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We study the vibrational spectra and the specific heat of disordered systems using an effective hydrodynamic
framework. We consider the contribution of diffusive modes, i.e., the “diffusons,” to the density of states and
the specific heat. We prove analytically that these modes provide a constant term to the vibrational density of
states g(ω). This contribution is dominant at low frequencies, with respect to the Debye propagating modes. We
compare our results with numerical simulations data and random matrix theory. Finally, we compute the specific
heat and we show the existence of a linear in T scaling C(T ) ∼ c T at low temperatures due to the diffusive
modes. We analytically derive the coefficient c in terms of the diffusion constant D of the quasilocalized modes
and we obtain perfect agreement with numerical data. The linear in T behavior in the specific heat is stronger as
the modes are more localized and crosses over to a T 3 (Debye) regime at a temperature T ∗ ∼ √

v3/D, where v

is the speed of sound. Our results suggest that the anomalous properties of glasses and disordered systems can
be understood effectively within a hyrodynamic approach, which accounts for diffusive quasilocalized modes
generated via disorder-induced scattering.

DOI: 10.1103/PhysRevResearch.1.012010

Glasses and disordered systems display interesting anoma-
lous properties which remain unexplained to date. The vibra-
tional modes, the thermodynamic quantities, and the thermal
transport coefficients strongly differ from the long known re-
sults for ordered crystals and an underlying robust theoretical
picture is still absent [1].

A widely accepted view is that the vibrational degrees of
freedom in glasses are not simply and only the standard Debye
propagating phonons which obey, at low energy, the known
dispersion relation

ωT,L = vL,T k + · · · , (1)

where vT,L is the speed of propagation of the transverse (T )
and longitudinal (L) modes, and k the wave-vector.

One possible extension of Debye’s theory involves the
introduction of low-energy diffusive excitations which appear
due to the strong disorder typical of glassy systems [2]. The
presence of such modes can be understood, from a physical
point of view, as a consequence of frequent scattering events
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that are caused by the absence of long-range order [2,3] (see
Fig. 1 for a visual representation) and possibly promoted at the
microscopic level by the lack of inversion symmetry [4] and,
at higher temperatures, by anharmonicity [5]. More specif-
ically, the diffusons cannot propagate over long distance as
they have a wavelength comparable with their mean-free path
(Ioffe-Regel), and they appear as quasilocalized excitations.

The diffusons follow a Brownian motion dynamics, which
is expressed via the standard relation for the mean displace-
ment squared:

〈r2〉 = D t . (2)

Here D is the macroscopic diffusion constant which arises
from the collective behavior of such quasilocalized modes.
The previous expression has to be contrasted with the ballistic
dynamics

〈r2〉 = v2 t2, (3)

which is typical of the propagating phonon modes in ordered
crystals. In other words, the propagating sound modes are now
coexisting with additional diffusive hydrodynamic degrees
of freedom. When the diffusion constant of the diffusons
becomes zero, as happens at the mobility edge, they become
completely localized and they are sometimes denominated
locons. In disordered solids, this type of Anderson localization
is typically observed near the upper limit of the vibrational
density of states (VDOS) [6].
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FIG. 1. A visual representation of the difference between diffu-
sive dynamics and ballistic propagation. (a) A cartoon of the diffusive
and ballistic mechanisms. (b) The dispersion relations for a propagat-
ing mode ω = v k and a damped diffusive mode ω = −i �0 − i D k2.

The idea that diffusons are present and extremely relevant
in glasses has been introduced in Ref. [2] and hinted at in
several theoretical and experimental works in the past [6–12].

Moreover, the onset of vibrational diffusion relates to two
important topics in the physics of disordered systems: the
description of disordered solids in terms of random matrix the-
ory [13–18] and the excess of vibrational degrees of freedom
at the Ioffe-Regel crossover [19].

In this Rapid Communication, we build a hydrodynamic
model for the diffusons, described as collective excitations
with a diffusive dispersion relation, and study their
contribution to the VDOS and the specific heat of the system
using an effective field theory (EFT) approach. The diffusons
are shown to produce a constant-frequency contribution to the
VDOS which dominates at low frequencies over the standard
Debye term gDebye(ω) ∼ ω2. Moreover, such contribution
produces a linear in T term in the low-temperature specific
heat of the system.

Importantly, we will draw interesting connections with the
results recently obtained via simulations and random matrix
theory in Ref. [20], where similar effects have been observed.
These connections hint at a deeper and more fundamental
link between random matrix statistics of eigenvalues and
eigenmode quasilocalization and diffusion.

To summarize, our results suggest that beyond the two-
level-states (TLS) theory [21–23] there are other possible
theoretical explanations for the linear in T specific heat in
glasses and amorphous materials which do not rely on any
quantum phenomenon. With the present Rapid Communica-
tion, we provide an effective alternative explanation for such
observation, which relies simply on hydrodynamic arguments
and the scattering-induced diffusive nature of the vibrational
degrees of freedom at low frequencies, e.g., the diffusons.

We consider collective vibrational modes whose dispersion
relation has an imaginary part. In particular, we discuss collec-
tive excitations defined by the following dispersion relation:

ω = v k − i �(k) = vk − i �0 − i D k2 + O(k4), (4)

in terms of a generic damping coefficient � which depends
on the momentum k of the mode. This relation can be derived
from the equation of elastodynamics of a solid supplemented
with a viscous contribution [24] or from macrosopic balance
equations that allow for energy dissipation [25].

In this work, we consider the limit where the imaginary
(diffusive, dissipative) part of the above dispersion relation
effectively dominates over the real part (representing the
acoustic, elastic, propagative component). Effectively, this
reduces to set the ballistic propagation speed to zero, v = 0, at
least for the transverse phonons. We will show that by taking
this limit, the characteristic properties of marginally stable
(jammed) solids [26] can be reproduced.

We use a hydrodynamic approach to express the low-
momentum limit of the damping coefficient in terms of a
momentum-independent term �0 and a diffusion constant D.
Higher order terms can be ignored since they will not con-
tribute to the low-energy properties of the system. In the limit
�0 → 0, these excitations are purely diffusive and coincide
with those labeled in the previous literature as diffusons [2].

Hence, in the limit where diffusion dominates, the above
dispersion relation becomes purely imaginary:

ωdiff = −i �(k) = −i �0 − i D k2 + O(k4). (5)

In the opposite limit, where the imaginary part is zero, the
VDOS of the Debye modes can be obtained using standard
methods as

gDebye(ω) = ω2 V

2 π

(
2

v3
T

+ 1

v3
L

)
, (6)

where vL and vT are the longitudinal and the transverse speeds
of sound, respectively, and V is simply the volume of the
system. This equation constitutes the basis of Debye theory
for ordered crystals, which is strongly violated in glasses
and amorphous systems. In this work, we will not discuss
the anomaly known as boson peak (BP), which appears in
glasses and amorphous systems (and also in some ordered
crystals [27]). The boson peak can be retrieved, within the
current approach, from the competition between the real and
imaginary parts in Eq. (4) as shown in Refs. [28,29]. Here,
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we are interested in the dynamics of the system at lower
frequencies, below the typical BP location, ≈THz.

Going back to the newly introduced diffusive modes,
Eq. (5), we can write down their contribution to the VDOS
using the formula

gdiff(ω) = 2 ω

π k3
D

Im
∫ kD

0

k2

ω2 − i ω �0 − i ω D k2
dk, (7)

where kD is the Debye momentum. The above formula can
be derived by defining the VDOS as a sum of Dirac deltas
centered on the eigenfrequencies and then using the Plemelj
identity [30]. The integral can be performed analytically and
it gives the following expression (where we omit constant
prefactors):

gdiff(ω) = Re

⎡
⎣

√
D kD − √

�0 + i ω tan−1
( √

D kD√
�0+i ω

)
D3/2

⎤
⎦. (8)

Importantly, the contribution of the diffusons to the VDOS
displays the low-frequency expansion

gdiff(ω) = a + bω2 + O(ω4) (9)

with

a = kD

D
−

√
�0 tan−1

(√
D kD√
�0

)
D3/2

. (10)

The most important observation here is that the diffusons
provide a constant contribution to the VDOS, which is finite
even at zero frequency and can dominate the low-energy
thermodynamic properties of the system. Let us notice that
the dispersion relation, Eq. (5), and consequently the result,
Eq. (10), are not reliable in the limit of very large diffusion
constant D → ∞ where higher order terms in Eq. (5) have to
be considered.

Finally, from the VDOS, we can obtain the specific heat of
the system and in particular we can separate the contribution
of the diffusons from the contribution of the propagating
Debye modes using the standard formula [31]

C(T ) = kB

∫ ∞

0

(
h̄ ω

2 kB T

)2

sinh

(
h̄ ω

2 kB T

)−2

g(ω) dω.

(11)

It turns out that the diffusive modes dominate the specific
heat at low temperature, producing a very clear linear in T
contribution. In particular, we have

C(T ) = c T︸︷︷︸
diffusons

+ d T 3︸︷︷︸
Debye

+ · · · , (12)

where the second term is the known Debye ∼T 3 contribution
which comes from the Debye VDOS Eq. (6), while the
first term comes directly from the diffusons. Using the low-
frequency expansion of the density of states given in Eq. (9),
we can analytically derive that

c = π2

3
a. (13)

The final result gives the same linear-in-T contribution as
given by the tunneling two-level state (TLS) theory [21–23],

FIG. 2. Contributions of the diffusons and the Debye modes to
the VDOS. The parameters are fixed to V = 1, �0 = 5, D = 0.8,
vT = 0.7, vL = 0.9, and kD = 5. The qualitative results are indepen-
dent of the choice of those numerical values.

without having to resort to any quantum mechanism. Previous
work established a relation between the anomalous thermal
conductivity of glasses and the diffusons [2]; hence, it would
be appealing to provide a unifying mechanism to explain all
thermal anomalies of glasses based on diffusons. The root
cause of the diffusive excitations is to be identified in many
microscopic scattering processes which are taken into account
here at the level of effective field theory (EFT). As shown
below, this EFT description is able to reproduce the universal
linear scaling of the specific heat observed in glasses and
amorphous materials.

We are now in the position of discussing the various
implications of the simple hydrodynamic model introduced in
the previous section. The main question is how the diffusons
might modify the physical properties of the system.

The first important consequence of the existence of dif-
fusive modes of the type in Eq. (5) is the appearance of a
constant low-frequency plateau in the total VDOS, which is
shown in Fig. 2. We have ascertained that this behavior is
qualitatively independent from the values of the parameters
and it agrees with the analytical result in Eq. (10). It is
straightforward to notice that this contribution can be dom-
inant at low frequency with respect to the Debye term ∼ω2

(see Fig. 2), as is indeed seen in random jammed packings
near the marginal stability threshold [26].

Moreover, it is important to compare the results from
this simple hydrodynamic model with the predictions of the
simulations of random lattices and random matrix theory.
We consider the example of a random network of harmonic
springs, studied in previous work [4], which features exactly
the same behavior of jammed frictionless packings at the
marginally stable limit [26], both for the elastic constants and
for the VDOS. The dashed line shown in Fig. 3 is calculated
by using g(ω) = gDebye(ω) + gdiff(ω), or equivalently using
Eq. (7) with a Green’s function in the integral which has
acoustic poles coexisting with the diffusive poles. Importantly,
for the marginally stable jammed state with Z = 6, the trans-
verse acoustic part is identically zero, and vT = 0, because the
shear modulus vanishes at the jamming point Z = 2 d with the
law G ∝ (Z − 2 d ), due to nonaffine relaxations [32].
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FIG. 3. The comparison between the VDOS for Z = Zc = 6 ob-
tained via simulations of a 3D harmonic random spring network [4]
and best fitted by random matrix theory in Ref. [20] (solid line) and
the VDOS of the hydrodynamic model of this paper (dashed line).
The simple model can reproduce the behavior at small frequency just
in terms of diffusive and (longitudinal) Debye modes. Note some
discrepancy at ω < 0.1 because the numerical network has Z not
exactly 6 and slightly larger, whereas the theory assumes a fully
marginally stable system for which there is no going down to zero,
in agreement with previous findings [26].

We can observe that, at low frequencies, the behavior is
totally dominated by the diffusons contribution. In Fig. 3,
we compare the hydrodynamic model with an analytical best
fit, based on random matrix theory, of simulations data of
a random network of harmonic springs at the marginal sta-
bility point Z = Zc = 6 [20]. The qualitative agreement at
low frequency is good and suggests the existence of a deep
connection between diffusons, random matrix theory, and dis-
ordered marginally stable states. In particular, this comparison
demonstrates that, at the jamming point of marginally stable
disordered solids, where the shear modulus vanishes, and
only longitudinal modes propagate, the frequency spectrum
is dominated by the diffusive modes (which are continuously
scattered by disorder).

We then compute the contribution of the diffusive modes in
Eq. (5) to the specific heat C(T ). The appearance of a linear-
in-T regime at low temperature is evident. A prototype of the
results is shown in Fig. 4 for various values of the diffusion
constant of the hydrodynamic modes.

When the Debye ∼T 3 term is added to the specific heat
(i.e., away from the marginal stability point), a crossover
between the linear regime and the Debye one appears, as
shown in Fig. 5. The importance of the two terms depends
on the strength of the diffusion constant of the quasilocalized
states and the speed of sound of the propagating phonon
modes. More specifically, for smaller sound speeds the Debye
term, which scales like ∼v−3, becomes more important and
the crossover happens for smaller values of temperature.
The same effect is produced by increasing the mobility, i.e.,
diffusion constant, of the diffusons. Based on the above
analytic arguments, we can easily obtain a scaling estimate of
the crossover temperature from the linear-in-T regime to the
cubic-in-T regime,

T ∗ ∼
√

v3

D
, (14)

FIG. 4. The contribution of the diffusons, Eq. (5), to the specific
heat for different values of the diffusion constant D (increasing from
blue to green). The dashed lines guide the eyes toward the linear in
T scaling at low temperature. The T 3 Debye contribution is omitted.

in terms of the speed of sound and mode diffusion constant.
In summary, the regime of linear-in-T specific heat extends
towards larger temperature the bigger localization of the
diffusons (the lower their diffusion constant) and the bigger
the speed of sounds in the material.

Finally, we discuss the dependence of the linear in T term
in the specific heat upon varying the diffusion constant D
of the diffusons. We obtain an analytic results in Eq. (13),
combined with Eq. (10), which is in perfect agreement with
the numerical data as shown in Fig. 6. As the diffusion
constant of the hydrodynamic modes increases, the linear-
in-T contribution to the specific heat decreases. In simple
words, we can state that as the modes are more localized,
i.e., their diffusion constant D is smaller, the linear-in-T
contribution to the specific heat becomes more important.
This last observation suggests a strong correlation between
the degree of localization of the low-energy vibrational modes
and the anomalous linear-in-T scaling ubiquitously observed
in glasses and amorphous solids.

FIG. 5. The competition between the linear in T contribution
coming from the diffusons and the T 3 Debye term in the specific
heat. The two curves have the same diffusion constant D but different
sound speeds for the propagating phonons. The orange curve has
lower values and therefore bigger Debye contribution. The gray lines
guide the eye toward the position of the crossover.
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FIG. 6. The dependence of the linear-in-T coefficient c in the
specific heat upon the diffusion constant D of the diffusons. The more
the modes are localized, the bigger the linear-in-T contribution. The
blue dots are the numerical data while the dashed curve comes from
using the analytic expression Eq. (13) together with Eq. (10).

In summary, we built a simple and analytic effective-field
theory model to explain the low-k/low-frequency anomalous
properties of glasses and amorphous materials. The frame-
work is based on hydrodynamic arguments and on the in-
troduction of new quasilocalized diffusive modes, i.e., the
diffusons, which crucially modify the dynamics at low energy
and become dominant in the limit of marginally stable solids
where transverse modes and the shear modulus vanish. We
directly show that these modes induce a constant-in-frequency
plateau in the vibrational density of states (VDOS) at low
frequency. Importantly, these modes produce a linear in T
term in the specific heat which is widely observed in exper-
iments on highly disordered systems like glasses. Also, we
analytically derived the relation (13) between the coefficient
of the linear term in the specific heat and the diffusion
constant of the diffusons, which establishes an unprecedented
link between the linear-in-T specific heat and the degree
of (quasi)localization of vibrational modes in disordered
systems.

Our study sheds light on the correlation among disorder,
hydrodynamics, and eigenmode diffusion. It is tempting to
indicate simple mode-diffusive dynamics as the underlying
universal reason for all the known “anomalous” properties of
disordered solids (specific heat, thermal conductivity, vibra-
tional spectra). Our effective field theory approach does not
rely on any specific microscopic mechanism, but it would
certainly be desirable to have a more precise understanding
of these diffusive quasilocalized modes in relation to the
microscopic scattering processes induced by the disorder.

This description can be used in the future also in an attempt
to arrive at a semianalytical theory of thermal conductivity
in disordered materials as well as in crystalline materials
where anharmonicity induces scattering and quasilocalization
of modes [5], possibly in combination with the Allen-Feldman
framework [2].

Finally, it would be interesting to verify if the diffusive
dynamics and the correlated properties discussed in this Rapid
Communication might be at work also in other systems in the
low-k hydrodynamic regime [33]. A possible playground to
consider is the dynamics of the viscous electrons in graphene
and Dirac materials in the hydrodynamic window [34]. Also,
this framework may be relevant to network-forming glasses
where marginally stable (or floppy) mesoscopic regions are
present along with stable (rigid) ones [35].

Moreover, it would be important to find more signatures for
the presence of these diffusive modes, looking, for example, at
other experimental observables, such as transport coefficients
and conductivities. A ballistic-to-hydrodynamic crossover is
expected at the point of marginal stability and it might
induce more effects than the ones discussed in this Rapid
Communication.
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