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Percolation on complex networks is used both as a model for dynamics on networks, such as network
robustness or epidemic spreading, and as a benchmark for our models of networks, where our ability to predict
percolation measures our ability to describe the networks themselves. In many applications, correctly identifying
the phase transition of percolation on real-world networks is of critical importance. Unfortunately, this phase
transition is obfuscated by the finite size of real systems, making it hard to distinguish finite-size effects from the
inaccuracy of a given approach that fails to capture important structural features. Here, we borrow the perspective
of smeared phase transitions and argue that observed discrepancies may be due to the complex mesoscopic
structure of real networks rather than to finite-size effects only. We support and illustrate this claim by studying
real and synthetic networks through the lens of local order parameters, message passing, and local susceptibility.
Our results not only shed light on the nature of the percolation transition in complex networks but also provide
two important insights on the numerical and analytical tools we use to study them. First, we propose a measure
of local susceptibility to better detect both clean and smeared phase transitions by looking at the topological
variability of the order parameter. Second, we discuss a shortcoming in state-of-the-art analytical approaches
such as message passing, which can detect smeared transitions but not characterize their nature.
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I. INTRODUCTION

Percolation on networks is simple to define [1]. Given an
original network structure, predict the size distribution of con-
nected components if edges (bond percolation) or nodes (site
percolation) are randomly removed such that, on average, only
a fraction p remain and are said to be “occupied.” Connected
components are groups of nodes that are reachable from one
another by following occupied edges, and the relative size
of the largest component is a natural order parameter for
the connectivity of the system. While percolation is simple
to define, it is widely used to model complex systems. For
example, we can model epidemic spreading with percolation
by assuming that occupied edges are contacts that would
transmit a disease should one of the two nodes at its ends
becomes infected [2]. Because of the breadth and depth of
its applications, percolation has become a canonical problem
of network science where it reflects the current state of the
field: Percolation can be solved on many ordered lattices or
random networks, but it is much more complicated on the real,
complex networks that exist between order and randomness.

One of the most salient features of percolation is its phase
transition in infinite systems, i.e., in the thermodynamic limit
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where the number of nodes formally goes to infinity. When
p is close to zero, and few edges or nodes are occupied,
the system is almost fully disconnected. As p increases,
connected components grow. Eventually, at p = pc, we see the
emergence of a macroscopic connected component called the
giant connected component (GCC) whose size scales linearly
with the size of the system. That is, if we double the size of
the system by doubling the number of nodes, there exists a
component that will also double in size only if p > pc, while
the size of all other components will remain virtually indepen-
dent of system size. Therefore, by using the relative size of
the GCC as the order parameter, the percolation threshold pc

marks the transition between two phases: (1) A disconnected
phase where connectivity does not scale with system size such
that the size of the largest connected component vanishes
compared to the size of the system and (2) a connected
phase where connectivity scales with system size such that the
GCC contains a nonvanishing fraction of all nodes even in an
infinite system. In applications, the percolation threshold can,
for example, help determine whether a disease can invade a
contact network.

Predicting the percolation threshold of a complex network
is a highly nontrivial task because it depends on the topology
of the network at all scales. In fact, even in direct simulations,
detecting the phase transition can be complicated. While in
theory, there is a clean phase transition where the order
parameter goes from zero to a nonzero value at pc, in practice
this transition is masked by noise due to the finite size of
real networks. Formally speaking, the definition of the GCC
involves taking a thermodynamic limit and following its size
as we increase the system size. For real, finite data, doing
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so would require assuming some specific growth mechanism,
whose specifics can hardly be inferred from the data itself.
Hence, the transition in the connectivity of finite networks
does not qualify as a genuine phase transition. That being said,
several concepts from phase transition theory are still useful
in finite-size networks, and detecting the finite-size analog of
a phase transition remains an important problem.

This paper studies our ability to detect and characterize the
percolation phase transition in complex networks as follows.
In Sec. II, we outline and test existing methods to numerically
detect phase transitions using representative real complex
networks as case studies. In Sec. III, we interpret the results
of the previous section using the perspective of smeared phase
transitions. We show how the phase transition may consist in
a sum of sequential phase transitions within inhomogeneities
such as modules, core-periphery structures, or degree classes,
thus differing significantly from the expected behavior of a
clean transition. In Sec. IV, we briefly discuss our results
on finite-size effects through the lens of the message-passing
approach. We also propose a measure of local susceptibility to
potentially identify smeared transitions.

II. PHASE TRANSITION DETECTION

To numerically investigate percolation on real networks,
we have to adapt the theoretical definition of the order pa-
rameter. The relative size of the GCC can be approximated in
practice by the ratio S1/N , where S1 is the size of the largest
connected component (LCC) and N is the number of nodes in
the network (i.e., system size). Moreover, to avoid confusing
subcritical but large components with a supercritical compo-
nent, we consider S1 as nonextensive whenever it is smaller
than 0.01N [3–6] (other authors use

√
N with similar results

[7]).
We consider three methods to detect the position of the

percolation threshold which are based on quantities that are
known to peak in homogeneous phase transitions (see Fig. 1):
the susceptibility and the size of small, or nonextensive, com-
ponents. The susceptibility measures the expected response
of the system as the fraction p of occupied edges (or nodes)
is varied. Since the derivative of the order parameter is dis-
continuous at the phase transition, the susceptibility diverges.
The methods we consider to detect the percolation transition
are the following:

(1) Method 1: We denote S1,i as the size of the LCC in the
ith realization of the percolation process such that S1 is the
average of S1,i over all simulations i. The susceptibility χ1 of
S1 can be written as

χ1 =
∑

i(S1,i − S1)2

∑
i S1,i

. (1)

As per classic percolation theory, χ1 peaks, or diverges in the
limit of infinite system size, at the phase transition [8,9].

(2) Method 2: Before the phase transition, the expected size
of a small component 〈s〉 in which we might find a random
node should increase monotonously with p until it grows
very large and forms the GCC. After the phase transition,
the largest small components are increasingly absorbed by the
GCC such that 〈s〉 decreases. One can therefore look for a
peak in 〈s〉—excluding the LCC—to identify the phase transi-
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FIG. 1. Detection of the phase transition on a small random
network. We study the phase transition, as we vary the probability
of existence of edges p, in the relative size of the giant connected
component (GCC) as approximated by the largest connected com-
ponent (LCC) when greater than 1% of the network size. We also
follow three different metrics—the susceptibility χ1 of the LCC, the
expected size of small components 〈s〉 (enlarged by a factor 25),
and the size of the second-largest connected component S2—which
should all peak at the phase transition. We use a single realization
of an Erdős-Rényi (ER) random network of size 1000 with an
average degree of 10. The three methods all peak together to suggest
a transition very close to the theoretical value of pc = 1/10. The
effects of the finite size of the network are reflected in the width of
the peaks.

tion [10,11]. Because 〈s〉 is calculated by selecting a random
node and because a random node is s times more likely to
be in a component of size s than a component of size 1, it is
proportional to the second moment of the true component size
distribution Ps, that is, 〈s〉 = ∑

s s2Ps/
∑

s′ s′Ps′. It is therefore
equivalent to a classic definition of susceptibility [12].

(3) Method 3: The third method is based on the previous
one but only looks at the size S2 of the second-largest con-
nected components (SLCC) [13]. It typically leads to a refined
and more evident peak because of its greater amplitude (i.e.,
S2 � 〈s〉 for p > pc) and because of its sharper decrease since
the SLCC is quickly absorbed by the LCC.

Contrary to Fig. 1, Fig. 2 shows that these three methods
may not identify the same clean phase transition when applied
to real network datasets and can behave in unexpected ways.
First and foremost, neither do they always agree nor do
they always rank consistently or provide bounds on what
we would consider the actual phase transition, as suggested
in the supplemental material of Ref. [18]. Second, the peak
can be very wide, with the width at half-amplitude spanning
over 10% of the parameter space in some cases. Third, and
most surprisingly, method 2 does not always peak, and some
methods can peak more than once.

III. SMEARED PHASE TRANSITIONS

The first two problems observed at the end of the previous
section are related—the peaks of the observables do not align
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(a) Power grid
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(b) Polish grid
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FIG. 2. Detection of the phase transition on real complex networks. We study the phase transition as we did in Fig. 1 but now considering
four real networks: an American power grid [14], a Polish power grid [15], a social network among the boards of directors of public Norwegian
companies [16], and the web of trust of the pretty good privacy (PGP) encryption algorithm [17]. These networks were chosen to highlight the
common problems with standard methods to detect the phase transition in real complex systems: (i) They do not necessarily agree, (ii) they
can peak once the order parameter is already very large, and (iii) they can peak more than once.

and are not sharp—and correspond to what we would expect
given strong finite-size effects. Indeed, the finite size of real
systems tends to smooth out phase transitions of all nature.
In the case of percolation, this happens because large but
nonextensive components are hard to distinguish from a GCC
if we cannot change the system size to investigate the scaling
relations. Just below the threshold, small components larger
than our LCC criteria (1% of system size) exist such that a
nonzero order parameter below pc is numerically observed.
These effects are inherent to the use of the phase transition
framework to real finite-size systems, which in theory only
applies in the infinite-size limit. While there are methods
available to account for some finite-size effects [19] and
other rare fluctuations [20], the basic phenomenology of the
transition, averaged over all possible realizations, remains
the same. Finite-size effects therefore fall short of explaining
the enormous width of the susceptibility peaks in Fig. 2 and
cannot explain why they would peak more than once.

A. Empirical results

Another possible explanation is that we are dealing with
smeared phase transitions. One classic example is that of the
Ising model in systems with defects [21]. The Ising model
considers spins, which can take a +1 or −1 value, laying on

the nodes of a regular lattice. At high temperature, the spins
are independent of each other and free to take either value
such that the global (or average) magnetization of the system
is zero; this is the disordered or paramagnetic phase. As
temperature decreases, the interactions force correlations and
the system eventually enters a correlated state with nonzero
global magnetization; this is the ordered or ferromagnetic
phase. Because of the regular structure of lattices and because
all interactions are equal, the system is highly homogeneous.
This homogeneity leads to a clean phase transition: There
is no spatial variation in thermodynamic observables and all
mesoscopic domains undergo an identical phase transition.
This also means that in the thermodynamic limit, we see
a vanishing width or variance in the distribution of the or-
der parameter across domains. This property is called self-
averaging.

One of the most powerful aspects of phase transitions is
their resilience to microscopic details in the structure or rules
of our models. For example, we can introduce significant
defects in the lattice on which the Ising model occurs without
destroying the sharpness of its phase transitions. Defects such
as weakening/strengthening or removing/adding edges do
not affect the phenomenology of the model as long as they
are not strongly correlated (e.g., random micro- or mesoscopic
noise in space).
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FIG. 3. Smeared phase transitions in two different models. (a) Simulations of percolation on the American power grid of size N = 4941 of
Fig. 2 where the relative size of the LCC is again followed as the external parameter p (bond occupation probability) is varied. (b) Simulations
of a three-dimensional Ising model in a cubic lattice of size N = 20 000 with planar defects where the average magnetization is followed as
the external parameter T (temperature) is varied, reproduced from Ref. [21]. In both cases, we attempt to detect the phase transition using
the susceptibility of the system. Unfortunately, in both cases, susceptibility peaks when the order parameter is roughly equal to a third of its
maximal value.

However, the observed phase transition can change drasti-
cally when strongly correlated defects are introduced. A clas-
sic example is that of the Ising model in a three-dimensional
cubic lattice with planar defects creating weaker bonds. The
phase transition observed in that model is compared to perco-
lation on a power grid on Fig. 3, and the phenomenological
similarity is striking. This smearing is related, at least physi-
cally, to the Griffiths phenomenon [22] but is different through
the long-range order established by correlated defects [21].

If we accept that our inability to accurately locate the
percolation phase transition in real complex networks is not
solely due to finite-size effects but potentially also to corre-
lated defects, the question becomes the following: What is
the source of this disorder? First, since complex networks
are not regular systems like lattices, “disorder” is the norm
and we instead look for correlated inhomogeneities. Second,
we can detect these inhomogeneities by using the definition
of the smeared phase transition. We thus look for subsets of
nodes around which the local order parameter deviates from
the global order parameter. More specifically, we wish to
identify sets of nodes {i} such that the probability Pi(p) that
node i is in the LCC under occupation probability p deviates
from S1(p)/N in a way that cannot be explained by degree
inhomogeneities [23].

In Fig. 4, we show the curves Pi(p) for all nodes i in a
homogeneous random network and in a Polish power grid
network and compare them to the corresponding average
〈Pi(p)〉 = S1(p)/N . The main conclusion that can be drawn
from this experiment is that we can expect significant variance
in the distribution of the order parameter in both random and
real complex networks, but significantly more in the latter.
Without an idea of how the variance would scale with system
size, it is impossible to rule out the possibility of a finite-size
effect, but it does seem to be more in line with the smeared
phase transition interpretation. We can investigate the nature

of these inhomogeneities by averaging Pi(p) over subset of
nodes i who share a same given structural property.

In Fig. 5, the curves Pi(p) are compared to the averages
obtained over different centrality classes: Degree centrality
given by the number of edges on a given node, k-core central-
ity given by the largest k such that a node is in the maximal
subset of nodes with degree at least k among one another [24],
and the onion decomposition which assigns a layer centrality
to every node based on when they are removed in the k-core
decomposition [25]. Degree heterogeneity is sufficient to
capture all the inhomogeneities observed in random networks,
as shown in Ref. [23], but not in the power grid. However,
using the onion decomposition, we now capture much more
directly the fact that the system is divided into two (or more)
subsystems composed of nodes with very different centrality,
not necessarily related to degree but to their position in the
mesoscale organization of the network structure.

B. Synthetic results

There are several mesoscopic features that are known to
lead to exotic behaviors in the phase transitions of complex
networks: modular structure where nodes are grouped in
densely connected modules with sparse connectivity across
modules [8,26–28], core-periphery structure where a subset
of nodes form a densely connected nodes linked to a sparsely
interconnected periphery [8,11], and strong heterogeneity in
the degree distribution where star nodes drive a weak initial
phase transition followed by sequential activation of different
degree classes [29–31].

To highlight the role of these mesoscopic features on the
percolation phase transition, we study the set of probabilities
Pi(p) introduced in the previous section within two toy net-
works. Both are based on the traditional Erdős-Rényi (ER)
random network considered in Fig. 4: A simple network of

013009-4



SMEARED PHASE TRANSITIONS IN PERCOLATION … PHYSICAL REVIEW RESEARCH 1, 013009 (2019)

FIG. 4. Local order parameters. Results of percolation simulations on (a) an Erdős-Rényi (ER) random network of size 1000 with an
average degree of 10, (b) the Polish power grid network, (c) the corporate network, and (d) the PGP encryption network. We show the global
order parameter (i.e., the relative size of the LCC) in white, while the underlying gray curves show the probability Pi(p) that every individual
node i is found in the LCC. In panel (a), despite the small size of the network, we find a relatively clean phase transition, meaning that the global
order parameter accurately describes the behavior observed around every individual nodes. Importantly, all curves of the local order parameter
in panel (a) are the steepest at the same point (i.e., the maxima of dPi(p)/d p correspond to the phase transition) and well approximated by the
global order parameter. In panels (b)–(d), we find that while the global order parameter represents the average of all Pi(p) (by definition), it is
not representative of the behavior of every Pi(p).

N nodes where every unique pair of nodes is independently
connected with probability ρ. Our first toy model produces
a core-periphery structure using two nested ER networks:
An inner smaller network of size N1 with density ρ1 and
a larger outer network of size N2 > N1, where nodes are
connected among themselves and to the inner network with
density ρ2 < ρ1. The second toy network is produced by a set
of independent ER networks of different size and/or density
which are then connected by a single edge; this results in a
network with a strong modular structure. The top row of Fig. 6
provides a typical realization of these two toy models.

The bottom row of Fig. 6 shows the Pi(p) curves obtained
with the two toy models alongside the average value over all
nodes. In the case of the core-periphery structure, the percola-
tion process nucleates in the core at an occupation probability
p much lower than the known threshold 1/3 of the periphery.
Peripheral nodes are still “activated” below their threshold
due to subcritical spillover from the core into the periphery.
Eventually, the periphery activates and creates a sudden rise

in the Pi(p) curves of peripheral nodes. Importantly, we find
that all curves increase monotonously as p increases, with the
LCC spreading progressively from the core outward.

In the modular networks, the percolation process again
nucleates in the denser modules, but eventually the Pi(p)
curves corresponding to nodes in denser modules decrease.
This is due to the weak coupling between modules: there
exist a regime where large connected components exist in
each module but are unlikely to connect and are therefore
in competition for the title of largest connected component.
Hence, whether there is a subset of nonmonotonous Pi(p)
curves can be used to distinguish core-periphery and modular
structures. For example, the set of Pi(p) curves observed with
the modular networks are strongly reminiscent of the results
on the Polish power grid which, in turn, suggests a high
modularity in its inner cores.

We further test the robustness of these inhomogeneities
in the distribution of local order parameter Pi(p) by mea-
suring their standard deviation as we increase system size.
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FIG. 5. Local order parameters combined according to different centrality classes. [(a), (b)] We compare the curves shown in Figs. 4(a) and
4(b) to averages (additional colored curves) based on the degree of nodes. The new curves show the average probability that a particular node
is found in the LCC based on its degree (i.e., from the bottom up, we plot averages over degrees 1, 2, 3, and so on). [(c), (d)] For the Polish grid
only, we show color curves now representing the average of Pi(p) over nodes i belonging to given (c) k shells of the k-core decomposition and
(d) layers of the onion decomposition. These more complicated centrality metrics capture progressively more topological diversity, especially
around the most and least central nodes.

The results are shown in Fig. 7. There are different ways to
increase the size of these random networks, and we investigate
three options. (i) We increase the size of all subnetworks at
the same time. (ii) We only increase the size of the largest
subnetwork. (iii) We increase the size of the largest subnet-
work, and add more subnetworks of a fixed smaller size.
Doing so we find that the smeared transition is only preserved
when all subnetworks are scaled simultaneously. Interestingly,
adding more inhomogeneities (smaller denser modules) of
fixed size collapses the transition even faster than not scaling
the inhomogeneities at all. Again, this is due to increased
competition between inhomogeneities which might all have
large connected components competing for the title of the
LCC. Importantly, this result stresses the need for correlated
inhomogeneities to produce smeared phase transitions.

IV. DISCUSSION

A. The thermodynamic limit and message passing
approaches to percolation

To sum up the results obtained so far, one can characterize
a phase transition by looking at the set of probabilities Pi(p)

of finding node i in the LCC at occupation probability p. The
curves Pi(p) can help identify the mesoscopic organization
of the structure at hand. Using two simple toy models, we
showed that core periphery leads to monotonously increasing
Pi(p) where the core activates first and gradually invades the
periphery. Modular structure, on the other hand, can lead
to nonmonotonous Pi(p) where the LCC appears in a dense
module first, and eventually jumps to a sparser but larger
second module. In other words, the strength of the coupling
between cores or modules distinguishes these different results.

To better understand the role of coupling between sub-
structures, we follow the language of Sknepnek and Volta
and distinguish three types of mesoscopic network inhomo-
geneities [21]. The first one, called vanishing randomness,
corresponds to where the distribution of local thermodynamic
observables collapses in the thermodynamic limit, meaning
that the system is self-averaging and does not produce true
smeared phase transitions. The second and third types of
network inhomogeneities are finite randomness and infinite
randomness, meaning that the distribution of local thermo-
dynamic observables are not self-averaging but instead lead
to finite or infinite width in the distributions of local order
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FIG. 6. Local order parameters in two toy networks with core-periphery and modular structures. (a) Core periphery: The core is an Erdős-
Rényi (ER) random network of N1 nodes with density ρ1 and the periphery is an ER random network whose N2 > N1 nodes are connected
to each other and to the core with density ρ2 < ρ1. (b) Modular structure: There are three distinct ER random networks of sizes N1, N2, and
N3 with densities ρ1, ρ2, and ρ3 respectively. Modules of size N1 and N2 are both connected to N3 with a single random edge. The curves
Pi(p) (c) in a core-periphery produced with N1 = 51 and N2 = 1001 with densities ρ1 = 0.15 and ρ2 = 0.003 and (d) in a modular structure
with N1 = N2 = 201 and N3 = 1101 with densities ρ1 = ρ2 = 0.025 and ρ3 = 0.002. Each thin curve correspond to the local order parameter
around a single node, and the color of the curve indicates the module in which that node can be found in the network above. The black dashed
line corresponds to the average of the local order parameters, as in Fig. 5.

parameters in the thermodynamic limit. Vanishing and finite
randomness both appear in Fig. 7 depending on how the
network grows when taking the thermodynamic limit.

Since this categorization depends on how we take the
thermodynamic limit of a system, there are no way to apply
our intuition to real networks. Indeed, there are no way to
know whether the dense cores observed in power grids should
scale with the size of the system or not. For example, if
the power grid was twice as large, would we find a core
of similar size, twice as many cores, or a single core twice
as large? Distinguishing important mesoscale structures from
finite-size effects is therefore context dependent and must be
done on a case-by-case basis. What we can say, however, is
that many of current mathematical approaches are making that
decision for us.

Current state-of-the-art analytical approaches to percola-
tion are based on the message-passing approximation (MPA)

[32]. The MPA takes the entire network structure as an input
but then ignores loops when solving the percolation process.
Because of this approximation, the MPA is effectively solving
percolation not on the true network but on an infinite network
where there exist an infinite number of copies of every node
[33,34]. In practice, this means that any modular structure
is mapped to a core-periphery structure. For example, when
using the MPA on a network with two modules of size N
with uniform degrees k1 and k2 < k1 and connected by a
single edge, we are solving percolation on a core-periphery
structure where the core is a k1-core, and the periphery a
k2-core, interconnected by a bridge between a fraction 1/N
of the nodes (which, in this case, nevertheless corresponds to
an infinite number of bridges).

In practice, this means that any core-periphery structure
will be captured by the MPA, but that modular structure will
be mapped to an equivalent core-periphery structure [33].
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FIG. 7. Vanishing and finite randomness in two toy networks with core-periphery and modular structures. We use the core-periphery
(a) and modular (b) structures presented in Fig. 6. We follow the standard deviation of Pi(p) at p = 0.3 when the network size is increased
while keeping the average degree of subsystems fixed by varying their densities. In the core periphery, growing a network means either that the
size of both the core and the periphery grow together (option 1, in blue) or that only the periphery grows and the size of the core remains fixed
(option 2, in orange). In the modular structure, growing a network means, again, growing all modules together (option 1, in blue), growing only
the largest module with fixed number and size for small modules (option 2, in orange), or growing the largest module while adding smaller
modules of fixed size (option 3, in green). The markers correspond to the average and error bars to the full range of observed values. Lines
showing theoretical bounds of N−1/2 and N−1 have been added to guide the eye. The N−1/2 behavior corresponds to typical vanishing finite
size effects. The faster decay in N−1 corresponds to competing finite-size effects; for example, adding small modules makes it less likely for
any given module to contain the LCC.

For the local order parameter, this implies that the MPA
will always predict monotonously increasing Pi(p) curves.
Consequently, while it is tempting to dismiss dense but small
substructures, it is important to know that the MPA, and other
analytical approaches that account for node centrality [6,35],
will capture smeared phase transitions [23] but not necessarily
their nature. This result is illustrated in Fig. 8(a).

B. Local susceptibility

Finally, we propose a measure of local susceptibility that
extracts some of the important information contained in the set
of Pi(p) curves. We want this local susceptibility to be a single
curve describing the response function of how the spatial
distribution of the local order parameter changes following
a small variation in occupation probability p. Since many
linear combinations of the Pi(p) curves, or their derivatives,
can be written as functions of the global order parameter,
S = ∑

i Pi(p)/N , averages over Pi(p) are unlikely to capture
small localized responses. We instead look at a second order
property—the standard deviation σ (Pi(p))—which captures
the heterogeneity of the Pi(p) curves.

Local maxima of σ (Pi(p)) correspond to points where
some substructures have supercritical behavior while others
may not. However, it would not capture the initial percola-
tion transition where all Pi(p) are still close to zero. Local
maxima of the first derivative in p of σ (Pi(p)) correspond to
points where the spatial heterogeneity of the order parameter
changes the most with varying p. This measure will therefore
detect sequential phase transitions but will typically peak after
the transitions. Local maxima of the second derivative in
p of σ (Pi(p)) correspond to points of maximum curvature
where the response of the order parameter changes rapidly
with varying p. These can be caused by both regular phase
transitions or sequential transitions in different subsystems.

We thus propose

χlocal = d2

d p2
σ (Pi(p)) , (2)

where the derivative is to be performed numerically. Fig-
ure 8 shows the local susceptibility and compares it with
the global and local order parameters of the Polish power
grid, the network of corporate board of directors, and the
PGP encryption network. As desired, the maxima of local
susceptibility accurately capture the emergence of the LCC
as well as secondary transitions that produce inflection points
in the growth of the LCC.

C. Conclusion

We observed that percolation transition in real complex
networks can be often described through the lens of smeared
phase transitions. We illustrated with a few case studies
that the nature of the inhomogeneities can be studied by
looking at the local order parameters and then by determin-
ing whether subdivisions of nodes by degrees, modules, or
centrality classes best explain the observed variations. We
showed that modular and core-periphery structure can both be
responsible for the observed smeared phase transitions and we
discussed the qualitative difference between the two types of
mesoscopic structure. Importantly, looking at the topological
distribution of the order parameter through the set of Pi(p)
curves can help identify the nature (or cause) of the smeared
phase transition. While in theory these results might all be due
to the finite size of real networks, they are all captured by the
state-of-the-art analytical approaches to percolation on com-
plex networks. It is therefore an important feature to consider
when comparing how well different analytical models predict
the percolation transition. Similarly, it is critical to investigate
the potential for smeared transitions in real systems before
applying results from clean phase transition to percolation-
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FIG. 8. Using message passing and local susceptibility to detect smeared phase transitions. (a) Solving the local order parameters in a
system of message passing equations defined over the structure of the Polish power grid allows us to detect the smeared phase transition found
in the simulated LCC. As discussed in Sec. IV A, because of the treelike approximation used in message passing, all inhomogeneities are
mapped to an effective core-periphery structure and message passing therefore always leads to monotonous local order parameters that do not
capture the cause or nature of the smeared transition. Here, message passing correctly detects the two transitions but would lead us to conclude
that they stem from a core-periphery structure as it misses the nonmonotonic regime of competition between modules. The equations used
to obtain Pi(p) as predicted by the MPA are explained in the Appendix. [(b)–(d)] The results of Eq. (2) in orange are compared to both the
global and local order parameters (i.e., S1/N in white and Pi(p) for all nodes i in gray). Not only is the local susceptibility able to capture the
first transition, unlike traditional susceptibility shown in Fig. 2, but it also better detects the second transition around the point of maximum
curvature in the global order parameter for the Polish power grid in panel (b) and for the network of corporate boards of directors in panel (c).
The PGP encryption network in panel (d) does not appear to have a second transition.

like models of system resilience or disease spread. For that
purpose, we developed a measure of local susceptibility which
can help identify smeared or sequential phase transitions at a
glance.
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APPENDIX: THE MESSAGE-PASSING APPROXIMATION

The message-passing approximation (MPA) relies on the
assumption that the structure of networks does not contain
short loops—that it is locally treelike—to predict the outcome
of percolation (see Ref. [32] for a detailed derivation of the
equations). It defines ui j as the probability that following
the edge from node i to node j does not lead to the giant
connected component. This situation occurs if the edge has
been removed (probability 1 − p) or if the node at the other
end of the edge does not itself lead to the giant connected
component via its other neighbors. In other words, the {ui j}
are the solution of the self-consistency equation

ui j = (1 − p) + p
∏

l∈N j\i

u jl , (A1)

where i, j = 1, . . . , N and where N j\i corresponds to the
neighbors of node j excluding node i.
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Having solved Eq. (A1) for both directions of every edges
(i.e., for each ordered pair i j for which an edge exists),
the probability that a node i is part of the giant connected
component is simply the probability Pi(p) that at least one of

its neighbors leads to it:

Pi(p) = 1 −
∏

j∈Ni

ui j . (A2)

[1] M. E. J. Newman, Networks, 2nd ed. (Oxford University Press,
Oxford, UK, 2018), p. 800.

[2] M. E. J. Newman, Spread of epidemic disease on networks,
Phys. Rev. E 66, 016128 (2002).

[3] A. Allard, L. Hébert-Dufresne, P.-A. Noël, V. Marceau, and L. J.
Dubé, Bond percolation on a class of correlated and clustered
random graphs, J. Phys. A 45, 405005 (2012).

[4] A. Allard, L. Hébert-Dufresne, J.-G. Young, and L. J. Dubé,
General and exact approach to percolation on random graphs,
Phys. Rev. E 92, 062807 (2015).

[5] L. Zdeborová, P. Zhang, and H.-J. Zhou, Fast and simple decy-
cling and dismantling of networks, Sci. Rep. 6, 37954 (2016).

[6] A. Allard and L. Hébert-Dufresne, Percolation and the Effec-
tive Structure of Complex Networks, Phys. Rev. X 9, 011023
(2019).

[7] F. Coghi, F. Radicchi, and G. Bianconi, Controlling the uncer-
tain response of real multiplex networks to random damage,
Phys. Rev. E 98, 062317 (2018).

[8] P. Colomer-de-Simón and M. Boguñá, Double Percolation
Phase Transition in Clustered Complex Networks, Phys. Rev.
X 4, 041020 (2014).

[9] F. Radicchi, Predicting percolation thresholds in networks,
Phys. Rev. E 91, 010801(R) (2015).

[10] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random
graphs with arbitrary degree distributions and their applications,
Phys. Rev. E 64, 026118 (2001).

[11] A. Allard, B. M. Althouse, S. V. Scarpino, and L. Hébert-
Dufresne, Asymmetric percolation drives a double transition in
sexual contact networks, Proc. Natl. Acad. Sci. USA 114, 8969
(2017).

[12] K. Christensen and N. R. Moloney, Complexity and Criticality
(World Scientific, Singapore, 2005).

[13] P. Zhang, Spectral estimation of the percolation transition in
clustered networks, Phys. Rev. E 96, 042303 (2017).

[14] D. J. Watts and S. H. Strogatz, Collective dynamics of small-
world networks, Nature (London) 393, 440 (1998).

[15] R. D. Zimmerman, C. E. Murillo-sánchez, and R. J. Thomas,
MATPOWER: Steady-state operations, systems research, and
education, IEEE Trans. Power Syst. 26, 12 (2011).

[16] C. Seierstad and T. Opsahl, For the few not the many? The
effects of affirmative action on presence, prominence, and social
capital of women directors in Norway, Scand. J. Manag. 27, 44
(2011).

[17] M. Boguñá, R. Pastor-Satorras, A. Díaz-Guilera, and A. Arenas,
Models of social networks based on social distance attachment,
Phys. Rev. E 70, 056122 (2004).

[18] F. Radicchi and C. Castellano, Beyond the locally treelike
approximation for percolation on real networks, Phys. Rev. E
93, 030302(R) (2016).

[19] G. Bianconi, Rare events and discontinuous percolation transi-
tions, Phys. Rev. E 97, 022314 (2018).

[20] G. Bianconi, Fluctuations in percolation of sparse complex
networks, Phys. Rev. E 96, 012302 (2017).

[21] R. Sknepnek and T. Vojta, Smeared phase transition in a three-
dimensional Ising model with planar defects: Monte Carlo
simulations, Phys. Rev. B 69, 174410 (2004).

[22] M. A. Muñoz, R. Juhász, C. Castellano, and G. Ódor, Griffiths
Phases on Complex Networks, Phys. Rev. Lett. 105, 128701
(2010).

[23] R. Kühn and T. Rogers, Heterogeneous micro-structure of
percolation in sparse networks, EPL 118, 68003 (2017).

[24] V. Batagelj and M. Zaveršnik, Fast algorithms for determining
(generalized) core groups in social networks, Adv. Data Anal.
Classification 5, 129 (2011).

[25] L. Hébert-Dufresne, J. A. Grochow, and A. Allard, Multi-
scale structure and topological anomaly detection via a new
network statistic: The onion decomposition, Sci. Rep. 6, 31708
(2016).

[26] J. P. Gleeson, Cascades on correlated and modular random
networks, Phys. Rev. E 77, 046117 (2008).

[27] L. K. Gallos, H. A. Makse, and M. Sigman, A small world
of weak ties provides optimal global integration of self-similar
modules in functional brain networks, Proc. Natl. Acad. Sci.
USA 109, 2825 (2012).

[28] U. Bhat, M. Shrestha, and L. Hébert-Dufresne, Exotic phase
transitions of k-cores in clustered networks, Phys. Rev. E 95,
012314 (2017).

[29] D.-S. Lee, K.-I. Goh, B. Kahng, and D. Kim, Evolution of scale-
free random graphs: Potts model formulation, Nucl. Phys. B
696, 351 (2004).

[30] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, and J. F. F.
Mendes, Localization and Spreading of Diseases in Complex
Networks, Phys. Rev. Lett. 109, 128702 (2012).

[31] G. St-Onge, J.-G. Young, E. Laurence, C. Murphy, and L. J.
Dubé, Phase transition of the susceptible-infected-susceptible
dynamics on time-varying configuration model networks,
Phys. Rev. E 97, 022305 (2018).

[32] B. Karrer, M. E. J. Newman, and L. Zdeborová, Percolation on
Sparse Networks, Phys. Rev. Lett. 113, 208702 (2014).

[33] A. Allard and L. Hébert-Dufresne, On the accuracy of
message-passing approaches to percolation in complex net-
works, arXiv:1906.10377.

[34] A. Faqeeh, S. Melnik, and J. P. Gleeson, Network cloning
unfolds the effect of clustering on dynamical processes,
Phys. Rev. E 91, 052807 (2015).

[35] L. Hébert-Dufresne, A. Allard, J.-G. Young, and L. J. Dubé,
Percolation on random networks with arbitrary k-core structure,
Phys. Rev. E 88, 062820 (2013).

013009-10

https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1088/1751-8113/45/40/405005
https://doi.org/10.1088/1751-8113/45/40/405005
https://doi.org/10.1088/1751-8113/45/40/405005
https://doi.org/10.1088/1751-8113/45/40/405005
https://doi.org/10.1103/PhysRevE.92.062807
https://doi.org/10.1103/PhysRevE.92.062807
https://doi.org/10.1103/PhysRevE.92.062807
https://doi.org/10.1103/PhysRevE.92.062807
https://doi.org/10.1038/srep37954
https://doi.org/10.1038/srep37954
https://doi.org/10.1038/srep37954
https://doi.org/10.1038/srep37954
https://doi.org/10.1103/PhysRevX.9.011023
https://doi.org/10.1103/PhysRevX.9.011023
https://doi.org/10.1103/PhysRevX.9.011023
https://doi.org/10.1103/PhysRevX.9.011023
https://doi.org/10.1103/PhysRevE.98.062317
https://doi.org/10.1103/PhysRevE.98.062317
https://doi.org/10.1103/PhysRevE.98.062317
https://doi.org/10.1103/PhysRevE.98.062317
https://doi.org/10.1103/PhysRevX.4.041020
https://doi.org/10.1103/PhysRevX.4.041020
https://doi.org/10.1103/PhysRevX.4.041020
https://doi.org/10.1103/PhysRevX.4.041020
https://doi.org/10.1103/PhysRevE.91.010801
https://doi.org/10.1103/PhysRevE.91.010801
https://doi.org/10.1103/PhysRevE.91.010801
https://doi.org/10.1103/PhysRevE.91.010801
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1103/PhysRevE.64.026118
https://doi.org/10.1073/pnas.1703073114
https://doi.org/10.1073/pnas.1703073114
https://doi.org/10.1073/pnas.1703073114
https://doi.org/10.1073/pnas.1703073114
https://doi.org/10.1103/PhysRevE.96.042303
https://doi.org/10.1103/PhysRevE.96.042303
https://doi.org/10.1103/PhysRevE.96.042303
https://doi.org/10.1103/PhysRevE.96.042303
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1109/TPWRS.2010.2051168
https://doi.org/10.1016/j.scaman.2010.10.002
https://doi.org/10.1016/j.scaman.2010.10.002
https://doi.org/10.1016/j.scaman.2010.10.002
https://doi.org/10.1016/j.scaman.2010.10.002
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1103/PhysRevE.70.056122
https://doi.org/10.1103/PhysRevE.93.030302
https://doi.org/10.1103/PhysRevE.93.030302
https://doi.org/10.1103/PhysRevE.93.030302
https://doi.org/10.1103/PhysRevE.93.030302
https://doi.org/10.1103/PhysRevE.97.022314
https://doi.org/10.1103/PhysRevE.97.022314
https://doi.org/10.1103/PhysRevE.97.022314
https://doi.org/10.1103/PhysRevE.97.022314
https://doi.org/10.1103/PhysRevE.96.012302
https://doi.org/10.1103/PhysRevE.96.012302
https://doi.org/10.1103/PhysRevE.96.012302
https://doi.org/10.1103/PhysRevE.96.012302
https://doi.org/10.1103/PhysRevB.69.174410
https://doi.org/10.1103/PhysRevB.69.174410
https://doi.org/10.1103/PhysRevB.69.174410
https://doi.org/10.1103/PhysRevB.69.174410
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1103/PhysRevLett.105.128701
https://doi.org/10.1209/0295-5075/118/68003
https://doi.org/10.1209/0295-5075/118/68003
https://doi.org/10.1209/0295-5075/118/68003
https://doi.org/10.1209/0295-5075/118/68003
https://doi.org/10.1007/s11634-010-0079-y
https://doi.org/10.1007/s11634-010-0079-y
https://doi.org/10.1007/s11634-010-0079-y
https://doi.org/10.1007/s11634-010-0079-y
https://doi.org/10.1038/srep31708
https://doi.org/10.1038/srep31708
https://doi.org/10.1038/srep31708
https://doi.org/10.1038/srep31708
https://doi.org/10.1103/PhysRevE.77.046117
https://doi.org/10.1103/PhysRevE.77.046117
https://doi.org/10.1103/PhysRevE.77.046117
https://doi.org/10.1103/PhysRevE.77.046117
https://doi.org/10.1073/pnas.1106612109
https://doi.org/10.1073/pnas.1106612109
https://doi.org/10.1073/pnas.1106612109
https://doi.org/10.1073/pnas.1106612109
https://doi.org/10.1103/PhysRevE.95.012314
https://doi.org/10.1103/PhysRevE.95.012314
https://doi.org/10.1103/PhysRevE.95.012314
https://doi.org/10.1103/PhysRevE.95.012314
https://doi.org/10.1016/j.nuclphysb.2004.06.029
https://doi.org/10.1016/j.nuclphysb.2004.06.029
https://doi.org/10.1016/j.nuclphysb.2004.06.029
https://doi.org/10.1016/j.nuclphysb.2004.06.029
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevE.97.022305
https://doi.org/10.1103/PhysRevE.97.022305
https://doi.org/10.1103/PhysRevE.97.022305
https://doi.org/10.1103/PhysRevE.97.022305
https://doi.org/10.1103/PhysRevLett.113.208702
https://doi.org/10.1103/PhysRevLett.113.208702
https://doi.org/10.1103/PhysRevLett.113.208702
https://doi.org/10.1103/PhysRevLett.113.208702
http://arxiv.org/abs/arXiv:1906.10377
https://doi.org/10.1103/PhysRevE.91.052807
https://doi.org/10.1103/PhysRevE.91.052807
https://doi.org/10.1103/PhysRevE.91.052807
https://doi.org/10.1103/PhysRevE.91.052807
https://doi.org/10.1103/PhysRevE.88.062820
https://doi.org/10.1103/PhysRevE.88.062820
https://doi.org/10.1103/PhysRevE.88.062820
https://doi.org/10.1103/PhysRevE.88.062820

