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Elasticity tetrads, mixed axial-gravitational anomalies, and (3+1)-d quantum Hall effect
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For two-dimensional topological insulators, the integer and intrinsic (without external magnetic field) quantum
Hall effect is described by the gauge anomalous (2+1)-dimensional [(2+1)-d] Chern-Simons (CS) response
for the background gauge potential of the electromagnetic U(1) field. The Hall conductance is given by the
quantized prefactor of the CS term, which is a momentum-space topological invariant. Here, we show that
three-dimensional crystalline topological insulators with no other symmetries are described by a topological
(3+1)-dimensional [(3+1)-d] mixed CS term. In addition to the electromagnetic U(1) gauge field, this term
contains elasticity tetrad fields Ea

μ(r, t ) = ∂μX a(r, t ) which are gradients of crystalline U(1) phase fields X a(r, t )
and describe the deformations of the crystal. For a crystal in three spatial dimensions a = 1, 2, 3 and the mixed
axial-gravitational response contains three parameters protected by crystalline symmetries: the weak momentum-
space topological invariants. The response of the Hall conductance to the deformations of the crystal is quantized
in terms of these invariants. In the presence of dislocations, the anomalous (3+1)-d CS term describes the Callan-
Harvey anomaly inflow mechanism. The response can be extended to all odd spatial dimensions. The elasticity
tetrads, being the gradients of the lattice U(1) fields, have canonical dimension of inverse length. Similarly, if
such tetrad fields enter general relativity, the metric becomes dimensionful, but the physical parameters, such as
Newton’s constant, the cosmological constant, and masses of particles, become dimensionless.

DOI: 10.1103/PhysRevResearch.1.023007

I. INTRODUCTION

The effective Chern-Simons (CS) description of the integer
(and fractional [1,2]) quantum Hall effect (IQHE) and the
ensuing topological quantization of Hall conductivity has
been originally considered in even spatial dimensions [3].
Similarly, in (2+1)-dimensional [(2+1)-d] topological insu-
lators [4], in the generalized QED3 [5–7] or in thin films of
topological superfluids and superconductors [8,9], the intrin-
sic or anomalous quantum Hall effect (AQHE) in the absence
of magnetic flux is also described by a CS term. For both
IQHE and AQHE, the prefactor of this term is expressed in
terms of momentum-space topological invariants: the Chern
number(s). The same mechanism works for gapped systems
in all even space dimensions [10–12].

Here, we show that the IQHE/AQHE in (3+1)-
dimensional [(3+1)-d] crystalline quantum Hall systems or
topological insulators [13] is also described by CS term
with mixed field content. Namely, the (3+1)-d CS term
features elasticity tetrads [14–17], which describe the geom-
etry of elasticity theory, including crystals with dislocation
defects. The density of dislocations corresponds to spatial
torsion of the geometry, more familiar in gravitational the-
ories (see, e.g., Ref. [18]). In contrast to the gravitational
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tetrads, the elasticity tetrads have canonical dimensions of
inverse length. As a result, the CS term is dimensionless (in
units h̄ = 1), and as in the case of even space dimensions,
the prefactor is given by integer momentum-space topolog-
ical invariants. The CS term leads to the analog of mixed
(axial and gravitational/elastic) anomaly inflow in (3+1)-d
(see, e.g., Refs. [19–23]). The structure of the CS term
reflects the Callan-Harvey mechanism of anomaly cancella-
tion [23], provided here by the fermion zero modes living
on dislocations/sample boundaries [24–26]. In this way, the
CS response related to the (3+1)-d QHE is valid in the pres-
ence of deformations and satisfies the consistency conditions
of gauge invariance and anomaly inflow. The same mecha-
nism works for gapped crystalline systems in all odd spatial
dimensions.

The rest of this paper is organized in the following way. Be-
fore introducing the elasticity tetrads and the ensuing effective
response in (3+1)-d in Secs. III and IV, we first review the
simpler (2+1)-d QH case. Section V describes the anomaly
inflow mechanism of the action in (3+1)-d. In Sec. VI, we
briefly describe the extension to arbitrary even space-time
dimensions. The coupling of the elasticity tetrads to space-
time geometry in QHE is discussed in Sec. VII along with the
speculative possibility to have quantized and dimensionless
gravitational couplings if the gravitational space-time metric
is identified with the metric of elasticity tetrads. We conclude
in Sec. VIII.

II. (2+1)-d TOPOLOGICAL ACTION FOR QHE

The topological Chern-Simons action for the IQHE and for
the anomalous, intrinsic (i.e., without external magnetic field)

2643-1564/2019/1(2)/023007(9) 023007-1 Published by the American Physical Society

https://orcid.org/0000-0002-6963-6811
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.023007&domain=pdf&date_stamp=2019-09-06
https://doi.org/10.1103/PhysRevResearch.1.023007
https://creativecommons.org/licenses/by/4.0/


J. NISSINEN AND G. E. VOLOVIK PHYSICAL REVIEW RESEARCH 1, 023007 (2019)

AQHE in the D = (2+1)-dimensional crystalline insulator is
given by [4,6–8]

S(2+1)-d[Aμ] = 1

4π
N

∫
d2x dt εναβAν∂αAβ , (1)

where |e| = h̄ = 1 and the electromagnetic U(1) gauge field
Aμ has dimensions of momentum. The integer prefactor N
in the response is expressed in terms of momentum-space
topological invariant [3,6–8]

N = 1

8π2
εi j

∫ ∞

−∞
dω

∫
BZ

dS

× Tr
[
(G∂ωG−1)

(
G∂ki G

−1
)(

G∂k j G
−1

)]
, (2)

where the spatial momentum integral is over the 2-d torus of
the two-dimensional Brillouin zone (BZ). The integer N is a
topological invariant of the system and in particular remains
locally well defined under smooth deformations of the lattice.
Under sufficiently strong deformations or disorder one can
have regions of different N (x) with the associated chiral edge
modes. In that case, the global invariant, if any, is defined
by the topological charge of the dominating cluster which
percolates through the system [27].

A. (2+1)-d bulk Chern-Simons and consistent
boundary anomaly

The topologically protected physics of the quantum Hall
effect arises due to the Callan-Harvey [23] anomaly inflow
of the Chern-Simons action from the bulk to the bound-
ary [28–30], which we now review. In fact, the boundary
current Jμ

bdry realizes the (consistent) (1+1)-d chiral anomaly

∂μJμ
bdry = N

8π
εμνF bdry

μν , (3)

where J0,‖
bdry, F bdry

0‖ = ∂t A‖ − ∂‖At are along the boundary. In
this way the protected edge modes arise from the cancellation
of bulk and boundary gauge anomalies [7,23,28,29]. In more
detail, the (2+1)-d Chern-Simons term (1) can be written as

SCS[A] = 1

4π

∫
d3x εμνλσ (x)Aμ∂νAλ, (4)

where σ (x) = N�(x1) has a step function domain wall at
x1 = 0. This is equivalent to a space-time manifold with a
boundary. The current is

jμH = δSCS[A]

δAμ

= σ

2π
εμνλ∂νAλ − 1

4π
εμνλ(∂νσ )Aλ (5)

with bulk and boundary contributions. We see that the Hall
conductivity is σH = Ne2/h. The current has the divergence

∂μ jμH = 1

4π
εμνλ∂μσ∂νAλ = N

8π
δ(x1)ε1νλFνλ = N

4π
E‖, (6)

where we have specialized to the case when F02 = −E‖ is
an electric field on the boundary. This arises because of
the consistent gauge anomaly under gauge transformations

δλAμ = ∂μλ:

δλSCS[A] = − 1

4π

∫
d3x λεμνλ∂μσ∂νAλ

=
∫

d3x λ∂μ jμH = −δλSbndry[A]. (7)

The anomalous divergence is compensated by protected edge
modes on the boundary described by Sbndry.

III. ELASTICITY TETRAD FIELDS

The pure (3+1)-d CS term cannot be defined in even
space-time dimensions, therefore, the QH response requires
additional fields and constitutes a mixed response which is
only weakly topologically protected. These fields are due to
the (weak) crystalline symmetries of the system.

Specifically, these are the elastic deformations of the
crystal lattice described in terms of elasticity tetrads Ea

μ(x),
which represent the hydrodynamic variables of elasticity
theory [14,15]. In the absence of dislocations, the tetrads
Ea = Ea

μdxμ are exact differentials. They can be expressed
in general form in terms of a system of three deformed
crystallographic coordinate planes, surfaces of constant phase
X a(x) = 2πna, na ∈ Z, with a = 1, 2, 3, in three dimensions.
The intersections of the three constant surfaces

X 1(r, t ) = 2πn1, X 2(r, t ) = 2πn2, X 3(r, t ) = 2πn3 (8)

are points of the (possibly deformed) crystal lattice

L = {r = R(n1, n2, n3)|r ∈ R3, na ∈ Z3}. (9)

The elasticity tetrads are gradients of the three U(1) phase
fields X a, a = 1, 2, 3,

Ea
μ(x) = ∂μX a(x) (10)

and have units of crystal momentum. By the inverse function
theorem, we can define the inverse vectors

Ea
μ(x)E ν

a(x) = δμ
ν . (11)

In the simplest undeformed case, X a(r, t ) = Ka · r, where
E (0)a

i ≡ Ka are the (primitive) reciprocal lattice vectors Ka.
In the general case, they depend on space and time and are
quantized in terms of the lattice L in Eq. (9).

In the absence of dislocations, when X a(x) are globally
well defined, the tetrads Ea

μ(x) are pure gauge and satisfy the
integrability condition (in differential form notation)

T a = dEa = 1
2

[
∂μEa

ν (x) − ∂νEa
μ(x)

]
dxμ ∧ dxν = 0. (12)

In the presence of dislocations, T a �= 0, and X a(x) are multi-
valued.

We can also consider a metric associated with these tetrads

gμν = Ea
μEb

ν ηab, (13)

where η is the metric associated to the background lattice,
say the spatial Euclidean or Minkowski metric. The important
difference is that dn2 = gμνdxμdxν in terms of the elasticity
tetrads is dimensionless and therefore counts the space-time
distances in terms of the lattice points of L [16]. The tetrad
fields Ea

μ, but not the metric, enter the CS action for a (3+1)-d
quantum Hall effect of the lattice QH systems and topological
insulators as we now discuss.
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IV. (3+1)-d TOPOLOGICAL ACTION FOR QHE

Using the elasticity tetrads, the generalization of the
(2+1)-d QH response to (3+1)-d is in principle straightfor-
ward. This extends the electromagnetic (2+1)-d CS response
to (3+1)-d with the following topological terms, featuring
U(1) fields in combination with the elasticity tetrads Ea

μ(x):

S(3+1)-d[Aμ] = 1

8π2

3∑
a=1

Na

∫
d4x Ea

μεμναβAν∂αAβ, (14)

where a = 1, 2, 3 labels the spatial lattice directions in three
space dimensions. The derivation of this formula using semi-
classical expansion is in the next section. The tetrads Ea

μ(x) in
Eq. (10) have the dimension of the momentum, and thus the
integrals in Eq. (14) are dimensionless (h̄ = 1). It follows, as
in the (2+1)-d case, that the prefactors are dimensionless and
are also expressed in terms of integer topological momentum-
space invariants. The integer coefficients Na are antisymmetric
integrals of the Green’s functions:

Na = 1

8π2
εi jk

∫ ∞

−∞
dω

∫
BZ

dSi
a

× Tr
[
(G∂ωG−1)

(
G∂ki G

−1
)(

G∂k j G
−1

)]
, (15)

where the momentum integral is now over the restricted 2-d
BZ torus determined by the area dSi

a normal to Ea
i .

A similar expression for the (3+1)-d QH was proposed in
Ref. [31] without the elasticity tetrads and space-time depen-
dence. In the deformed crystalline systems in (3+1)-d, the
tetrads Ea

μ(x) entering the (3+1)-d Chern-Simons action (14)
depend slowly on space and time. For arbitrary background
fields, the space-time dependence violates the gauge invari-
ance of the action. However, in the absence of dislocations the
latter does not happen for the elasticity tetrads: under defor-
mations Eq. (14) remains gauge invariant due to the condition
dEa = 0 in Eq. (12). The variation δφS under δAμ = ∂μφ

is identically zero modulo the bulk/boundary QH currents
of the sample. The anomaly cancellation in the presence of
dislocations is discussed in detail below.

Here is the main difference between the topological insu-
lator and a gapless system in (3+1)-d, e.g., a Weyl semimetal.
Integrating out the fermions leads to the chiral anomaly in the
bulk and the ensuing gauge anomaly has to be consistently
canceled. In that case, instead of the elasticity tetrads the
four-momentum separation of the Weyl points appears in
the counterterm [21,32–37]. In the deformed system, this
parameter depends on the coordinates, but the integrability
condition is now absent, and the term cannot arise without
the bulk chiral gauge anomaly.

A. Semiclassical expansion

The response in Eq. (8) can be obtained via the semi-
classical Green function formalism [6,8,38]. The assumptions
are gauge invariance and semiclassical expansion to lowest
order. The effective action for a slowly varying background
field Aμ(x, t ) is

log
Z[A]

Z0
= iSeff [A] = i tr ln

G[A]

G0
. (16)

Now, we want to obtain the effective action to first order
in gradients of Aμ(x). We use the fact that the coordinate
dependence of Aμ(x) is semiclassical, i.e., the field varies
slowly on the scale of the lattice momenta. In the semi-
classical phase-space analysis [6,8,11,38], with G ≡ G[A] ≡
G(p, ω; Aμ(x, t )), we obtain to the lowest order in the gradi-
ents of Aμ(x)

Seff [A] = − i

4

∫
d3p dω

(2π )4

∫
d3x dt tr

[
G∂xμG−1G∂kμ

G−1

− G∂kμ
G−1G∂xμG−1

(
G∂kν

G−1
)
|A=0

]
Aν, (17)

where xμ = (t, x) and kμ = (ω,−p) and

G∂xμG−1 = G∂kν
G−1

|A=0
∂xμAν . (18)

The trace in the matrix product of Green functions is antisym-
metric in the indices of kμ derivatives. With the convention
εtxyz = −1, we arrive to

Seff [A] = i

12

∫
d3x dt εαβγρAα∂βAγ

∫
d3p dω

(2π )4
εμνλρ

× tr
[(

G∂kμ
G−1

)(
G∂kν

G−1
)(

G∂kλ
G−1

)]
A=0. (19)

The momentum-space prefactor can be separated to be of the
form

i
∫

d paδρ
a εμνλρ

∫
d2p dω

24π2

× tr
[(

G∂kμ
G−1

)(
G∂kν

G−1
)(

G∂kλ
G−1

)]
A=0

=
∫

d paNa(pa) = KaNa, (20)

where Na = Na(pa) is the (2+1)-d integer-valued invariant,

Na(pa) = εμνλa

∫
d2p dω

24π2

× tr
[(

G∂kμ
G−1)(G∂kν

G−1)(G∂kλ
G−1)]

A=0 (21)

evaluated in imaginary time over the cross-sectional recipro-
cal space, perpendicular to the reciprocal lattice direction Ka.
The elementary cell can be taken to be triclinic. Topologically,
the integration is over a (pinched) 3-torus and Na(pa) is an
element of π3(GL(n,C)) = Z [6].

We conclude that

Seff [A] = 1

8π2
Na

∫
d3x dt εμνλρE (0)a

μ Aν∂λAρ, (22)

where E (0)a
μ = (Ka)iδ

i
μ = ∫

d pa, i = x, y, z, are the reciprocal
lattice vectors normal to the different lattice planes with
invariants Na. This is the statement that the (3+1)-d QHE is
described by the weak vector invariant NaE (0)a

μ protected by
the crystalline symmetry.

It is well known that the topological winding number Na

is stable against small variations δG(kx, ky, kz ) of the Green’s
function that do not close the gap [6,8,11]. We can consider
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small lattice deformations xμ → xμ + ξμ(x), ξ 	 1. Under
these, the reciprocal vectors change as

E (0)a
μ =

∫
d pa

→ Ea
μ(x) ≡

∫
d pa(x) ≈ 2π

d

(
δa
μ − ∂μξ a

)
, (23)

where Ea
μ(x) is a semiclassical, slowly varying field at the

lattice scale d in reciprocal space which defines the local
normal direction of a set of lattice planes. Note that the
topological invariants Na are assumed to be constant and
independent of deformations throughout. The final result is
Eq. (8).

B. Hall current in terms of elasticity tetrads

The elasticity tetrads, i.e., elementary deformed reciprocal
and direct lattice vectors Ea

μ(x) = ∂μX a(x) and the inverse
Eμ

a (x) appear in the EM response, descending from the lattice
field phase fields NaX a(x) in the presence of deformarions. As
discussed, the phase fields satisfy the quantization condition
X a(x) = 2πna, na ∈ Z3, on the lattice points x ∈ L. The Hall
conductance is [39]

σi j = εi jk

∑
a NaEa

k (x)

4π2
, (24)

i.e., the conductance is quantized in planes perpendicular to
the layer normal Gi = ∑

a NaEa
i (x). The reciprocal vector

G = Gi is the weak Hall index of a weak (3+1)-d Chern
insulator.

In the nondeformed crystal, where E (0)a
k are primitive

reciprocal lattice vectors, this equation transforms to the
well-known equation with (3+1)-d quantized Hall conductiv-
ity [13,32,36,39]:

σi j = e2

2πh
εi jkGk, (25)

where Gk is a reciprocal lattice vector, which is expressed
in terms of the topological invariants Na and the primitive
reciprocal lattice vectors E (0)a = Ka:

Gk =
3∑

a=1

NaE (0)a
k . (26)

In the deformed crystal, the conductivity tensor is space-
time dependent, and thus is not universally quantized.
However, the response of the conductivity to deformation is
quantized:

dσi j

dEa
k

= e2

2πh
εi jkNa. (27)

The Hall current is

Jμ = −1

4π2

3∑
a=1

Naε
μναβEa

ν ∂αAβ

+ 1

8π2

3∑
a=1

Naε
μναβ

(
∂αEa

β

)
Aν (28)

and has a bulk and a topological defect/boundary compo-
nent [23,40]. In the absence of dislocations, dEa = 0 in

Eq. (12), and the current represents a dissipationless, fully
reversible current, which is conserved due to U(1) gauge
invariance

∂μJμ = ∂μJμ
bulk = 0. (29)

C. Chiral magnetic effect

The action (14) and current (28) also describe the chiral
magnetic effect (CME) [41,42]. In the presence of periodic
directions varying in time, time dependence X a(r, t ) appears.
In the CME an electric current along an applied magnetic field
is induced:

J = 1

4π2

3∑
a=1

NaEa
t B. (30)

This current contains Ea
t = ∂X a/∂t and thus it vanishes in

equilibrium in agreement with Bloch theorem, according to
which the total current is absent in the ground, or in general
any equilibrium, state of the system (see, e.g., Ref. [43]).
Here, we restrict to spatial lattices under deformations. The
CME for a time-periodic insulator with timelike E0

μ = ωF δ0
μ

(with Floquet drive ωF ) and the temporal invariant N0 �= 0
was pointed out in Ref. [17]. This can be extended to spatial
deformations as well.

V. ANOMALY CANCELLATION AND DISLOCATION
ZERO MODES

A. Callan-Harvey effect on dislocations and mixed anomaly

Now, we describe the anomaly inflow. The constraint (12)
is violated in the presence of topological defects: dislocations.
The density of dislocations equals the torsion for the elasticity
tetrads (with vanishing spin connection):

T a = dEa, T a
kl = (

∂kEa
l − ∂lE

a
k

)
, k, l = x, y, z (31)

similar to the role of space-time torsion in gravitational
theories [14,18]. The nonzero dislocation density or torsion
violates the conservation of the Hall current:

∂μJμ = −1

8π2

1

4
εμναβFαβ

3∑
a=1

NaT a
μν. (32)

This mixed anomaly represents the Callan-Harvey mechanism
of anomaly cancellation [23], which is provided here by
the fermion zero modes living on dislocations [23–26,40].
The action remains well defined and gauge invariant in the
presence of dislocations, i.e., 2π ambiguities in the phase field
X a, due to zero modes with (1+1)-d covariant anomaly along
the dislocation string,

∂μJμ = ∂μJμ
bulk + ∂μJμ

dislocation = 0, (33)

as shown in Refs. [23,40,44] for Dirac fermions in the pres-
ence of complex vortexlike axionic mass. The Dirac model
can be taken as a topological model for the (3+1)-d QH
system [11], which we discuss next.

B. Dirac fermion model

To verify the existence of dislocation zero modes on
dislocations and overall gauge invariance, let us consider a
simplified model with the same symmetries as the
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μ ν

p

p + q

qq

p + q + k

∂λX

λ

FIG. 1. The four-dimensional gauge field vacuum polarization
�μν (q, k) in Eq. (38) with the axionic vertex ∂λX .

time-reversal and parity-breaking topological insulator with
crystalline order, namely, a gapped and time-reversal and
parity-breaking Dirac model with a complex mass induced by
a scalar field X ,

S[ψ,ψ, Aμ, X ]

=
∫

d3x dt ψ (γ μi∂μ)ψ − m(x)ψeiγ 5X ψ − ψγ μψAμ

=
∫

d3x dt ψ (γ μi∂μ − m)ψ

−mψ
[
eiγ 5X − 1

]
ψ − ψγ μψAμ + · · · . (34)

The complex scalar m(x)eiγ 5X (x) is equivalent to a slowly
varying mass profile. A vortex line singularity (“axionic
string” [23,40]) is the profile where m(x) → m far from the
singularity and m(xc) = 0, where xc is the vortex location. The
phase field X (x) has a vortex singularity∫

C
dX = 2πn (35)

around all contours around xc and is is such that X = const +
nφ far from the line defect. In the present case, X = NaX a

and n = naNa. The expansion in Eq. (34) applies far from the
vortex. Let us compute the induced effective action far from
the vortex string by starting the from the expansion

mψ
[
eiγ 5X − 1

]
ψ (y) = im∂μX (y − x)μψγ 5ψ (x) + · · · .

(36)

The response is found from the axial bosonic polarization
vertex �μν (x, y) [40] (or the equivalent Goldstone-Wilczek
current [44]) of the effective action

Seff [A] =
∫

d4x d4y Aμ(x)
1

2
�μν (x, y)Aν (y) (37)

depicted in Fig. 1 becomes, using tr[γ 5γ μγ νγ λγ ρ] =
+4iεμνλρ with εtxyz = −1,

�μν (x, y) = m∂λX
∫

d4q d4 p

(2π )8
d4k δ(4)(k)eiq(y−x) ∂

∂kλ

tr[iγ μG(p)iγ νG(p + q)γ 5G(p + q + k) + (μ ↔ ν, k ↔ q)]

= +4iεμνλρ∂λX
∫

d4q d4 p

(2π )8
eiq(y−x) m2iqρ

(p2 − m2)[(p + q)2 − m2]

[
1

p2 − m2
+ 1

(p + q)2 − m2

]
. (38)

Taking the limit q → 0, we arrive to the bulk effective ac-
tion [23,40]

Seff [A, X ] =
∑

a

Na
1

8π2

∫
d4x εμνλρ∂μX aAν∂λAρ + · · ·

(39)

after integrating out the massive fermions far from the string.
The response follows from Eq. (38) by the replacement X →∑

a NaX a, i.e., instead of a single U(1) axion field, we have a
flavored U(1)3 lattice phase field X a with topological charges
Na which are not protected [38] without the existence of the
slowly varying lattice phase field X a.

Let us now extend the above effective action (39) to be
valid everywhere, essentially by considering a vortex string
with a delta-function core.

C. Induced anomaly current

The bulk effective action (39) was derived far from the
string defect. Let us now check the induced current due to a
topological configuration in X (x) = NaX a(x). For simplicity,
we will consider singularities only in the slowly varying con-
tinuum lattice field X a(x) and treat the topological numbers
Na as constants. A dislocation in the topological response is
a 2πnaNa ambiguity in the field X = NaX a(x), and na is the
Burgers vector of the dislocation and n = naNa.

The induced current separates to bulk and boundary contri-
butions

〈Jμ〉 = δSeff/δAμ

= −1

4π2
εμνλρ∂νX∂λAρ + 1

8π2
εμνλρ (∂λ∂νX )Aρ (40)

due to an electric field F0z = −Ez parallel along the string.
This has contributions from the bulk, where X (r, φ, z) = nφ,
and from the string where, from Eq. (35), we get

−εt i jz∂i∂ jX = 2πnδ(2)(xc), i, j = x, y. (41)

Therefore,〈
Jμ

bulk

〉 = −1

4π2
εμνλρ∂νX∂λAρ

= 1

4π2

n

r
F0z = − 1

4π2

n

r
Ez = 〈

Jr
bulk

〉
, (42)

whence the current per unit time and length in the radial
direction outward from the string is − n

2π
Ez. In addition, there

is the current localized on the string

〈
Ji

string

〉 = 1

8π2
εμνλρ (∂λ∂νX )Aρ

= 1

8π2
(2πnδ(2)(xc))εi jA j = n

4π
εi jA jδ

(2)(xc), (43)
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i, j = t, z, with the divergence ∂i〈Ji
string〉 = n

8π
εi jFi jδ

(2)(xc) =
n

4π
Ezδ(2)(xc). The divergence of the total current (40) on the

string is anomalous

∂μ〈Jμ〉 = − 1

8π2
εμνλρ (∂μ∂νX )Fλρ

= 1

4π2
(2πnδ(2)(xc))F0z = − n

2π
Ezδ(2)(xc). (44)

On the other hand, the chiral fermions on the string, where
they are effectively massless, result in n chiral zero modes
with chiral anomaly

∂i
〈
Ji

(1+1)-d

〉 = ∂i
〈
Ji

string

〉 + ∂i
〈
Ji,cons.

(1+1)-d

〉
= ± 1

4π
εi jFi j = ∓F0z

2π
= ± Ez

2π
. (45)

This is the (1+1)-d covariant anomaly and is composed of the
boundary consistent anomaly plus the contribution localized
on the string from the bulk [21,40]. The anomaly due to the
bulk-induced current and zero modes cancels.

In contrast, from the previous arguments in Sec. II A we
see that the (2+1)-d QH anomaly is matched by the consistent
anomaly of N-boundary (1+1)-d chiral fermions. This seems
to coincide with the observation in Ref. [21]: The covariant
anomaly is a Fermi-surface effect, whereas the consistent
anomaly arises from the contribution of all the filled levels.

VI. EXTENSION TO EVEN D = 2 + 2n
SPACE-TIME DIMENSIONS

The anomaly equation (32) can be straightforwardly ex-
tended to arbitrary even D = 2 + 2n space-time dimensions:

∂μJμ ∝
2n+1∑
a=1

NaT a ∧ F ∧ · · · ∧ F︸ ︷︷ ︸
n times

. (46)

In addition to the torsional field strength T a = dEa, it con-
tains the n-fold antisymmetric tensor product of U(1) gauge
field strengths F = dA, while the integer-valued topological
invariants Na are expressed in terms of (2n + 1)-dimensional
integrals in frequency-momentum space [7].

Equation (46) is valid even in case of n = 0, i.e., in one
spatial dimension, producing the expected results. Consider
a gapped one-dimensional chain of electrons with the action
(see also [37])

S(1+1)-d[A] = N1

2π

∫
dx dt εμνE1

μAν, (47)

where the index N1 is defined via the Green’s function
G(ω, kx ),

N1 = 1

2π i

∫
dω TrG(kx, ω)∂ωG−1(kx, ω). (48)

The index N1 is the same for any kx without gap closings.
Note that in (3+1)-d the index Na in Eq. (15) is the same for
any cross section Sa of the three-dimensional Brillouin zone,
while in (1+1)-d the cross section corresponds to one point kx

in the one-dimensional Brillouin zone.

Variation of Eq. (47) gives the electric current

Jμ = N1

2π
εμνE1

ν , (49)

the conservation of which

∂μJμ = NadEa = N1dE1 = 0 (50)

has a simple interpretation. The condition dEa = 0 is equiv-
alent to the conservation of the sites of the one-dimensional
lattice, whereas the index N1 corresponds to the number of the
electrons per site, which is integer for band insulators. As a
result, the number of the electrons is trivially conserved under
adiabatic deformations.

Since any one-dimensional insulator is described by the
topological invariant N1, which can only change when the
gap closes, we may call any (1+1)-d insulator topological,
although the topology of the filled states can only be detected
by higher invariants: the Chern numbers. In fact, this is
very similar to ordinary metals with Fermi surfaces [11]:
the gapless Fermi surface represents a topological object in
momentum space protected by an invariant similar to N1.
Topology provides the stability of the Fermi surface with re-
spect to interactions and explains why metals can be described
by Landau Fermi-liquid theory. In this sense, metals can be
considered as topological materials, making the zeroth-order
invariant N1 one of the most important topological invariants
in the hierarchy of the topological invariants for fermionic
systems. In particular, it gives rise to the Luttinger theorem:
the number of states in the region between two Fermi points
in (1+1)-d does not depend on interaction and arises through
topology and adiabatic evolution. This can be generalized
for any closed Fermi surface or insulator in higher dimen-
sions [11,45,46].

VII. GRAVITATIONAL QH RESPONSE
AND EMERGENT GRAVITY

Now, we briefly describe the anomalous coupling of the
elasticity tetrads to the effective space-time metric in the
quantum Hall system and speculate on the possibility of
relating the elastic metric with the gravitational space-time
metric in an effective low-energy effective model of quantum
gravity.

The dimensional elasticity tetrads in the (3+1)-d QHE
allow us to write the dimensional extension of the (2+1)-d
gravitational framing anomaly as a mixed elastic-gravitational
anomaly in (3+1)-d [23,47–50]:

Seff,g =
3∑

a=1

Ña

192π2

∫
d3x dt Ea ∧

(
�μ

ν ∧ d�ν
μ

+ 2

3
�μ

ν ∧ �ν
ρ ∧ �ρ

μ

)
, (51)

where Ña are effective central charges, �μ
ν ≡ �

μ
λνdxλ are

the Christoffel symbol one-forms of the space-time metric,
that arises for example through Luttinger’s argument [51].
In particular, the mixed elastic-gravitational Chern-Simons
term (51) implies the generalization of the (2+1)-d thermal
Hall effect [49,51–54] to (3+1)-d quantum Hall systems
and topological insulators with intrinsic Hall effect, although
it is third order in derivatives and therefore beyond linear
response.
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Finally, let us speculate on the hypothetical connection
of the elasticity tetrads Ea

μ to real space-time metric and
gravity. While the microscopic structure of the relativistic
quantum space-time vacuum is not known, phenomenological
approaches and effective field theory can be used to describe
the effects of the vacuum degrees of freedom. In one of these
scenarios, it is assumed that the space-time vacuum has the
properties of a (3+1)-d superplastic crystalline medium con-
structed from Ea

μ [55]. As in the condensed matter elasticity
theory, dislocations and disclinations in this space-time crystal
describe torsion and curvature of general relativity [14,56–
58]. More specifically, in this superplastic model of gravity,
the size of the elementary cell in the vacuum space-time
crystal is not fixed but in principle can vary arbitrarily with
no elementary Planck scale space-time lattice. As a result, the
induced action for the gravitational field [55]

S
[
Ea

μ

] =
∫

M3,1
d4x |E | (KR + �) (52)

contains only dimensionless quantities. Here, the metric
gμν = ηabEa

μEb
ν is from Eq. (13) and the Ricci curvature scalar

R[Ea
μ] depends on the elasticity tetrads in the standard way,

thus making the gravitational constant K (inverse Newton
constant) and the cosmological constant � dimensionless,
[K] = [R] = [�] = 1. The same holds for higher derivative
gravity and for the other (nongravitational) physical quanti-
ties, such as particle mass [M] = 1. Therefore, if gravity is
related to fundamental elasticity tetrads, all the measurable
physical quantities are dimensionless with respect to the
space-time lattice.

VIII. CONCLUSION

In this paper, we have described the mixed topological
response of (3+1)-d QH systems using elasticity tetrads. We

have shown how gauge invariance and anomaly inflow arise in
the presence of deformations of the weak lattice symmetries
protecting the state. The response is a mixed CS response
featuring the elasticity tetrad fields of the lattice. This mixed
and geometric nature of the (3+1)-d CS response is to be
contrasted with the more familiar topological BF theory in
four dimensions (see, e.g., Ref. [59]), which represents a
mixed response with two one-form gauge fields and their the
field strengths appearing in the action.

More generally, the dimensionful elasticity tetrads are
the proper hydrodynamic variables related to the weakly
protected IQHE/AQHE/CME on general even-dimensional
crystalline backgrounds. They describe the topological QH re-
sponse with elastic and geometric deformations in systems in
odd spatial dimensions. In general, Eq. (32) and its extension
to higher dimensions, Eq. (46), describe the mixed anomaly in
terms of the gauge fields and elastic torsion. These equations
do not contain any parameters, except for topological quantum
numbers. This is because the elastic tetrads (torsion) have the
canonical dimensions of [l]−1 (respectively [l]−2) instead of
the conventional l0 (respectively [l]−1) for the gravitational
space-time tetrads (torsion). This allows one to write many
mixed “quasitopological Chern-Simons terms,” analogous to
mixed axial-gravitational/elastic anomalies, in (3+1)-d quan-
tum Hall systems with weak crystalline symmetries. In princi-
ple, we can envisage similar geometric extension of BF theory
to (4 + 1)-d using elasticity tetrads.
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