown in Fig. 7 are very much independent of the scattering
length of the potential, and of the shape of the potential.
Furthermore, the curves shown in Fig. 8, and specially the
ones in Fig. 9, can also be considered independent of the
squeezing process.

One could then think that from these universal curves it
should be possible to determine the dimension d that should
be used to mimic the squeezing process produced by an
external field with squeezing parameter bho. This is however
not so simple, since, for instance in Fig. 7, we relate s not
just with bho, but with bho/rd , and rd is the root-mean-square
radius in the d calculation, Eq. (29), where d must be the
dimension associated with the squeezing parameter, bho. In
other words, use of the universal curves in Fig. 7 to obtain
the s value corresponding to some squeezing parameter, bho,
requires previous knowledge of the relation between d and
bho. The same happens in Fig. 8, where urms is the root-
mean-square radius in the squeezing direction, which can be
computed only after knowing the scale parameter, obtained
after maximization of Eqs. (37) or (38), which again requires
previous knowledge of the value of bho associated with a given
dimension. The same problem appears in Fig. 9.

However, Figs. 7 to 9 can be used to estimate the rela-
tion between d and bho in an indirect way. For instance, in
Fig. 10(a) we show the universal curves shown in Fig. 8 for
the 3D → 2D case. On top we plot for three different dimen-
sions, d = 2.25, d = 2.50, and d = 2.75, the curves (squares)
showing 〈z2〉1/2/rd as a function of the scale parameter, s,
for one of the potentials used in this work, in particular for
the Morse potential II. The points where these curves cut the
universal curve determine the specific values of s and 〈z2〉1/2

corresponding to each dimension [note that rd is simply given
by Eq. (29), and it does not depend on s]. Due to the numerical
uncertainty in the universal curve, we have also considered
the uncertainty (light-blue rectangles) in where the crossing
is actually taking place. The results of the estimate for these
three dimensions are given in Table II, where the second
column shows the rd value for each dimension, and the third
and fourth columns give the estimated range obtained from
Fig. 10(a) for 〈z2〉1/2 and s, respectively. Within parentheses
we give the precise value obtained from the calculation. As
one can see, the estimate is reasonably good.

Once the s value is known, we can use Fig. 7 (or Fig. 9),
as shown in Fig. 10(b), to determine the values of bho that
correspond to each of the dimensions considered. The results
obtained are given in the last column of Table II, together with
the computed values which are given within parentheses.

In any case, it is obvious that a direct connection between
d and bho is highly desirable. In fact, as shown in Fig. 5, at
least the curves corresponding to potentials II and III (the ones
having a large scattering length) show very much the same
behavior for a given potential shape, but even if we consider
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FIG. 10. (a) The same as in Fig. 8 for the 3D → 2D case, where
we show (squares) the computed values of 〈z2〉1/2/rd as a function of
the scale parameter s for three different dimensions, d = 2.25, 2.50,
and 2.75. (b) The same as in Fig. 7(b) where the arrows indicate the
values of bho/rd corresponding to the scale parameter s where the
squared lines in the upper part cut the universal curve.

the results with the Gaussian and Morse potentials, the curves
are not far from being universal.

An attempt of making the curves in Fig. 5 fully universal
was introduced in [16], which can be generalized to a general
diD → d f D squeezing process as

b̃ho = bho

⎛
⎝1 +

√√√√ b2
ho + r2

d f D

a2
diD

+ r2
d f D

⎞
⎠. (48)

The result of this transformation is shown in Fig. 11. As we
can see, the effect of the scattering length being comparable
to the range of the potential is corrected to a large extent, and

TABLE II. Estimate of 〈z2〉1/2, the scale parameter s, and the
squeezing parameter bb

ho for the Morse potential II, obtained from
the universal curves as shown in Fig. 10 for the dimensions d = 2.25,
d = 2.50, and d = 2.75. Their corresponding rd values are given in
the second column of the table. All the lengths are given in units of
the range of the interaction. The numbers within parentheses are the
values obtained from the calculations.

d rd 〈z2〉1/2 s bb
ho

2.25 3.33 0.89–1.05 (0.96) 0.36–0.42 (0.39) 1.17–1.37 (1.30)
2.50 4.24 1.69–1.90 (1.77) 0.58–0.65 (0.61) 2.43–2.69 (2.57)
2.75 6.00 2.88–3.15 (3.11) 0.77–0.82 (0.81) 4.92–5.40 (5.38)
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FIG. 11. The same as Fig. 5, but after the transformation defined
in Eq. (48).

all the curves follow a rather universal curve for each of the
diD → d f D squeezing processes.

In Fig. 11 we also show an analytical fit (triangles) that
reproduces very well the universal curve for each of the
squeezing scenarios. Since the curve is model independent,
the special form of the fitting function is unimportant provided
it gives a sufficiently accurate connection between b̃ho and d .
We have different options but one possibility is

b̃ho

r∞
d f D

= c1

(
d − d f

di − d

)di/3

+ c2 tan

[(
d − d f

di − d f

)c3 π

2

]
, (49)

which is a combination of two functions, each of them being
equal to zero at d = d f , and to ∞ at d = di, and whose
relative weight is used to fit the curves between these two
limits. The computed fitting constants for each of the three
squeezing processes are given in Table III.

It is important to mention that, in principle, instead of
the two-body energy, as shown in Figs. 3 and 4, one could
have used a different observable in order to determine the
connection between d and the squeezing parameter, bho. We
have checked that when the root-mean-square radii are used,
the same universal relation as the one shown in Fig. 11 is

TABLE III. Parameters used in the numerical fit given in Eq. (49)
giving rise to the curves indicated by the triangles in Fig. 11.

c1 c2 c3

3D → 2D −0.28 0.78 0.62
2D → 1D 1.34 0.24 0.25
3D → 1D −0.41 1.12 0.54
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obtained. The main practical problem in this case is that,
in general, the convergence of the computed radii when the
external squeezing is considered is clearly slower than the
convergence of the energy. Even larger values of the two-body
relative angular momenta are needed in the expansion (3),
which actually is a source of numerical inaccuracies, espe-
cially for large squeezing scenarios.

VIII. SUMMARY AND CONCLUSIONS

We investigate in detail how a dimension-dependent cen-
trifugal barrier can be the substitute for an external one-body
potential. We choose the ground state of a simple two-body
system with Gaussian and Morse short-range interactions.
The dimension parameter is integer in the initial formula-
tions, which in this report are analytically continued to al-
low noninteger dimensional values. The external potential is
chosen as both the experimentally and theoretically practical
harmonic oscillator which in the present context necessarily
must be anisotropic or deformed. A well defined unique
transformation between the parameters of the two methods
then makes each of them complete with precise predictions of
results from the other method. The simpler centrifugal barrier
computations are then sufficient to provide observables found
with an external potential.

The overall idea is then to start with an ordinary integer
dimension of 3, 2, or perhaps 1, and apply an increasingly
confining external potential in one or more coordinates. This
is equivalent to increasing frequency or decreasing oscillator
length in the corresponding directions while other coordi-
nates are left untouched. The process leads from one inte-
ger dimension to another lower one. The results are com-
pared with calculations without external potential but with
a dimension-dependent centrifugal barrier where the same
initial and final configurations are assumed and mathemati-
cally correct. The aim is to establish a desired unique relation
between the dimension parameter and the oscillator squeezing
length.

We first describe in detail how the harmonic oscillator
confinement is implemented in the investigated transitions,
3D → 2D, 2D → 1D, and 3D → 1D. The center-of-mass
and relative coordinates are separated, and the conserved
quantum numbers for the ground states are specified. Second,
we discuss properties of the calculations for the noninteger
dimension formulation. A crucial part is here how to interpret
the resulting wave function in terms of the deformed solution
with an external potential. We express how a scaling of
the squeezed coordinate(s) on the “spherically symmetric”
noninteger dimensional wave function resembles the solution
with a deformed external potential.

The final results are the unique transformation between the
two methods. This is for each dimensional transition explic-
itly given as a one-to-one correspondence between oscillator
squeezing length and wave-function scaling and dimension
parameters. To be useful it must be independent of the choice
of the short-range interaction. This can be achieved if the
transformation relation is formulated in terms of either univer-
sal quantities or, sufficient for our purpose, quantities obtain-
able entirely within the simple dimension calculation. Both of
these cases qualify to be denoted universal relations provided

the results only depend on these quantities, being independent
of dimensional transition and short-range interaction.

In summary, we have first established universal relations.
Second, we provided the universal interpretation in terms
of analytic fitted functions, which relate oscillator squeezing
length with dimension and wave-function scaling parame-
ters. These fitted functions allow predictions from noninteger
dimension calculations of observables in trap experiments
with external potentials. For two-body systems the one-to-one
correspondence does not provide enormous savings. However,
the idea and the insight obtained through these universal
relations present a new and hopefully useful concept.

In perspective, the present elaborate report on two-body
physics of noninteger dimensions constitutes the first step
in a larger program. The immediate next investigations are
two-body systems without bound states in three dimensions,
then three particles, first with identical bosons and then with
nonidentical particles. These extensions are each rather big
steps presenting their own difficulties. In conclusion, we have
worked on a simple system to exhibit new principles, but the
door is now open to more complicated and more interesting
systems.
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APPENDIX: THE SCALE PARAMETER
AND EXPECTATION VALUES IN THE

SQUEEZING DIRECTION

1. 3D → 2D

In this case the radial coordinate, r, is redefined as given in
Eq. (30):

r → r̃ ≡
√

x2 + y2 + (z/s)2 ≡
√

r2
⊥ + (z/s)2. (A1)

The normalization of the wave function (23) requires cal-
culation of

Ns =
∫

r⊥dr⊥dzdϕ|�d (r̃)|2, (A2)

which, after defining u = z/s, can be rewritten as

Ns = s
∫

r⊥dr⊥dudϕ|�d (r̃)|2 = sI0, (A3)

where r̃2 = r2
⊥ + u2 and the integral, I0, is independent of the

scale parameter. Note that for d = 3, since �d=3 is already in
the 3D space we then trivially have that Ns=1 = 1.

Therefore, the wave function, �̃d = �d/
√
N s, is normal-

ized to 1 in the ordinary three-dimensional space. After this
normalization we can now compute the expectation value,
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〈z2〉s, which given by

〈z2〉s =
∫

z2r⊥dr⊥dzdϕ|�̃d (r̃)|2, (A4)

which, again under the transformation, u = z/s, takes the form

〈z2〉s = s3

Ns

∫
u2r⊥dr⊥dudϕ|�d (r̃)|2 = s3

Ns
I2, (A5)

where I2 is independent of s.
Making now use of Eq. (A3) we get

〈z2〉s = s2 I2

I0
, (A6)

from which we get the final expression for the scale parame-
ter:

s =
( 〈z2〉s

〈z2〉s=1

)1/2

. (A7)

2. 3D → 1D

In this case the radial coordinate, r, is redefined as given in
Eq. (31):

r → r̃ ≡
√

(x2 + y2)/s2 + z2 ≡
√

(r⊥/s)2 + z2. (A8)

We then proceed exactly as in the 3D → 2D case, but using
the transformation u = r⊥/s. In this way the normalization
constant (A2) reads now

Ns = s2
∫

ududzdϕ|�d (r̃)|2 = s2I0. (A9)

In the same way, under the same transformation, the expec-
tation value

〈r2
⊥〉s =

∫
r3
⊥dr⊥dzdϕ|�̃d (r̃)|2 (A10)

can be rewritten as

〈r2
⊥〉s = s4

Ns

∫
u3dudzdϕ|�d (r̃)|2 = s4

Ns
I2, (A11)

which again, by use of Eq. (A9), leads to

s =
( 〈r2

⊥〉s

〈r2
⊥〉s=1

)1/2

. (A12)

3. 2D → 1D

In this case the radial coordinate, r, is redefined as given in
Eq. (31),

r → r̃ ≡
√

x2 + (y/s)2, (A13)

and the normalization constant is given by

Ns =
∫

dxdy|�d (r̃)|2 = s
∫

dxdu|�d (r̃)|2 = sI0, (A14)

where now u = y/s.
The expectation value, 〈y2〉s, is now

〈y2〉s =
∫

y2dxdy|�̃d (r̃)|2

= s3

Ns

∫
u2dxdu|�d (r̃)|2 = s2 I2

I0
. (A15)

As before, since I0 and I2 are s-independent, we then get
the analogous result:

s =
( 〈y2〉s

〈y2〉s=1

)1/2

. (A16)
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