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We present a topological characterization of time-periodically driven two-band models in 2 + 1 dimensions as
Hopf insulators. The intrinsic periodicity of the Floquet system with respect to both time and the underlying two-
dimensional momentum space constitutes a map from a three-dimensional torus to the Bloch sphere. As a result,
we find that the driven system can be understood by appealing to a Hopf map that is directly constructed from the
micromotion of the drive. Previously found winding numbers are shown to correspond to Hopf invariants, which
are associated with linking numbers describing the topology of knots in three dimensions. Moreover, after being
cast as a Hopf insulator, not only the Chern numbers but also the winding numbers of the Floquet topological
insulator become accessible in experiments as linking numbers. We exploit this description to propose a feasible
scheme for measuring the complete set of their Floquet topological invariants in optical lattices.
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Introduction. With the advent of topological insulators
[1,2], the past decades have witnessed a rekindling of in-
terest in band theory. The interplay between symmetry and
topology has led to the prediction and observation of many
novel gapped and semimetallic electronic topological phases.
While the topological classification of such free-fermion sys-
tems is by now rather well understood [3–13], notions and
invariants such as Chern numbers have increasingly found
generalizations in the context of periodically driven quantum
systems [14–17]. A striking result was found recently also for
quenched systems [18–23]. Particularly, by using a compo-
sition map amounting to a Hopf map, it was shown that the
Chern number can be directly understood as a linking number.
Such out-of-equilibrium topological characterizations are not
only intriguing from a theoretical perspective, but are also
increasingly finding their way to experimental settings of
ultracold atoms via Floquet engineering, where the Berry
curvature and Chern numbers of Bloch bands have been
measured [19,24–31].

Nonetheless, while the topological characterization of
nonequilibrium periodically driven lattices in two dimensions
was established theoretically, the winding numbers character-
izing these systems have not been observed directly in exper-
iments so far, whereas the associated anomalous edge states
were probed in photonic systems [32–36]. Here we reveal
that the full topological characterization of the system can be
achieved via a simple but universal scheme involving Hopf
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maps. Specifically, the winding numbers are shown to directly
correspond to Hopf invariants. In contrast to the symmetry-
protected topological phases, topology of Hopf insulators
relates to the topology of knots formed in three dimensions
under the Hopf map. That is, whereas symmetry-protected
topological band theory involves K theory and hence is stable
to the addition of higher bands, Hopf insulators coincide with
a Hopf map by virtue of being a two-band model. Specifically,
the Grassmannian target manifold Gr(m, m + n) = Gr(1, 2)
is topologically the same as a sphere S2. Several propos-
als involving three-dimensional crystals [37–41] and dipolar
gases [42] have been theoretically studied and proposed as
platforms to identify this novel topologically insulating state,
however, with no luck in an experimental observation so far.
In this Rapid Communication, we consider a two-band model
in two dimensions under a Floquet drive which provides for
the third periodicity necessary for the Hopf map. We show
that the Hopf invariant of the micromotion fully captures the
nontrivial winding structure of the Floquet system. We find
that upon varying the period of the drive, in combination
with a flattening procedure, the Hopf characterization can be
experimentally invoked to deduce the full set of Floquet topo-
logical invariants of the two-dimensional quantum system. We
thus propose a feasible approach for measuring the winding
numbers as linkings in the dynamical response of the system
without requiring adiabatic ground-state preparation.

Model setting. We start from a generic two-band model in
two dimensions,

H(k, t ) = h(k, t ) · σ, (1)

with the Pauli matrices σ and quasimomenta k. Un-
der a periodic drive with period T , the time evolution
of the system is captured by the time-ordered opera-
tor U (k, t ) = T exp[−i

∫ t
0 H(k, t ′)dt ′]. Evaluated stroboscop-

ically, U (k, T ) = e−iHF (k)T , it defines the quasienergy spec-
trum of the system through the time-independent Floquet
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FIG. 1. Quasienergy spectrum of a stepwise drive introduced in
Eq. (3) in a strip geometry for momentum k‖ along the periodic
direction. Three different combinations of edge states appear in the 0
and/or the π gap for (a) T = 2π/3J, � = 0; (b) T = 2π/2J, � =
1.3J; (c) T = 2π/1.5J, � = 0.1J .

Hamiltonian HF with eigenvalues εn for the two bands n =
1, 2. Due to the periodic nature of the Floquet spectrum,
quasienergies can only be defined modulo 2π and can be
restricted to the Floquet Brillouin zone (FBZ), −π/T < εn �
π/T . We label the two gaps centered around the quasienergy
g/T by g = 0 and g = π . With the quasienergy spectrum
defined on a circle, it is possible to obtain anomalous edge
states lying at the π gap connecting the bands through the FBZ
edge. This renders the equilibrium topological classification
in terms of Chern number Cn inept to characterize driven
systems (see Fig. 1). Instead, one needs to consider winding
numbers, Wg, which are topological invariants associated with
gaps rather than individual bands [15,16].

The time evolution operator can be decomposed into two
parts,

U (k, t ) = UF (k, t )e−iHF (k)t , (2)

corresponding to the effective Floquet Hamiltonian HF dic-
tating the stroboscopic evolution at the end of a period
T , and the time-periodic micromotion operator UF captur-
ing the details within a period, whose stroboscopic effect
equals the identity UF (T ) = 1. In the high-frequency regime
where the compactness of the FBZ becomes irrelevant, the
micromotion describes only trivial corrections and we can
focus on the evolution captured by the Floquet Hamiltonian.
However, the overall effect of the micromotion can be non-
trivial at lower frequencies by winding through the FBZ [16],
giving rise to nonzero winding number Wπ .

For concreteness, we consider a two-dimensional hon-
eycomb lattice with an energy offset � between the two
sublattices, and focus on a stepwise periodic drive [15,43].
Driving is introduced by dividing one period into three stages
of equal length T/3 during which the tunneling parameters are
switched on and off in a cyclic manner. The momentum-space
tight-binding Hamiltonian can be written as

H(k, t ) = −
3∑

i=1

Ji(t ){cos(k · bi )σx + sin(k · bi )σy} + �

2
σz,

(3)

where the nearest-neighbor tunneling amplitudes Ji are along
the directions b1 = (−1, 0), b2 = (

√
3/2, 1/2), and b3 =

(−√
3/2, 1/2) in units of the nearest-neighbor distance. Dur-

ing the ith stage within a period, only the hopping along the

bi direction is allowed with an amplitude Ji = J while the
hopping amplitudes along the other two directions are set
to zero. We note, however, that we obtain equivalent results
for a (continuous) circularly driven honeycomb lattice. The
former has the advantage of theoretical simplicity whereas
the latter has been already implemented in cold-atom experi-
ments [19,26,28]. Even though such stepwise drives were ini-
tially introduced to demonstrate the topological distinction of
nonequilibrium periodically driven systems and for theoretical
simplicity, they have been already realized in photonic wave
guides, and their implementation in cold atoms is also possible
[43].

The cyclic nature of the allowed tunneling directions
breaks time-reversal symmetry and may induce chiral edge
states in the quasienergy gaps g. Figure 1 demonstrates the
three possible combinations of edge states for an armchair-
terminated strip with momentum k‖ along the periodic direc-
tion. Particularly, as can be seen in Fig. 1(c), the anomalous
edge states appearing at the FBZ edge result in the breakdown
of the conventional bulk-boundary correspondence of static
systems [44–48]. Instead, the bulk-boundary correspondence
of Floquet systems is captured by the winding number Wg

that accounts for the winding structure of the micromotion in
contrast to the Chern number that can be associated with the
effective Floquet Hamiltonian.

We now turn to the topological aspects alluded to above.
We consider the evolution of a topologically trivial state
�(k, t = 0) under the effect of a time-periodic Hamiltonian
(3) throughout an entire period 0 < t � T . In two spatial
dimensions, the quasimomentum k defines a two-dimensional
torus T 2. Under the micromotion UF of the drive, the
state returns to itself at the end of a period, �(k, T ) =
UF (k, T )�(k, 0) = �(k, 0), making the evolution periodic
and defining a three-torus T 3 in p ≡ (kx, ky, t ) space. It is this
periodicity in all three parameters that allows for establishing
the topological characterization of the periodically driven
system in terms of a Hopf map, which pertains to a map
from S3 to S2 and arises by virtue of π3(S2) = Z [49,50].
Mathematically, it can be generalized to T 3 by use of a
composition map from T 3 to S3. This restrains the map to have
values in a finite group Z2GCD(Cx,Cy,Ct ) in terms of the greatest
common divisor of the Chern numbers Ci of the respective
two-torus submanifolds within the three-dimensional torus
formed by p. Assuming these “weak invariants” to be absent
then renders the usual Z-valued characterization. Specifically,
the micromotion defines an evolution on the Bloch sphere S2,
whose topology is described by the Hopf map conventionally
given as

H = − 1

16π2

∫
A ∧ B,

where Ai = −2i�†∂i� is the connection one-form and B =
dA = 1

2 Bi jd pi ∧ d pj , with Bi j = −2i(∂i�
†∂ j� − ∂ j�

†∂i�),
entails the Hopf curvature two-form. We can cast this Hopf
invariant into a more practical form [51]

H = − 1

4π2

∫
d3 p εi jk�†∂i�∂ j�

†∂k�, (4)

which we shall use in the following.
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FIG. 2. Numerical calculation of the linking number Lg associ-
ated with each quasienergy gap of Fig. 1(b). A state evolving under
the periodic drive (5) visits the north (N) and the south (S) poles
of the Bloch sphere at k points marked by different colors and
times encoded by gradient. These inverse images of the poles draw
trajectories which (a) do not link at the central gap g = 0 and (b) link
once within the momentum-space BZ marked by the parallelogram
at the g = π gap. The insets depict the linking in T 3 schematically.

Under the Hopf construction, each point p maps to a vector
on S2, where the inverse images of any two vectors elucidate
the topological invariant as a linking number L in T 3 (see
insets in Fig. 2). That is, the pre-images define linking circles
and lines in the case of a nontrivial Hopf characterization.
This correspondence has been previously employed to mea-
sure the Chern number of the Floquet bands in stroboscopic
measurements [19]. Here, we show that the linking number of
the micromotion provides direct access to the winding number
of Floquet topological insulators and, hence, captures the full
topological classification of the periodically driven system.

We emphasize the crucial role of the periodicity in the sys-
tem. The three-dimensional torus is formed by the micromo-
tion, under the evolution of which the state has to be mapped
onto itself at the end of a period. That is, the micromotion has
to be isolated from the stroboscopic evolution by smoothly
deforming the drive to obtain U (T ) = UF (T ) = 1, i.e., degen-
erate quasienergy bands. This can be achieved by multiplying
Eq. (2) with eiHF T from the right. However, there is an
ambiguity in determining the effective Floquet Hamiltonian
Hg

F (k) = i logU (k, T )/T when choosing different branches
of the logarithm lying at gap g. The micromotion operator
associated with a chosen Hamiltonian can be implemented by
evolving the system with −Hg

F for an amount of time T after
completing one period of the drive [16],

Ug
F (k, t ) =

{
U (k, t ), 0 < t � T,

e−iHg
F (k)(T −t ), T < t � 2T,

(5)

with a rescaling of the period. Physically, Eq. (5) corresponds
to contracting the bands [U (T ) = 1] into degeneracy at the
center or at the edge of the FBZ. When we apply Ug

F to a topo-
logically trivial initial state, this state acquires the periodicity
of the micromotion, thereby naturally tracing an evolution of
the well-defined Bloch vector as function of the variables p
on T 3, governed by the Hopf map. Consequently, the driven
system is described by two Hopf constructions, hence, by two
Hopf invariants Hg depending on whether the branch cut is
taken along π or 0. The former reveals the topology of the
Hopf map at the π gap as the micromotion winds the state

through the zone edge, whereas the latter corresponds to the
Hopf invariant at the zero gap .

As one of our main results, we find that our viewpoint
naturally encloses the previously found topological charac-
terizations by connecting to the winding number pertaining
to the gap selected by the branch cut. Indeed, by writing
the evolution operators in the basis of Bloch vectors, we
analytically calculate that the winding number [15,16],

Wg =
∫

d3 p

24π2
εi jk Tr

[(
Ug†

F ∂iUg
F

)(
Ug†

F ∂ jUg
F

)(
Ug†

F ∂kUg
F

)]
,

(6)

directly coincides with the Hopf characterization (see
Supplemental Material [52] for the proof),

Hg = Wg. (7)

Hence, we not only provide an experimentally viable real-
ization for a Hopf insulator, but also establish a general per-
spective on its bulk-boundary correspondence via the winding
numbers. Moreover, the difference between these two Hopf
invariants gives the Chern number of the quasienergy bands.

To make these statements concrete, we can revert to the
explicit values of these topological invariants in the setting
of our illustrative model. We numerically calculate the Hopf
invariants (winding numbers) given in Fig. 1, which can
be directly observed as linking numbers, Hg = Lg, of the
inverse images of the north and south poles of the Bloch
sphere in the three-dimensional p space. In Fig. 2, we follow
the evolution of an initial state defined by the Bloch vec-
tor �(k, 0) = (1, 3, 0)/

√
10 after suddenly switching on the

drive with the parameters given in Fig. 1(b), and plot the p
values where the state �(k, t ) points along the poles. Upon
employing the return map, when we choose the branch cut for
which the quasienergy bands are degenerate at the FBZ edge,
the trajectories in Fig. 2(a) do not link, corresponding to
the vanishing winding number at the 0 gap, L0 = W0 = 0.
However, when the quasienergy bands are contracted into de-
generacy at the FBZ center, the quasienergy spectrum features
edge states winding through the zone edge. Correspondingly,
the trajectories in Fig. 2(b) link once, giving Lπ = Wπ = 1.

Experimental scheme. We now turn to the experimental
implications of our characterization. The trajectories depicted
in Fig. 2 can be measured experimentally in optical lattices
via the state-tomography technique [26,53] where the inverse
images of the poles appear as vortices in the azimuthal Bloch-
sphere angle of the state �(k, t ) as a function of k. This
method has been recently employed in a circularly driven
honeycomb lattice to measure the Chern number with great
precision [19], by monitoring the evolution of the singularities
stroboscopically. However, since the Chern numbers of the
two bands are given by the difference of the winding numbers
above and below a band,

Cn = (−1)n(Wπ − W0), (8)

this measurement is not enough to reveal the full topological
characterization of a Floquet system. Here we propose a
different scheme that relies on tracing the evolution within
one period 0 < t � T . Measurement of the linking number re-
quires the isolation of the micromotion from the stroboscopic
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FIG. 3. Folding of the quasienergy spectrum in the strip geome-
try when the period is doubled, for JT/3 = π/2, � = 0. The bulk
Hopf invariant of the central gap over the double period T̃ = 2T is
the sum of the topological invariants of the both gaps of the original
drive, H̃0 = H0 + Hπ , which can be directly revealed as the linking
number.

dynamics to be able to observe Ug
F (T ) = 1. In principle, this

can be achieved by designing the return map depicted in
Eq. (5). However, in practice it is not possible to engineer Hg

F
as a static Hamiltonian. Alternatively, here we propose a more
elegant and feasible approach to extract the micromotion in
the experiments directly.

Our scheme relies on the particle-hole symmetry of the
Hamiltonian and on folding the quasienergy spectrum, bring-
ing the clear advantage of not relying on adiabatic preparation
of the topological ground state (cf. [17]). When the drive is
monitored in terms of a doubled period T̃ = 2T (with respect
to which it is, obviously, also periodic), the quasienergy bands
fold once around the energy ε = ±π/2T . As a result, the edge
states at the π gap of the original drive lie at the zero gap of the
new quasienergy spectrum of period 2T . This also implies that
the winding number in the zero gap of the folded Floquet spec-
trum is given by the sum of the two winding numbers of the
original drive of period T ; i.e., W̃ (2T )

0 = W (T )
0 + W (T )

π . Taking
power from this observation, we now focus on making the
quasienergy bands flat at T ε = ±π/2, so that they become de-
generate when the period is doubled as demonstrated in Fig. 3.

In principle, the quasienergy bands can be adiabatically
flattened by slightly deforming any drive without closing any
gaps as for a static system; e.g., Fig. 3(a) is topologically
identical to the Floquet spectrum given Fig. 1(c). This can be
achieved by tuning the driving frequency ω [17] individually
at each quasimomentum k to shift the quasienergies within the
FBZ [54]. We identify this modified drive with a tilde, e.g.,
H̃(k, t ), as well as its topological invariants. In practice, the
deformation needs to be performed only at a given number
of points in the BZ enough to reveal the trajectories of the
vortices. Moreover, this experimental implementation does
not require the knowledge of the theoretical model, since
the quasienergy gap can be found experimentally from the
stroboscopic evolution after quenches [17].

Once the quasienergies are flattened, the time evolution op-
erator over a double period becomes the identity, Ũ (2T ) = 1,
directly corresponding to the micromotion operator Ũ0

F (2T ).
Figure 3(b) demonstrates the degenerate Floquet spectrum
over the doubled period where the linking number corre-
sponds to the winding number at the zero gap, L̃(2T ) = W̃ (2T )

0 .
This linking number can be measured via state tomogra-
phy by tracing the time evolution of the state (i.e., vor-
tices in momentum-space azimuthal-phase profile) throughout

0 < t � 2T . In terms of the winding numbers of the original
Hamiltonian, this corresponds to their sum,

L̃(2T ) = W (T )
0 + W (T )

π , (9)

which is, on its own, still not enough to identify the wind-
ing numbers individually. The missing information can be
acquired by combining Eq. (9) for the micromotion and the
Chern number (8) which can be obtained via a stroboscopic
measurement [19].

Conclusion and discussion. We have shown that two-
dimensional Floquet topological insulators with two bands are
characterized by two Hopf constructions rooted in the inherent
periodicity of micromotion. The associated Hopf invariants
are found to directly correspond to previously described
winding numbers and, thus, provide a complete topological
characterization of the system. The attained perspective is not
only appealing from a theoretical point of view, employing
Hopf invariants to describe the quasienergy band topology, but
also intimately relates to experimental setups, bringing these
deep notions within experimental reach. Indeed, by proposing
a viable band-folding scheme, this physics is directly measur-
able in cold-atomic systems.

Finally, we point out a peculiarity compared to static sys-
tems [37,39,40]. The three-dimensional Z-valued Hopf invari-
ant is not present in the many-band tenfold periodic table. In
contrast, when a two-dimensional system is driven, the third
periodicity arises by virtue of time translations. The periodic
table for Floquet states [14] predicts a Z×n classification,
where n refers to the number of gaps, showing, e.g., that
there is a 0- and π -gap topological invariant for the case of
two bands. As we have demonstrated, these numbers directly
coincide with our framework and the Hopf characterization of
the micromotion, highlighting the difference between (2 + 1)-
dimensional Floquet states and 3-dimensional static insula-
tors, as reflected in the periodic tables themselves. This gives
incentive to speculate that our approach can be generalized
to describe the topology of any desired pair of bands in a
general two-dimensional class-A Floquet insulator. In this
regard we remark that in specific scenarios the Hopf maps
can be obtained by considering stacks of Chern insulators or
can be stabilized to higher bands under certain symmetries
that can be conserved in the protocol at hand [37,38,49,50].
This poses the question of whether the Chern number of
quasienergy bands can be phrased into such a “stacking” per-
spective in the time direction, using, e.g., a Hopf map that is
the composition of the Hopf maps for both gaps. Indeed, from
our construction it directly follows that restrictions on the
Hopf invariant correspond to Chern numbers of cuts and vice
versa. Finally, this also stimulates connections to topological
Hopf-Chern insulators [38], which will in turn relate to the
many-band generalization.

Note added in proof. Recently we became aware of the
insightful work by Schuster et al. [55] which, in contrast
to the present Rapid Communication, considers the Floquet
driving of an underlying three-dimensional Hopf insulator.
Such systems were shown to have an additional Z2 invariant
associated with the Witten anomaly [41].
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