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In quantum computing, the indirect measurement of unitary operators such as the Hadamard test plays a
significant role in many algorithms. However, in certain cases, the indirect measurement can be reduced to the
direct measurement, where a quantum state is destructively measured. Here, we investigate under what conditions
such a replacement is possible and develop a general methodology for trading an indirect measurement with
sequential direct measurements. The results can be applied to construct quantum circuits to evaluate the analytical
gradient, metric tensor, Hessian, and even higher order derivatives of a parametrized quantum state. Also, we
propose a method to measure the out-of-time-order correlator based on the presented protocol. Our protocols can
significantly reduce the depth of a quantum circuit by making the controlled operation unnecessary, and thus are
suitable for quantum-classical hybrid algorithms on near-term quantum computers.
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I. INTRODUCTION

The output from quantum computation is measured in two
ways: indirect and direct measurements of observables. In
the former, the measured quantum state is not completely
destructed, whereas, in the latter, the state collapses to the
basis on which we perform the measurement. The simplest
and most important protocol for the indirect method is the
Hadamard test (Fig. 1). In the Hadamard test, we add an
ancillary qubit and apply a controlled unitary gate, a unitary
U to a target quantum state |ψ〉 conditioned on the ancilla
being |0〉 or |1〉 to measure the expectation value of U ,
〈ψ |U |ψ〉, as the expectation value of the Pauli Z operator
of the ancilla. This measurement allows us to reuse the state
(I ± U ) |ψ〉 /

√
2 after the measurement, which is the property

exploited in algorithms like iterative phase estimation [1,2].
Such indirect approaches can achieve a precision of ε in

O(1/ε) time. However, the implementation of the controlled-
U gate can be a hard task especially for so-called noisy
intermediate scale quantum (NISQ) [3] devices. In fact, direct
measurements can be satisfiable when only the expectation
value of an observable is required. A famous example is the
estimation of the energy expectation values in the variational
quantum eigensolver (VQE) [4], which is one of the most
promising applications of NISQ devices. The time required
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to achieve a precision of ε is O(1/ε2) in this approach, which
is much longer than that of the indirect approach [5,6].

Another example, which replaces the indirect approach
with the direct one, is the destructive swap test [7]. The
destructive swap test is a direct version of the swap test [8]
which measures the overlap |〈ψ |ϕ〉|2 between two quantum
states |ψ〉 and |ϕ〉. Initially proposed in [7], this method has
been rediscovered by the machine learning approach [9], and
it is now utilized in the application of NISQ devices [10–12].
Reference [13] has proposed to use the destructive swap test
to measure |〈ψ |U |ψ〉|2 for an arbitrary U by substituting |ϕ〉
with U |ψ〉, and the protocol was extended to measure the
quantity |〈ψ |P|ϕ〉|2, where P is a qubit-permutation operator,
which can be employed to estimate nonlinear functionals of a
quantum state ρ such as Tr(ρn) [14], with a low-depth circuit.

Furthermore, methods for gradient estimation employed in
variational quantum algorithms (VQAs) also illustrate the cor-
respondence between those two approaches for certain cases.
VQAs, such as the VQE, employ a parametrized quantum
circuit U (θ) and classical optimizer, which minimizes a cost
function L(θ) by iteratively tuning the circuit parameter θ.
The cost is usually computed from the expectation values of
observables, therefore their gradient can be a key ingredient
for the optimization. We can estimate the gradient in two
ways. Indirect and direct schemes have been proposed in
Ref. [15] and Refs. [16,17], respectively. The indirect method
uses two different quantum circuits to estimate one element of
the gradient.

These examples motivate us to further develop the method-
ology for replacing the indirect measurement with the direct
measurement. In this work, we describe the general protocol
for such replacements. The protocols for the Hadamard test
involving a single controlled gate are given in Results 1 and 2.
Result 1 is a generalization of the method used in the VQE,
and Result 2 is a generalization of the destructive swap test
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FIG. 1. Simplest Hadamard test. In the figure, b ∈ {0, 1} and U ,
H , S are an arbitrary quantum gate, the Hadamard gate, and e−iπZ/4,
respectively. When b = 0, 〈Z〉 = Re 〈ψin|U |ψin〉 and when b = 1,
〈Z〉 = Im 〈ψin|U |ψin〉.

which can be applied to general local unitary gates. Finally, in
Result 3, we describe a method to replace the Hadamard test
involving multiple controlled gates. It is a generalization of
the method to estimate the gradient of observables with direct
measurements, that is, we employ multiple quantum circuits
to estimate the output of the Hadamard test. The proposed
method can significantly reduce the depth of a quantum circuit
and the accumulation of noise in the measured quantity. Based
on the above results, we propose methods to estimate higher
order gradient including the metric tensor gjk = ∂〈ψ (θ)|

∂θ j

∂|ψ (θ)〉
∂θ j

of the variational quantum state |ψ (θ)〉 and the Hessian of an
observable. Specifically, the metric tensor is a key quantity in
variational quantum simulations [18,19]. Finally, we present
a protocol to measure the multipoint correlator, such as the
out-of-time-order correlators (OTOCs), which is an important
quantity in a quantum many-body system as a possible mea-
sure of the quantum chaos [20–23].

II. REPLACEMENT OF CONTROLLED GATES

A. Hadamard test with one controlled gate

Let us first consider the case where the unitary U in
Fig. 1 is given by an exponential U (θ) = e−iθG of a Hermi-
tian operator G such that G2 = I . In this case, 〈Z〉 of the
ancilla in the Hadamard test becomes 〈ψ |U |ψ〉 = cos θ

2 −
i sin θ

2 〈ψ |G|ψ〉. Hence, the measurement of 〈ψ |G|ψ〉, which
is the expectation value of G, is sufficient to replace the
Hadamard test. We can evaluate this quantity efficiently if
G can be decomposed as G = ∑

P∈P aPP, where aP ∈ R and
P = {I, X,Y, Z}⊗n, with aP being nonzero on the polynomial
number of terms with respect to the number of qubits. More
generally, if the gate U itself can be decomposed into the sum
of the Pauli products consisting of the polynomial number
of terms, which naturally includes the previous case, we can
measure 〈U 〉 without the Hadamard test. Therefore we have
the following.

Result 1. If the gate U can be decomposed into the sum of
the Pauli products with the polynomial number of terms with
respect to the number of qubits, the output of Fig. 1, 〈ψ |U |ψ〉,
can be estimated by direct measurement by evaluating each
Pauli term.

A prototypical example of the above result is the replace-
ment of the phase estimation with direct measurements in the
VQE. The tradeoff of the protocol above is the time required
to achieve the precision of ε. It scales as O(1/ε2) in the direct
approach and O(1/ε) in the indirect approach, i.e., the phase
estimation.

Next, we describe another method for the case where the
quantum gate U is sufficiently local. It is the generalization

of the destructive swap test [7]. We say U is k-local if U can
be decomposed into a tensor product of unitary matrices as
U = ⊗

q Uq and each Uq acts on at most k-qubit. With this
definition, the result can be stated as follows.

Result 2. Let k be an integer such that k = poly log(n),
where n is the number of qubits. For any k-local quantum gate
U , it is possible to estimate 〈ψ |U |ψ〉 up to the precision ε in
time O(k22k/ε2) without the use of the Hadamard test, with
classical preprocessing of time poly log(n).

This result follows from the following statements. From
the definition of the k-local unitary matrix, U can be decom-
posed into U = ⊗Q

q=1 Uq. Let the number of qubits on which

Uq acts and eigenvalues of Uq be kq and {exp(iφq,m)}2kq −1
m=0 ,

respectively, where φq,m ∈ [0, 2π ]. We denote the compu-
tational basis of each subsystem by |mq〉 using integers
mq = 0, . . . , 2kq − 1. In this setting, Uq is a 2kq × 2kq matrix.
With classical computation, we can diagonalize each Uq and
obtain a unitary matrix Vq such that Uq = V †

q DqVq, where

Dq = ∑2kq −1
m=0 eiφq,m |mq〉 〈mq|, in polynomial time to n by the

assumption k = O(poly log(n)). Then,

〈ψ |U |ψ〉 = 〈ψ |
⎛
⎝ Q⊗

q=1

V †
q

2kq −1∑
mq=0

exp
(
iφq,mq

) |mq〉 〈mq|Vq

⎞
⎠|ψ〉

(1)

=
2k1 −1∑
m1=0

· · ·
2kQ −1∑
mQ=0

⎛
⎝ Q∏

q=1

exp
(
iφq,mq

)⎞⎠

×
∣∣∣∣∣∣
⎛
⎝ Q⊗

q=1

〈mq|
⎞
⎠

⎛
⎝ Q⊗

q=1

Vq

⎞
⎠|ψ〉

∣∣∣∣∣∣
2

. (2)

Therefore, we can estimate 〈ψ |U |ψ〉 by evaluating the prob-
ability of getting the result

⊗Q
q=1 |mq〉 from the measurement

of (
⊗Q

q=1 Vq) |ψ〉 in the computational basis. More concretely,

let the jth measurement result be m( j)
q and the total num-

ber of measurements be N . Then 〈ψ |U |ψ〉 is estimated by
〈ψ |U |ψ〉 ∼ 1

N

∑N
j=1

∏
q exp(iφq,m( j)

q
). The precision of the

estimation ε = |〈ψ |U |ψ〉 − 1
N

∑N
j=1

∏
q exp(iφq,m( j)

q
)| scales

to o(1/
√

N ) from the Hoeffding’s inequality. Since the num-
ber of gates to implement Vq is bounded from above by
O(k2

q2kq poly log(k2
q2kq )) [24], the overall time for this protocol

is O(k22kpoly log(k22k )/ε2) with classical preprocessing for
the diagonalization of each Vq in time O(poly log(n)).

Note that in Results 1 and 2, the runtime dependence with
respect to ε is 1/ε2, which is quadratically worse than that
of the phase estimation. In the phase estimation, the runtime
directly translates to the depth of the quantum circuit, that is,
we need a quantum device that can maintain its coherence
for O(1/ε) time. Therefore, the phase estimation should be
used if the time required to achieve a desired precision is
sufficiently shorter than the coherence time. Otherwise, the di-
rect measurement approach is advantageous, which is shown
experimentally in Ref. [25].
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(b)

(c)

(a)

FIG. 2. (a) Hadamard test with two controlled gates. In the
figure, W is an arbitrary quantum gate. (b), (c) Quantum circuits
to estimate the output of (a) with direct measurement. MG is the
projective measurement of G.

B. Hadamard test with multiple controlled gates

Now we describe how to reduce a Hadamard test with
multiple controlled gates to circuits without an ancilla qubit.
The protocol given below is for the Hadamard test with two
controlled gates [Fig. 2(a)]. It is straightforward to gener-
alize the method to the case of more than two controlled
gates. In the case of Fig. 2(a), the measured quantity is
〈ψ |W †UWe−iθG/2|ψ〉. If we assume G2 = I ,

〈ψ |W †UWe−iθG/2|ψ〉
= cos

θ

2
〈ψ |W †UW |ψ〉 − i sin

θ

2
〈ψ |W †UW G|ψ〉. (3)

The first term on the right-hand side of the above formula
is merely the expectation value of U with respect to the
state W |ψ〉, therefore, if U satisfies one of the conditions
mentioned in Results 1 and 2, we can evaluate it efficiently.
Even if U does not satisfy either of the conditions, the protocol
using the destructive swap test to measure |〈ψ |U |ψ〉|2 [13]
can be utilized to estimate it using a quantum computer with
2n qubits. For the second term, we present a method involving
a projective measurement of G, which we denote by MG.
When G is a Pauli product, i.e., G ∈ {I, X,Y, Z}⊗n, MG can
be performed by first transferring G to a single qubit Z and
then performing a measurement on the qubit nondestructively,
for example with the dispersive readout of a superconducting
qubit. This protocol for MG can, in principle, be general-
ized to G such that the degeneracy of its eigenvalue ±1 is
equivalent although such a circuit can be exponentially hard
to construct. On the other hand, for G which do not satisfy
the above conditions, MG requires an ancilla qubit due to the
impossibility of transferring G to a single qubit Z . To estimate
〈ψ |W †UW G|ψ〉, we use the following four quantities for its
estimation:

〈U 〉± = 〈ψ |e∓iπG/4W †UWe±iπG/4|ψ〉 , (4)

〈U 〉MG=±1 = 1

4p(MG = ±1)
〈ψ |(I ± G)W †UW (I ± G)|ψ〉 ,

(5)

where p(MG = ±1) is the probability of getting the re-
sult MG = ±1 by performing MG on |ψ〉; p(MG = ±1) =
‖ 1

2 (I ± G) |ψ〉 ‖2. Figures 2(b) and 2(c) show the quantum

circuits to estimate these values. With these, 〈ψ |W †UW G|ψ〉
can be estimated by

〈ψ |W †UW G|ψ〉
= p(MG = +1)〈U 〉MG=+1 − p(MG = −1)〈U 〉MG=−1

− i

2
(〈U 〉+ − 〈U 〉−). (6)

Note that when U is Hermitian, the first two terms correspond
to the real part, and the rest correspond to the imaginary part
of 〈ψ |W †UW G|ψ〉. Therefore, we can obtain the following.

Result 3. Let W and U be unitary matrices, and G be
a Hermitian matrix. Suppose U satisfies one of the condi-
tions specified in Results 1 or 2, and assume G2 = I . It is
possible to estimate the output of the circuit in Fig. 2(a),
〈ψ |W †UWe−iθ1G/2|ψ〉, by using the four quantum circuits
in Figs. 2(b) and 2(c), and by combining their output with
Eq. (6). In particular, if the eigenvalues ±1 of G have equal
degeneracy, the protocol works without an ancilla qubit. Even
if U does not satisfy either of the conditions specified in
Results 1 and 2, the protocol works with the method proposed
in Ref. [13] that measures the expectation value of a unitary.

We can easily extend the strategy described in the above to
evaluate the output from the Hadamard test in the case where
it has more than two controlled gates (see Appendices A and B
for details). By the construction of this method, the number of
terms that we need to measure grows exponentially with the
number of controlled gates. This is a limitation of our proto-
col. For example, we cannot reduce the depth of the circuit
used in the itrative phase estimation, where the Hadamard test
plays a crucial role, by our methods. However, this should
not be a problem in practical uses of our method on NISQ
devices. We aim to apply the proposed technique to algorithms
on NISQ devices, such as quantum simulation and VQAs.
As described later, this can be applied to measure multipoint
correlators such as the OTOC, or to measure derivatives of
variational quantum states in VQAs. Since the number of
controlled gates to measure the multipoint correlators and
the derivatives are proportional to the number of points and
the order of differentiation, respectively, a user should not
be concerned about the exponential scaling of the technique
if he does not wish to measure higher order correlators or
derivatives.

III. ADVANTAGE

Here we discuss the possible merits of our protocols.
Results 1, 2, and 3 can provide a drastic reduction in the depth
of a quantum circuit. The reduction is due to the fact that it is
generally a hard task to make a controlled-U gate for a given
U . For example, a Toffoli gate, which is a controlled-CNOT

gate, requires at least six CNOT gates for its construction [26].
Along with the depth reduction, the removal of the ancilla
qubit requirement is a nice advantage for qubit-limited, near-
term quantum computers. Result 3 has the same advantages
as the above, apart from the noise reduction effect. In the
Hadamard tests of the type described in Fig. 2(a), the ancilla
qubit has to tolerate a dephasing error during the gate W . In
contrast, the ancilla qubit used in the protocol of Result 3
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does not have to endure the noise; it is measured projectively
at MG.

IV. APPLICATIONS

A. Derivatives in variational quantum algorithms

For the first application, we describe the direct mea-
surement of derivatives of a parametrized quantum state.
In VQAs such as the VQE [4], we employ a parametrized
quantum circuit U (θ) and an input state |ψin〉 on an
n-qubit quantum computer, and optimize the circuit pa-
rameter θ with respect to an expectation value 〈A(θ)〉 =
〈ψin|U †(θ)AU (θ)|ψin〉 of an observable A. Let us consider the
case where the parametrized quantum circuit is constructed
as U (θ) = UL(θL ) · · ·U2(θ2)U1(θ1) and each unitary Uj (θ j ) is
generated by a Pauli product Pj ∈ {I, X,Y, Z}⊗n; Uj (θ j ) =
exp(−iθ jPj/2). We denote Uk (θk ) · · ·Uj (θ1) by Uk: j . In
VQAs, we consider A which can be decomposed into a sum
of Pauli products, and therefore, without loss of generality, we
assume A ∈ {I, X,Y, Z}⊗n.

In Fig. 3(a), we show a quantum circuit to evaluate the
analytic gradient of an expectation value of an observable A
as presented in Ref. [15]. The circuit of Fig. 3(b) measures
an equivalent quantity, and this circuit is equivalent to that in
Fig. 2(a) when we replace e−iθG/2 with Pj , U with A. Since
we assumed A is a Pauli product, it satisfies the condition in
Result 1. Therefore, Result 3 can be employed to measure the
gradient. Note that the gradient of A is

∂A

∂θ j
= Im(〈ψin|U †

j:1U
†
L: j+1AUL: j+1PjUj:1|ψin〉), (7)

which only involves the last two terms of Eq. (6), and hence
we do not need to evaluate the circuit in Fig. 3(b). This gives
the equivalent formulation given in Ref. [16]. This method can
easily be extended to evaluate the Hessian (Appendix C).

The metric tensor gjk = ∂〈ψ (θ)|
∂θ j

∂|ψ (θ)〉
∂θ j

of a variational quan-
tum state |ψ (θ)〉 = U (θ) |ψin〉 can be measured in the same
manner. This quantity is the key for executing variational
quantum simulations. Specifically, the imaginary and the real
parts of g jk are employed for the simulation of real [18]
and imaginary time [19] evolutions, respectively. A quantum
circuit for the measurement of g jk from Refs. [18,19] is shown

(a)

(b)

FIG. 3. Quantum circuit for the estimation of ∂〈A(θ)〉
∂θ j

. (a) The
circuit with an ancillary qubit from [15]. Zanc is the Pauli Z acting
only on the ancillary qubit. The output of the circuit, 〈ZancA〉 j , is
related to the gradient by 〈ZancA〉 = − ∂〈A(θ)〉

∂θ j
. (b) Quantum circuit

which has equivalent output as (a); 〈ZancA〉 j = 〈Zanc〉 j .

(a)

(b)

(c)

FIG. 4. Quantum circuit for the estimation of the real and imag-
inary parts of the metric tensor gjk . (a) Indirect method from
Refs. [18,19]. b ∈ {0, 1}. When b = 0, 〈Zanc〉 jk,0 = 4Re(gjk ) and
when b = 1, 〈Zanc〉 jk,1 = 4Im(gjk ). (b) Direct method to estimate
the real part of gjk [see Eq. (9)]. (c) Direct method to estimate the
imaginary part of gjk [see Eq. (10)].

as Fig. 4(a). The explicit expression for g jk , when k > j, can
be written as

g jk = 1
4 〈ψin|U †

j:1PjU
†
k: j+1PkUk:1|ψin〉 . (8)

Figure 4(a) shows the quantum circuit for the indirect mea-
surement of g jk . Again, from Result 3, this circuit can be
replaced with the ones in Figs. 4(b) and 4(c). The explicit
expression is

Re(g jk ) = 1
4

[
p(MPj = +1)〈Pk〉MPj =+1

− p(MPj = −1)〈Pk〉MPj =−1
]
, (9)

Im(g jk ) = −〈Pk〉+ − 〈Pk〉−
8

. (10)

Figure 4(a) differs from Fig. 2(a) with two additional X gates
on the ancilla. The consequence of this is a change of sign in
the imaginary part [compare Eqs. (10) and (6)].

B. Measurement of out-of-time-ordered correlation

Next, we propose a method to estimate the OTOC on quan-
tum computers. The OTOC F (t ) at time t is defined with two
noncommuting operators A and B and a system Hamiltonian
H as F (t ) = 〈B†(t )A†B(t )A〉, where B(t ) = eiHt Be−iHt . This
is an important quantity in quantum many-body physics which
measures how chaotic a given quantum system is [20–23,27].
In Ref. [28] a circuit to evaluate F (t ) was proposed, which is
shown in Fig. 5. If we assume A2 = I , the circuits in Figs. 2(b)
and 2(c) and Eq. (6) with a change of the sign of the imaginary
part, which is the consequence of the X gates performed on
the ancilla qubit, can be applied. More concretely, to evaluate
F (t ), we replace W in Eq. (6) with U †(t )BU (t ), U and G with

FIG. 5. Indirect approach to measure the OTOC of operators A
and B from Ref. [28]. In the figure, U (t ) = e−iHt .
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A. This method can easily be extended to the measurement of
higher order correlators.

V. CONCLUSION

We provided general protocols to replace indirect mea-
surements, in particular, the Hadamard test, with the direct
measurement. The proposed methods to replace the Hadamard
test provide a means to evaluate the analytical gradient, metric
tensor, Hessian, and even higher order derivatives with direct
measurements for parameter tuning in variational quantum
algorithms. They can also be applied for the estimation of
OTOCs. The presented protocols can significantly reduce the
depth of a quantum circuit, and consequently, are important
subroutines for quantum algorithms, especially for those of
NISQ devices.
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APPENDIX A: THREE CONTROLLED GATES

In the main text, we have shown how to replace the Hadamard test with two controlled gates to the sequence of direct
measurements. Here, as a simple extension, we show such a replacement for the one with three controlled gates in Fig. 6. The
circuit in Fig. 6(a) can estimate the following quantity:

〈ψ |W †
1 W †

2 UW2e−iθ2G2/2W1e−iθ1G1/2 |ψ〉

= cos
θ1

2
cos

θ2

2
〈ψ |W †

1 W †
2 UW2W1 |ψ〉 − i cos

θ1

2
sin

θ2

2
〈ψ |W †

1 W †
2 UW2G2W1 |ψ〉

− i sin
θ1

2
cos

θ2

2
〈ψ |W †

1 W †
2 UW2W1G1 |ψ〉 − sin

θ1

2
sin

θ2

2
〈ψ |W †

1 W †
2 UW2G2W1G1 |ψ〉 . (A1)

If b = 0 the real part of the above can be obtained as 〈Zanc〉, and if b = 1 we get the imaginary part. In the above four terms,
the first term, 〈ψ |W †

1 W †
2 UW2W1 |ψ〉, can be estimated by measuring the expectation value of U with respect to W2W1 |ψ〉. The

second and third terms, 〈ψ |W †
1 W †

2 UW2G2W1 |ψ〉 and 〈ψ |W †
1 W †

2 UW2W1G2 |ψ〉, have the same structure as in the case of two
controlled gates, which is described in the main text, and thus can be measured using the same strategy, that is, we can use
Eq. (3) of the main text for the evaluation of these two terms. For the fourth term, we must use the circuits in Figs. 6(b)–6(e).
Namely, we measure the following 16 quantities.

〈U 〉(r1,r2 )=(a1,a2 ) = 〈ψ | e−a1iπG1/4W †
1 e−a2iπG2/4W †

2 UW2ea2iπG1/4W1ea1iπG1/4 |ψ〉 , (A2)

〈U 〉(MG1 ,MG2 )=(a1,a2 ) = 〈ψ | (I + a1G1)W †
1 (I + a2G2)W †

2 UW2(I + a2G2)W1(I + a1G1) |ψ〉
16p[(MG1 , MG2 ) = (a1, a2)]

, (A3)

〈U 〉(r1,MG2 )=(a1,a2 ) = 〈ψ | e−a1iπG1/4W †
1 (I + a2G2)W †

2 UW2(I + a2G2)W1ea1iπG1/4 |ψ〉
4p(MG2 = a2|r1 = a1)

, (A4)

〈U 〉(MG1 ,r2 )=(a1,a2 ) = 〈ψ | (I + a1G1)W †
1 e−a2iπG2/4W †

2 Ue−a2iπG2/4W1(I + a1G1) |ψ〉
4p(MG1 = a1)

, (A5)

where the subscript ri and MGi indicate which of a rotation generated by Gi or the projective measurement of Gi is inserted,
ai ∈ {−1, 1} denotes directions of rotations and results of measurement, and

p
[(

MG1 , MG2

) = (a1, a2)
] =

∣∣∣∣〈ψ | I + a1G1

2
W †

1

I + a2G2

2
W1

I + a1G1

2
|ψ〉

∣∣∣∣
2

, (A6)
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p
[(

MG1 , r2
) = (a1, a2)

] =
∣∣∣∣〈ψ | I + a1G1

2
|ψ〉

∣∣∣∣
2

, (A7)

p
[(

r1, MG2

) = (a1, a2)
] =

∣∣∣∣〈ψ |ea1iπG1/4W †
1

I + a2G2

2
W1ea1iπG1/4 |ψ〉

∣∣∣∣
2

(A8)

is the probability of getting specific results at the measurements. The above system of equations, Eqs. (A2)–(A5) can be solved
to obtain the desired quantities. The explicit expression of 〈ψ |W †

1 W †
2 UW2G2W1G1 |ψ〉 is

〈ψ |W †
1 W †

2 UW2G2W1G1 |ψ〉 =
∑

a1,a2∈{−1,1}
a1a2

(
p
[(

MG1 , MG2

) = (a1, a2)
]〈U 〉(MG1 ,MG2 )=(a1,a2 ) − 1

4
〈U 〉(r1,r2 )=(a1,a2 )

− i

2

{
p
[(

MG1 , r2
) = (a1, a2)

]〈U 〉(MG1 ,r2 )=(a1,a2 ) + p
[(

r1, MG2

) = (a1, a2)
]〈U 〉(r1,MG2 )=(a1,a2 )

})
.

(A9)

In a case where one of e−iθ1G1/2, e−iθ2G2/2 is controlled on the ancilla state being |0〉, we would want to measure
〈ψ |W †

1 G2W
†

2 UW2W1G1 |ψ〉. It can also be obtained by solving Eqs. (A2)–(A5), that is,

〈ψ |W †
1 W †

2 UW2G2W1G1 |ψ〉 =
∑

a1,a2∈{−1,1}
a1a2

(
p
[(

MG1 , MG2

) = (a1, a2)
]〈U 〉(MG1 ,MG2 )=(a1,a2 ) + 1

4
〈U 〉(r1,r2 )=(a1,a2 )

+ i

2

{
p
[(

MG1 , r2
) = (a1, a2)

]〈U 〉(MG1 ,r2 )=(a1,a2 ) − p
[(

r1, MG2

) = (a1, a2)
]〈U 〉(r1,MG2 )=(a1,a2 )

})
.

(A10)

APPENDIX B: GENERAL CASE

We can extend the strategy to more general cases. An output from the Hadamard test with n controlled gates can be obtained
from the following system of equations.

〈U 〉c1,c2,...,cn = 〈
φc1,...,cn

∣∣U
∣∣φc1,...,cn

〉
, (B1)

where ∣∣φc1,...,cn

〉 = Cc1,...,cnWn(1 + cnGn) · · ·W2(1 + c2G2)W1(1 + c1G1) |ψ〉 , (B2)

c j ∈ {1,−1, i,−i}, and Cc1,...,cn is a normalization factor that guarantees 〈φc1,...,cn |φc1,...,cn〉 = 1. Note that c j = ±1 and c j = ±i
correspond to the projective measurement and the rotation, respectively. Since each c j takes four possible values and we need to
measure all combinations, the process takes O(4n) measurements.

APPENDIX C: GRADIENT AND HESSIAN EVALUATION

The gradient of an expectation value of A, 〈A(θ)〉 = 〈ψin|U †(θ)AU (θ) |ψin〉, where each U is a product of unitary matrices
generated by a Pauli product Pj as Uj (θ j ) = exp(−iθ jPj/2), can be measured by using the following equation.

∂〈A(θ)〉
∂θ j

= 1

2

[〈
A

(
θ + π

2
e j

)〉
−

〈
A

(
θ − π

2
e j

)〉]
, (C1)

where e j is a vector which has 0 as its elements except for 1 at the jth. As for the Hessian of 〈A(θ)〉, one direct way to apply
our result is (1) write down the explicit expression of the Hessian, (2) construct a circuit based on the Hadamard test with three
controlled gates following the construction of the circuit in Fig. 3 in the main text, and (3) replace the circuit using our strategy.
However, for the Hessian, we do not need to do those steps. Observe that, since we have the expression for the gradient as the
above, we get

∂

∂θ j

∂〈A(θ)〉
∂θ j

= 1

2

[
∂

∂θ j

〈
A

(
θ + π

2
ek

)〉
− ∂

∂θ j

〈
A

(
θ − π

2
ek

)〉]
. (C2)

Substituting each term by Eq. (C1), we obtain

∂

∂θ j

∂〈A(θ)〉
∂θ j

= 1

4

[〈
A

(
θ + π

2
(ek + e j )

)〉
−

〈
A

(
θ + π

2
(ek − e j )

)〉
−

〈
A

(
θ − π

2
(ek + e j )

)〉
+

〈
A

(
θ − π

2
(ek − e j )

)〉]
.

(C3)
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