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Possible mechanism for superconductivity in doped SrTiO3
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The soft ferroelectric phonon in SrTiO3 observed with optical spectroscopy has an extraordinarily strong
spectral weight which is much stronger than expected in the limit of a perfectly ionic compound. This “charged
phonon” effect in SrTiO3 is caused by the close-to-covalent character of the Ti-O ionic bond and implies a strong
coupling between the soft ferroelectric phonon and the interband transitions across the 3-eV gap of SrTiO3. We
demonstrate that this coupling leads, in addition to the charged phonon effect, to a pairing interaction involving
the exchange of two transverse optical phonons. This process owes its relevance to the strong electron-phonon
coupling and to the fact that the interaction mediated by a single transverse optical phonon vanishes at low
electron density. We use the experimental soft phonon spectral weight to calculate the strength of the biphonon
mediated pairing interaction in the electron-doped material and show that it is of the correct magnitude when
compared to the experimental value of the superconducting critical temperature. Biphonon exchange is therefore
an important pairing mechanism at low doping, and may be the key to understanding the occurrence of
superconductivity in doped SrTiO3 and other low electron density materials.
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I. INTRODUCTION

The nature of superconductivity in SrTiO3 [1–3] is ex-
ceptional for a number of reasons: Superconductivity occurs
at extremely low carrier densities down to 1017 cm−3 [4,5],
the material is close to a ferroelectric instability, and can be
pushed into the ferroelectric state by appropriate Ca or 18O
substitution [6–8], with a coexistence of superconductivity
and a ferroelectric type symmetry breaking [9–11]. While the
pairing mechanism is believed to have to do with electron-
phonon coupling in some form [12–27], the question as to the
exact nature of the electron-phonon interaction responsible for
the pairing has not received a clear answer yet. As a result of
the low carrier density, the Fermi temperature is low. Conse-
quently, εF is of the same range or smaller than the phonon
frequencies, placing the coupling to the longitudinal optic
(LO) mode at 100 meV—to which the coupling is strongest—
in the antiadiabatic limit [9,13,28,29]. Although it has been
argued that the smallness of the Fermi surface has the con-
sequence of drastically suppressing the available phase space
for an electron-phonon interaction [16], it has been recently
demonstrated that dominant single phonon exchange pro-
cesses at low doping come from electronic states away from
the Fermi surface [30]. Alternative pairing schemes include
the exchange of intravalley phonons [12], two-phonon ex-
change [16], and longitudinal optical phonons [21]. However,
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the LO-phonon mediated electron-electron interaction in the
static limit is insufficient to describe superconductivity in
strontium titanate, and an alternative approach has been ex-
plored based on the full dynamical dielectric function [19].
Much attention has been drawn by recent ideas on pairing
mediated by the ferroelectric soft mode, and the effects on the
pairing amplitude when the system approaches the quantum
critical point of the ferroelectric order parameter. The quan-
tum critical fluctuations of the ferroelectric order are often
believed to be particularly good candidates for mediating a
pairing interaction. However, one problem looms over this
approach: The soft ferroelectric phonon (TO1) is a transverse
optical mode. Processes whereby a d electron emits a TO
phonon have a vanishing amplitude in the long-wavelength
limit [27], which, due to the small Fermi momentum of
these most dilute superconductors, is the relevant range. The
corresponding longitudinal mode (LO1) has a frequency of
about 20 meV, independent of temperature, and remains at this
high energy through the phase transition (see Appendix A,
Fig. 4). Another noteworthy feature is the fact that the
electron-phonon coupling as described by the Frohlich model
is negligible (α = 0.02) for the LO1 phonon (see Appendix A,
Fig. 4). This then raises the question whether there is any
relevance at all of the soft ferroelectric modes in relation to
the superconducting pairing mechanism.

II. SPECTRAL WEIGHT OF THE TO1 MODE

In the present paper an affirmative answer is provided to
this question, but the nature of the interaction is unusual and
the pairing process involves the exchange of two transverse
polarized phonons as proposed by Ngai [16]. We begin by
highlighting a striking feature [25,31] of the optical phonons
of pristine SrTiO3, namely, the fact that the TO1 mode has an
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FIG. 1. Optical conductivity σ1(ω) at 6 K (see Appendix A)
and the sum-rule integral Z2

eff defined in Eq. (2), representing the
transverse effective charge of the optical phonons of pristine SrTiO3.

unusually strong oscillator strength. To make this quantitative
we take a look at the integrated spectral weight of all phonons.
The optical conductivity σ1(ω) of the vibrational part of the
optical spectrum satisfies the f -sum rule for the different
species of ions in the compound, labeled by j,∫ �

0
σ1(ω′)dω′ =

∑
j

πn jq2
j

2mj
, (1)

where the parameters mj , q j , and n j are the corresponding
mass, charge, and volume densities and � is a suitably chosen
cutoff above the upper limit of the vibrational part of the spec-
trum and below the lower limit of the interband transitions. In
a purely ionic compound the charge qj is given by the nominal
valency. The ratio of both sides of the above expression,

Z2
eff(�) =

⎡
⎣∑

j

πn jq2
j

2mj

⎤
⎦

−1 ∫ �

0
σ1(ω)dω, (2)

then provides an effective charge which for a perfectly ionic
compound is expected to be Zeff(�) = 1, as is indeed the case
in simple salts such as MgO [32]. Figure 1 depicts σ1(ω) of
SrTiO3 at 6 K determined experimentally from reflectivity
measurements (Appendix A) and the corresponding partial
integral Z2

eff(ω). The latter amounts to a value of 3.1, implying
that the effective charge is a factor 1.8 enhanced. Since the
oxygen ions are by far the lightest ions and therefore are
the dominant contributions to Eq. (1), one would be lead to
conclude that the ionic charge is −3.5 instead of −2, which
makes absolutely no sense from a chemical perspective. For
the case of SrTiO3 this was answered in Ref. [31], namely, the
“Ti-O ionic bond is on the verge of being covalent, leading
to large charge transfers” [25]. In 1977, Rice analyzed this
phenomenon in a different context of organic conductors,
under the banner “charged phonons” [33], and the formalism
has since then been applied to a number of different cases,
including buckminster-fullerene [34], FeSi [35], and bilayer
graphene [36].

FIG. 2. Differential oscillator strength σ (ω)/ω2 (orange). For
h̄ω < 5.7 eV the dielectric function of Ref. [38] was digitized,
and the optical conductivity data above 5.7 eV were digitized from
Ref. [39]. The differential oscillator strength is the contribution of the
optical conductivity per unit of energy to the static dielectric perme-
ability ε(0). The dark blue curve represents the integrated oscillator
strength taking 3 eV as the lower threshold. The gray area under
the orange curve represents the energy range of O 2p to Ti 3d (t2g)
transitions. The corresponding value of the oscillator strength of
this transition can be read on the right-hand axis, corresponding to
Se = 2.2 eV.

In order to identify the main source of electron-phonon
coupling we take advantage of the relation [see Appendix B,
Eq. (B16)]

ε(0) = 1 + lim
ω→∞ S(ω), (3)

where

S(ω) = 8
∫ ω

0

σ1(�)

�2
d�.

In Fig. 2 we show σ1(ω)/ω2 as well as the sum-rule integral
S(ω) of this quantity for the electronic part of the spectrum,
i.e., without the phonon contribution of Fig. 1. From the early
band-structure calculations using the linear combination of
atomic orbitals (LCAO) method, it is possible to identify the
range from 3 to 7 eV with transitions from the occupied O 2p
states to the empty Ti 3d (t2g) bands [37]. The latter bands,
which are empty in pristine SrTiO3, become populated when
electron doping the material, and the electrons in these bands
are those which exhibit superconductivity. The experimental
differential oscillator strength shown in Fig. 2 makes abun-
dantly clear that the lion’s share of the static polarizability
originates from the mixing of O 2p and Ti 3d (t2g) character,
and that the corresponding oscillator strength is Se = 2.2.
We can combine this with our knowledge of Z2

eff to obtain
the value of the classical (spring) coupling constant γ , the
electronic and vibrational length scales ae [Eq. (B17)] and an

[Eq. (B28)], and the transverse electron-phonon coupling con-
stant g [Eq. (B30)]. The resulting values of these parameters
are given in Table I.
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TABLE I. List of the experimental quantities (left) and derived
theoretical quantities (right).

Quantity Value Units Quantity Value Units

Z2
eff 3.1 a m̃e 0.84 me

Ne,p 2.0 a ae 9.5×10−9 cm
V 5.95×10−23 cm3 [2] an 1.0×10−9 cm
h̄ωn 12 meV b γ 9.3×104 g/s2

h̄ωe 5.0 eV a g 0.57 eV
Se 2.2 a 
 66 meV
D∗

F �0.80 eV−1 [18] λ2ph �0.28
Tc �400 mK [1] λexpt �0.15

aPresent work.
bEstimated from the ω(q) dispersion of TO1 reported in Ref. [42].

III. TWO-PHONON EXCHANGE
AND SUPERCONDUCTIVITY

Equipped with these parameters we are now in a position to
analyze further consequences of the electron-phonon coupling
described by the Hamiltonian [see Appendix B, Eq. (B29)]

Ĥ = εp p̂† p̂ + εd d̂†d̂ + h̄ωn
(

1
2 + â†â

)
−g(d̂† p̂ + p̂†d̂ )(â† + â), (4)

where the label d refers to the central titanium 3dxy state, and
p refers to the even superposition of two π -bonded oxygen
2py states to the left and right of the central titanium 3dxy

state. The energy separation of these two states is h̄ωe =
εd − εp, the corresponding electron creation and annihilation
operators are d̂†, p̂†, d̂ , and p̂, and â† (â) creates (annihi-
lates) a vibrational quantum. The momentum dependence is
provided in Appendix B 1. For the present purpose we will
just work out the consequences in the local model described
by Eq. (4). The first important point to note is the fact that
the emission or absorption of a phonon implies a change of
parity of the electronic wave function. For bands close to
the Brillouin-zone center this implies that the electron has
to switch necessarily from one band to another. The main
players are the occupied O 2p bands and the empty Ti 3d
bands, the latter ones of t2g character immediately above
the insulator gap (3 eV) and the eg states at 2.5 eV higher
energy. The implication is that in the limit kF → 0, a process
whereby a single TO1 phonon is exchanged between two
conduction electrons has zero amplitude. The next available
process involves the exchange of two phonons. We consider
first a state with a single d electron doped into the insulator.
The electron-phonon interaction in Eq. (4) generates on top
of this a virtual electronic excitation and a phonon, together
having an energy ωe + ωn, which decays into a state with
again a single d electron and two phonons. In second-order
perturbation theory the corresponding scattering amplitude is


 ≈ − g2

h̄ωe
, (5)

where we used that ωn � ωe. The value is reported in Table I.
The two emitted phonons can be reabsorbed by a second d
electron in a similar process, causing the two d electrons to in-
teract by virtual exchange of two optical phonons. Following

the standard treatment of BCS theory we obtain for the
product of pairing interaction and density of states D∗

F at εF ,

λ2ph = 2D∗
F


2

2h̄ωn
. (6)

where the factor 2 in front of the expression accounts for the
two possible permutations of the biphonon exchange [40] and
the factor 2 in the denominator accounts for the fact that the
interaction is mediated by a pair of phonons. Since in a lattice
environment the phonon frequency disperses as a function of
momentum, the factor 1/(2ωn) on the right-hand side should
be replaced by the momentum average of 1/(ωq + ωq′ ), for
which we obtain [41] 2h̄ωn = 24 meV. Combining all exper-
imental factors used to evaluate g, 
, and λ2ph we can write
Eq. (6) as

λ2ph = h̄(8π )2n2
e,pq4

e

(
Z2

eff − 1
)4

D∗
F

S2
e m2

nω
3
n

. (7)

The thus obtained value for the electron-electron coupling
constant is λ2ph = 0.28. This falls well inside the range of
values of the coupling parameter estimated from Tc data
(0.1 < λexpt < 0.2) and transport (0.1 < λexpt < 0.4) for car-
rier concentrations from 1019 to 1020 cm−3 (see Fig. 8 of
Ref. [18]). The close value of λ2ph to λexpt is encouraging and
shows that Ngai’s model [16] of the exchange of two optical
phonons could be relevant for superconductivity in SrTiO3.

IV. DISCUSSION AND OUTLOOK

We started out by analyzing the observed, strong, charged
phonon effect in pristine SrTiO3, and proceeded to extract
an electron-phonon coupling constant relevant in biphonon
pairing processes. Usually when the charged phonon effect
is observed, the electronic oscillator and the phonon oscillator
are much closer in energy, and in fact often overlap, leading
to interesting resonance behavior and Fano asymmetries. In
the present case the vibrational and electronic energy scales
are separated by two orders of magnitude, making the case for
SrTiO3 quite exceptional in that the large observed Zeff implies
that the charged phonon interaction is abnormally strong.
These materials are close to a ferroelectric instability, such an
instability requires the harmonic potential to switch sign near
the phase transition, the ferroelectric displacement is exactly
what is driving the charged phonon effect, and it is difficult to
identify a pairing mechanism of the doped superconducting
materials. From an intellectual point of view it would be
satisfying if a common factor could be identified which is
responsible for all of those phenomena. The model proposed
in the present paper fits this description, and solves the conun-
drum of the electron coupling to the soft ferroelectric modes
despite the fact that these modes are transverse polarized. The
softening of the mode brings along the difficulty that any
anharmonicity in the potential of the vibrational coordinate
becomes particularly pronounced (e.g., a mexican hat shape)
and the vibrational frequency becomes imaginary [43]. This
immediately leads to the problem that parameters such as γ

and an lose their meaning, at least in the long-wavelength limit
where the softening takes place. A treatment of the biphonon
exchange processes including the aforementioned features
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FIG. 3. Experimental reflectivity data of pristine SrTiO3 at room
temperature and 6 K and fits (solid black curves) using Drude-
Lorentz oscillators with Fano-shape asymmetry.

should be the subject of future studies. The current state of af-
fairs provides a motivation to undertake further theoretical and
experimental studies. At the present stage a number of falsifi-
able consequences can already be stated. In particular, the soft
two-phonon processes, corresponding to a broad continuum
of the biphonon energies (about 25–30 meV), should show
up in tunneling and photoemission spectra, with an electron-
phonon coupling constant g ∼ 0.6 eV. Another consequence
is that the pulsed optical excitation of the pd electron-hole
excitations using a laser operating between 3 and 7 eV should
lead to a pronounced coherent excitation of the soft ferroelec-
tric modes. This method provides an alternative scheme to
measure the coupling constant g. Finally, we note that, while
doped SrTiO3 presents a confluence of properties including
the charged phonon effect which allows one to obtain from
optical experiments the coupling strength of the conduction
electrons to two-phonon processes, similar couplings may
play a role in other low-density superconductors.
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APPENDIX A: EXPERIMENTAL OPTICAL
CONDUCTIVITY DATA, ENERGY LOSS FUNCTION,
AND ELECTRON-PHONON COUPLING FUNCTION

Figure 3 shows the experimental reflectivity spectra of
SrTiO3 at room temperature and 6 K. The data have been
fitted with a multioscillator function. The complex dielectric
function obtained by this procedure is a smooth function
suitable for calculating the derivative in Eq. (A1). Note that
at the lowest temperatures the frequency of the TO1 mode

FIG. 4. Reflectivity (top left), optical conductivity (bottom left),
loss function (bottom right), and coupling function (top right) of
pristine SrTiO3 at room temperature (red dashed) and 6 K (solid
blue) curve. The peaks of the optical conductivity (loss function)
correspond to the TO (LO) modes. To allow for α(ω) to be smooth
despite the frequency derivative in the denominator, a Lorentz
parametrization of the optical spectrum was used. The vertical and
horizontal lines in the right-hand panels graphically represent the α

coefficients corresponding to each of the longitudinal phonons.

ω1 falls below the window of observation of the reflectivity
experiments (i.e., below 2.5 meV in Fig. 5). While the
multioscillator fit is not expected to accurately reproduce
σ (ω) in the range where there are no experimental data, the
spectral weight S1 of the TO1 mode shows up as a negative
contribution to Im σ (ω) at higher frequencies proportional to
−S1ω

2
1/ω and can be obtained reliably by this method. The

corresponding optical conductivity shown together with the
loss function in Fig. 4 confirms the results reported in Refs.
[44–46]. The peaks in the optical conductivity coincide with
the TO modes, and the peaks in the loss function with the
LO modes. The top right panel shows the electron-phonon
coupling constants calculated using Eq. (A1). The first point
to notice is the strong difference in temperature dependence
of TO and LO modes. Whereas the TO1 mode is strongly
temperature dependent and approaches zero energy at zero
temperature, all LO modes including the one lowest in energy
(LO1) are essentially temperature independent.

The second observation is that the electron-phonon cou-
pling to the LO1 mode is negligible as compared to the other
two. This is seen from the coupling constants described by
Toyozawa’s multiphonon generalization of the Fröhlich model
[47,48],

α j =
√

2mb

h̄3ω3
L, j

q2
e

[∂ε/∂ω]L, j
. (A1)

The values of α can be readily read off from the top right
panel of Fig. 4, and correspond to those that have been used
by Devreese et al. [28] to calculate the midinfrared band of
electron-doped SrTiO3. The good agreement of those calcu-
lations with the data of Ref. [46] demonstrates the validity
of the α parameters obtained with the method of Fröhlich.
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FIG. 5. While SrTiO3 is a three-dimensional crystal, the relevant
valence states are built up from oxygen 2p and titanium 3dxy orbitals
as sketched in this figure. If we label the horizontal and vertical axis
as x and y, one should imagine that this structure is repeated along
the z axis of the simple cubic structure. The corresponding bands are
degenerate with, and orthogonal to, the bands comprising 3dyz and
3dzx with corresponding oxygen 2p orbitals.

We should therefore take seriously that the electron-phonon
coupling to the lowest-energy longitudinal mode is very small,
and most likely insignificant in the context of the mechanism
for superconductivity.

APPENDIX B: DETAILS OF THE FORMALISM

Bringing elements together from scattered texts comes
with the risk of missing a factor of π or 1/2 here and there.
Since at the end of the day we need to compute numbers
that can be compared with experiments, we will derive the
charged-phonon formalism and the resulting biphonon pairing
mechanism from scratch.

1. Momentum dependence of the band structure
and electron-phonon interaction

The relevant orbitals are depicted in Fig. 5. The tight-
binding Hamiltonian with nearest-neighbor hopping corre-
sponding to the orbitals in a single plane is

Ĥ =
∑
h, j

(
εd d̂†

xy,h, j d̂xy,h, j + εp p̂†
x,h, j p̂x,h, j + εp p̂†

y,h, j p̂y,h, j
)

+ tpd

∑
h, j

(
p̂†

y,h, j d̂xy,h, j + p̂†
x,h, j d̂xy,h, j

) + H.c.

− tpd

∑
h, j

(
d̂†

xy,h, j p̂y,h+1, j + d̂†
xy,h, j p̂x,h, j+1

) − H.c. (B1)

Diagonalization is straightforward and gives

Ĥ =
3∑

j=1

∑
k

εk, j ĉ
†
k, j ĉk, j, (B2)

where the three bands are described by the following energy-
momentum dispersions,

εk,1 = εd + εp

2
−

√
(εd − εp)2

4
+ τ 2

	k ,

εk,2 = εp,

εk,3 = εd + εp

2
+

√
(εd − εp)2

4
+ τ 2

	k ,

τ	k = 2tpd

√
sin2

(
kxa

2

)
+ sin2

(
kya

2

)
. (B3)

The natural cause of the electron-phonon interaction in this
paper is the Peierls interaction, the modulation of the bond
strength due to the lattice displacement, which leads to the
following expression,

Ĥc = −g′ ∑
h, j

d̂†
h, j ( p̂y,h, j + p̂y,h+1, j )(â

†
x,h, j + âx,h, j )

− g′ ∑
h, j

d̂†
h, j ( p̂x,h, j + p̂x,h, j+1)(â†

y,h, j + ây,h, j ) − H.c.

(B4)

Fourier transformation gives for the special case of phonons
traveling along qy (qx = 0),

Ĥc = −2g′ ∑
	k,qy

cos

(
kxa

2

)[
d̂†

	k p̂y,	k+	q + p̂†
y,	k−	qd̂	k

][
â†

x,	q + âx,−	q
]

−2g′ ∑
	k,qy

cos

(
kya + qya

2

)
d̂†

	k p̂x,	k+	q
[
â†

y,	q + ây,−	q
]

−2g′ ∑
	k,qy

cos

(
kya − qya

2

)
p̂†

x,	k−	qd̂	k
[
â†

y,	q + ây,−	q
]
. (B5)

The operators d̂†
	k , p̂x,	k , and p̂x,	k can be decomposed in the

band-eigenstate operators ĉ†
	k, j

. For the present purpose it

suffices to point out that the two main players are bands j = 2
and j = 3. The character of band 2 is a pure nonbonding p
band. In the limit of large ωe/tpd the character of band j = 3
becomes purely Ti 3d . For the purpose of the present paper,
where the coupling constants are obtained from experimental
data, it is not necessary to work out these equations in more
detail. It is, however, interesting and of potential importance
to notice that the Peierls coupling provides in addition to the
charged phonon term (the first line of the equation) also a
coupling to longitudinal phonons (second and third lines of
the equation).

2. Two-level model of the charged phonon effect

From here on we consider a simplified version of the band
structure, ignoring the energy-momentum dispersion of the
bands, comprising for each lattice site of volume V an occu-
pied level corresponding band j = 2 of the previous section
and an empty state corresponding to band j = 3, which we
will label p and d for brevity. Both hybrid states have their
center of mass at the same (Ti4+) atomic site. The relevant
electronic levels are depicted in Fig. 5. For two O2− ions
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adjacent to Ti4+ ions with the three ions aligned along the x
axis this implies that we consider the even combination of the
two O py orbitals with its center of mass at the Ti 3dxy state.
For an electric field polarized along the x direction, the p-d
transition is dipole allowed. This system is described by the
Hamiltonian

Ĥe = εp p̂† p̂ + εd d̂†d̂ . (B6)

The position operator follows from the consideration that p
and d have the same center of mass. A linear combination
u|p〉 + v|d〉 will have its center of mass displaced in propor-
tion to uv. The position operator should therefore be of the
form

x̂e = ae(d̂† p̂ + p̂†d̂ ), (B7)

where ae is a length scale that we will obtain later from con-
siderations of the optical sum-rule for the p-d transition. The
velocity operator then follows from the Heisenberg equation
of motion,

ˆ̇xe = i

h̄
[Ĥe, x̂e] = iaeωe(d̂† p̂ − p̂†d̂ ), (B8)

where for the sake of brevity we introduced the definition

ωe ≡ εd − εp

h̄
, (B9)

and we define the zero of energy such that εp = −εd . Apply-
ing the Heisenberg equation of motion a second time provides
the result that the position operator satisfies the differential
equation of a harmonic oscillator,

ˆ̈xe = i

h̄
[Ĥe, ˆ̇xe] = −ω2

e x̂e. (B10)

For later use it is useful to work out the commutator of the po-
sition and the velocity operator. By means of straightforward
operator algebra we obtain

[x̂e, ˆ̇xe] = −4ia2
e

h̄
Ĥe. (B11)

To continue beyond this point we need to specify the ground
state to which we are going to apply these rules. Here, we
consider the case that the d state is empty, and the p state is
occupied, i.e., 〈d̂†d̂〉 = 0 and 〈p̂† p̂〉 = Np,e, then

〈Ĥe〉 = −Np,e
h̄ωe

2
, (B12)

so that

〈[x̂e, ˆ̇xe]〉 = 2ia2
eωeNp,e. (B13)

Using the velocity and position operators introduced above,
the f -sum rule following from linear response theory of the
optical conductivity reads∫ ∞

0
σ1(ω)dω = πq2

e

2h̄V
Im〈[x̂e, ˆ̇xe]〉. (B14)

After substitution of the result of the commutator of Eq. (B13)
we arrive at∫ ∞

0
σ1(ω)dω = πnp,eq2

e a2
eωe

h̄
= πnp,eq2

e

2m̃e
, (B15)

where np,e is the volume density of the p electrons (i.e., the
number of electrons in the 2p shell coupled to the Ti atom
divided by the cell volume V ). The right-hand member of
the equation resembling the expression for the free-electron
Drude spectral weight constitutes in fact the definition of the
effective mass m̃e of the electrons excited in the p-d transition.
While in the present case the numbers work out to provide a
mass value close to that of a free electron, the value of m̃e

employed in the analysis of the present model has to be taken
from Eq. (B15) in the interest of internal consistency of the
formalism.

Integration of σ1(ω)/ω2 provides another useful quantity,
the static dielectric permittivity,∫ ∞

0

σ1(ω)

ω2
dω = ε(0) − 1

8
= Se

8
= πnp,eq2

e a2
e

h̄ωe
. (B16)

The leftmost equality is a consequence of the Kramers-Kronig
relation between the dissipative and dispersive components
of the dielectric function. The last expression on the right is
specific to the present model, and is a consequence of σ1(ω)
being proportional to δ(ω − ωe).

By comparing the different members of the two expres-
sions provided above, we see that the characteristic length
scale ae can be expressed either as a function of m̃e or as a
function of S,

ae =
√

h̄

2m̃eωe
=

√
h̄ωeSe

πnp,eq2
e

. (B17)

Comparing the two right-hand members of the above equa-
tion, we see that the effective mass for the p-d transition is
provided by the expression

m̃e ≡ 4πnp,eq2
e

Seω2
e

. (B18)

Since we wish to extract parameters from optical data using
a Lorentz-oscillator model both for the vibrational and elec-
tronic component, we use for this part of the analysis a boson
representation of the electronic degree of freedom,

b̂† = d̂† p̂, b̂ = p̂†d̂,

x̂e = ae(b̂ + b̂†), p̂e = h̄

2iae
(b̂ − b̂†). (B19)

It is important to note that the b̂ operators do not satisfy
Bose-commutation rules. They do, however, provide a correct
representation of the system provided that we restrict the
states of the system to zero or one boson. In this limited
sense we can map the electronic subsystem on a harmonic
oscillator. The normal modes of the coupled system can be ob-
tained by diagonalization of the coupled electronic-vibrational
Hamiltonian in the classical limit. Using the above definitions
of the electronic coordinates together with the vibrational
coordinates, we obtain the Hamiltonian

H = p2
e

2m̃e
+ m̃eω

2
e

2
x2

e + p2
n

2mn
+ mnω

2
n

2
x2

n

+E (qexe + qnxn) − γ xexn, (B20)

where γ is the spring constant connecting the electronic and
vibrational degrees of freedom. In the interest of compactness
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we have absorbed all terms proportional to x2
e and x2

n in the
definitions of ωe and ωn. For a harmonic time-varying electric
field with angular frequency ω, the nuclear and electronic
currents are

jn = iωxnqnnn, je = iωxeqene, (B21)

and the coupled classical equations of motion become[
m̃e

(
ω2 − ω2

e

)
γ

γ mn
(
ω2 − ω2

n

)](
xe

xn

)
=

(
qeE
qnE

)
. (B22)

The solution for the vibrational conductivity σn = jn/E is

σn(ω) = qn
2nn

mn

iωZ2
eff(ω)

ω2 − ω̃2
n(ω)

. (B23)

Due to the electron-phonon coupling the vibrational frequency
has shifted to

ω̃2
n(ω) = ω2

n − γ 2m−1
n m̃−1

e

ω2
e − ω2

. (B24)

The transverse effective charge is given by

Z2
eff(ω) = 1 + γ m̃−1

e

ω2
e − ω2

. (B25)

In the case of SrTiO3 the electronic and vibrational frequen-
cies are separated by two orders of magnitude. Consequently,
for the range of vibrational frequencies, this expression can be

used in the limit ω → 0. The coupling constant γ is readily
obtained from the transverse effective charge through the
relation

γ = (
Z2

eff − 1
)
m̃eω

2
e = (

Z2
eff − 1

)4πnp,eq2
e

Se
. (B26)

Once we have read out Zeff, Se, ωe, ωn, and γ from the optical
data, we are ready to set up the observables on the quantum
level. The nuclear position and momentum operators are

x̂n = an(â + â†), p̂n = h̄

2ian
(â − â†), (B27)

where the characteristic length scale is given by

an =
√

h̄

2mnωn
. (B28)

The Hamiltonian operator of the coupled electron-phonon
system is

Ĥ = h̄ωe

2
(d̂†d̂ − p̂† p̂) + h̄ωn

(
1

2
+ â†â

)

− g(d̂† p̂ + p̂†d̂ )(â† + â). (B29)

The constant g is the spring constant connecting the electron
and nuclear oscillator, multiplied by the characteristic length
of the electronic oscillator and the nuclear one,

g ≡ γ anae. (B30)
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