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Magneto-optical Stern-Gerlach forces and nonreciprocal torques on small particles
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In this paper we calculate the optical forces and torques caused by the presence of a sizable magneto-optical
effect. We find a conservative force proportional to the gradient of the spin density of the light field and
an extinction force proportional to the helicity of the light field. The conservative interaction allows for a
spin-selective, magnetic field based Stern-Gerlach experiment, capable of differentiating between right and left
circular polarizations. We also prove that by using a spinless linearly polarized plane wave, the magneto-optical
effect allows for the existence of a permanent nonreciprocal torque, proportional to the intensity of the light field.
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I. INTRODUCTION

The Stern-Gerlach experiment is one of the most rep-
resentative examples of a measurement dealing with state-
selective deflection in a field gradient. In this experiment,
atoms are deflected depending on their magnetic moment by
a nonconstant magnetic field. The splitting of an atomic beam
in an optical field intensity gradient is often referred to as the
optical Stern-Gerlach effect, first experimentally observed by
Sleator and co-workers [1]. More recently, the discrimination
of chiral molecules using optical forces has been proposed
[2] and an experimental demonstration using optical helicity
gradients has been reported [3]. In those optical analogs the
electromagnetic radiation is always used as the splitting force.
Our main goal here is to show that nonreciprocal optical forces
can lead to an actual, counterintuitive, optical analog of the
Stern-Gerlach effect: the photon-spin selective deflection of a
light beam in a static magnetic field gradient.

There are many ways to split a beam of light in left and
right circular polarizations based on standard circular filters.
New alternative methods somehow related to Stern-Gerlach-
like mechanisms are based on nonlinear coupling on pumped
crystals with a transverse gradient, recently proposed to split
spinorlike states of light [4], on scattering from chiral surfaces
[5], or on electromagnetically induced transparency [6]. In
the latter, the so-called dark polaritons, i.e., atom plus photon
couplings with a nonzero magnetic moment depending on
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the polarization of light, are created in atomic gases [7] and
deflected by magnetic field gradients [8–10]. Our main goal
here is to explore another way to extract information about the
state of light (spin angular momentum and helicity) by using
an external magnetic field to tune the optical forces on small
particles via the magneto-optical effect (MOE).

After Ashkin’s pioneering work of 1970 [11], driving,
trapping, and shorting of nano- and micron-sized particles
using electromagnetic fields have become common tools in
physics and biology. Additionally, since the early days in the
field of photonics, a key goal has been to be able to manipulate
light-matter interactions using external means. Among all
possibilities, one that offers high modulation speed and ease
of action is the exploitation of the magneto-optical effect [12].
Indeed, the magneto-optical control of the resonant behavior
in plasmonic systems, and the complementary enhancement
of the magneto-optical response due to the same resonances,
is behind the success of the field of magnetoplasmonics
[13]. In the last few years, the standard magnetoplasmonic
system exhibiting electric resonances has been extended to
consider other situations, such us the exploitation of magnetic
resonances [14–16], or even the control of thermal radiation
and radiative heat transfer at room temperature [17–20].

In this paper we will merge optomechanics with the field
of magneto-optics to analyze how optical forces and torques
are tuned by the presence of an external magnetic field, and
we will analyze how this modulation can be used to extract
information about the spinning state of light using the classical
Stern-Gerlach experiment.

II. OPTICAL FORCE ON MAGNETO-OPTICAL
PARTICLES

We start by considering a particle made of isotropic ma-
terial with permittivity ε(ω), in an otherwise homogeneous
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and isotropic medium with permittivity εh and real refractive
index nh = √

εh. For harmonic fields, the electric displace-
ment Din inside the particle is related to the electric field
Ein through Din = ε0ε(ω)Ein. In the presence of a static
external magnetic field Bext, the scalar permittivity becomes
a tensor ε [with components εi j (Bext ) = ε ji(−Bext )] which,
in the absence of absorption, must be Hermitian, εi j (Bext ) =
ε∗

i j (Bext ). Assuming a small spherical particle of radius R,
an external monochromatic field E induces an electric dipole
p = ε0εhαE, where α(ω) is the polarizability tensor given
by [21]

α =
(

α−1
0 − ik3

6π

)−1

, (1)

α0 = 3V [ε(Bext ) − εhI][ε(Bext ) + 2εhI]−1, (2)

where k = nhω/c is the wave number, V = 4πR3/3 is the
particle volume, and I the unit tensor.

We will consider that the magneto-optical (MO) response
is small, thus the electric displacement inside the particle, at
lowest order in the external magnetic field (linear regime), is
given by [22,23]

Din = ε0εEin − iε0
f (ω)Bext

ω

⎛
⎝ 0 bz −by

−bz 0 bx

by −bx 0

⎞
⎠Ein

= ε0

(
εEin − i

f (ω)Bext

ω
Ein × b̂

)
, (3)

where b̂ is a unit vector (Bext = Bextb̂) and f is a gyromagnetic
constant ([ f Bext] has units of frequency). In the absence of
absorption, ε and f must be real. The polarizability can then
be approximated as α ∼ αI I + αMO [24], where αI is the
isotropic scalar polarizability found in the absence of a static
magnetic field and αMO is the antisymmetric MO tensor,

αI =
(

α−1
0 − ik3

6π

)−1

, α0 = 3V
ε − εh

ε + 2εh
, (4)

with

αMO = αMO

⎛
⎜⎝

0 −ibz iby

ibz 0 −ibx

−iby ibx 0

⎞
⎟⎠, (5)

where αMO ≡ α2
I

V
γ Bext

ω
and γ = f (ω)/(ε − εh)2.

In general, the time-averaged force on a dipolar non-
isotropic particle can be obtained from the well-known
expression

F = 1

2
Re

⎧⎨
⎩

∑
j

p j∇E∗
j

⎫⎬
⎭ = ε0εh

2
Re

⎧⎨
⎩

∑
i, j

α jiEi∇E∗
j

⎫⎬
⎭. (6)

Splitting the polarizability in Hermitian and anti-Hermitian
contributions,

p±
ε0εh

≡ α ± α†

2
E, (7)

the force can be rewritten as the sum of “gradient” and
“extinction” forces, F ≡ Fgrad + Fext, with

Fgrad = 1
4∇(E∗ · p+), (8)

Fext = − 1
2 Re{(E∗ · ∇)p− + E∗ × (∇ × p−)}. (9)

Equations (8) and (9) are general results for arbitrary non-
isotropic electric dipolar particles showing that the force
contribution from the Hermitian polarizability Fgrad is al-
ways conservative while the anti-Hermitian contribution Fext

(which is not zero even in absence of absorption) can give rise
to nonconservative optical forces.

In the particular case of a small MO response, the forces
induced by the combination of external dynamic electric E
and static magnetic Bext fields can be obtained from Eqs. (8)
and (9): The gradient force [Eq. (8)] is given by

Fgrad = ∇
(

Re{αI}ε0εh|E|2
4

)

+ 1

2
∇(Re{αMO}ωJspin · b̂), (10)

where the first term is the standard force proportional to the
field intensity gradient and Jspin is the spin angular momentum
(SAM) per unit volume of the light field.

The second MO term can be rewritten as a “Zeemann”
force on an effective magnetic dipole of light meff in a external
magnetic field Bext,

FMO
grad = ∇(meff · Bext ), (11)

where the magnetic moment is proportional to the SAM
density of the radiation, meff ≡ γeffJspin, with a gyromagnetic
ratio γeff = Re{α2

I γ }/2V . When the external magnetic field is
constant, there is a net MO force when meff, i.e., the SAM
density of the incident field, is not uniform,

FMO
grad = (Bext · ∇)meff + Bext × (∇ × meff ). (12)

In contrast, since the SAM of a plane wave is uniform,
there is no MO contribution to the gradient force. However,
in the presence of an inhomogeneous static magnetic field, a
gradient force on the particle exists, whose sign depends on
the spin of light,

FMO
grad

∣∣∣
PW

= γeff(Jspin · ∇)Bext. (13)

If one of the components of Bext is perpendicular to k,
with a gradient along the k direction, there is a net MO
force orthogonal to the isotropic contribution. This resembles
the Stern-Gerlach effect of splitting a beam of atoms by a
magnetic field gradient. However, here, the splitting does not
depend on the magnetic moment of the particles but on the
spin of the light field. So, for radiation with nonzero spin
and for a nonconstant magnetic field, the direction to which
the scattered light from the MO particle will be deflected is
dependent on the spin angular momentum of the radiation, in
full analogy with the well-known Stern-Gerlach experiment.

On the other hand, the extinction force [Eq. (9)] in the MO
perturbative approach can be written as

Fext = k Im{αI}
(

nh

c
S − c

2nh
∇ × Jspin

)
+ FMO

ext , (14)

where S = Re(E∗ × H)/2 is the Poynting vector. Again, the
first term is the known result for extinction forces on isotropic
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FIG. 1. (a) Electromagnetic field with φ = 0 consisting of two
linearly cross-polarized plane waves. (b) Electromagnetic field with
φ = π/4 consisting of two counterpropagating circularly polarized
beams with the same helicity. The external constant magnetic field
(Bext) is applied on the direction of propagation of the two beams.

particles [25] and, when the external magnetic field is
constant,

FMO
ext = −ε0εh Im{αMO}

2
(Re{(E∗ · ∇)E} × b̂

+ Re{E∗ × (b̂ · ∇)E}). (15)

Equations (11) and (15) are the main results of the present
work concerning the MO contribution to the optical forces.
For plane-wave (PW) illumination, E = E0eik·r, the MO ex-
tinction force is given by

FMO
ext

∣∣
PW = k Im{αMO}nh

c

Im{E · H∗}
2

(k · b̂)k
k2

, (16)

where Im{E · H∗} is proportional to the optical helicity den-
sity �, defined as [26,27]

� = nh

c

ε0εh

2ω
Re

{
E∗ · ∇ × E

k

}
=

(nh

c

)2 Im{E · H∗}
2ω

. (17)

The spin density has dimensions of helicity flux density (or
angular momentum per unit volume) and for plane waves
Jspin = (c/nh)�k/k. Thus, we can write

FMO
ext

∣∣
PW = Im{αMO}ωc

nh
�

(k · b̂)k
k

. (18)

In general, the extinction force when E · b̂ = 0 and E varies
only in the b̂ direction can be written as

FMO
ext · b̂ = Im{αMO}ω2�. (19)

Note how the MO extinction force can be used to quantify the
actual value of the helicity of the light field.

For plane-wave illumination and constant static magnetic
field, the MO contributions above are usually small compared
to the familiar isotropic contributions. In order to illustrate
some of the unusual properties of magneto-optical forces we
shall consider the field of a standing wave formed by two
counterpropagating plane waves (see Fig. 1),

E = E0√
2
{(cos φx̂ + i sin φŷ)eikz + (i sin φx̂ + cos φŷ)e−ikz},

(20)

FIG. 2. Electric field vector vs position and time for two linearly
cross-polarized plane waves, counterpropagating. In the color map
we highlight the positive (yellow), zero (white), and negative (blue)
values of (a) spin and (b) helicity.

with ∇|E|2 = 0, S = 0, and ∇ × Jspin = 0, i.e., a field that
induces zero net force on an isotropic particle in the absence
of a static magnetic field. Such optical fields had been utilized
in the laser cooling of certain atoms [28] as well as in the
discussion of the nature of the light spin (Jspin) and helicity
(�) densities of interfering waves [29] which are given by

Jspin = −ε0εh

2ω
|E0|2 sin(2kz)(cos2 φ − sin2 φ)ẑ, (21)

� = nh

c

ε0εh

ω
|E0|2 sin φ cos φ. (22)

If Bext = Bextẑ is a constant vector pointing along z (in the
so-called “polar” configuration), the total optical force acting
on the MO particle is given by F = FMO

grad + FMO
ext , where FMO

grad

is the spin (gradient) force [Eq. (11)] and FMO
ext is an helicity

(extinction) force [Eq. (16)],

FMO
grad = −ε0εhk

2
|E0|2 Re{αMO}(cos2 φ − sin2 φ) cos(2kz)ẑ,

(23)

FMO
ext = ε0εhk|E0|2 Im{αMO} sin φ cos φẑ. (24)

For the first setup with φ = 0, we have plotted, in Fig. 2,
the electric field vector for different values of position and
time. In Fig. 2(a) we have highlighted in a color map the
corresponding different values of the spin. Note how, for
any value of time, the spin oscillates in space from positive
to negative values. This behavior gives rise to a gradient
force coming from the classical “Zeeman” effect [Eq. (11)].
Although the incoming fields do not interfere, the scattered
components generate a self-induced one-dimensional optical
lattice emerging from the interference of the (magnetically in-
duced) scattering components with the corresponding parallel
components of the external beams. As shown in Fig. 2(b), for
any position, the helicity oscillates in time from positive to
negative values, meaning a null time-averaged value of the
helicity and a zero extinction force [Eq. (19)]. In the second
setup with φ = π/4 the situation is just the opposite. The
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FIG. 3. Electric field vector vs position and time for two counter-
propagating circularly polarized beams with the same helicity. In the
color map we highlight the positive (yellow) and zero (white) values
of (a) spin and (b) helicity.

total value of the spin is always equal to zero [note the white
background in Fig. 3(a)], implying a null gradient force, while
the helicity has a constant positive value [note the yellow
background in Fig. 3(b)], implying the existence of a constant
extinction force.

III. OPTICAL TORQUE ON MAGNETO-OPTICAL
PARTICLES

In addition to optical forces, it is also possible to generate
optical torques on electric dipoles. In the analysis of the
MO-induced torque, it is useful to consider the total power
dissipated by the particle [21],

Pdis = ε0εhω

2
E†

(
α − α†

2i
− k3

6π
α†α

)
E, (25)

which vanishes in the absence of absorption, i.e., when
α0 = α†

0.
When the particle absorbs radiation, we can obtain the

absorption cross section which, defined for plane-wave inci-
dence, depends on the helicity ±1 of the incoming field (we
associate circularly left polarized light with positive helicity),

EPW = E0
x̂ ± iŷ√

2
eikz. (26)

Assuming that we stay in the linear regime, and the magnetic
field is parallel to the k vector of the field (b̂ · k = k), we can
easily obtain

σabs = σabsI ± σabsdic + O
(
B2

ext

)
, (27)

with

σabsI = k

(
Im{αI} − k3

6π
|αI |2

)
(28)

and

σabsdic = σ+
abs − σ−

abs

2
= k

(
Im{αMO} − k3

3π
Re{αIα

∗
MO}

)
, (29)

where σabsI is the absorption cross section of the standard
non-MO particle and σabsdic is the “dichroic” absorption cross
section.

The general expression for the time-averaged torque τ

generated by an homogeneous wave on an electric dipole is
given by [30]

τ = 1

2
Re

{
(p × E∗) − i

k3

6πε0εh
p × p∗

}
, (30)

which, in the case of a MO particle, can be written as the sum
of several contributions,

τ = c

nh
(σabsI Jspin) + c

nh
σabsdic

ε0εh

2ω
[|E|2b̂ − Re((b̂E∗)E)]

+ c

nh

[
k

(
Re{αMO} − k3

3π
Im{αIα

∗
MO}

)]
b̂ × Jspin

2

+ O
(
B2

ext

)
. (31)

For plane-wave illumination, with k = kẑ, and in the “po-
lar” configuration (Bext = Bextẑ), the torque is parallel to the z
axis and is given by

τ|PW = c

nh

[
σabsI Jspin + σabsdic

ε0εh

2ω
|E|2ẑ

]
+ O

(
B2

ext

)
. (32)

Note how the torque generated by a plane wave has two
components: a first well-known component, proportional to
the average value of the spin density of the light field, and
a second nonreported MO contribution, proportional to the
squared modulus of the electromagnetic field. It means that a
MO particle always experiences a torque (except in the nodes
of a standing wave) independently of whether or not the elec-
tromagnetic field has a spin. The conservation of angular mo-
mentum is, however, fulfilled; compensation comes from the
nonlinearly polarized scattered field and from the interference
of the scattered and incoming fields [31]. Indeed, integration
of the z component of the angular momentum flux [32] of
both fields (scattered and incident) over a surface of a sphere
yields to torque compensation. Equation (32) demonstrates
the remarkable counterintuitive result of a linearly polarized
plane wave, carrying zero angular momentum, inducing a
constant and permanent (as long as the magnetic field is
applied) torque on a magneto-optically active nanoparticle.

IV. MAGNETO-OPTICAL VERSUS CHIRAL PARTICLES

It is worth noticing that optical forces and torques on
MO particles are qualitatively different from those on chiral
objects. In particular, for the fields given by Eq. (20), the chiral
forces and torques are equal to zero: The interaction force on a
chiral electric dipole, neglecting self-interaction recoil terms,
in a field with ∇|E|2 = 0, S = 0, and ∇ × Jspin = 0, is given
by [33–35]

FCh = cω Re(χ )∇� + ω2

c
Im(χ )

(
Jspin + Jm

spin

)
, (33)

with χ the chiral polarizability and Jm
spin the magnetic spin

of the electromagnetic radiation. For φ = 0, the force on a
chiral particle is zero because both the helicity and the full
spin vector (electric plus magnetic) are zero, while for φ =
π/4 the spin densities (electric and magnetic) are zero but the
helicity is different from zero. However, the force on a chiral
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particle is again null because the helicity is constant and chiral
particles are sensible only to variations of the helicity. On the
other hand, the torque exerted by a plane wave on a chiral
electric dipole, in linear response on χ , is given by [36]

τCh|PW = c

[
σabsI Jspin + σ Ch

absdic

1

cω
S
]

+ O(χ2) (34)

with σ Ch
absdic

= 2k[Im(χ ) − k3

6π
Re(αIχ

∗)] the “dichroic” ab-
sorption cross section of the chiral particle. Note that the
MO torque depends on the intensity of the electric field,
while in the case of a chiral torque, this term depends on the
Poynting vector itself, which, for the fields given by Eq. (20),
is zero.

V. MAGNETO-OPTICAL FORCE ON n-DOPED InSb
PARTICLES

As an example of a magneto-optical material we will
calculate the values of the MO force for n-doped InSb, a polar
semiconductor, that when subjected to an external magnetic
field becomes magneto-optical [37]. The dielectric permit-
tivity tensor can be nicely considered as a Drude-like metal
which, at lowest order in the magnetic field, is given by [37]

ε = ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�pω

− ω2
p

ω(ω + i� f )

)
, (35)

f (ω) = ε∞ω2
p

[(ω + i� f )2]

e

m∗ . (36)

Here, ε∞ is the high-frequency dielectric constant, ωL is the
longitudinal optical phonon frequency, ωT is the transverse
optical phonon frequency, ω2

p = npe2/(m∗ε0ε∞) is the plasma
frequency of free carriers of density np and effective mass
m∗, �p is the phonon damping constant, and � f is the free-
carrier damping constant. In all the calculations below, we
consider the particular case taken from Ref. [17], where ε∞ =
15.7, ωL = 36.2 THz, ωT = 33.9 THz, ωp = 31.4 THz, � =
0.565 THz, γ = 3.39 THz, and m∗ = 0.022m0, and we use a
200-nm radius particle. In Fig. 4(a) we plot the maximum
value of the optical force, in the z direction, for the optical
configuration with φ = 0 (force proportional to the gradient
of the spin density of the light field) for different values of the
frequency and the external magnetic field. Correspondingly,
in Fig. 4(b) we plot again the value of the optical force but
for the case with φ = π/4 (force proportional to the helicity).
The force in the first case is proportional to the real part
of αMO, while in the second case it is proportional to the
imaginary part of αMO. The forces thus exhibit high values for
the magnetically dependent branches of the resonances (see,
e.g., Ref. [20]), which are zero for the nonmagnetic ones and,
of course, for Bext = 0.

VI. CONCLUSIONS

To sum up, we have introduced intriguing phenomena in
optical forces caused solely by the presence of a sizable
magneto-optical effect. We have demonstrated that the scat-
tered fields from a MO-active nanoparticle allow for the gen-
eration of a conservative optical lattice using noninterfering
incoming fields depending on the gradient of the spin density
of the light field. This interaction allows for the proposal of

FIG. 4. Magneto-optical force vs wavelength and external mag-
netic field for (a) φ = 0 (two linearly cross-polarized plane waves,
counterpropagating) and (b) φ = π/4 (two counterpropagating cir-
cularly polarized beams with the same helicity). The intensity of the
electromagnetic field is 10 mW/μm2.

a Stern-Gerlach experiment in which the scattered light is
deflected on a nonconstant magnetic field, depending on the
value of the spin angular momentum of the electromagnetic
radiation. Also, we have calculated the extinction forces and
we have shown how it is possible to exert tunable radiation
pressure on a nanoparticle using electromagnetic fields with a
zero average value of the Poynting vector but with constant
helicity. Finally, we have proved that the MOE allows for
a permanent nonreciprocal torque using a spinless, linearly
polarized plane wave which, in contrast with the chiral case,
depends not on the Poynting vector but on the intensity of the
light field. These radiation forces and torques on nanoparticles
based on the magneto-optical effect open a route to applica-
tions in the field of optical manipulation. On the one hand,
this mechanism allows for a different interaction between
light and a constant magnetic field. The spin properties of the
electromagnetic radiation are now transferred to an effective
magnetic dipole moment on a MO particle inducing a Zee-
mann interaction between the spin of light and the constant
magnetic field. Inspired by this interaction, other applications
can be proposed such as sorting of radiation based on a Stern-
Gerlach setup and cooling of nanosized particles lacking
magnetic moment discrete energy levels. On the other hand,
the magneto-optical interaction reported is also sensible to
the value (not gradient) of the helicity of radiation and, for
that reason, by using the MO particle as a probe, the absolute
value of the helicity of a particular electromagnetic field can
be determined. Finally, the magneto-optical effect also allows
for the existence of optical manipulation schemes based on
the nonreciprocal character of the MO interaction such as, for
instance, the capability of transferring permanent torques in
resonant cavities by using linearly polarized light.

ACKNOWLEDGMENTS

This research was supported by the Spanish MICINN
and European Regional Development Fund (ERDF)
through Projects No. FIS2015-69295-C3-1-P, No.

013005-5



S. EDELSTEIN et al. PHYSICAL REVIEW RESEARCH 1, 013005 (2019)

FIS2015-69295-C3-3-P, No. PGC2018-095777-B-C21,
No. PGC2018-095777-B-C22, the Basque Departamento

de Educación through Project No. PI-2016-1-0041, and the
María de Maeztu Program No. MDM-2014-0377.

[1] T. Sleator, T. Pfau, V. Balykin, O. Carnal, and J. Mlynek, Ex-
perimental Demonstration of the Optical Stern-Gerlach Effect,
Phys. Rev. Lett. 68, 1996 (1992).

[2] R. P. Cameron, S. M. Barnett, and A. M. Yao, Discriminatory
optical force for chiral molecules, New J. Phys. 16, 013020
(2014).

[3] N. Kravets, A. Aleksanyan, and E. Brasselet, Chiral Optical
Stern-Gerlach Newtonian Experiment, Phys. Rev. Lett. 122,
024301 (2019).

[4] A. Karnieli and A. Arie, All-Optical Stern-Gerlach Effect,
Phys. Rev. Lett. 120, 053901 (2018).

[5] O. Arteaga, E. García-Caurel, and R. Ossikovski, Stern-Gerlach
experiment with light: Separating photons by spin with the
method of A. Fresnel, Opt. Express 27, 4758 (2019).

[6] E. Arimondo, Coherent population trapping in laser spec-
troscopy, Prog. Opt. 35, 257 (1996).

[7] M. Fleischhauer and M. D. Lukin, Dark-State Polaritons in
Electromagnetically Induced Transparency, Phys. Rev. Lett. 84,
5094 (2000).

[8] L. Karpa and M. Weitz, A Stern-Gerlach experiment for slow
light, Nat. Phys. 2, 332 (2006).

[9] Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, Magneto-optical
Stern-Gerlach effect in an atomic ensemble, Phys. Rev. A 78,
013833 (2008).

[10] C. Hang and G. Huang, Stern-Gerlach effect of weak-light
ultraslow vector solitons, Phys. Rev. A 86, 043809 (2012).

[11] A. Ashkin, Optical trapping and manipulation of neutral par-
ticles using lasers, Proc. Natl. Acad. Sci. USA 94, 4853
(1997).

[12] V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov,
A. Cebollada, A. García-Martín, J.-M. García-Martín, T.
Thomay, A. Leitenstorfer, and R. Bratschitsch, Active magneto-
plasmonics in hybrid metal–ferromagnet structures, Nat.
Photonics 4, 107 (2010).

[13] G. Armelles, A. Cebollada, A. García-Martín, and M. U.
González, Magnetoplasmonics: Combining magnetic and plas-
monic functionalities, Adv. Opt. Mater. 1, 10 (2013).

[14] G. Armelles, B. Caballero, A. Cebollada, A. Garcia-Martin, and
D. Meneses-Rodríguez, Magnetic field modification of optical
magnetic dipoles, Nano Lett. 15, 2045 (2015).

[15] M. Rollinger et al., Light localization and magneto-optic en-
hancement in Ni antidot arrays, Nano Lett. 16, 2432 (2016).

[16] N. de Sousa, L. S. Froufe-Pérez, J. J. Sáenz, and A. García-
Martín, Magneto-optical activity in high index dielectric
nanoantennas, Sci. Rep. 6, 30803 (2016).

[17] E. Moncada-Villa, V. Fernández-Hurtado, F. J. García-Vidal, A.
García-Martín, and J. C. Cuevas, Magnetic field control of near-
field radiative heat transfer and the realization of highly tunable
hyperbolic thermal emitters, Phys. Rev. B 92, 125418 (2015).

[18] P. Ben-Abdallah, Photon Thermal Hall Effect, Phys. Rev. Lett.
116, 084301 (2016).

[19] R. M. Abraham Ekeroth, A. García-Martín, and J. C. Cuevas,
Thermal discrete dipole approximation for the description of
thermal emission and radiative heat transfer of magneto-optical
systems, Phys. Rev. B 95, 235428 (2017).

[20] R. M. A. Ekeroth, P. Ben-Abdallah, J. C. Cuevas, and A. García-
Martín, Anisotropic thermal magnetoresistance for an active
control of radiative heat transfer, ACS Photonics 5, 705 (2018).

[21] S. Albaladejo et al., Radiative corrections to the polarizability
tensor of an electrically small anisotropic dielectric particle,
Opt. Express 18, 3556 (2010).

[22] R. P. Hunt, Magneto-optic scattering from thin solid films,
J. Appl. Phys. 38, 1652 (1967).

[23] L. D. Landau, E. Lifshitz, and L. Pitaevskii, Electrodynamics of
Continuous Media (Pergamon, Oxford, UK, 1984), Vol. 8.

[24] H. Marinchio, J. J. Sáenz, and R. Carminati, Light scattering
by a magneto-optical nanoparticle in front of a flat surface:
Perturbative approach, Phys. Rev. B 85, 245425 (2012).

[25] S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz,
Scattering Forces from the Curl of the Spin Angular Momentum
of a Light Field, Phys. Rev. Lett. 102, 113602 (2009).

[26] R. P. Cameron, S. M. Barnett, and A. M. Yao, Optical helicity,
optical spin and related quantities in electromagnetic theory,
New J. Phys. 14, 053050 (2012).

[27] M. Nieto-Vesperinas, Optical theorem for the conservation
of electromagnetic helicity: Significance for molecular energy
transfer and enantiomeric discrimination by circular dichroism,
Phys. Rev. A 92, 023813 (2015).

[28] J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the
Doppler limit by polarization gradients: Simple theoretical
models, J. Opt. Soc. Am. B 6, 2023 (1989).

[29] R. P. Cameron, S. M. Barnett, and A. M. Yao, Optical helicity
of interfering waves, J. Mod. Opt. 61, 25 (2014).

[30] M. Nieto-Vesperinas, Optical torque on small bi-isotropic par-
ticles, Opt. Lett. 40, 3021 (2015).

[31] M. Mansuripur, Energy, linear momentum, and angular mo-
mentum exchange between an electromagnetic wave-packet
and a small particle, J. Nanophotonics 13, 012503 (2018).

[32] S. M. Barnett, Optical angular-momentum flux, J. Opt. B 4, S7
(2001).

[33] A. Canaguier-Durand, J. A. Hutchison, C. Genet, and T. W
Ebbesen, Mechanical separation of chiral dipoles by chiral
light, New. J. Phys. 15, 123037 (2013).

[34] S. B. Wang and C. T. Chan, Lateral optical force on chiral
particles near a surface, Nat. Commun. 5, 3307 (2014).

[35] A. Hayat, J. P. Balthasar Mueller, and F. Capasso, Lateral
chirality-sorting optical forces, Proc. Natl. Acad. Sci. USA 112,
13190 (2015).

[36] H. Chen et al., Optical torque on small chiral particles in generic
optical fields, Opt. Express 25, 32867 (2017).

[37] E. Palik et al., Coupled surface magnetoplasmon-optic-phonon
polariton modes on InSb, Phys. Rev. B 13, 2497 (1976).

013005-6

https://doi.org/10.1103/PhysRevLett.68.1996
https://doi.org/10.1103/PhysRevLett.68.1996
https://doi.org/10.1103/PhysRevLett.68.1996
https://doi.org/10.1103/PhysRevLett.68.1996
https://doi.org/10.1088/1367-2630/16/1/013020
https://doi.org/10.1088/1367-2630/16/1/013020
https://doi.org/10.1088/1367-2630/16/1/013020
https://doi.org/10.1088/1367-2630/16/1/013020
https://doi.org/10.1103/PhysRevLett.122.024301
https://doi.org/10.1103/PhysRevLett.122.024301
https://doi.org/10.1103/PhysRevLett.122.024301
https://doi.org/10.1103/PhysRevLett.122.024301
https://doi.org/10.1103/PhysRevLett.120.053901
https://doi.org/10.1103/PhysRevLett.120.053901
https://doi.org/10.1103/PhysRevLett.120.053901
https://doi.org/10.1103/PhysRevLett.120.053901
https://doi.org/10.1364/OE.27.004758
https://doi.org/10.1364/OE.27.004758
https://doi.org/10.1364/OE.27.004758
https://doi.org/10.1364/OE.27.004758
https://doi.org/10.1016/S0079-6638(08)70531-6
https://doi.org/10.1016/S0079-6638(08)70531-6
https://doi.org/10.1016/S0079-6638(08)70531-6
https://doi.org/10.1016/S0079-6638(08)70531-6
https://doi.org/10.1103/PhysRevLett.84.5094
https://doi.org/10.1103/PhysRevLett.84.5094
https://doi.org/10.1103/PhysRevLett.84.5094
https://doi.org/10.1103/PhysRevLett.84.5094
https://doi.org/10.1038/nphys284
https://doi.org/10.1038/nphys284
https://doi.org/10.1038/nphys284
https://doi.org/10.1038/nphys284
https://doi.org/10.1103/PhysRevA.78.013833
https://doi.org/10.1103/PhysRevA.78.013833
https://doi.org/10.1103/PhysRevA.78.013833
https://doi.org/10.1103/PhysRevA.78.013833
https://doi.org/10.1103/PhysRevA.86.043809
https://doi.org/10.1103/PhysRevA.86.043809
https://doi.org/10.1103/PhysRevA.86.043809
https://doi.org/10.1103/PhysRevA.86.043809
https://doi.org/10.1073/pnas.94.10.4853
https://doi.org/10.1073/pnas.94.10.4853
https://doi.org/10.1073/pnas.94.10.4853
https://doi.org/10.1073/pnas.94.10.4853
https://doi.org/10.1038/nphoton.2009.265
https://doi.org/10.1038/nphoton.2009.265
https://doi.org/10.1038/nphoton.2009.265
https://doi.org/10.1038/nphoton.2009.265
https://doi.org/10.1002/adom.201200011
https://doi.org/10.1002/adom.201200011
https://doi.org/10.1002/adom.201200011
https://doi.org/10.1002/adom.201200011
https://doi.org/10.1021/nl5049115
https://doi.org/10.1021/nl5049115
https://doi.org/10.1021/nl5049115
https://doi.org/10.1021/nl5049115
https://doi.org/10.1021/acs.nanolett.5b05279
https://doi.org/10.1021/acs.nanolett.5b05279
https://doi.org/10.1021/acs.nanolett.5b05279
https://doi.org/10.1021/acs.nanolett.5b05279
https://doi.org/10.1038/srep30803
https://doi.org/10.1038/srep30803
https://doi.org/10.1038/srep30803
https://doi.org/10.1038/srep30803
https://doi.org/10.1103/PhysRevB.92.125418
https://doi.org/10.1103/PhysRevB.92.125418
https://doi.org/10.1103/PhysRevB.92.125418
https://doi.org/10.1103/PhysRevB.92.125418
https://doi.org/10.1103/PhysRevLett.116.084301
https://doi.org/10.1103/PhysRevLett.116.084301
https://doi.org/10.1103/PhysRevLett.116.084301
https://doi.org/10.1103/PhysRevLett.116.084301
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1103/PhysRevB.95.235428
https://doi.org/10.1021/acsphotonics.7b01223
https://doi.org/10.1021/acsphotonics.7b01223
https://doi.org/10.1021/acsphotonics.7b01223
https://doi.org/10.1021/acsphotonics.7b01223
https://doi.org/10.1364/OE.18.003556
https://doi.org/10.1364/OE.18.003556
https://doi.org/10.1364/OE.18.003556
https://doi.org/10.1364/OE.18.003556
https://doi.org/10.1063/1.1709738
https://doi.org/10.1063/1.1709738
https://doi.org/10.1063/1.1709738
https://doi.org/10.1063/1.1709738
https://doi.org/10.1103/PhysRevB.85.245425
https://doi.org/10.1103/PhysRevB.85.245425
https://doi.org/10.1103/PhysRevB.85.245425
https://doi.org/10.1103/PhysRevB.85.245425
https://doi.org/10.1103/PhysRevLett.102.113602
https://doi.org/10.1103/PhysRevLett.102.113602
https://doi.org/10.1103/PhysRevLett.102.113602
https://doi.org/10.1103/PhysRevLett.102.113602
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1088/1367-2630/14/5/053050
https://doi.org/10.1103/PhysRevA.92.023813
https://doi.org/10.1103/PhysRevA.92.023813
https://doi.org/10.1103/PhysRevA.92.023813
https://doi.org/10.1103/PhysRevA.92.023813
https://doi.org/10.1364/JOSAB.6.002023
https://doi.org/10.1364/JOSAB.6.002023
https://doi.org/10.1364/JOSAB.6.002023
https://doi.org/10.1364/JOSAB.6.002023
https://doi.org/10.1080/09500340.2013.829874
https://doi.org/10.1080/09500340.2013.829874
https://doi.org/10.1080/09500340.2013.829874
https://doi.org/10.1080/09500340.2013.829874
https://doi.org/10.1364/OL.40.003021
https://doi.org/10.1364/OL.40.003021
https://doi.org/10.1364/OL.40.003021
https://doi.org/10.1364/OL.40.003021
https://doi.org/10.1117/1.JNP.13.012503
https://doi.org/10.1117/1.JNP.13.012503
https://doi.org/10.1117/1.JNP.13.012503
https://doi.org/10.1117/1.JNP.13.012503
https://doi.org/10.1088/1464-4266/4/2/361
https://doi.org/10.1088/1464-4266/4/2/361
https://doi.org/10.1088/1464-4266/4/2/361
https://doi.org/10.1088/1464-4266/4/2/361
https://doi.org/10.1088/1367-2630/15/12/123037
https://doi.org/10.1088/1367-2630/15/12/123037
https://doi.org/10.1088/1367-2630/15/12/123037
https://doi.org/10.1088/1367-2630/15/12/123037
https://doi.org/10.1038/ncomms4307
https://doi.org/10.1038/ncomms4307
https://doi.org/10.1038/ncomms4307
https://doi.org/10.1038/ncomms4307
https://doi.org/10.1073/pnas.1516704112
https://doi.org/10.1073/pnas.1516704112
https://doi.org/10.1073/pnas.1516704112
https://doi.org/10.1073/pnas.1516704112
https://doi.org/10.1364/OE.25.032867
https://doi.org/10.1364/OE.25.032867
https://doi.org/10.1364/OE.25.032867
https://doi.org/10.1364/OE.25.032867
https://doi.org/10.1103/PhysRevB.13.2497
https://doi.org/10.1103/PhysRevB.13.2497
https://doi.org/10.1103/PhysRevB.13.2497
https://doi.org/10.1103/PhysRevB.13.2497

