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Determination of universal critical exponents using Lee-Yang theory

Aydin Deger and Christian Flindt
Department of Applied Physics, Aalto University, 00076 Aalto, Finland

(Received 30 April 2019; published 4 September 2019)

Lee-Yang zeros are points in the complex plane of an external control parameter at which the partition function
vanishes for a many-body system of finite size. In the thermodynamic limit, the Lee-Yang zeros approach the
critical value on the real axis, where a phase transition occurs. Partition function zeros have for many years been
considered a purely theoretical concept; however, the situation is changing now as Lee-Yang zeros have been
determined in several recent experiments. Motivated by these developments, we here devise a direct pathway
from measurements of partition function zeros to the determination of critical points and universal critical
exponents of continuous phase transitions. To illustrate the feasibility of our approach, we extract the critical
exponents of the Ising model in two and three dimensions from the fluctuations of the total energy and the
magnetization in lattices of finite size. Importantly, the critical exponents can be determined even if the system
is away from the phase transition. Moreover, in contrast to standard methods based on Binder cumulants, it
is not necessary to drive the system across the phase transition. As such, our method provides an intriguing
perspective for investigations of phase transitions that may be hard to reach experimentally, for instance at very
low temperatures or at very high pressures.
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I. INTRODUCTION

Phase transitions are characterized by the abrupt change
of a many-body system from one state of matter to another
as an external control parameter is varied [1–3]. In their
seminal works, Lee and Yang developed a rigorous theory of
phase transitions based on the zeros of the partition function
in the complex plane of the control parameter, for instance
the fugacity or an external magnetic field [4–7]. The crucial
insight of Lee and Yang was that the partition function zeros
with increasing system size will approach the real value of the
control parameter for which a phase transition occurs. These
ideas are now considered a theoretical cornerstone of statis-
tical physics, and they have found applications across a wide
range of topics, including protein folding [8,9], percolation
[10–13], and Bose-Einstein condensation [14,15].

Despite these developments, partition function zeros were
for a long time considered a purely theoretical concept. This
situation is changing now as Lee-Yang zeros have been de-
termined in several experiments [16–23]. Recently, partition
function zeros were measured using carefully engineered
nanostructures involving the precession of interacting molec-
ular spins [17–19], Cooper pair tunneling in superconducting
devices [20–22], or fermionic atoms in driven optical lattices
[23]. In parallel with these experiments, several theoretical
proposals have been put forward for the detection of parti-
tion function zeros [24–28]. These advances motivate further
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investigations of the information that can be extracted from
the determination of Lee-Yang zeros in systems of finite size
and how future experiments on scalable many-body systems
may improve our understanding of phase transitions.

In this work, we present a direct pathway from the detec-
tion of partition function zeros by measuring or simulating
fluctuating observables in systems of finite size to the de-
termination of critical points and universal critical exponents
of continuous phase transitions [1–3]. Our method combines

(a) (b)

FIG. 1. Ising lattice and Fisher zeros. (a) The Ising model, here
in d = 3 dimensions with linear size L = 20 and N = Ld = 8000
lattice sites. The color of each site denotes the orientation of its spin,
blue (up) or red (down). (b) From the energy fluctuations, we find the
leading partition function zeros in the complex plane of the inverse
temperature using Eq. (8). The inverse temperature is βJ = 0.23,
where J is the coupling between neighboring spins. No magnetic
field is applied. The Fisher zeros approach the critical inverse temper-
ature βc with increasing system size, L = 4, 5, . . . , 10. Importantly,
from the scaling of the Fisher zeros, we can determine the critical
exponents as shown in Fig. 2.

2643-1564/2019/1(2)/023004(7) 023004-1 Published by the American Physical Society

https://orcid.org/0000-0002-7223-8400
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.023004&domain=pdf&date_stamp=2019-09-04
https://doi.org/10.1103/PhysRevResearch.1.023004
https://creativecommons.org/licenses/by/4.0/


AYDIN DEGER AND CHRISTIAN FLINDT PHYSICAL REVIEW RESEARCH 1, 023004 (2019)

ideas and concepts from finite-size scaling analysis [29–32]
with the Lee-Yang formalism [4–7] and theories of high
cumulants [33–36], and it can be applied in experiments
on a variety of phase transitions including nonequilibrium
situations such as space-time phase transitions in glass for-
mers [37,38] and dynamical phase transitions in quantum
many-body systems after a quench [39–41]. Specifically, we
determine the partition function zeros from fluctuations of
thermodynamic observables and find the critical exponents
from the approach of the zeros to the critical value on the
real axis. As a paradigmatic application, we determine the
critical points and the universal critical exponents of the Ising
model from the fluctuations of energy and magnetization in
small lattices. Unlike most conventional methods, based for
instance on Binder cumulants [30–32], which require the
control parameter to be tuned across the phase transition,
we can determine the critical exponents even if the system
is away from the phase transition, for example at a fixed
high temperature. (In the Appendices, we discuss the sta-
tistical aspects of our method, and we compare it with the
use of Binder cumulants.) As such, our method provides an
intriguing perspective for investigations of phase transitions
that may be hard to reach experimentally, for instance at very
low temperatures or at very high pressures [42,43]. Moreover,
our method opens an avenue for bottom-up experiments on
phase transitions, in which nanoscale structures are carefully
assembled, for example by adding single spins to an atomic
chain on a surface [44] or by loading individual atoms into an
optical lattice one at a time [45], to increase the system size in
a controllable manner.

II. ISING LATTICE AND CRITICALITY

Figure 1(a) illustrates the Ising lattice that we consider in
this work. The lattice has N = Ld sites, where L is the linear
size and d = 2, 3 denotes the spatial dimension. Each site
hosts a classical spin which can take on the values σi = ±1.
An external magnetic field of magnitude h can be applied, and
neighboring spins are coupled via a ferromagnetic interaction
of strength J > 0. The total energy corresponding to a specific
spin configuration σ = {σi} is then

U (σ) = −J
∑
〈i, j〉

σiσ j − h
∑

i

σi, (1)

where the brackets 〈i, j〉 denote summation over nearest-
neighbor spins. The thermodynamic properties of the lattice
are fully encoded in the partition function

Z (β, h) =
∑

σ

e−βU (σ ), (2)

where β = 1/(kBT ) is the inverse temperature. Phase tran-
sitions are signaled by values of the control parameters for
which the scaled free energy f (β, h) = −[ln Z (β, h)]/(Nβ )
becomes nonanalytic in the thermodynamic limit of large
lattices [1–3]. The partition function also captures fluctua-
tions of thermodynamic observables. For instance, energy
fluctuations can be characterized by the moments 〈U n〉 =
[∂n

−βZ (β, h)]/Z (β, h) or cumulants 〈〈U n〉〉 = ∂n
−β ln Z (β, h),

which follow upon differentiation with respect to the conju-
gate variable, here the inverse temperature. The moments and

cumulants of the magnetization are given in a similar manner
by differentiation with respect to the magnetic field strength.

The Ising model exhibits a continuous phase transition,
which close to the critical inverse temperature β � βc can be
completely characterized by a few critical exponents that are
independent of microscopic details and are determined solely
by general features such as the dimensionality of the problem
and its universality class [1–3]. As such, the determination
of critical exponents is of key importance in statistical me-
chanics. In the vicinity of the critical point, we may assume
that the probability distribution for the total energy obeys
the scaling relation PL(U ) = L−1/ν f∞(UL−1/ν ), where f∞ is
a scaling function and the critical exponent ν describes the
divergence of the correlation length as we approach the critical
temperature [29–32]. After some algebra, we then obtain
scaling relations for the cumulants of the form

〈〈U n〉〉 = Ln/νun, (3)

where the un’s depend only weakly on the system size. As we
will see, these relations carry over to the partition function
zeros and their approach to the critical point.

III. PARTITION FUNCTION ZEROS
AND FINITE-SIZE SCALING

Following the seminal ideas of Lee and Yang, we consider
the zeros of the partition function in the complex plane of the
control parameter [4–7]. For finite-size lattices, the partition
function is analytic and it can be factorized as

Z (β, h) = Z (0, h)eβc
∏

k

(1 − β/βk ), (4)

where βk are the zeros in the complex plane of the inverse
temperature and c is a constant. The zeros come in complex
conjugate pairs, since the partition function is real for real
values of β. Often these zeros are referred to as Fisher zeros,
while zeros for complex external fields are known as Lee-
Yang zeros. With increasing system size, the partition function
zeros approach the real value of the control parameter for
which a phase transition occurs in the thermodynamic limit.
From the definition of the cumulants, we now obtain the
relation [20–22]

〈〈U n〉〉 = (−1)(n−1)
∑

k

(n − 1)!

(βk − β )n
, n > 1, (5)

between the cumulants and the partition function zeros. We
then see that the high cumulants are mainly determined by the
pair of Fisher zeros, βo and β∗

o , that are closest to the actual
inverse temperature β on the real axis. The contributions
from other zeros are suppressed with the distance to β and
the cumulant order n [33–36]. Moreover, close to criticality,
we expect the scaling relations (3) to hold and thus that the
leading zeros must approach the critical inverse temperature
as [46–48]

|βo − βc| ∝ L−1/ν (6)

and

Im[βo] ∝ L−1/ν, (7)
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FIG. 2. Fisher zeros and critical exponents. (a) The leading Fisher zeros (blue circles) for the Ising model with d = 2 are extracted from the
energy cumulants of order n = 6, 7, 8, 9. With increasing system size, the Fisher zeros approach the critical inverse temperature βcJ � 0.4404
(red circle), which is close to the exact result β2DJ = ln(1 + √

2)/2 � 0.4407. The simulations were carried out at a temperature above the
phase transition, βJ = 0.35 (black circle). For the Ising model in Fig. 1 with d = 3, we find βcJ = 0.22169, which is close to the best
numerical estimate of β3DJ � 0.22165. The critical inverse temperatures are determined in panel (c). (b) The extracted critical exponents ν

from the finite-size scaling of the imaginary parts are close to the known values for the Ising model, ν2D = 1 (exact) and ν3D � 0.630 (numerics)
[49]. (c) In the thermodynamic limit, the imaginary part of the zeros vanishes, and the real parts approach the critical values indicated with red
circles in panels (a) and (c).

since the critical inverse temperature is real. These relations
are important as they allow us to obtain the critical exponent
ν from the partition function zeros.

IV. FISHER ZEROS AND CRITICAL EXPONENTS

Partition function zeros have recently been experimentally
determined [16–23]. Lee-Yang zeros have been determined by
measuring the quantum coherence of a probe spin-coupled
to an Ising-type spin bath [17–19], and Fisher zeros have
been extracted for a dynamical phase transition involving
fermionic atoms in a driven optical lattice [23]. Partition
function zeros have also been obtained from the fluctuations
of the number of transferred particles in an experiment on full
counting statistics of Cooper pair tunneling [20–22]. Here,
we first determine the Fisher zeros of the Ising lattice from
fluctuations of the energy, since the energy is conjugate to the
inverse temperature. To this end, Eq. (5) can be solved for high
orders, n 	 1, to yield the expression[−2Re[βo − β]

|βo − β|2
]

=
⎡⎣1 − κ (+)

n
n

1 − κ
(+)
n+1

n+1

⎤⎦−1[
(n − 1)κ (−)

n

n κ
(−)
n+1

]
(8)

for the position of the leading partition function zeros, βo and
β∗

o , in terms of the ratios κ (±)
n ≡ 〈〈U n±1〉〉/〈〈U n〉〉 of cumulants

of subsequent orders. We stress that the energy fluctuations
can be measured (or simulated) at a single fixed temperature,
and the Fisher zeros can then be determined using Eq. (8).

To mimic an experiment, we perform Monte Carlo simu-
lations based on the standard Metropolis algorithm [50,51].
We thereby evaluate the high cumulants of the energy and
subsequently obtain the leading Fisher zeros from Eq. (8)
with increasing system size. The results of this procedure are
shown in Fig. 2(a) and Fig. 1(b) for the Ising lattice in two
and three dimensions. Already for small lattices of linear size
L � 10, we clearly see that the Fisher zeros approach the
critical inverse temperature on the real axis. A quantitative

analysis is provided in Fig. 2(b), where we investigate the
finite-size scaling of the imaginary part and extract the critical
exponent ν based on Eq. (7) [52]. Remarkably, the extracted
critical exponents are close to the best-known values for the
Ising model in two and three dimensions [49], even if obtained
for very small lattices. Moreover, in contrast to conventional
methods [30–32], which typically require that the control
parameter be tuned across the phase transition, we are here
able to determine the critical exponents from the energy
fluctuations at a fixed temperature above the phase transition.
Having determined the critical exponents, we can also find
the critical inverse temperature by extrapolating the position
of the leading Fisher zeros to the thermodynamic limit in
Fig. 2(c). The imaginary part of the Fisher zeros vanishes in
the thermodynamic limit, while the real part comes close to
the best-known values for the Ising model.

V. LEE-YANG ZEROS AND CRITICAL EXPONENTS

Our method can be applied to a variety of phase transitions,
not only in equilibrium settings but also in nonequilibrium
situations such as space-time phase transitions in glass for-
mers [37,38] and dynamical phase transitions in many-body
systems after a quench [39–41]. (In these cases, the role of the
partition function is played by a moment-generating function
or a return amplitude, both of which deliver the moments of
the fluctuating observable upon differentiation with respect to
the appropriate conjugate field.) For example, for the Ising
model we may also consider the partition function zeros in the
complex plane of the magnetic field. These Lee-Yang zeros
can be obtained from the fluctuations of the magnetization
similar to how the Fisher zeros are determined using Eq. (8).
At the critical temperature, the magnetization is assumed to
obey the scaling relation PL(M ) = L

B
ν
−d g∞(ML

B
ν
−d ), where

g∞ is a scaling function for the total magnetization and the
critical exponent B describes how the average magnetization
vanishes as the critical temperature is approached from below
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FIG. 3. Lee-Yang zeros and critical exponents. (a) The leading Lee-Yang zeros (blue circles) for the Ising model with d = 2 are extracted
from the magnetization cumulants of order n = 6, 7, 8, 9. Above the critical temperature, β = 0.8βc, the Lee-Yang zeros remain complex in the
thermodynamic limit (pair of red circles). For the sake of clarity, these results have been shifted horizontally away from the line Re[h/J] = 0.
At the critical inverse temperature, β = βc, the Lee-Yang zeros approach the critical field hc = 0 (red circle) with increasing system size. We
note that the perpendicular approach to the real-axis shows that the system exhibits a first-order phase transition as a function of the magnetic
field [6,7,53,54]. (b) Finite-size scaling of the imaginary parts of the Lee-Yang zeros and extraction of the ratio of critical exponents B/ν for
d = 2, 3. (c) Determination of the convergence points of the Lee-Yang zeros (red circle) for d = 2, 3. For d = 3, the real part also vanishes
(not shown).

[55–58]. This scaling hypothesis translates into scaling rela-
tions for the Lee-Yang zeros of the form

|ho − hc| ∝ L
B
ν
−d (9)

and

|Im(ho)| ∝ L
B
ν
−d , (10)

where hc is the magnetic field strength at which the phase tran-
sition occurs. We can now determine the Lee-Yang zeros from
the simulated fluctuations of the magnetization. The results of
this procedure for the Ising lattice with d = 2 are shown in
Fig. 3(a). Above the critical temperature, the Lee-Yang zeros
remain complex in the thermodynamic limit, since there is no
phase transition. By contrast, at the critical temperature (and
also below; not shown), the Lee-Yang zeros reach the real
axis, and we can proceed with the finite-size scaling analysis
in Fig. 3(b) for d = 2 and d = 3. Using Eq. (10), we then
extract the ratio B/ν of the critical exponents, also known
as the scaling dimension, and again find good agreement
with existing estimates. We note that from two independent
critical exponents we can obtain all other exponents using
the hyperscaling relations derived in renormalization group
theory [59]. Finally, in Fig. 3(c), we show how both the real
and imaginary parts of the leading Lee-Yang zeros vanish
in the thermodynamic limit, signaling that a phase transition
occurs at zero magnetic field.

VI. CONCLUSIONS

We have presented a method that makes it possible to iden-
tify critical points and determine critical exponents by measur-
ing fluctuations of thermodynamic observables in finite-size
systems kept at fixed external control parameters. Our method
can not only be applied to equilibrium situations but also
nonequilibrium phase transitions, including space-time phase
transitions in glass formers and dynamical phase transitions
in many-body systems after a quench. We have illustrated

the feasibility of our approach using the Ising model for
which the critical behavior depends on the dimensionality
of the problem as confirmed by our results. Importantly,
we can determine the critical points and critical exponents
without having to drive the system across the phase transition,
which is typically required by other methods. As such, our
method paves the way for investigations of phase transi-
tions that may be hard to reach experimentally, for instance
at low temperatures. Extending these ideas to the quantum
realm constitutes an exciting theoretical challenge for future
work.

Note added. Recently we became aware of a preprint that
also investigates partition function zeros for continuous phase
transitions [60].
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APPENDIX A: MONTE CARLO SIMULATIONS
AND ERROR ESTIMATES

Here we further discuss the use of our method on the Ising
model in d = 2 dimensions. As shown in the main text, we can
identify the critical points and determine the universal critical
exponents by analyzing fluctuating observables for different
lattice sizes N = Ld at a single fixed temperature above (or
below) the critical point. As such, our method can be applied
to a variety of phase transitions in finite-size systems that
are away from the critical temperature. To further analyze
the feasibility of our approach, we here discuss the statistical
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FIG. 4. Monte Carlo simulations and error estimates. (a) The mean location of the leading partition function zeros obtained from m = 10
Monte Carlo simulations with 105 measurements per site are shown for increasing system sizes, L = 4, 5, . . . , 11. The standard errors are
denoted by red ellipses. The partition function zeros (blue circles) are extracted from the energy fluctuations of order n = 5, 6, 7, 8 at the
inverse temperature β = 0.8βc which is indicated by a black circle. (b) The imaginary parts of the partition function zeros are depicted in
a log-log plot as a function of lattice size L together with the errors bars that increase with the system size. The slope of the plot delivers
the critical exponent ν ≈ 1.004. (c) Determination of the convergence points of the partition function zeros (red circle). The real part of the
zeros moves toward the critical temperature βcJ ≈ 0.4419, which is close to the exact value for the Ising model βcJ ≈ 0.4407, whereas the
imaginary parts vanish in the thermodynamic limit, signaling a sharp phase transition.

aspects of our method including an error analysis. To this
end, we have collected statistics from m = 10 Monte Carlo
simulations with 105 measurements on an N-site Ising lattice
using a total of 105 × N Monte Carlo steps each. This is two
orders of magnitude smaller than for the results presented in
the main text. We then determine the leading partition function
zeros in the complex plane of the inverse temperature from the
cumulants of the energy. The standard errors are calculated as
a measure of the precision of the sample means and expressed
as σ/

√
m, where σ denotes the standard deviation. The mean

values of 10 measurements of the partition function zeros are
indicated with blue circles and the standard errors are shown
by red ellipses in Fig. 4(a) and vertical error bars in Fig. 4(b).
We stress that our method only requires measurements of the
energy at a single fixed temperature, which is indicated by a
black circle at β = 0.8βc in Fig. 4(a).

APPENDIX B: COMPARISON WITH
BINDER CUMULANTS

We now compare our method to the use of Binder cumu-
lants, which are often used to determine critical points and
critical exponents of phase transitions [30–32]. The Binder
parameter M4 is a modified fourth-order cumulant of the order
parameter, which for Ising models is the magnetization M, and
it is defined as

M4(L) = 1 − 〈M4〉
3〈M2〉2

, (B1)

where 〈M2〉 and 〈M4〉 denote the second- and fourth-order
moments of the magnetization. In the thermodynamic limit,
the Binder parameter approaches a nontrivial value that de-
pends on the boundary conditions and the lattice structure

FIG. 5. Binder cumulants. (a) The Binder parameter as a function of the inverse temperature for different system sizes. The Binder
parameter is evaluated at β = (0.7, 0.8, 0.85, 0.9, 0.95, 0.97, 1.03, 1.05, 1.1, 1.15, 1.2, 1.3) × βc. The intersection point (red circle) that is
extrapolated to the thermodynamic limit yields the critical temperature βcJ ≈ 0.4434. The estimation of the critical temperature highly depends
on the proximity of the measurements to the critical point, and collecting more statistics in the vicinity of βc improves the accuracy. The gray
frame corresponds to the data that we utilize to determine the critical exponents and critical temperature with our method. (b) Collapse of the
Binder cumulant for different system sizes. The estimate of the critical point from (a) is used to tune the critical exponent ν ≈ 1.07 so that all
data collapse onto a single curve.
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[61–63]. The method exploits that M4 depends only weakly
on the lattice size exactly at the critical point. Therefore,
the crossing point of the Binder parameter for systems of
different sizes as a function of the (inverse) temperature
yields the critical temperature, where the system undergoes
a phase transition in the thermodynamic limit. Based on the
scaling behavior of the Binder parameter, one may identify
the universality class of the phase transitions by estimating
the critical exponent ν of the correlation length,

M4(L) = M̃(L1/ν (β − βc)), (B2)

where M̃ is a scaling function. Substituting the critical temper-
ature βc, which is obtained from the intersection of the Binder
parameters, into this equation causes all curves, corresponding

to different system sizes, to collapse onto the same functional
form for the correct value of the critical exponent ν. We note
that estimating the precise location of the phase transition and
the critical exponent requires a detailed study of the finite-size
scaling and the use of specialized algorithms, which is beyond
the scope of this work. Figure 5 shows the Binder parameter
as a function of the temperature and for different system sizes.
We note that in contrast to our method, to make use of Binder
cumulants, one must collect statistics of the magnetization
at a number of different temperatures and tune the system
across the critical point. From an experimental point of view,
it may be a great advantage to work with fixed parameters as
we do, for instance if the phase transition takes place at a low
temperature, which is hard to reach.
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