
PHYSICAL REVIEW RESEARCH 1, 013007 (2019)

Complex conjugation supermap of unitary quantum maps and its universal implementation protocol

Jisho Miyazaki,1 Akihito Soeda,1,* and Mio Murao1,2

1Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
2Institute for Nano Quantum Information Electronics, The University of Tokyo, Tokyo 153-8505, Japan

(Received 14 September 2017; revised manuscript received 8 March 2019; published 9 August 2019)

A complex conjugation of unitary quantum map is a second-order map (supermap) that maps a unitary operator
U to its complex conjugate U ∗. First, we present a deterministic quantum protocol that universally implements
the complex conjugation supermap when we are given a blackbox quantum circuit, guaranteed to implement
some unitary operation, whose only known description is its dimension. We then discuss the complex conjugation
supermap in the context of entanglement theory and derive a conjugation-based expression of the G concurrence.
Finally, we present a physical process involving identical fermions from which the complex conjugation protocol
is derived as a simulation of the process using qudits.
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I. INTRODUCTION

Limits of quantum information processing are drawn by
the limits of quantum operations. Every quantum operation is
described by a mathematical map, but mathematically well-
defined maps and implementable quantum operations are not
equivalent. This distinction stems from a fundamental fact
that possessing a sample of a quantum object is not the same
as knowing its classical description, leading to various no-go
theorems in quantum information [1–5].

While quantum operations on quantum states correspond
to “first-order” maps defined on density matrices or vectors,
maps can also be defined between these first-order maps and
more generally for maps of any order [6,7]. These higher-
order maps are collectively referred to as “supermaps” in
Refs. [8–10]. Completely positive (CP) maps are first-order
maps, which are realizable as a quantum gate within the
standard quantum circuit model. These gates may be provided
as an input to a larger quantum protocol, which uses the input
gates as a quantum subroutine. The resulting operation imple-
mented by the protocol depends on the input quantum gate.
Effectively, the protocol realizes a “higher-order” quantum
operation, converting one quantum operation to another.

Universal implementations of supermaps assume little or
no prior knowledge on the input quantum operation. Gen-
erally, the supermaps whose universal implementation has
an immediate application are often the ones impossible to
implement universally, e.g., “cloning” [8,11], “controlliza-
tion” [12–18], and “quantum switch” [19–23]. The inversion
supermap U �→ U † is also known to have an application
in quantum control [24,25], but is proven to be impossible
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[16]. The no-go results for these supermaps hold under an
additional assumption that the dimension of the input unitary
operation is given.

The above inversion supermap inverts all unitary opera-
tions. An arguably less demanding supermap is a complex
conjugation on unitary operators, defined by

U =
∑

ukl |k〉〈l| �→ U ∗ =
∑

u∗
kl |k〉〈l| (1)

with respect to some basis {|k〉}, which achieves an inversion
for unitaries diagonal in the basis {|k〉}. Although not quite the
full unitary inversion, a deterministic universal complex con-
jugation of unitary operation leads to a probabilistic universal
implementation of the full inversion whose failure probability
decreases exponentially with the number of input unitary
operations used [26].

Unlike the full inversion, there exists a universal im-
plementation of unitary complex conjugation that is also
deterministic for 2 × 2 unitaries [see Eq. (13)]. For larger
dimensions, however, universal unitary complex conjugation
is again unimplementable [16], assuming that the implemen-
tation is deterministic and the input unitary operation is used
only once. This no-go result does not apply to approximate
implementations. Reference [27] presents an approximate
universal implementation of unitary complex conjugation that
is optimal under a certain figure of merit. Its approximation
error improves with each additional use of the input opera-
tion, but an exact implementation requires an infinite number
of uses.

A mathematical formulation of universally implementable
second-order maps is structurally similar to that of universally
implementable first-order maps, i.e., the standard maps on
quantum states [7–10]. As we discuss below, the complex
conjugation supermap on unitary quantum maps is a complex
conjugation on the corresponding Choi-Jamiołkowski opera-
tors of the input maps. In other words, a universal implementa-
tion of quantum state complex conjugation immediately leads
to that of unitary complex conjugation. The former, however,
is not admissible [28].
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In this paper, we study the unitary complex conjugation
supermap and its universal implementability as a higher-order
quantum operation. We first review the mathematical formu-
lation of supermaps. Despite the no-go [28], we present a
universal quantum algorithm that deterministically complex
conjugates unitary quantum operations and argue how the
no-go result is avoided. The existence of universal imple-
mentability depends on the choice of target supermap but also
on the set of input maps, thus universal implementablility
of supermaps is an inherent property of the particular set
of input maps. For the unitary complex conjugation, we re-
late its universal implementability to entanglement theory, in
particular, the entanglement measure of concurrence. Finally,
we describe a physical process corresponding to the complex
conjugation algorithm to offer a physical intuition behind the
algorithm.

II. UNIVERSAL COMPLEX CONJUGATION
OF UNITARIES AND STATES

A first-order map, i.e., from states to states, is univer-
sally implementable if and only if the map is completely
positive when expressed as a linear map on density matri-
ces. Implementability of supermaps is partially determined
by implementability of maps on quantum states. The Choi-
Jamiołkowski (CJ) isomorphism [29,30] establishes a duality
between quantum operations and quantum states. Let H and
K be two Hilbert spaces of dimension d , with bases |k〉H and
|l〉K , respectively. The Hilbert space K serves as a “reference”
space of H. Given a CP map � from linear operators on
Hilbert space H to linear operators on Hilbert space H′, its
CJ operator �̃ is an operator on H′ ⊗ K defined as

�̃ :=
d∑

k,l=1

�(|k〉H〈l|) ⊗ |k〉K〈l|. (2)

If a supermap on � is implemented within the circuit model,
then there exists a CP map on �̃. Conversely, if a CP map
corresponds to a given supermap, then it is implementable
within the circuit model [6,7,9], perhaps not deterministically,
but heralded so that the successful instances are signaled.
These facts imply that if the first-order map of universal
state conjugation is CP, then a universal unitary complex
conjugation is implementable as a heralded and probabilistic
quantum algorithm. Nevertheless, the universal state conjuga-
tion violates CP.

Strictly speaking, the above CP condition on imple-
mentable supermaps assumes that the input quantum oper-
ation is used only once in the implementation circuit and
that the supermap is defined for all CP maps including those
not necessarily trace-preserving. In general, multiple uses of
the same input quantum operation may be possible, in which
case the CP condition does not directly apply. Moreover, CJ
operators for unitary maps are rank 1, but CJ operators for
general CP maps may have a higher rank. However, universal
state conjugation on pure states (hence, their density matrix is
rank 1) is proven to be impossible, even under the relaxed con-
dition of heralded probabilistic implementations with multiple
but finite samples of the input quantum state [28].

III. IMPLEMENTATION OF UNIVERSAL UNITARY
COMPLEX CONJUGATION

The input unitary is given as a quantum gate oracle imple-
menting some unitary U . The quantum circuit of our universal
unitary conjugation algorithm is given in Fig. 1. The algorithm
starts with d − 1 qudits, each of dimension d . The qudits are
labeled from 1 to d − 1 with the corresponding d-dimensional
Hilbert spaces from H1 to Hd−1, respectively. The orthonor-
mal basis vectors of each Hilbert space are |0〉, . . . , |d − 1〉.
The choice of this basis decides the basis with which the
unitary complex conjugation supermap is defined. In what
follows, we choose this particular basis for any d-dimensional
Hilbert space. The Hilbert space to which a given state be-
longs should be apparent from the context, but if necessary,
we append a subscript as in |ϕ〉1 ∈ H1. When completed, the
algorithm applies U ∗ on qudit 1. The remaining d − 2 qudits
are used as auxiliary systems, which are initialized to the state
|0〉. The first gate in the algorithm applies a unitary operator
VE (defined below) on all the qudits. Then, the input unitary
operation U is applied individually on each qudit. This step
requires d − 1 calls of the input unitary operation in total.
Finally, V †

E is applied, after which the state of qudit 1 results
in the state with U ∗ applied to its initial state, while the
remaining qudits return to |0〉.

To define VE , we introduce an isometric operator E from
H1 to H1 ⊗ · · · ⊗ Hd−1, defined as

E :=
∑


k

ε
k√
(d − 1)!

|k2, . . . , kd〉〈k1|, (3)

where 
k ∈ {0, . . . , d − 1}d−1 and ε
k is the antisymmetric ten-
sor of rank d . We adopt the shorthand notation |k2, . . . , kd〉 =
|k2〉1 ⊗ · · · ⊗ |kd〉d−1. The operator E is an isometry, since
for any |ϕ〉, |ψ〉 ∈ H1, 〈ϕ|E†E |ψ〉 = 〈ϕ|ψ〉. Therefore, there
exists a unitary matrix VE on H1 ⊗ · · · ⊗ Hd−1 such that

VE |ϕ〉1|0̄〉2···d−1 = E |ϕ〉1, (4)

where |0̄〉2···d−1 := |0〉2 · · · |0〉d−1.
The correctness of the algorithm is guaranteed if

V †
E (U ⊗d−1)VE |ϕ〉1|0̄〉2···d−1 = (U ∗|ϕ〉1)|0̄〉2···d−1. (5)

In terms of group representation theory, E exploits the fact
that the complex conjugate representation of SU(d ) is uni-
tarily equivalent to the antisymmetric subspace in the tensor

FIG. 1. The quantum circuit architecture to implement the uni-
versal unitary conjugation of a d × d unitary gate blackbox U , used
d − 1 times. The circuit starts with d − 1 qudits, each d dimensional.
The first (top) qudit holds the input state and the rest are initialized in
|0〉. Boxes labeled VE and V †

E are a quantum gate, defined in Eq. (4).
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representation of SU(d ) on H⊗d−1. First, let K1, . . ., Kd be
a d-dimensional Hilbert space. We define an antisymmetric
(unnormalized) state

|E〉 :=
∑


k

ε
k√
(d − 1)!

|k1, . . . , kd〉 ∈ K1 ⊗ · · · ⊗ Kd . (6)

It is easy to see that U ⊗d |E〉 is also an antisymmetric state for
any d × d unitary. Any antisymmetric state in K1 ⊗ · · · ⊗ Kd

is proportional to |E〉. For any U ∈ SU(d ), this proportional-
ity factor does not depend on U , in fact

U ⊗d |E〉 = |E〉. (7)

To relate |E〉 to E , we interpret |E〉 as an operator from the
one-dimensional Hilbert space C1 to K1 ⊗ · · · ⊗ Kd . In the
following, we denote the identity operator on a given Hilbert
space H with a subscript as IH. Then, IH1 ⊗ |E〉 is an operator
from H1 to H1 ⊗ K1 ⊗ · · · ⊗ Kd . Let 〈�(d )| := ∑d

k=1〈k|〈k|
be an operator from H1 ⊗ K1 to C1, which satisfies for any
U ′ ∈ SU (d )

〈�(d )|(IH1 ⊗ U ′) = 〈�(d )|[(U ′)T ⊗ IK1

]
, (8)

where (U ′)T is the transpose of U ′ in the basis |k〉. Next,
define J := 〈�(d )| ⊗ IK2···Kd . The product J (IH1 ⊗ |E〉) is an
operator from H1 to K2 ⊗ · · · ⊗ Kd . Thus, if we reinterpret
K j as H j−1, then J (IH1 ⊗ |E〉) is equivalent to E . Therefore,

U ⊗d−1E � J
[
IH1 ⊗ (U †U ⊗ U ⊗d−1|E〉)

]

= J[U ∗ ⊗ (U ⊗ U ⊗d−1|E〉)] � EU ∗, (9)

where the first � follows from U ⊗d−1J = J (IH1K1 ⊗ U ⊗d−1)
and U †U = I , the first equality from Eq. (8) with U ′ = U † and
(U †)T = U ∗, and the second � from Eq. (7). Equation (9) and
definition (4) show that

U ⊗d−1VE |ϕ〉1|0̄〉2···d−1 = U ⊗d−1E |ϕ〉1

= EU ∗|ϕ〉1 = VE (U ∗|ϕ〉1)|0̄〉2···d−1.

(10)

Finally, multiplying V †
E from the left to both sides of this

equation and using the unitarity of VE lead to Eq. (5), which
proves the correctness of the algorithm.

With respect to the no-go [28], the only difference in our
protocol is that the CJ operators for unitary maps satisfy an
extra constraint, namely, the normalization TrH�̃ = IK . This
constraint alone allows a universal implementation with an
additional benefit of being deterministic.

IV. UNITARY CONJUGATION AND ENTANGLEMENT
MEASURE

Entanglement is a property of quantum states, formally
defined as correlations present in multipartite quantum states
which do not increase under the local operations and classical
operations (LOCC) [31,32]. The properties of LOCC deter-
mine which feature of quantum states qualifies as entangle-
ment and how entanglement is affected by LOCC.

Local unitary operations are reversible, hence any func-
tion of quantum states, if it were to quantify entangle-
ment, must be invariant under local unitary transformations.

This is true for the concurrence for two-qubit pure states
|ψ〉 = ∑1

k,l=0 ckl |k〉|l〉 defined in Refs. [33,34] as

C(|ψ〉) := |〈ψ |σy ⊗ σy|ψ∗〉| (11)

with the Pauli Y operator σy = −i|0〉〈1| + i|1〉〈0| and |ψ∗〉 the
complex conjugate of |ψ〉 in the basis |k〉|l〉.

The definition of C is extended to mixed states via convex
roofs. This requires one to find the set Sρ of pure-state
ensembles {pk, |ψk〉}k that are consistent with the given mixed
state, so that ρ = ∑

k pk|ψk〉〈ψk|. Then, C(ρ) is defined as
the minimum average pure-state concurrence over Sρ , i.e.,
C(ρ) = minSρ

∑
k pkC(|ψ〉k ). In general, the set of such en-

sembles possesses little mathematical structure to facilitate
computing an accurate value of any measure defined via
convex roofs. The two-qubit concurrence is an exception in
that the necessary optimization problem is already solved
in Ref. [34]. Analysis from Ref. [35] indicates that the use
of complex conjugation appears to be a key mathematical
property that allows the two-qubit concurrence to be solved
for mixed states.

The concurrence C has been generalized to higher-
dimensional bipartite systems. One such is the G
concurrence [36]

CG(|ψ〉) = α(λ1 . . . λd )1/d , (12)

where α is a normalization factor and λk are the Schmidt
coefficients of |ψ〉, i.e., |ψ〉 = (U ′ ⊗ V ′)

∑
k

√
λk|k〉 ⊗ |k〉 for

some local unitary U ′ and V ′. The G concurrence follows
the analysis given in Ref. [37], which generalizes C to√

d
d−1 (1 − Tr[ρ2

r ]) from the reduced density matrix ρr of |ψ〉.
The local unitary invariance of C is guaranteed from the

fact that σy achieves unitary complex conjugation for any
U ∈ SU(2), i.e.,

σ−1
y Uσy = U ∗. (13)

To see this, observe that Eq. (13) is equivalent to σy =
U †σyU ∗, thus

C[(U ⊗ V )|ψ〉] = |〈ψ |(U ⊗ V )†(σy ⊗ σy)(U ⊗ V )∗|ψ∗〉|
= |〈ψ |(σy ⊗ σy)|ψ∗〉| = C(|ψ〉) (14)

for any U,V ∈ SU(2). From our previous discussion, the
unitary complex conjugation for higher-dimensional systems
is possible by

U ∗ = E−1U ⊗d−1E , (15)

where E−1 is the generalized inverse (the Moore-Penrose
inverse) of E . Thus, we obtain a local unitary invariant gener-
alization of C,

Cg(|ψ〉) := |〈ψ |⊗d−1(E ⊗ E )|ψ∗〉|, (16)

which is a conjugation-based quantity much like the origi-
nal concurrence. The nonzero elements of the antisymmetric
tensor ε
k are for 
k such that all its elements differ, hence
Cg(|ψ〉) ∝ λ1 · · · λd . Therefore, CG and Cg are equivalent.

V. PARTICLE-HOLE INTERPRETATION

For a supermap to lead to interesting applications, the ac-
tion of the supermap must be nontrivial and admit an efficient
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FIG. 2. A conceptual figure of the particle-hole interpretation of
the unitary conjugation algorithm. The black and white strips repre-
sent the vacuum and fully occupied state of d-mode fermions. The
upward protrusion represents a single fermionic particle, while the
downward indentation indicates a hole. The processes E and E † in
(a) correspond to a particle-hole exchange. The hole in (a) undergoes
the mode transformation U . The lower figure (b) is an equivalent
process to (a), in which the fermionic particle undergoes the mode
transformation U ∗.

universal implementation. These two conditions are seldom
satisfied because mathematically valid maps and physically
implementable transformations do not coincide in quantum
theory. This gap between desired maps and implementable
transformations is common in various areas of quantum infor-
mation. On the other hand, physical processes inherently real-
ize a well-defined map that is guaranteed to be implementable.
Grover explains [38] that it was by analyzing a quantum
diffusion process that led to the discovery of his seminal
search algorithm [39]. We shall see below that our universal
complex conjugation algorithm follows quite naturally from a
physical process in a fermionic system.

A system with d fermionic modes is characterized by
operators ak and a†

k for k = 1, . . . , d , that obey anticommuta-
tion relations, {ak, al} = {a†

k, a†
l } = 0 and {ak, a†

l } = δkl . The
operator a†

k creates a fermionic particle of mode k, while ak

annihilates it. Denoting the vacuum state by |vac〉, we define
the completely occupied state |full〉 := a†

1a†
2 · · · a†

d |vac〉. The
action of ak on |full〉 creates a “hole” in the completely occu-
pied state, i.e., ak|full〉 = (−1)k−1a†

1 · · · a†
k−1a†

k+1 · · · a†
d |vac〉.

We interpret this as a state with a single fermionic hole of
mode k whose corresponding creation operator is

b†
k := (−1)k−1a†

1 · · · a†
k−1a†

k+1 · · · a†
d . (17)

Lastly, the effect of a unitary transformation U on a fermionic
particle is expressed by substituting the initial creation opera-
tor a†

k of each mode with a†
U,k := Ua†

kU †.

The physical process that simulates our unitary com-
plex conjugation is as follows (see Fig. 2). First, a
d-mode fermionic particle undergoes the particle-hole ex-
change a†

k → b†
k . Then, applied on the new hole is a fermion

number preserving transformation U = exp(iH ), where H =∑d
k,l=1 hkl a

†
kal with hkl being the (k, l ) element of a Hermitian

matrix h. This achieves b†
k → b†

U,k = ∑d
l=1 u∗

kl b
†
l , where ukl is

the (k, l ) element of the unitary matrix u = exp(ih). Note that
h may be any d × d Hermitian matrix, hence u is an arbitrary
d × d unitary matrix. Finally, the resulting hole undergoes
another particle-hole exchange b†

k → a†
k , transforming b†

U,k to

a′†
U ∗,k :=

d∑

l=1

[U ]∗kla
†
l = U ∗a†

k (U ∗)†, (18)

where U ∗ = exp[−i
∑d

k,l=1(hkl )∗a†
kal ]. All in all, the effect on

the particle is mode transformation U ∗.
Our fermionic hole is composed of d − 1 fermionic parti-

cles. Thus, a single d-level fermionic particle is simulated by
a d-level qudit and a single fermionic hole by antisymmetric
states of d − 1 of such qudits. The transformation E in Eq. (3)
achieves precisely the particle-hole exchange in this qudit
simulation of the fermions.

VI. CONCLUSION

The mathematical similarities between a universal complex
conjugation of quantum states and that of quantum opera-
tions may suggest that the known impossibility of the former
forbids any implementation of the latter. Nevertheless, we
presented a deterministic quantum protocol that implements
a universal complex conjugation of unitary operations as a
higher-order quantum operation. The action of unitary com-
plex conjugation is analyzed in the context of entanglement
theory, from which we derived an alternative expression of the
G concurrence using complex conjugation of states. Finally,
we described a physical process involving d-mode identical
fermions that offers a physical interpretation of our complex
conjugation protocol.
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