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Based on first-principles calculations and a symmetry-based indicator analysis, we find a class of topological
crystalline insulators (TCIs) with a C2 rotation anomaly in a family of Zintl compounds, including Ba3Cd2As4,
Ba3Zn2As4, and Ba3Cd2Sb4. The nontrivial band topology protected by the coexistence of C2 rotation symmetry
and time-reversal symmetry T leads to two surface Dirac cones at generic momenta on both top and bottom
surfaces perpendicular to the rotation axis. In addition, (d − 2)-dimensional helical hinge states are also
protected along the hinge formed by two side surfaces parallel to the rotation axis. We develop a method based
on the nested Wilson loop technique to prove the existence of these surface Dirac cones due to a C2 anomaly
and precisely locate them as demonstrated in studying these TCIs. The helical hinge states are also calculated.
Finally, we show that external strain can be used to tune the topological phase transitions among TCIs, strong Z2

topological insulators, and trivial insulators.
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Introduction. The fermion multiplication theorem is a gen-
eralization of the fermion doubling theorem in particle physics
to crystalline solids. For example, in a two-dimensional (2D)
system with a time-reversal symmetry of T 2 = −1 and n-fold
rotational symmetry Cn (n = 2, 4, 6), this theorem imposes a
restriction on the number of stable massless Dirac fermions
due to a linear band crossing at arbitrarily generic momenta.
The number of Dirac nodes must be a multiple of 2n in the
first Brillouin zone (BZ) and they are robust against arbitrary
perturbations preserving T and Cn. Recently, quantum anoma-
lies associated with discrete rotational symmetry Cn=2,4,6 and
time-reversal symmetry T have been proposed, which limit
the number of massless fermions at generic momenta to be
a multiple of n instead of 2n in two dimensions [1]. Such
a rotation anomaly can only happen on the top or bottom
surface of a three-dimensional (3D) system when the surfaces
are perpendicular to the rotation axis [1]. As we know, a
single massless Dirac fermion with a parity anomaly appears
on the surface of a 3D topological insulator (TI) with time-
reversal symmetry [2–6]. The rotation anomaly leads to a new
class of 3D TCIs [7–10]. Their surface states consist of n
Dirac cones, which evades the above fermion multiplication
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theorem. Furthermore, they support n one-dimensional (1D)
helical modes on the hinge formed by two side surfaces
parallel to the rotation axis [11–15].

There have been several materials proposed to have the
above rotational anomaly. One of them is SnTe [16], a well-
known TCI protected by mirror symmetry with a nonzero
mirror Chern number. On its (110) surface, the two surface
Dirac cones, which have been thought to be protected by
mirror symmetry, cannot be gapped if the mirror symmetry is
broken while C2 and T are still preserved. Similarly, the four
Dirac cones on the (001) surface can also be understood to be
protected by C4 and T symmetries [17]. The other example
is antiperovskite Sr3PbO [18]. On its (001) surface, there are
four Dirac cones due to the C4 anomaly. The Ca2As family is
found to be TCIs protected by rotation symmetry, which have
two Dirac cones at generic locations in momentum space if
the mirror symmetry is broken, but the rotational and time-
reversal symmetries are preserved [19]. Recently, one phase
of BiBr compounds has also been proposed to be a TCI with a
C2 rotation anomaly [20,21], and the surface Dirac cones and
hinge states are also calculated.

As a new class of TCIs, the corresponding topological
invariant νCn can be defined, although it is very difficult to
obtain them. Recently, a convenient method to identify these
topologically nontrivial insulators has been proposed and pro-
gramed to screen all known nonmagnetic compounds [22,23]:
the explicit and exhaustive mappings from symmetry data,
band representations at high symmetric momenta, to topo-
logical indicators for arbitrary gapped band structures in the
presence of time-reversal symmetry and all of the 230 space
groups. The symmetry data of any gapped band structure can
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FIG. 1. (a) The topological boundary states due to the C2

anomaly. For a cylinderlike sample, there are two Dirac cones on
both the top and bottom surfaces and two 1D helical hinge states.
(b) The primitive cell of Ba3Cd2As4. The green, gray, and purple
balls represent Ba, Cd, and As atoms, respectively. The blue plane
is the mirror plane. a, b, and c are three primitive lattice vectors.
(c) The first BZ of bulk and the (11̄0) surface BZ. The mirror plane
is marked as blue and the nodal lines in it are marked red. (d) The
schematic diagram of BZ in reciprocal lattices ka, kb, and kc and
the redefined ones k1, k2, and k3, with k1 along the C2 rotation axis
and k2, k3 being lattice vectors for the (11̄0) surface BZ, where one
of the calculated surface Dirac cones is marked as a red cross at P̃
surrounded by a loop in blue lines.

be compressed into a set of up to four Zm=2,3,4,6,8,12 num-
bers called symmetry-based indicators (SIs). This progress
[23–25] has greatly accelerated the discovery of new topolog-
ical materials.

We find that three Zintl compounds, namely, Ba3Cd2As4,
Ba3Zn2As4, and Ba3Cd2Sb4, are TCIs classified by the C2

anomaly. We show the detailed and systematic method to
judge a material with a C2 anomaly and prove the existence of
a surface Dirac cone with the nested Wilson loop technique.
They have two surface Dirac cones protected by C2 and time-
reversal symmetry T at arbitrary momenta on both the top
and bottom (11̄0) surfaces, as shown in Fig. 1. Besides, the
two Dirac cones are connected by two helical hinge states
on the side surface. Compared with SnTe, Sr3PbO, and the
Ca2As family, the proposed Zintl compounds have no mirror
planes passing through the C2 rotation axis and the surface
Dirac cones will be at a generic momentum instead of being
constrained by the mirror planes. This makes the C2 rotation
anomaly clearer. Comparing with BiBr, the difference is that
the symmetry indicator is (0002) for BiBr, but (1102) for the
Zintl compounds. The nontrivial Z2 weak invariants indicate
that the Zintl compounds have additional topological surface
states.

Crystal structure and methodology. The Zintl compounds
Ba3Cd2As4, Ba3Zn2As4, and Ba3Cd2Sb4 have been syn-
thesized by Pb-flux methods and routine solid-state tech-
niques in recent years [26,27], and possess abundant novel
physical properties [28–30]. The crystallographic data and
the atomic coordinates for these materials are listed in the
Supplemental Material [31]. They all crystallize in the same

crystal structure, and Ba3Cd2As4 is selected as an exam-
ple to illustrate the structure, as shown in Fig. 1(b). The
structure can be concisely described as stacked Cd2As4 lay-
ers which are separated by Ba cations. The space group is
C2/m (No. 12) which has inversion symmetry P, rotation
symmetry C2:(a, b, c) → (−b,−a,−c), and mirror symme-
try M11̄0:(a, b, c) → (b, a, c).

For an inversion symmetric system, the SIs Z2,2,2,4 =
(z2,1, z2,2, z2,3, z4) are defined to indicate a new topological
classification,

z2,ε ≡
∑

K ∈ TRIM
at {kε = π, ε = 1, 2, 3}

nK
− − nK

+
2

mod 2,

z4 ≡
∑

K∈TRIM

nK
− − nK

+
2

mod 4, (1)

where nK
± is the number of occupied Kramers pairs having

even (odd) parity at time-reversal invariant momenta (TRIM).
The three z2,ε invariants are equal to the three weak Z2

topological invariants. When z4 is 1 or 3, it indicates a strong
TI, similar to the strong topological Z2 invariant. When it is
zero, the system is a weak TI if any one of z2,ε is nonzero,
while z4 = 2 means a TCI.

The method of calculating the Berry phase of the Wilson
loop eigenfunctions is used to prove the existence of surface
Dirac cones at generic momenta. For a 3D system, its tight-
binding Hamiltonian satisfies

H (k1, kλ)|un(k1, kλ)〉 = En(k1, kλ)|un(k1, kλ)〉, (2)

where k1 is along the periodical path in the bulk BZ
perpendicular to the surface of loop kλ. We define a
overlap matrix for nocc occupied states as Mmn(kα, kα+1) =
〈um(kα, kλ)|un(kα+1, kλ)〉 (m, n = 1, 2, . . . , nocc) [12,32].
Thus, the Wilson loop W (kλ) is defined as

W (kλ) =
N1−1∏
α=0

M(kα, kα+1), (3)

where the loop consisting of N1 discretized kα points with
kα=N1 = kα=0 + G1 (G1 is the length of the reciprocal lattice
vector along the k1 loop). We can diagonalize W (kλ) and get
the eigenvalue Wi(kλ) = exp[iθi(kλ)] and the corresponding
eigenvectors w̃i(kλ). θi(kλ) is referred to as a 1D hybrid
Wannier center along k1, which is also known as the ith
Wilson loop flow along the loop kλ [33].

We define a new overlap matrix for a selected n′
number of Wilson eigenvectors as M̃m̃ñ(kλ, kλ+1) =
〈w̃m̃(kλ)|w̃ñ(kλ+1)〉 (m̃, ñ = 1, 2, . . . , n′) [12], and the
nested Wilson loops along the closed loop consisting of
N ′ discretized kλ points with kλ=N ′ = kλ=0 are

W̃ =
N ′−1∏
λ=0

M̃(kλ, kλ+1). (4)

Further, the Berry phase [34,35] is written as

φ = − Im ln det W̃ . (5)

If the (n′)th Wilson loop flow and the (n′ + 1)th one cross
each other and the crossing point is enclosed by the selected
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FIG. 2. (a) The band structures of Ba3Cd2As4. The black solid
and red dashed curves represent the bands from GGA calculations
without and with SOC, respectively. The + (−) indicates the parity
of two inverted bands at the V and M points. (b) The band structures
from HSE06 calculations. The black solid, red dotted, and blue
dashed curves represent the bands with no strain, 6% compression,
and 4% expansion of the lattice constants, respectively.

loop kλ, the Berry phase φ from Eq. (5) will be π , or it will be
zero.

Band structures and bulk topology. We choose Ba3Cd2As4

as an example in the following, since Ba3Zn2As4 and
Ba3Cd2Sb4 have similar results to that of Ba3Cd2As4 and
are presented in the Supplemental Material [31]. In the case
without spin-orbit coupling (SOC) included, the calculated
band structures within the generalized gradient approximation
(GGA) show that two bands with opposite parity are inverted
around the V and M points, as shown in Fig. 2(a). The
inverted band structures lead to nodal lines near the Fermi
level, which are protected by the time-reversal symmetry T
and the inversion symmetry P [36–38]. Due to the constraint
of the mirror symmetry M11̄0, the crossing points form two
1D lines extending through the whole momentum space in
the mirror plane. When SOC is taken into account, all nodes
along the nodal lines open band gaps, as shown by the red
dashed lines in Fig. 2(a). Due to the band gaps induced by
SOC, the topological invariants Z2 are well defined by a
“curved chemical potential” which can be used to separate
the valence and conduction bands. Its band topological in-
variants Z2 = (0; 110) can be easily calculated by the parity
criterion proposed by Fu and Kane [39], which indicates these
materials are weak TIs. Besides, there are two surface Dirac
cones on both (001) and (010) surfaces (see the Supplemental
Material [31] for more details).

C2 anomalous surface states. The SIs Z2,2,2,4 = (1102)
for Ba3Cd2As4 [22,23] have been obtained and two sets of
topological invariants correspond to these SIs. Further calcu-
lations of the mirror Chern number (νm11̄0

= 0) can distinguish
them. We find the nontrivial topological invariant νC2 = 1. The
nonzero νC2 indicates that this material is a TCI with a C2

rotation anomaly, which hosts two surface Dirac cones located
on both the top and bottom (11̄0) surfaces. If the sample is
fabricated in a cylinder or prism along rotation axis [11̄0],
there will be two 1D helical hinge states related by C2 rotation
on the side surface as shown in Fig. 1(a).

To well identify the Dirac cones on the (11̄0) surface, we
calculate the surface states with a modified on-site energy of
atoms in the outmost unit cell by increasing 0.06 eV. This is
reasonable and widely used to simulate the different chemical
environment of atoms in and beneath the surface. The results
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FIG. 3. (a) The (11̄0) surface states of Ba3Cd2As4 obtained from
the GGA + SOC calculations. (b) The Wilson loop flow along a
chosen loop K̃1-K̃2-K̃3-K̃4-K̃1 which encloses a crossing point of two
Wilson loop flows θ2 and θ3. (c) The enlarged plot of (11̄0) surface
states along the Ṽ -	̃, Z̃-Ã, and S̃-T̃ paths. The surface Dirac cone is
at P̃ along S̃-T̃ . (d) The helical hinge states are found along the k1

direction. The darker the color, the more weight of the wave function
on the two hinges where the hinge states exist. The darkest bands
marked with red circles are hinge states.

are shown in Fig. 3(a). The surface states open gaps along
both 	̃-Ṽ and Z̃-Ã, as shown in the enlarged plots in Fig. 3(c).
The Dirac cones at Ṽ and Z̃ are trivial surface states since
both of them can be pushed into valence or conduction bands
without closing the band gap. However, there are two surface
Dirac cones at generic momenta due to the C2 anomaly on
the S̃-T̃ path, which is off the high symmetrical line Z̃-Ã,
as shown in Fig. 3(c). One surface Dirac cone locates at P̃
(−0.4673, 0.4375) on the (11̄0) surface BZ and the other one
is related by C2 rotation.

To demonstrate the existence of surface Dirac cones on the
(11̄0) surface, we calculate the Berry phase of the Wilson loop
eigenfunctions based on the tight-binding Hamiltonian from
the construction of maximally localized Wannier functions.
Three new reciprocal lattice vectors k1, k2, and k3 as shown in
Fig. 1(d) have been defined, where k1 is along the C2 rotation
axis while k2 and k3 form the surface BZ. The loop integral
of the overlap matrix in Eq. (3) is along the reciprocal lattice
k1 and the obtained Berry-Zak phase evolves along the loop
kλ(k2, k3) in the (11̄0) surface BZ. The Wannier centers θi(kλ)
and the eigenfunctions w̃i(kλ) are calculated with all occupied
bands of nocc = 22 included in the effective Hamiltonian. It
is well known that the Wilson loop flows have the same
topological properties as the surface states. The Wilson loop
flows along the high symmetrical paths in the surface BZ
are shown in the Supplemental Material [31]. To identify the
crossing point, we chose a kλ loop composed of K̃1, K̃2, K̃3,
K̃4, which in fact surrounds a crossing point of two Wilson
loop flows θ2 and θ3 as shown in Fig. 3(b). There is gap
between θ2 and θ3 along the loop. To show there is a crossing
point between θ2 and θ3 inside of the loop, two eigenfunctions
w̃i=1,2(kλ) are taken as occupied states to calculate the Berry
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phase along the loop according to Eq. (5). Thus, we obtain the
π Berry phase, which proves the existence of the Dirac point.

Helical hinge states. As mentioned above, the helical 1D
states can exist on the hinge where two gapped surfaces
intersect each other, so that we take a prism geometry in
Fig. S5(a) in the Supplemental Material [31] with open bound-
ary conditions around all four side surfaces and a periodic
boundary condition along the prism direction, namely, the
C2 rotation axis [11̄0]. We construct a tight-binding model
of the new unit cell and calculate the band structure of a
6 × 6 supercell in Fig. 3(d). Because there is no direct band
gap in the bulk states, the band structure of the supercell
has no clear gap. To identify the hinge states, we calculate
the weight of wave functions on the two hinges where the
hinge states exist. The darkest bands are hinge states. The
hinge states appear as a Dirac cone protected by C2 and time-
reversal symmetry at TRIM. They are localized at the two
hinges (see the Supplemental Material [31]). The 4 × 4 and
10 × 10 supercells are also calculated (see the Supplemental
Material [31]). We find the number of hinge states does
not change for different sizes since the number of hinges
is fixed, while the number of surface states and bulk states
changes because of the changes of surface area and bulk
volume for different sizes. The hinge states in the other prism
geometry are also calculated, and the results are similar as
shown in the Supplemental Material [31]. The hinge states
are buried within the bulk and surface states. However, since
hinge states have a dominant local density of states along
the hinges, they might be measured by scanning tunneling
microscopy (STM) similar to the hinge state measurement of
bismuth [40].

Phase diagrams and topological phase transitions. Consid-
ering the well-known underestimation of the band gap within
GGA, additional hybrid functional calculations in the Heyd-
Scuseria-Ernzerhof (HSE06) scheme are performed to check
the band inversion in Ba3Cd2As4. As shown in Fig. 2(b),
the band inversion within HSE06 only happens at M instead
of both V and M within GGA. In view of the small band
inversion depth, the band inversion might be adjusted by
external strain. When the lattice constants are compressed by
6%, the band inversion appears at both V and M. However,
when the lattice constants are expanded by 4%, there is no
band inversion at either V or M. We also get similar results
for Ba3Zn2As4 and Ba3Cd2Sb4 in the Supplemental Material
[31].

Therefore, we can tune these materials into various topo-
logically distinct states by the compression or expansion of
lattice constants in the way of hydrostatic pressure. The phase
diagrams about the bands at V and M, and the nodal lines in
Ba3Cd2As4 are shown in Fig. 4(a) under different strain. In
the case without SOC, the band inversion only happens at M
under zero pressure with lattice constants being a0, b0, and c0.
When the lattice constants are compressed, the band inversion
increases at M and the band gap closes at V , and band
inversion appears at V as shown in Fig. 4(b). The critical point
of the phase transition is at a = b = 0.9643a0, c = 0.9643c0.
When the lattice constants are expanded, the band gap in-
creases at V , while the band inversion disappears at M, as
shown in Fig. 4(c). The critical point is at a = b = 1.0305a0,
c = 1.0305c0. When SOC is considered, the Ba3Cd2As4 is
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FIG. 4. (a) The topological phase transitions of Ba3Cd2As4 un-
der different hydrostatic pressures. The pressure is simulated by
changing three lattice constants in the ratio of a0 and c0 within
HSE06 calculations. The upper row shows bands (red and blue
curves) close to the Fermi energy (black dashed lines) without SOC
at V (red point) and M (cyan point). The black curves indicate the
nodal lines around them. The lower row shows bands (black curves)
with SOC included. (b) and (c) are the band gap change without
SOC at the V point under compression and at M under expansion,
respectively. The dashed lines indicate the phase transition critical
points where the band gap closes.

a strong TI with Z2,2,2,4 = (1113) without pressure. It trans-
forms from a strong TI to a TCI with Z2,2,2,4 = (1102), and
to a normal insulator, respectively, and it becomes a Dirac
semimetal at two critical points of the phase transition. Similar
results can also be obtained for Ba3Zn2As4 and Ba3Cd2Sb4.

Conclusion. We demonstrate a new class of TCI with
a C2 rotation anomaly in Zintl compounds (Ba3Cd2As4,
Ba3Zn2As4, and Ba3Cd2Sb4) by first-principles calculations
and SI analysis. When SOC is ignored, these materials are
nodal line semimetals with two extended nodal lines in the
mirror plane within the GGA calculation. With consideration
of SOC, they become TCIs. There are only two surface
Dirac cones protected by C2 and time-reversal symmetry
T at arbitrary momenta on both the top and bottom (11̄0)
surfaces. The precise positions of the surface Dirac cones
are determined by calculations of the (11̄0) surface states.
We develop a nested Wilson loop method to prove the exis-
tence of surface Dirac cones. The helical hinge states on the
side surface are also calculated. Within HSE06 calculations,
we get the topological phase diagrams of Ba3Cd2As4 under
compression and expansion hydrostatic pressure. This new
class of TCIs are experimentally synthesized and are to be
verified by experiments. It provides us an ideal platform to
study the C2 rotation anomaly and high-order TIs with hinge
states.
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