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Can a periodically driven particle resist laser cooling and noise?
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Studying a single atomic ion confined in a time-dependent periodic anharmonic potential, we find large
amplitude trajectories stable for millions of oscillation periods in the presence of stochastic laser cooling.
Accounting for the complexity of the laser cooling process we calculate the details of the effective dynamics
away from thermal equilibrium. The competition between energy gain from the time-dependent drive and
damping leads to the stabilization of such stochastic limit cycles. Instead of converging to the global minimum of
the averaged potential, the steady-state phase-space distribution develops multiple peaks in the regions of phase
space where the frequency of the motion is close to a multiple of the periodic drive. Such distinct nonequilibrium
behavior can be observed in realistic radio-frequency traps with laser-cooled ions, suggesting that Paul traps offer
a well-controlled test bed for studying the transport and dynamics of microscopically driven systems.
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An atomic ion trapped in near vacuum is a highly isolated
system whose quantum motion can be controlled exquisitely
[1]. Notwithstanding this, it can also be a system where chaos
and randomness at the microscopic level give rise to intriguing
classical states of motion.

Paul traps for atomic ions are based on radio-frequency
(10–200 MHz) time-dependent potentials [2]. The time-
dependent drive affects the dynamics qualitatively and the
trapping is based on dynamical stabilization, akin to sta-
bilization of an inverted pendulum [3–5]. In general, even
for the motion of one particle in one spatial dimension, a
time-dependent drive renders the Hamiltonian phase space
effectively three dimensional (3D), counting the time (which
can be treated as periodic), the space coordinate, and the mo-
mentum. For anharmonic potentials, this results in complex
phase-space structures.

Laser cooling is widely used in ion trapping [6–16]. With
the cooling beam turned on, the ion may be expected to be
damped to the minimum of the effective potential or, in some
cases [17], heat up or diffuse to a larger amplitude where
it may escape from the trap. However, even if the ion is
cooled by the laser, the nonequilibrium nature of the dynamics
implies in general that the peaks of its spatial probability
distribution may not coincide with the minima of the poten-
tial. Rather, the distribution may develop new maxima, and
complex stochastic limit cycles and hysteretic behavior may
emerge [18–20].
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In this Rapid Communication, we show that the anhar-
monicity in a periodically driven Paul trap can capture an
ion at a large amplitude motion, corresponding to a stable
limit cycle with sizable basins of attraction in phase space,
even in the presence of damping by laser cooling and the
associated randomness. The time dependence of the potential
is a critical ingredient for such stochastic limit cycles since,
in contrast to time-independent confinement, it prevents the
damping from erasing the signatures of the Hamiltonian phase
space in the (quasi)stationary state. Instead, the stochastic
dynamics retain some of the more complex structure of the
underlying Hamiltonian phase space, with multiple peaks of
the probability distribution of the ion emerging away from
the effective potential minimum. Our approach allows us to
calculate the details of the ensuing stochastic dynamics away
from thermal equilibrium, accounting for the complex laser
cooling process. Although we focus on a trapped ion, the
basic required ingredients (time dependence, anharmonicity,
and weak damping) are relevant to many dynamically driven
systems, as further discussed below.

Model. We consider dynamics in an effectively one-
dimensional time-periodic potential in the presence of weak
damping and first examine the stability of the limit cycles
based on an analytic expansion. We then use this expansion
to account for the stochastic process of photon scattering
from a cooling laser, and further numerically demonstrate that
this mechanism remains robust for a realistic trap potential,
when the remaining degrees of freedom corresponding to 3D
confinement are taken into account.

In particular, we consider a time-dependent anharmonic
potential [21],

V (z, t ) = 1
2 az(z − zs)2 + qV2(z) cos 2t, (1)

where the time t is in units of 2/�, with � being the angular
frequency of the trap rf drive and the coordinate z is in units
of a length scale d , defined below. The charge and mass of
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FIG. 1. Stroboscopic maps of the phase space {z, ż} in nondi-
mensional units, obtained numerically by solving the equation of
motion for the trap potential V of Eq. (1), and plotting the points
the trajectory goes through at times t = 0 mod π . (a) Mixed phase-
space structure, wherein the chaotic “sea,” every closed curve and
every “island chain,” each one results from one initial condition.
See the text for details of the parameters. (b) A closeup of the
region around one island of the chain of s = 11 islands. (c) With
deterministic damping added [γ = 1 × 10−5 in Eq. (2)], an ion
starting at the rightmost curve in (b) will be slowly damped towards
the effective potential minimum (the color code indicates the time
along one slowly damping trajectory, where 1 corresponds to 105

drive periods). (d) An ion starting deeper within an island of a chain
({z = 1.087, ż = 0}) is captured in a large amplitude motion being
damped towards the island centers [same color code as in (c)]. This
motion remains stable when generalized to laser-cooling dynamics
in three spatial dimensions (see Fig. 2).

the ion and the trap geometry parameters and voltages are
absorbed into the nondimensional parameters q and az < 0
(the latter resulting from a static harmonic trapping potential
along an orthogonal axis, which gives antitrapping along z).
Setting zs to be a point where V2(z) vanishes and choosing
the parameters appropriately makes zs a stationary point with
stable motion in the phase space around it. Since the periodic
drive frequency has been rescaled to 2, V (z, t ) is π periodic.

In numerical simulations we take V2(z) =
4
π

[arctan ( 1
2z ) − arctan ( 3

2z )] to be the potential of a
model surface trap [21] along an axis perpendicular to
the electrode plane (defined by z = 0, with d the width of two
electrodes carrying the rf-modulated voltage). V2 vanishes
at zs = √

3/2 ≈ 0.866. The features discussed below can be
observed with general anharmonic potentials; expanding V2

to order z4 about zs is sufficient to obtain the specific limit
cycle studied here, although the details would vary. We note,
however, that the anharmonic terms are not small, and are not
treated here in perturbation theory [22]. We take the values
of the dimensionless parameters to be az = −0.0008 and
q ≈ 0.87. This corresponds to realistic trap parameters (see
below). For these nondimensional parameters, the analysis
of Eq. (1) can be applied to any ion species within such a
trap, and any value chosen for � and d . Figure 1(a) shows a
stroboscopic map of the 3D phase space, which is obtained
by simulating the Hamiltonian dynamics with different
initial conditions and stroboscopically plotting {z, ż} at times
t = 0 mod π .

The phase space is mixed with chaotic and integrable
regions. Beyond the central region of closed curves that
correspond to regular motion, there is a large chaotic “sea”
and some sizable “island chains” of regular motion forming
about points where the anharmonic oscillation frequency of
the ion is at a rational ratio with the drive frequency. Each
closed curve is characterized by the existence of an action that
is conserved during the Hamiltonian motion (in contrast, the
energy is not conserved, since the potential is time dependent),
which is proportional to the enclosed area. Figure 1(b) shows a
closeup on the trajectories around one island in a chain which
has s = 11 islands [see Figs. 1(a) and 1(d)]. Due to the chaotic
regions, the phase space is fragmented and the action cannot
be defined globally, but it is well defined locally on the islands
of a chain.

Limit cycles. A trajectory starting at the center of one island
of a chain constitutes a periodic orbit repeating itself after t =
sπ , with the ion moving between the s island centers in a fixed
order. When adding dissipation, the ion is attracted towards
the periodic orbit from almost the entire island, a phenomenon
previously studied mostly in terms of chaotic maps [23,24]. To
model this mechanism of trapping in the island chain, driven
solely by damping, we add a friction coefficient γ > 0 to the
ion’s equation of motion,

z̈ = F (z, t ) − γ ż, F (z, t ) = −∂V (z, t )/∂z. (2)

A numerical simulation of the time evolution using two
(different) initial conditions is shown in Figs. 1(c) and 1(d).
In Fig. 1(c), the ion starts at {z = 1.09, ż = 0}, too far away
from any island center to be attracted and is damped toward
zs, while in Fig. 1(d) it starts at {z = 1.087, ż = 0}, inside
the closed trajectories around one of the island centers and
gets trapped in the chain of s = 11 islands. Such limit cycles
are a generic feature that results from the interplay of the
nonlinearity of the Hamiltonian forces acting on the ion in
the vicinity of island chains, where the time-dependent drive
counteracts the damping.

We now consider the dynamics of linearized perturbations
about the limit cycle. Assume that z̄(t ) is an sπ -periodic
orbit that connects the island centers for γ = 0, i.e., ¨̄z(t ) =
F [z̄(t ), t]. We write

z(t ) = z̄(t ) + u(t ), z̄ =
∑

n

B2nei2nt/s, (3)

where n ∈ Z and B2n = B−2n (time-reversal invariance is used
in the following). Substituting Eq. (3) into Eq. (2) and lineariz-
ing the motion around z̄(t ), we get

ü + f (t )u = −γ ( ˙̄z(t ) + u̇), f (t ) ≡ −∂F

∂z
[z̄(t ), t]. (4)

Substituting u(t ) by the ansatz u(t ) = w(t )e−γ t/2 gives

ẅ +
[

f (t ) − γ 2

4

]
w = g(t ), g(t ) ≡ −γ ˙̄z(t )eγ t/2. (5)

The general solution for w is composed of the sum of a
particular solution growing exponentially as eγ t/2, and the two
linearly independent solutions of the homogeneous equation
[with g(t ) = 0—see below]. Since z̄ is sπ periodic and F is π

periodic, the function f (t ) in Eq. (4) can be Fourier expanded
in the form f = ∑

F2nei2nt/s. A particular solution of Eq. (5)
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can be obtained by substituting w0(t ) = eγ t/2 ∑
W2nei2nt/s,

which gives an inhomogeneous system of recursion relations
for W2n, with a unique solution under general conditions [25].
The homogeneous equation in w [Eq. (5)] with g(t ) = 0,
whose coefficients are periodic in time, is a Hill equation [26].
The homogeneous solutions w(t ) determine the stability of
u(t ) [since the exponential growth of the inhomogeneous w0

is canceled when going back to u]. In fact, Eq. (5) with γ =
g(t ) = 0 determines the linear stability of the periodic orbit
in the Hamiltonian case. If the area of the islands about the
periodic orbit is not too small, perturbations about the periodic
orbit are stable for a range of amplitudes of the motion, which
implies that the motion would be linearly stable also for a
small nonvanishing value of γ in Eq. (5). As Eq. (5) shows,
to leading order the damping is eliminated in the dynamics,
and indeed we observe numerically that the ion is damped
more slowly towards the island centres [Fig. 1(d)], compared
to outside the island chain [Fig. 1(c)].

Laser cooling. To incorporate laser cooling more realisti-
cally, we assume a beam that is uniform over all positions
in z and apply a recently developed semiclassical theory
of laser cooling that is valid for motion within the time-
dependent potential of Paul traps [17]. We approximate the
ion as a two-level system, whose excited level has a decay
rate (linewidth) �. The validity of our approach requires
a low saturation of the internal transition, guaranteed by
setting the saturation parameter sL which is proportional to
the laser intensity to sL � 1 [17]. A saturation sL ∼ 0.1 is
often chosen in experiments, since it leads to the lowest final
temperatures. The instantaneous Doppler shift due to the ion’s
velocity determines its probability to absorb a photon at any
phase-space point along the trajectory. For optical photons,
many scattering events are required in order to change the
Hamiltonian action significantly. This allows us to describe
the scattering as an adiabatic perturbation leading to a drift
and diffusion of the ion between the tori (surfaces of constant
action) of the Hamiltonian motion.

With a negative detuning � � −�, an ion is efficiently
cooled from in the region of high amplitude motion in the
approximately integrable part of phase space in a surface-
electrode trap [17], whereas a laser detuned optimally for
reaching the lowest temperatures (with � ∼ −�/2) could
heat the ion out of the trap from this region. We numerically
locate parameters for which a laser beam with � � −� can
also capture the ion on trajectories within the island chain in
the direct neighborhood of a periodic orbit.

The coordinate u(t ) of Eq. (3) represents linearized pertur-
bations (a periodically driven harmonic oscillator) expanded
about periodic orbit z̄(t ), that can fluctuate, heat up, and be
damped by the laser. We numerically calculate z̄(t ), ˙̄z(t ),
and f (t ) from Eq. (1) (with γ = 0), to obtain the Fourier
expansion [25] of the Hill oscillator of Eq. (4). This is a
key step allowing us to introduce a canonical time-dependent
transformation to the Hamiltonian action-angle coordinates
(I, θ ) describing the linearized motion about the periodic
orbit. By the linearity of the expanded motion, the trans-
formation can be obtained in analytic closed form, with the
coefficients of the Fourier expansion calculated numerically.
Here, we use the time-reversal invariance of z̄(t ), which allows
us to employ the theory developed in Refs. [25,27,28] for the

Hill oscillator (accounting for a non-time-reversal invariant
drive would require to generalize the theory, which is beyond
the scope of the current work). Averaging over the angle θ , we
obtain an effective Fokker-Planck equation for the probability
distribution P(I, t ), which is a probability density function
that depends on time and action only [17],

∂

∂t
P(I, t ) = − ∂

∂I
S(I, t ) ≡ − ∂

∂I
[	I P] + 1

2

∂2

∂I2
[	II P], (6)

with S(I, t ) a probability flux, 	I (I ) an action drift coefficient,
and 	II (I ) a diffusion coefficient. The calculation of 	I

and 	II proceeds by using the formulas derived for a linear
Floquet system in Ref. [29]. If we find a region of action
where the ion remains bounded for a very long time (as
determined by the Fokker-Planck dynamics), we can assume
an approximately stationary probability distribution in the
action, which then takes the form

P(I ) ∝ [	II (I )]−1 exp

{
2

∫ I

0
dI ′	I (I ′)/	II (I ′)

}
. (7)

Taking concrete physical parameters we consider a 24Mg+

ion. The nondimensional parameters are (see Ref. [21]) az =
4eUDC/m�2cz and q = 2eUrf/md2�2, with m, e the ion’s
mass and charge, UDC,Urf the voltages on the static and rf-
modulated electrodes, respectively, cz a geometric constant,
and we set d = 150 μm and � = 2π × 20 MHz. The result-
ing oscillation frequency at the effective minimum is ωz ≈
2π × 2.3 MHz. The laser parameters used in our numerical
simulation are k = cos(φ) × 2π/280 nm−1 with φ ≈ 0.4π

giving the angle between the laser wave vector and the z axis,
and � ≈ 263 × 106 s−1.

We find a few ranges of a relatively large detuning −� 

� for which the periodic orbit is stabilized. For −11� � � �
−9.8�, we find a stationary distribution in the action within
the island chain with a strong (exponential) suppression of
the probability of I values away from the island centers.
Figure 2(a) presents the action drift coefficient for a few
representative values of the detuning, showing that the action
drift coefficient is negative throughout most of the island
chain, indicating that the ion will drift towards the maximum
of the quasistationary action distribution from any close by
point on the island. Figure 2(b) shows the corresponding
approximately stationary distributions in action. Since this
action is expanded about the island centers, and the angles are
averaged over by assuming a uniform angle distribution, the
corresponding (stroboscopic) phase-space distribution is that
depicted schematically in the inset. For � = −11.2� we see
that the probability density is peaked away from the island
center. In this case the exponential suppression of P(I ) is
weaker than for the other detunings considered here, implying
that the lifetime of the limit cycle would be possibly too short
to be observed. Due to the stochastic nature of laser cooling,
even an ion starting from outside the island chain has a finite
probability to diffuse or drift onto one of the islands, however,
elucidating this mechanism is beyond the scope of the current
work.

Regarding the experimental observability of such a limit
cycle, the lifetime within the island can be obtained by calcu-
lating the mean first passage time at the island boundary [30],
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FIG. 2. (a) The action drift coefficient (in nondimensional
units—see the text for the parameters) as a function of the action I of
linearized motion expanded about the periodic orbit going through
the island centers of the chain with s = 11 islands in Fig. 1(b).
Three values of the detuning are shown, with the I axis extending
roughly up to the size of (each) island. At action values where
the drift coefficient is positive, the ion is effectively heated by
scattering laser photons, while it is being cooled where the drift
coefficient is negative. (b) The resulting approximately stationary
probability distribution [Eq. (7)]. For −11� � � � −9.8� the ion
is well cooled within the island chain, with an exponential decay
away from the center implying a lifetime estimated to be (for � =
−10.6�) of order tens of seconds. The inset shows a schematic
depiction of the stroboscopic phase-space distribution (in z and ż,
at t = 0 mod π ).

and exceeds tens of seconds around � = −10.6� (we also
find other ranges of the detuning with shorter lifetimes). The
mean photon scattering rate is 1.2 × 106 s−1 × sL, with sL the
saturation parameter. This rate can be contrasted with the rate
at the effective trap minimum [29], (�sL/2)/(1 + [2�/�]2),
which gives 66 × 106 s−1 × sL for the optimal detuning � =
−�/2, but 0.3 × 106 s−1 × sL for � = −10.6�. The photons
can be detected and a Fourier transform of the fluorescence
would show peaks at the s subharmonics of the rf drive
frequency. We have also simulated the Hamiltonian motion
within the full time-dependent potential of the five-wire trap
in three spatial dimensions for the parameters analyzed above,
verifying that this mechanism is robust with large amplitudes
of motion in the remaining coordinates. Island chains fre-
quently develop in surface traps with voltages in the upper
range of experimentally relevant values, and they can have
very large relative sizes [21]. This is true also for other
trap types, since the potential often attains some anharmonic
contributions which become relevant above some energy or
spatial scale. Hence we expect that such limit cycles can be
observed in many existing traps and speculate that they may

correspond to metastable extended spatial orbits that have
been observed in Paul traps.

To conclude, we have analyzed the dynamics of an ion
driven by a periodic potential and stochastically kicked by a
velocity-dependent force originating from photon scattering.
The balance between the drive, the damping, and the diffusion
results in the ion stabilizing in a long-lived limit cycle that
corresponds to an extended orbit in space. The probability dis-
tribution develops new peaks within the islands of the mixed
phase space, centered about a periodic orbit frequency-locked
to a rational multiple of the driving frequency. This provides
an example of a system driven far out of equilibrium that is
nevertheless described by effective dynamics (coarse grained
over the angle), which approximately obey a detailed balance
[since in the steady state, the probability flux in action, S(I, t )
of Eq. (6), must vanish [29], a constraint obeyed by Eq. (7)].
Our calculation manifests a method for obtaining the steady-
state distributions for nonequilibrium underdamped systems
[31–37] through a mapping of the angle-averaged dynamics
to that of an equilibrium system.

The dynamical mechanism we explored is formally close
to models of Hamiltonian and Brownian ratchets [38], which
are basic models of transport [39,40]. Transport in a mixed
phase space is especially complex [41–47] and the ability
to control and accurately measure motion in complex time-
dependent potentials make ion-trap experiments suitable for
quantitative tests of such ideas [21], extended even to many
particles [48,49]. Our results can be generalized to frequency-
locked limit cycles in the relative coordinate of two interacting
particles [50,51], or in the rotation of a macroscopic particle,
with V2 a periodic function of the rotation angle [52,53].

In the limit of small amplitudes, the coordinate u(t ) lin-
earized about the island centers corresponds to a quantum
parametric oscillator [25,29]. For the presented parameters,
the mean action with � = −10.6� corresponds (by using the
semiclassical relation n ≈ I/h̄, with n the phonon number)
to 〈n〉 ≈ 170 phonons, somewhat higher than the standard
Doppler cooling limit 〈n〉 ≈ 100 of an identical ion whose
secular frequency is similar, 2π × 150 kHz. Searching for
similar limit cycles with larger driving frequencies and dif-
ferent parameters could facilitate cooling this motion to the
quantum ground state using the well-developed tools of quan-
tum optics in ion traps (e.g., sideband cooling). This would
open up a route for exploring quantum effects in phase space
[46,54,55] with a single trapped ion beyond the limit of small-
amplitude motion.
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