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Physics graduate studies are substantial efforts on the part of individual students, departments, and
institutions of higher education. Understanding the factors that lead to student success and attrition is
crucial for improving these programs. One factor that has recently started to be investigated is the broadly
defined students’ experiences related to support structures. The Aspects of Student Experience Scale
(ASES), a Likert-style survey, was developed by researchers to do just that. In this study, we leverage
the network approach for Likert-style surveys (NALS) methodology to provide a unique interpretation
of responses to the ASES instrument for well-defined demographic groups. We confirm the validity of our
findings by studying the stability of the NALS themes and investigating how they are expressed within
demographic-based networks. We find that for all four themes in the original ASES study, certain thematic
trends capturing students’ experiences vary across the demographic-based networks in meaningful ways.
We also reveal that for some demographic groups, there is an interesting interplay between, and mixing of,
the original themes. Finally, our study showcases how NALS can be applied to other Likert-style datasets.
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I. INTRODUCTION

Graduate studies is an intensive, high-resource endeavor,
both for the individual student and for the institution. While
many physics programs aim to offer support for their
students in completing the doctoral programs, a significant
number of graduate students who enroll in a program do not
obtain their degree [1,2]. Investigating what leads to
graduate attrition and the types of support structures that
can lead to success is of high concern for researchers in
education [3–5].
To date, the majority of research efforts in the physics

education research (PER) community have investigated
undergraduate attrition and persistence. Most of these
studies focus on a variety of factors that can make up a
student’s experience, such as a sense of belonging [6–8],
physics identity [9–11], self-efficacy [12,13], and class-
room interactions [14,15]. This work has helped to make
recommendations for departments on how to improve their

physics undergraduate programs to support better student
experiences [16,17].
Graduate programs in physics have been a

growing interest in PER. Recent studies have investigated
individual students and particular minoritized student
experiences [18–21], as well as changes in graduate
programs [22,23]. Additionally, the American Physical
Society (APS) Bridge Programs has gathered best practices
for creating a graduate program to recruit and support
minoritized students in physics [24]. However, the physics
graduate student experience and other effects on student
attrition remain largely unexplored. Understanding how
physics departments support students in their graduate
studies is an important step in identifying how graduate
students experience their programs. The priorities of what
support structures exist are reflections of the larger culture
in physics departments. Taking a systems approach can
help identify how to effectively mitigate challenges and
increase graduate student success.
To capture the experiences of support structures available

to physics graduate students, researchers developed the
Aspects of Student Experience Scale (ASES) instrument
(referred to hereafter as ASES) [25]. Like other Likert-style
surveys, ASES includes items that ask respondents to
indicate the level they agree or disagree with various
statements. These statements relate to different types of
support structures that graduate students may experience
and that would help them in their graduate program. ASES
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was developed to align with the APS Bridge Program
recommendations for student support, including support for
social integration, academic success, positive mentorship,
strong research experiences, building professional skills,
and financial well-being [26] The ASES instrument was
administered to graduate students in physics departments
across the United States.
In our previous work, we have proposed a network

analysis approach to analyze Likert-style surveys, such as
ASES, to reveal themes driven by student responses [27].
Approaching a Likert-style survey as containing items that
may be uniquely linked to each other aligns with a model of
experiences of individual phenomena being linked to each
other to form larger themes. The network analysis for Likert-
style surveys (NALS) methodology is designed to enable the
modeling of survey items as a network built from survey
responses. The individual survey items are the nodes, and the
edges are weighted by the similarity in responses between
those nodes. NALS offers new opportunities for the inter-
pretation of survey data. Compared to other methods, such as
exploratory factor analysis, NALS is unique in that along
with capturing the high-level thematic clusters, it allows
investigation of the multilevel complexities of subclusters
within each theme. We have also demonstrated how node-
centric measures can help to identify important items within
the network structure. These types of investigations are made
possible through NALS.
Using the set of responses to the ASES instrument

(hereafter referred to as the ASES dataset), we show that
the large-scale clusters of items revealed using NALS are
informative about larger themes that exist in the survey.
However, one may also be interested in how the larger
thematic groups of items are subject to the respondents who
generated those groupings. A grouping of survey items that
captures the experiences of the full respondent population
may not necessarily be representative of the experiences of
certain demographic groups of students. Our research
questions focus on how the emerging themes revealed by
NALS compare between different demographic groups and
what these differences mean for student experiences. We also
investigate the stability of the emerging themes. A more
explicit statement of these research questions is provided in
Sec. IV, after adequate background information is described.
In this paper, we investigate this by comparing how the

partitioning of survey items into thematic groups changes
when the survey networks are built based on responses
from well-defined demographic groups. We also test the
stability of the new themes against small changes in the
sample populations to validate the underlying structure of
the demographic-based networks. We find that the NALS
method, combined with clustering techniques and network
centralities, allows us to identify meaningful features
unique to each network.
The manuscript is organized as follows: In Sec. II,

we present theoretical grounding for the choices of

demographic variables we consider in this work. In
Sec. III, we further describe the ASES instrument, give
a summary of the NALS methodology for creating net-
works, and introduce the network analysis techniques used
in our work. In Sec. IV, we present the results of the NALS
analysis for both the full network and the demographic-
based networks. The interpretation of the results and
discussion of what they mean for the ASES themes
concerning different demographic groups are presented
in Sec. V. Finally, in Sec. VI, we summarize the results and
suggest future research directions.

II. BACKGROUND

This paper makes contributions to the literature in two
primary ways. First, we show how the use of NALS to
analyze survey responses can provide insights when com-
paring groups of respondents. These insights are gained
through the use of network analysis tools that are introduced
in Sec. III C. Second, we present findings specifically
relevant to the ASES instrument and the different groups
that were important for the development of this survey tool.
The student groups chosen in this study were limited

due to the number of responses—in order to obtain a stable
network. As shown in Appendix B, the smaller the respond-
ent pool, the more unstable the network is. We chose
groupings of respondents that we could reasonably hypoth-
esize may have different experiences of graduate student
support structures due to their comparable sample sizes. In
this section, we present literature about how these different
student groups experience physics and science, technology,
engineering, and mathematics (STEM) graduate programs.

A. Bridge and nonbridge programs

The ASES instrument was designed as a tool for
capturing the ways that physics graduate programs provide
support for their students through their experiences [25].
The ASES items were designed to capture the preidentified
support structures that the APS Bridge Program [28]
recommended for bridge sites to adapt and implement to
better support bridge students in their programs [29–31].
Bridge sites are expected to offer a range of support
services for their students centered on the engagement
and commitment of faculty, mentorship, multifaceted
admissions practices, monitoring of students’ progress,
and recordkeeping of demographics [32]. The ASES was
designed to assess only the support structure that students
could report on (excluding, for example, the department’s
practices around recordkeeping on student demographics or
admissions). Over time, besides the bridge sites, several
bridge partnership sites chose to adopt these practices and
apply them across all bridge and nonbridge students.
In our analysis, we examine the network models of

students in bridge-affiliated sites (bridge and bridge part-
nership sites) and nonbridge-affiliated sites.
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B. Women and men

The underrepresentation of women in physics is a
persistent and well-recognized issue across science and
technology fields [33–35]. It is widely documented in the
literature that the underrepresentation of women is a result
of the social and cultural environments of science fields that
lead to unwelcoming spaces for women [36]. In these
spaces, the resources and support within the programs will
be better tailored for men and will not serve women
students in the same ways [37,38]. Interactions with peers
and research mentors are important for the persistence of
women in STEM graduate programs as they foster a sense
of belonging [18,39]. These forms of support are well
represented in the ASES instrument. In the analysis
presented in this paper, we aim to identify the ways in
which experiences of different support structures are
interconnected in unique ways for men and women physics
graduate students. In turn, we identify areas in which
programs can better support women students through
intentionally connecting particular program structures.
Nonbinary and other gender minority respondents were

not included in this analysis as there were not enough of
these responses to create a reliable network model. This is a
limitation of this methodology but not a unique limitation
among quantitative analysis.

C. Early and later semesters

Another factor that informs what support structures
students may need is the stage of the graduate program
they are currently at. Graduate school involves many small
steps along the way toward a doctoral degree. This might
involve the completion of classes, finding a research group,
or reaching candidacy. In the ASES dataset, while there are
no demographic questions that specifically ask about those
stages, respondents report how many semesters they have
been a part of their program. To approximate the stage of
completing classes, we have grouped respondents into less
than 2 years (four semesters) in their program and greater
than 2 years. This is in line with when most physics
doctoral programs expect students to have completed
course requirements [40]. Additionally, this is when stu-
dents often start applying for and transitioning to candi-
dacy. Thus, we can expect that the support that students in
their “early” semesters will need will be different from the
support that students in their “later” semesters will need.
We expect that these differences in need translate to
differences in reported experiences. In our study, we aim
to identify how this affects the interconnectedness of the
support structures as measured by the ASES instrument and
modeled by NALS.

D. Funding sources

Researchers have shown that across STEM doctoral
programs, students funded through research assistantships

are more likely to complete their degrees than their peers
[41]. This indicates that this form of financial support has
implications for how students feel supported in their program
through other experiences. Additionally, the skills that
graduate students gain when they are funded through a
research assistantship or a teaching assistantship will differ
and are related to the type of work they are engaging in [42].
The support that graduate students experience when engag-
ing in research or teaching will be different. In the ASES
dataset, there are students who have been funded through
multiple sources. To capture the possibly distinct experi-
ences due to funding sources, we thus have organized into
three categories: research funding, nonresearch funding, and
mixed funding. In understanding how different experiences
of support structures are connected, or not connected, we can
model how the experiences of students who have solely been
supported by research funding compare to those who have
relied on other sources of funding.

III. METHODOLOGY

A. The ASES instrument

The data for this study come from graduate student
responses to the ASES instrument [25]. ASES was
designed to capture physics graduate student experiences
with various support structures that may exist within
graduate programs. The survey items were developed in
partnership with the American Physical Society Bridge
Program [28] and based on prior literature that shows what
supports are important for complete educational experi-
ences in bridge programs. The dataset was collected in
Spring 2019, with ASES being administered to graduate
students within 20 physics departments (from the starting
call to 60, with one department being dropped from the
dataset due to low response rate) [43]. Due to only using
fully complete responses in our analysis, the original 397
responses are filtered down to 381.
Prior work has validated the utility of ASES to identify

important themes of the physics graduate student experience
that are critical for students’ intentions to persist in their
program through principal components analysis [43]. More
recently, the ASES dataset was used to demonstrate the
NALS methodology, revealing an alternative thematic divi-
sion of the survey items [27]. The four themes found through
NALS include social and scholarly exploration support (E),
mentoring and research experience (R), professional and
academic development (D), and financial support (F). See a
full list of the survey items in Appendix E.
In addition to the survey items, ASES data include

participants’ responses to a set of demographic questions,
such as type of program, gender, age, number of semesters
since enrollment, funding situation, established academic
mentor, etc. This additional information can be used to
investigate whether the resulting themes vary between
distinct respondent groups. In this study, we chose to focus
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on four demographics for which the subgroups were well
defined and sufficiently large to apply the NALS method-
ology. In this work, we focus on four demographics: type of
program (with Nbridge ¼ 214 and Nnonbridge ¼ 167), gender
(with Nwomen ¼ 100 and Nmen ¼ 277), the number of
semesters since enrollment (with Nearly ¼ 139 for less than
five semesters and Nlater ¼ 229 for five or more semesters),
and type of support available since enrollment (with
Nresearch ¼ 130, Nnonresearch ¼ 108, and Nmixed ¼ 143).
We will discuss the details of each group in Sec. III C.

B. Creation of the ASES backbone network

In this section, we briefly describe the steps used by the
NALS approach to generate networks. NALS applies to any
Likert-style survey instrument with a scale ranging from
negative (disagreement) to positive (agreement) association
in which sections are coded in the same direction. The steps
to create the backbone1 survey network, laid out in detail in
Ref. [27], can be summarized as follows:

1. Create a bipartite network of respondents and re-
sponse selections that include all possible Likert-scale
options for each question.2

2. Project the bipartite network onto response selec-
tions using the edge weights to indicate the number
of respondents selecting each pair of responses.

3. For each pair of items, build a relation matrix
(a k × k matrix for k-level scale). Collapse the
relation matrix to a 2 × 2 by first summing up
response options that capture the same direction
(e.g., agree and strongly agree) and then removing
the neutral option (if applicable).3

4. Calculate the similarity score between items by first
summing up the diagonal elements of the collapsed
relation matrix and then subtracting the off-diagonal
elements. A positive (negative) value indicates that
the two items are answered with similar (dissimilar)
responses.

5. For a positive similarity score, calculate the direc-
tion of the association by subtracting from the sum
of all mutual agrees the sum of all mutual dis-
agrees. A positive (negative) association is coded
as a positive (negative) temperature, indicated with
a red (blue) edge.

6. The resulting matrix defined the full survey item
network. Use a network specification algorithm to
determine the backbone survey network.

For a more detailed explanation of NALS, along with a
visualization of key steps and an example using a toy
model, see Ref. [27].
Here, we will briefly discuss the application of each step

to the ASES dataset. The 35 survey items within the ASES
instrument are structured with five Likert-style response
options: strongly disagree, disagree, neither agree nor
disagree, agree, and strongly agree. Given this, there are
175 unique responses available. Since respondents can
choose only one option per item, any single respondent is
linked to 35 responses. In the full dataset, this means that
there will be 381 students, each connected to 35 of the total
175 responses.
The first step in building the backbone ASES network is

to generate the bipartite network. The two node types in the
bipartite network in NALS are respondents and response
options. In a network built from the full ASES dataset, there
are 381 student respondent nodes. In networks built from
distinct demographic groups, this number corresponds to
the number of respondents in that group. The number of
unique item responses in the full dataset is 175, and it
remains unchanged regardless of which demographic group
is considered. In the next step, the bipartite network is
projected onto the response options. If every possible
response to each item in the dataset has been selected at
least once, the resulting network has 175 nodes. The
number is lower if there are response options that were
not selected by any respondent. The survey response
networks are then condensed through item relation matri-
ces, as described in steps 2 through 4. All resulting survey
item networks have 35 nodes. For the full dataset, the
maximum resulting weight of an edge is 381 (the number of
respondents). In networks built from demographic groups,
the maximum weight is lower and bounded by the number
of respondents in a given group. In addition to the similarity
score, edges with a positive score are also tagged with the
appropriate temperature, as described in step 5. Finally, a
locally adaptive network sparsification (LANS) [44] is used
on each network to determine the survey network back-
bone. In this approach, significant edges for each node are
identified and preserved in the network based on the
empirical cumulative distribution of edge weights [44].
This ensures that all edges significant for at least one node
are retained. Depending on the distribution of edge weights
in different networks, this may result in different numbers
of edges in each network.
By presenting both similarity and temperature in the

visualization of NALS-generated networks, we aim to show
which survey items are related and in what ways. This
allows us to investigate the nature of relationships for items
identified as related through similarity. In the case of ASES,
this allows us to better understand whether or not support
structures are a part of graduate students’ experience
and how they form a cohesive set of supports in
graduate programs.

1A backbone network is the resulting network after eliminating
nonsignificant edges from the full network.

2A bipartite network is one in which there are nodes of
two types, with nodes of one type only linked to nodes of the
opposite type.

3The off-diagonal elements are eliminated from analysis as they
indicate a lack of attitude to a given question.
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The size of each demographic-based network generated
by applying NALS to the ASES subset is the same. This
makes a comparison between networks fairly straightfor-
ward. The main difference between the networks is the
upper bound on the edge weights, which is determined
based on the size of each demographic group. To simplify
the comparison, we normalize the weights within each
network by the respective maximum weights, bringing all
weights to a (0, 1) range.

C. Analysis of the network

The primary focus of this paper is to analyze the different
networks that are produced when investigating demo-
graphic groups in the ASES dataset. In this section, we
describe these groups as well as the analysis tools we use to
analyze the resulting networks.
In our analysis, we consider ten survey backbone net-

works. As a benchmark, we use the full network created
based on the complete ASES dataset. The demographic-
based networks include
• two networks representing the bridge (including
bridge and bridge partnership sites) and nonbridge
programs,

• two networks representing women and men respon-
dents (while it can be reductive [45], we use the
gender binary of women and men to separate respon-
dents as the number of nonbinary and nonreporting
respondents was too low to be analyzed in this work),

• two networks created based on the number of semes-
ters since enrollment reported by respondents, with
early indicating four or fewer semesters (typically
when students are completing coursework) and later
indicating five or more semesters (typically when
students are focused on research), and

• three networks created based on the type of funding
students have been supported by during their time in
graduate school, with research indicating only fellow-
ships and/or research assistantships (RA), nonre-
search indicating teaching assistantships (TA) and/
or loans, and mixed indicating a combination of
fellowships, RAs, TAs, and/or loans.

To describe networks globally, we look at the total
number of nodes, edges, and components. Identifying the
number of components in a network, where a component is
defined as a subset of nodes such that there is at least one
path between any two members in the set and no paths exist
to the rest of a network, can help explain the network
connectivity. In addition to the features of a network we can
directly count, density characterizes how connected a
network is. A network’s density describes how many edges
exist out of the total possible number of edges that could
have existed.
To compare networks, we first focus on the structural

similarity based on nodes and edges. We use the node

degree cosine (NDC) similarity to measure the extent to
which the degree values of nodes are the same and the edge
existence Jaccard (EEJ) similarity for the edges [46]. A
node’s degree is the count of edges connected to that node.
Both measures range from 0 to 1, with 1 indicating perfect
matching in terms of nodes’ degrees for NDC and existing
edges for EEJ.
NDC is calculated by taking the list of nodes’ degrees

for two networks (A and B) and calculating the cosine
similarity between them:

NDC ¼
P

N
i¼1 C

A
DðiÞCBDðiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1 C

A
DðiÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i¼1 C

B
DðiÞ2

p ; ð1Þ

where CAðBÞD ðiÞ represents the degree of node i within
network A (B) [see Eq. (4)] [47]. EEJ is calculated by
dividing the size of the intersection of two edge lists (i.e.,
the lists of all existing edges) by the size of the union of
those edge lists and is given by

EEJ ¼ jEA ∩ EBj
jEA ∪ EBj

; ð2Þ

where EAðBÞ is the edge list of network A (B) [48].
When interpreting, these measures of similarity must be

understood in relation to each other. We did not find
agreed-upon cutoffs for either EEJ or NDC, as different
types of networks with varying edge density and structure
will have different expectations for each of them.
Thus, when we discuss a particular EEJ or NDC measure
as being “low” or “high,” we do so in reference to the other
comparisons made within this study.
The main focus of our study is on the partitioning of the

networks. Network partitioning is how the nodes of the
network are separated into clusters [49]. A cluster is a
group of nodes that share stronger connections to other
nodes within that group than outside of the group. In our
previous work, we used cluster analysis to identify themes
within the ASES instrument [27]. The modularity of
partitioning quantifies how well the network is separated
into smaller clusters.
In this study, we use the weighted undirected definition

of modularity defined as

Q ¼ 1

2m

X

i;j

�

wij −
CSðiÞCSðjÞ

2m

�

δðCi; CjÞ; ð3Þ

where wij represents the weight of a tie between nodes i
and j, CSðiÞ ¼

P
k wik ðCSðjÞ ¼

P
k wjkÞ summed over all

nodes directly connected to i (j) represents the strength of
node i (j),CiðjÞ indicates the community to which node i (j)
belongs, and m ¼ 1

2

P
i;j wij [50]. The delta function,

δðCi; CjÞ, equals 1 when Ci ¼ Cj and 0 otherwise.
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The modularity ranges from −1 to 1 and compares the
relative density of ties within communities and between
communities. A positive value indicates a partitioning in
which the ties within communities are more prevalent than
those between communities. To create each network
partitioning, we use the hierarchical clustering algorithm,
commonly referred to as the fast-greedy algorithm [51].
This algorithm optimizes for modularity and creates a
hierarchical ordering that partitions the network into
clusters.
To compare the partitioning of networks, we use the

purity measure [52]. Purity is a common metric for
comparing two partitions by comparing how well two
partitionings overlap cluster by cluster. Cluster purity
quantifies the extent to which a cluster SA

m from partitioning
A contains nodes from only a single cluster SB

n from
partitioning B. The overall purity comparing two partition-
ings is defined as the sum of all individual cluster purities
weighted by the cluster size [53]. Purity ranges from 0,
indicating no overlap in partitions, to 1, indicating a perfect
matching. While traditional cluster comparison is asym-
metric, treating one partitioning as the base and the other as
the variant, we use a two-way comparison proposed by
Ghawi and Pfeffer [52]. The two-way purity is defined as a
harmonic mean between the two purities calculated by
swapping which partitioning is considered the base. Similar
to interpreting EEJ and NDC measures, we compare “low”
and “high” purity within the context of the demographic-
based and full networks rather than comparing to other
networks that have different types of partition differences.
Finally, to compare the nodes that bridge between

clusters, we use two centrality measures: the total degree
CD and betweenness CB. The total degree quantifying the
number of immediate connections to a given node is a local,
node-level measure of connectivity. It is defined as

CDðiÞ ¼
XN

j¼1

xij; ð4Þ

where N is the network size and xij is 1 when there is an
edge between note i and j and 0 otherwise. The betwe-
enness quantifying the number of times a node acts as a
“bridge” along the shortest path linking two other nodes is a
global measure of connectivity. It is defined as

CBðiÞ ¼
X

m≠i≠n

lðiÞ
mn

lmn
; ð5Þ

where lðiÞ
mn is the number of shortest paths linking nodes m

and n that pass through node i and lmn is the total number
of shortest paths linking nodes m and n. While the total
degree captures the size of the network of immediate
connections, the betweenness captures the importance of
a node’s position within a whole network. In other words,

degree quantifies how well connected a given node is and
betweenness identifies nodes that connect clusters that
would otherwise split into subcomponents.

D. Statistical analysis and visualization

To test the robustness of the network partitioning against
small perturbations, we employ statistical bootstrapping
techniques [54]. Given how our networks are created, we
choose to bootstrap at the ASES level survey data rather
than resampling directly from the networks [55]. For each
performed test, the bootstrapping consists of three steps.
First, an appropriate subset of the ASES data is selected
based on the characteristic of interest (e.g., gender or
program type). Then, a hypothetical dataset is drawn at
random from the actual students’ responses included in
the subset. A random drawing with replacement is
employed to ensure that the hypothetical datasets are
the same size as the subset. This means that any given
response from the original subset may be selected more
than once or might be omitted from a given hypothetical
dataset. Each hypothetical dataset is then used to create a
new backbone network for which the partitioning is
determined in the third step.
The bootstrapping process is repeated 1000 times for the

full backbone network and for each demographic group
to ensure saturation (see Appendix A for bootstrapping
convergence analysis). Once bootstrapping is completed,
we check how frequently nodes are assigned to the cluster
determined from the complete dataset for a given group. We
choose as reference the 50% threshold to indicate which
nodes are more often than not grouped into their original
cluster. We do not use this threshold as an absolute cutoff to
determine cluster stability but rather as an indicator of the
emerging thematic groupings based on a high frequency of
clustering. Nodes below this threshold are either closely
related to a different cluster or are marginally related to
multiple clusters.
Bootstrapped networks are also used to test the effect

size of each measure by comparing the demographic-based
networks to the full network. The effect size is relevant to
understanding the differences represented in Table II. We
calculate the effect size using Cohen’s d measure [56]
defined as

d ¼ jMγðA;BÞ −MγðA;CÞj
σp

; ð6Þ

where MγðA;BÞ and MγðA;CÞ are the means of a network
measure γ comparing networks A and B and networks A
and C, respectively, and σp is the pooled standard deviation
(the weighted average of the two standard deviations).
Comparisons are always made between relevant demo-
graphic-based networks and the full network. Cohen’s d
quantifies how strong a difference between two measures is
and is commonly divided into small (0.2 ≤ d < 0.5),
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medium (0.5 ≤ d < 0.8), and large (0.8 ≤ d) [56]. The
Cohen’s d values for all comparisons considered in this
work are presented in Table IV in Appendix C.
To investigate the dependence of network comparison

measures (NDC, EEJ, and purity) on the size of the
sampled population, we ran 2000 bootstrapped tests for
sample sizes in increments of 50, up to the full size of the
dataset. We find that while there is some relationship
between the size of the population sampled and these three
network comparison measures, it does not fully explain the
differences we see between demographic-based networks
and the full network. See Appendix B for more details.
All analyses presented in this work are carried out using

the igraph package in R [57,58]. Employing the LANS
algorithm, we use a level of significance α ¼ 0.05. The
network visualization is created using the open-source
software CYTOSCAPE [59].

IV. RESULTS

In our previous work, we found four clusters within the
network built from respondents to the ASES instrument
using NALS. The clusters that emerged from the full ASES
dataset, shown in Fig. 1(a), were named social and
scholarly exploration support (E, shown in green), men-
toring and research experience (R, shown in orange),
professional and academic development (D, shown in
blue), and financial support (F, shown in purple).
In this work, we focus on two aspects of the NALS

analysis of ASES data: the partitioning variability between
different demographic groups split along a given dimension
into mutually exclusive subgroups and the stability of the

emerging clusters. The leading questions of the current
study are as follows:

1. How stable is the NALS clustering?
2. How, if at all, do the clusters change when calculated

for well-defined respondent groups?
3. What do the differences between subgroup cluster-

ing mean for student experiences?
For the full ASES network, we find that all clusters

are stable at the 50% level, as shown in Fig. 1(b). The
least stable cluster is E, which has the most edges
extending to other clusters in the network, while the
most stable cluster is D.
In the following section, we focus on the four demo-

graphic splits discussed in Sec. III C. In our analysis, we
compare the ASES network splits with the full ASES
network and with each other. First, we make comparisons
based on the NDC and EEJ similarities. Next, we compare
networks based on the clustering structure of each network,
quantified by the purity. Finally, to investigate the stability
of the partitions, we use the bootstrapping method, as
described in Sec. III D. For each test, we compare the
frequency of nodes’ assignment to clusters determined
based on the relevant dataset. We also use the NDC and EEJ
similarity measures to compare the bootstrapped networks
with the reference ones.

A. Network measures and comparisons

We begin by presenting the basic network descriptors for
all networks considered in this work, as seen in Table I.
Since the sparsification algorithm affects only the number
of edges (NE) but not the number of nodes (NN), all
networks have 35 nodes. The number of edges varies as
the distribution of edge weights for nodes in each network
may differ. The number of edges is on average
MNE

¼ 54.9ð2.6Þ,4 ranging from 50 edges in the women’s
network to 61 edges in the bridge network.
The full, nonbridge, men, early, and later backbone

networks have two components while the remaining net-
works have a single large component. In all two-component
networks, the larger component [MSðc1Þ ¼ 21.8ð4Þ] con-
sists of the F, E, and R themes connected via positive
temperature edges. The nodes in the smaller [MSðc1Þ ¼
13.2ð4Þ], predominantly D-themed component, are con-
nected via negative temperature edges. Finally, the average
component density is MΔðc1Þ ¼ 0.15ð1Þ and MΔðc2Þ ¼
0.26ð2Þ for the two-component networks and MΔðc1Þ ¼
0.09ð1Þ for the single-component networks. Due to the
higher density, the smaller component is often grouped as a
singular cluster.

FIG. 1. (a) The network created based on the full ASES dataset.
The four themes are highlighted with different colors. Positive
temperature edges are indicated in red and negative temperature
edges are indicated in blue. (b) The bootstrapping frequency plot
for the full ASES dataset, grouped by network clustering.

4We use a notation value (uncertainty) to express uncertainties,
for example, 1.5(6) cm. All uncertainties herein reflect the
uncorrelated combination of single-standard deviation statistical
and systematic uncertainties.
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Within each network, different nodes become central to
the structure (see Table V in Appendix D for a comparison
of centrality measures for all networks considered in this
work). In the full network, the node with the largest degree
is D09 [CDðD09Þ ¼ 9] while nodes E05 and R09 have the
highest betweenness measures [CBðE05Þ ¼ 106 and
CBðR09Þ ¼ 75, respectively]. In the partitioning of the
bootstrapped full network, D09 is almost always placed
into the D cluster while E05 and R09 are among the nodes
most likely to move clusters. This suggests that the
betweenness metric can help us identify nodes that may
be unstable in partitions of bootstrapped networks.
Table II shows both NDC and EEJ for all pairwise

comparisons. When comparing networks built from dem-
ographic splits to the full network, the NDC ranges from
0.81 (research to full) to 0.98 (nonbridge to full, men to full,
and later to full), with an average of MNDC ¼ 0.94ð5Þ. The
NDC between demographic-based networks tends to be
somewhat lower, withMNDC ¼ 0.87ð7Þ. The biggest differ-
ence is observed for the funding support-related splits, with
NDC ¼ 0.76 for research vs nonresearch comparison and
NDC ¼ 0.79 for research vs mixed. The relatively high
NDC values are consistent with the sparsification process,
as each node will only have a few ties to other nodes.
Cohen’s d indicates no large or medium effect sizes for the
comparisons to the full network. There are small effects
seen in the NDC for each funding support-related split
compared with the full network.
The EEJ ranges from 0.28 (women to full) to 0.75 (men

to full), with an average ofMEEJ ¼ 0.5ð2Þ when comparing
networks built from demographic splits to the full network.
Similar to the NDC, the EEJ between networks built from
demographic splits tends to be lower, withMEEJ ¼ 0.30ð7Þ.
The low EEJ indicates networks that are unique when
compared to each other. The most dissimilar networks are
research and nonresearch, with EEJ ¼ 0.19, indicating that
these demographics result in almost entirely different

connectivity. The differences we see in Table II are
reflected by Cohen’s d, all of which have a large effect
size when comparing the EEJ of demographic-based net-
works to the full network. This means that each network
within the demographic-based splits contains a unique set
of edges, indicating that the experiences of support struc-
tures are connected in different ways.
The purity of partitionings between demographic splits

and the full network ranges from 0.74 (women to full and
nonresearch to full) to 0.87 (early to full), with an average
of Mpurity ¼ 0.80ð4Þ. The purity between networks built
from demographic splits is slightly lower, with Mpurity ¼
0.73ð6Þ and a minimum of 0.61 for research vs nonresearch
comparison. Purities for all comparisons considered in this
work are presented in Table II. The effect sizes of these
differences in purity are also quantified using Cohen’s d.
The differences in the women network to full network and
the men network to full network have a large effect size.
Similarly, there is a large effect size in the differences of
purity between the early network to full network and the
later network to full network. The purity of demographic-
based networks to the full networks has a large effect size
also when comparing men and women networks as well as
early and later networks. This means that the partition of
the women network is measurably different than that of
men and similar for the early semester respondents to the
later semester respondents. For the purity between the
research network to full network and the nonresearch
network to full network, and for the purity between the
research network to full network and the mixed funding
network to full network, the effect size is medium. The
medium effect size of the purity in the funding-based

TABLE II. A summary of the structural similarity measures
between networks A and B in terms of nodes’ degree (NDC),
edges present in networks (EEJ), and partitioning of networks
(purity).

Network A Network B NDC EEJ Purity

Bridge Full 0.95 0.55 0.83
Nonbridge Full 0.98 0.58 0.80
Bridge Nonbridge 0.93 0.37 0.73

Women Full 0.96 0.28 0.74
Men Full 0.98 0.75 0.84
Women Men 0.96 0.40 0.75

Early Full 0.91 0.39 0.87
Later Full 0.98 0.73 0.82
Early Later 0.89 0.29 0.77

Research Full 0.81 0.42 0.79
Nonresearch Full 0.91 0.33 0.74
Mixed Full 0.96 0.59 0.80
Research Nonresearch 0.76 0.19 0.61
Research Mixed 0.79 0.30 0.76
Nonresearch Mixed 0.86 0.24 0.76

TABLE I. Basic network descriptors for the full network and all
subnetworks: number of edges (NE), the number of components
(Nc), and the size [SðciÞ for i ¼ 1, 2], and density [ΔðciÞ; i ¼ 1,
2] of the components.

NE Nc Sðc1Þ Sðc2Þ Δðc1Þ Δðc2Þ
Full 55 2 22 13 0.15 0.27

Bridge 61 1 35 · · · 0.10 · · ·
Nonbridge 54 2 21 14 0.15 0.23

Women 50 1 35 · · · 0.08 · · ·
Men 55 2 22 13 0.14 0.28

Early 56 2 22 13 0.16 0.26
Later 56 2 22 13 0.15 0.27

Research 54 1 35 · · · 0.09 · · ·
Nonresearch 53 1 35 · · · 0.09 · · ·
Mixed 55 1 35 · · · 0.09 · · ·
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network indicates a similar, but less variable, difference
between these network partitions.

B. Exploring experiences in the bridge
and nonbridge programs

The first dimension that we split the ASES dataset on is
the type of program the respondents are enrolled in. The
network that results from the respondents in bridge pro-
grams (henceforth known as the bridge network) is parti-
tioned into five clusters, as seen in Fig. 2(a). The network
that results from the respondents in nonbridge programs
(the nonbridge network) is partitioned into five different
clusters, as seen in Fig. 2(b).
The NDC similarity is very high for all three network

comparisons we consider, as seen in Table II. This is
expected as through the sparsification process, each node
will only have a few edges that are identified as important,
resulting in a reasonably consistent degree distribution.
Where differences become clear is when comparing which
edges exist in the networks. When the full network is
compared to both bridge and nonbridge programs, we see
that just over half of the edges are shared, with EEJ ¼ 0.55
for bridge vs full network and EEJ ¼ 0.58 for nonbridge vs
full network. When comparing the bridge program network
and the nonbridge program network, we find that only
about one-third of the edges are shared. This indicates that
the networks built by respondents in bridge programs are
unique compared to those built by respondents in non-
bridge programs.
When taking into account the purity comparison metric,

we see that both the bridge and nonbridge program

networks have quite similar partitions as the full network.
The purity between the program-based network partitions
is somewhat lower, indicating that there are some unique
differences that the bridge and nonbridge program net-
works capture.
To determine the partitions’ stability, we consider the

structural similarity measures (NDC and EEJ) and the
partitioning purity between the reference demographic-
based networks and the bootstrapped networks, see
Table III. The degree distribution for both bridge and
nonbridge networks is consistently high between the boot-
strapping iterations, with NDC ¼ 0.95ð2Þ for both net-
works. However, only about half of the edges that make up

FIG. 2. Plots and histograms for investigation by program type: the networks created based on the respondents from (a) bridge and
(b) nonbridge programs; the frequency plots for the (c) bridge and (d) nonbridge networks bootstrapping. In the network plots, the four
original themes are highlighted with different colors. Positive temperature edges are indicated in red and negative temperature edges are
indicated in blue. New clusters are indicated by the circled regions. Each histogram is grouped by the clusters in the respective network,
with nodes not reaching 50% stability made transparent.

TABLE III. A summary of the structural similarity measures
(NDC and EEJ), the network partitioning (purity), and the
number of clusters (NS) between the original demographic-based
and the bootstrapped networks. The averages are calculated based
on N ¼ 1000 iterations of bootstrapping.

Network NDC EEJ Purity NS

Bridge 0.95(2) 0.50(6) 0.77(6) 4.4(7)
Nonbridge 0.95(2) 0.55(6) 0.79(7) 4.9(7)

Women 0.94(2) 0.47(6) 0.72(6) 5.1(8)
Men 0.95(2) 0.59(6) 0.81(6) 4.2(8)

Early 0.92(2) 0.45(6) 0.76(8) 4.7(9)
Later 0.95(2) 0.53(6) 0.82(6) 4.3(7)

Research 0.92(3) 0.47(6) 0.71(7) 4.5(8)
Nonresearch 0.93(2) 0.43(6) 0.73(6) 5.0(8)
Mixed 0.95(2) 0.52(6) 0.76(6) 4.6(7)
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this network remain the same between samplings, with
EEJ ¼ 0.50ð6Þ and EEJ ¼ 0.55ð6Þ for the bridge and
nonbridge programs, respectively. The edge variability
results in a slightly less consistent clustering, as confirmed
by the purity measure.
The partitioning of the bridge program network is

depicted in Fig. 2(a). The three bigger clusters present in
the bridge program network—D, R-like, and Eþ F—are
quite persistent in the bootstrapped networks (except for
two nodes in the Eþ F cluster). The two smaller clusters
turn out to be very infrequent in the bootstrapped networks,
as seen in Fig. 2(c). The D02 node of the D02, E03, and E09

cluster is frequently absorbed by the large D cluster. The
two other nodes, E03 and E09, are most frequently brought
into a cluster with E05 and E06 and these four nodes are
either in their own clusters or tend to bounce between the
majority R cluster and the Eþ F cluster. The other small
cluster, R03 and E04, is absorbed by the large R-like cluster.
Finally, the E08 is usually moved into a cluster with R09 and
R10, which is the R-like cluster.
For the nonbridge network, shown in Fig. 2(b), theD and

R-like clusters are most consistent across the samples. The
cluster that groups nodes from R and E has a few nodes that
are likely to be reassigned to different clusters. The R06 and
R10 both tend to be more often clustered with the other R
nodes while the E04 tends to move between clusters during
bootstrapping. The E05 node (originally assigned to the
Eþ F cluster) has strong connections not just within that
cluster but also bridges into two other clusters and tends to
get absorbed by one of them. Unlike the bridge program
network, where the small clusters often disappear during

sampling, neither of the smaller clusters gets absorbed by
the larger ones in the nonbridge network. Even the smallest
D01, D02, and E09 clusters persisted under sampling.
Interestingly, D02 folds back into the D cluster in the
bridge network. We can see how the low similarity score for
this node, along with the varied temperatures of the edges
connected to it, in the bridge network inform how this
particular survey item is clustered.

C. Exploring experiences between women
and men respondents

The second dimension we consider in this work is
gender. The network that results from women respondents
(henceforth known as the women network) is partitioned
into six clusters, as seen in Fig. 3(a). The network that
results from men respondents (the men network) is parti-
tioned into five different clusters, as seen in Fig. 3(b).
Similar to the program-based split, the NDC similarity is

very high for the gender networks, as seen in Table II.
However, the three pairwise network comparisons result in
very different EEJ similarities. The comparison between
the full network and the network created by women
respondents has a very low EEJ ¼ 0.28. When comparing
the network created by men respondents to the full net-
work, we see that there are many more shared edges, with
the highest EEJ ¼ 0.75. In fact, the men network is the
most similar to the full network out of all subgroups
considered in this work while the women network is the
least similar. This indicates that the network structures—
and thus the resulting partitioning of the networks—
vary significantly for the two gender-based groups of

FIG. 3. Plots and histograms for investigation by respondent gender: the networks created based on the (a) women and (b) men
respondents; the frequency plots for the (c) women and (d) men networks bootstrapping. In the network plots, the four original themes
are highlighted with different colors. Positive temperature edges are indicated in red and negative temperature edges are indicated in
blue. New clusters are indicated by the circled regions. Each histogram is grouped by the clusters in the respective network, with nodes
not reaching 50% stability made transparent.

DALKA and ZWOLAK PHYS. REV. PHYS. EDUC. RES. 20, 020106 (2024)

020106-10



respondents. This is further confirmed by the purity
measure. While the difference in similarities with the full
network may be partially due to the difference in sample
sizes, it does not fully explain the large difference we see in
these comparisons (see Appendix B for more details).
The partitioning of the women network results in four

fairly equally sized clusters consisting of seven to nine
nodes and two smaller ones, each consisting of three nodes,
see Fig. 3(a). However, only the largest D cluster and the F
cluster are persistent in the bootstrapped networks, as seen
in Fig. 3(c). All of the other clusters identified change
depending on which subset of women respondents we
sample from. Additionally, while the D cluster is stable for
the women network, the structure of internal edges suggests
further investigation might be necessary to better under-
stand how the support structures included in cluster D are
experienced by women. Specifically, D12 creates unique
connections within the D cluster as we can identify it as a
polarizing survey item for the women network. It has both
positive and negative temperature similarities, as well as a
strong dissimilar connection. In the men network, this
particular survey item behaves more consistently with other
D nodes.
The partitioning of the men network is very similar to

that of the full network, though there are five rather than
four clusters, see Fig. 3(b). The uniqueness found in this
partitioning is due to the R and E clusters being broken up
and a few nodes being moved around. The largest and most
persistent in the bootstrapped networks cluster exactly
resembles the D cluster from the full network. The second
largest cluster from the full network, R, is broken into two
clusters, each of which contains also several E nodes.

However, while the larger R-like cluster is highly persistent
during bootstrapping (except for the E05 node that tends to
be absorbed into E clusters), the smaller R-like cluster is
much less frequent in the bootstrapped networks. Rather, it
tends to be grouped with other R nodes, specifically R01,
R05, and R08. The three F nodes with the addition of E06

form the fourth cluster in this partitioning, though the latter
node tends to move between clusters of the F nodes and
clusters of E nodes during bootstrapping. The remaining E
nodes form the fifth cluster, though two out of the five
nodes in this group are occasionally clustered with the
F nodes.

D. Exploring experiences between early
and later semester respondents

The next comparison we consider is between students in
their early semesters (four or fewer) and respondents in their
later semesters (five or more) of graduate school. The
network that results from early semester respondents (hence-
forth known as the early network) is partitioned into three
clusters, as seen in Fig. 4(a). The network that results from
later semester respondents (the later network) is partitioned
into four different clusters, as seen in Fig. 4(b).
The NDC similarity is again very high for all three

comparisons, as seen in Table II. The EEJ similarity varies
significantly between the pairwise comparisons, with the
early to full network EEJ ¼ 0.39 and the later to full
network EEJ ¼ 0.73. The structures of the two program-
based networks when compared side by side are even more
inconsistent, with EEJ ¼ 0.29. Interestingly, the purity is
somewhat higher for the early-to-full network comparison

FIG. 4. Plots and histograms for investigation by respondent’s indicated semester: the networks created based on the respondents
(a) early and (b) later in their graduate studies; the frequency plots for the (c) early and (d) later networks bootstrapping. In the network
plots, the four original themes are highlighted with different colors. Positive temperature edges are indicated in red and negative
temperature edges are indicated in blue. New clusters are indicated by the circled regions. Each histogram is grouped by the clusters in
the respective network, with nodes not reaching 50% stability made transparent.
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than for the later-to-full network, indicating that although
the specific edges of the network are highly varying for
the early semester respondents, they have a more similar
clustering structure.
The early network is made up of three large clusters,

depicted in Fig. 4(a), all of which are very stable over the
sampling process, see Fig. 4(c). The first cluster recreates
the D structure except for the D02 node which tends to
move between clusters. The second cluster consists of all of
the R nodes and three E nodes (E04, E05, and E08), with E04

and R03 occasionally moving together to the third, F þ E
cluster. The third cluster includes all of the F nodes and all
of the remaining E nodes, with the F02 playing a central
role in connecting other nodes.
The partitioning of the later network includes five

clusters, as depicted in Fig. 4(b). The D and F clusters
are held together while the R and E clusters are split into
three clusters: an R-like cluster consisting of seven R nodes
and the E04 node (which tends to fall out of this cluster a
majority of the time); an Rþ E cluster consisting of four E
nodes and three R nodes; and an E cluster consisting of the
remaining four E nodes. The persistence of the mixed Eþ
R cluster, as seen in Fig. 4(d), is one of the most unique

features of the later semester network. The second unique
feature is the lack of persistence of the F cluster which
tends to get pulled into larger Rþ E clusters through
connections with E01 and E02. Finally, the smaller group of
E nodes is fairly consistent as well but often groups up with
the other E nodes.

E. Exploring experiences based
on available financial support

The final split of the network we consider is based on the
type of funding that students reported receiving during their
time in graduate school. The network built from the
respondents who reported relying exclusively on research
or fellowship funding during their time in graduate school
(the research network) is partitioned into four clusters, as
seen in Fig. 5(a). The network built from the respondents
who reported only relying on teaching assistantships, or
other sources of funding during their time in graduate
school (the nonresearch network) is partitioned into five
clusters, as seen in Fig. 5(b). The final network in this
comparison is built from respondents who reported a
mixture of research-based on nonresearch-based funding

FIG. 5. Plots and histograms for investigation by respondent’s indicated funding source: the networks created based on the
respondents receiving (a) research, (b) nonresearch, and (c) mixed funding; the frequency plots for the (d) research, (e) nonresearch, and
(f) mixed networks bootstrapping. In the network plots, the four original themes are highlighted with different colors. Positive
temperature edges are indicated in red and negative temperature edges are indicated in blue. New clusters are indicated by the circled
regions. Each histogram is grouped by the clusters in the respective network, with nodes not reaching 50% stability made transparent.
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sources (the mixed network). The mixed network is
partitioned into four clusters in our analysis.
Similar to the past sections, we make direct compar-

isons based on node degree and the edges that build the
network, as seen in Table II. Of these three support-based
networks, the mixed network is most similar to the full
network, with NDC ¼ 0.96 and EEJ ¼ 0.59. While the
NDC remains fairly high for the other two comparisons,
the EEJ falls below 0.5, indicating that less than 50% of
edges are the same between the research and nonresearch
networks when compared to the full network. The
partitioning purity level is consistent with the other three
demographic-based splits at around 0.7 to 0.8.
Interestingly, the research and nonresearch networks
are the most dissimilar out of all compared networks
both structurally and in terms of partitioning, with
EEJ ¼ 0.19 and purity 0.61.
The results of the sampling process for all three

networks are depicted in Figs. 5(d)–5(f). In all three
networks, the most persistent is the D cluster with the
exception of the D02 node (in the research and mixed
networks) and theD08 node (in the mixed network). In the
research and mixed networks, the unstable D02 tends to
move around between the other clusters. In the non-
research network, these two unstable D nodes tend to get
grouped with the F nodes, forming an F þD cluster,
though only the D08 node remains in this cluster through-
out the sampling process whileD02 often gets pulled back
into the D cluster.
Two out of the three F nodes are grouped with a

subset of E nodes in the research network, forming a
persistent Rþ Eþ F cluster. However, the single R node,
also originally assigned to this cluster, tends to move
into clusters with the other R nodes. The third F node,
originally assigned to the smaller and less stable
Rþ Eþ F cluster, tends to get reabsorbed by the bigger
and more stable Rþ Eþ F cluster. The research network
has some very interesting features, including the node F01

playing a central role in connecting all clusters with
positive temperature edges while also being connected
to two D nodes through dissimilar edges and a lack of
persistent R cluster.
The third, bigger Rþ E cluster in the nonresearch

network consists of four R nodes (persistently assigned
to the same cluster) and four E nodes that are sometimes
grouped into the fourth, smaller Eþ R cluster, and some-
times move around between other clusters. Finally, the fifth
R cluster in the nonresearch network is only about half of
the time grouped on its own, while the other half is grouped
back with the other R nodes.
Out of the three remaining clusters in the mixed network,

the largest Eþ R one consists of seven R nodes, all of
which persist during the bootstrapping tests, and four E
nodes, out of which one (E06) tends to be reabsorbed by the
fourth, F þ E cluster. The F þ E cluster consists of all

of the F nodes (persisting throughout the bootstrapping
tests) and five E nodes (two of which tend to frequently
get grouped with the Eþ R cluster). Finally, the smallest
three-node R cluster does not persist throughout the
sampling process and instead is reabsorbed by the
Eþ R cluster.

V. INTERPRETATION AND DISCUSSION

In this work, we focus on three questions related to the
utility of the NALS methodology to study the ASES
dataset. The first research question that guides this study
relates to the stability of the NALS clustering. When
performing bootstrapping on the full dataset, we find that
all of the thematic clusters identified by Dalka et al. [27]
pass the threshold test, though the persistence level varies
between the clusters from 0.95(6) for the professional and
academic development theme (cluster D) to 0.63(0) for the
financial support theme (cluster F). This confirms that the
NALS methodology produces stable thematic clusters from
the full dataset.
When considering demographic-based networks, we

find that for some demographic groups, NALS produces
several new clusters that typically include nodes from
multiple original clusters. However, some of the new
clusters, especially the smaller ones, turn out to be unstable.
Rather, they tend to revert to the original R, E, D, and F
clusters. However, we also see that a certain level of
divergence from the full network persists in the demo-
graphic-based networks, indicating that there are aspects
of experiences that are unique to specific demographic
groups. Thus, answering the second research question, the
clusters do change for well-defined respondent groups and
while not all changes are meaningfully significant, there are
a few strong changes due to shifts of small groups of nodes
within particular partitionings.
These differences between groups of respondents can be

further explored to identify potentially unique emergent
themes and help us answer the third question pertaining to
differences in student experiences. In this section, we will
look through each of the original thematic clusters and
how they are represented within the demographic-based
networks.

Observation 1: A majority of students do not
experience professional and academic develop-
ment, but network features highlight a variability
within this theme.

Out of the four original thematic clusters, the profes-
sional and academic development theme (clusterD) is most
often recovered in the demographic-based networks. In
seven out of the ten considered networks, the D nodes are
primarily connected through negative temperature similar-
ity. For the remaining three networks, the positive temper-
ature edges connect only a small subset of nodes: a single
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edge connecting mentoring (D11) and PI (D12) training
in women network, a single edge connecting PI (D12)
and networking (D13) training in the research network,
and a path connecting pairwise a subset of nodes related
to the various aspects of professional and academic
training in the nonresearch funding network [PI training
(D12), structured collaboration (D03), tutoring (D07),
mentoring training (D11), networking training (D13),
and career training (D10)]. This indicates that women
and students with exclusively research or nonresearch
support do experience the aspects of professional and
academic development identified above. However, the
significant prevalence of negative temperature edges
for the professional and academic development theme
suggests that the majority of students, regardless of their
demographics, are not experiencing these supports
within their department.
In addition to the positive temperature edges, there are

several other interesting features in the D cluster for
certain demographic-based networks. For example, in
the nonbridge network, we see that the small three-node
cluster of D01, D02, and E09 persists throughout the
bootstrapping tests. The first two items are most strongly
associated with the coursework part of the professional
and academic development theme corresponding to aca-
demic assessment (D01) and personalization (D02).
Persistent grouping of those two items with the course-
work support (E09) through negative temperature edges
suggests that for the nonbridge respondents in our
sample, the coursework-related supports are missing in
unique ways compared to the other types of development
supports. This result is consistent with Sachmpazidi
and Henderson’s finding that students in bridge-affiliated
programs report better social and academic integration
[25]. However, the results of this study allow us to
identify the specific items that this applies to and
investigate their connections to the other items within
the instrument. Additionally, it calls us to question how
the naming of the original cluster from the full dataset
informs our interpretation. Here, we see how the course-
work support that would be a part of the “academic
development” aspect of the D cluster is not necessarily a
universally similar experienced type of support to the
“professional development” aspect of the D cluster.
Looking at the types of connections that the D nodes

have extending outside of that thematic cluster allows for
additional interpretation. For example, in the research
network, the first thing that stands out are the two edges
of dissimilarity connecting tuition (F01) to both time
management training and PI training (D06 and D12,
respectively). This means that while graduate students
supported solely through research assistantships have their
tuition fully supported (all other edges connecting this node
within the network have a positive temperature), this aspect

of their experiences is highly correlated with a lack of
training provided by their institution in how to run a lab or
manage their time. In other words, although these students
may not worry about their financial stability in graduate
school, they may not be supported in advancing certain
skills important for their academic careers.

Observation 2: Financial supports are widely
experienced and are connected with social and
scholarly exploration for students in departments
with bridge programs and early semester stu-
dents.

The second theme persistent in all but one considered
network is the financial support (cluster F). The three F
nodes are almost always clustered together within the
demographic-based networks, however, they often tend
to get grouped into larger clusters with additional nodes
from other themes. While these larger clusters are not
always fully stable, we do find that, in some cases, most of
the non-F nodes persist throughout the bootstrapping tests.
One such example is the bridge network. Here, we have the
three F nodes (tuition, health, and life) clustered at a stable
level with three nodes from the social and scholarly
exploration theme (cluster E), including socializing, shared
space, and research survey. This suggests that for respon-
dents in the bridge program, the financial support is
experienced in similar patterns with support around build-
ing community and understanding the research available.
This indicates that departments with bridge programs in
addition to financial support offer a more holistic support
that includes, e.g., space for socializing and research
exploration. The two unstable nodes, research exploration
(E06) and flexibility (E08), further support this observation.
The mixed funding support network has the same combi-
nation of stable nodes in the cluster as the bridge network.
The same type of cluster (i.e., F þ E) is also seen in

the early semesters network, though here two additional
nodes—accommodations (E03) and research exploration
(E06)—are being held stable in the cluster. From this, we
can conclude that for these particular groups of students—
students in departments with bridge programs, students
who have received funding from multiple sources, and
students who are early in their graduate studies—the
financial support they receive is experienced in similar
ways to the supports for social and scholarly exploration.
These experiences are based on the support that the
departments are offering. Thus, as expected, we see that
bridge programs and students early in graduate studies
have different types of support available to and designed
for them.
The only network in which the F nodes are separated

is the research network, where the central position played
by the tuition item (F01) helps to mix around the clustering
in the sampled networks. In fact, it is the only one in which
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an F node is the most central in terms of both the local and
global connectivity, with CDðF01Þ¼11 and CBðF01Þ¼348,
respectively, which is an artifact of little variability in the
ways research-only supported students answered this ques-
tion. This shows how one strong experience shared by a
majority of respondents can influence the clustering of the
rest of the themes in the NALS approach.

Observation 3: Social and scholarly exploration
experiences are highly variable and depend on the
student group.

The E clusters in the demographic-based networks are
some of the most variable. Sometimes they form clusters
with F nodes, as described above. In other networks, they
form smaller clusters on their own or pair up with R nodes
to form larger clusters. For example, E nodes that
clustered together with the F nodes to form a larger
cluster in the mixed support network (i.e., socializing,
shared space, and research survey), in the nonresearch
support network form their own stable cluster (along
with accommodations). We can thus conclude that these
aspects of social and scholarly support are uniquely
experienced compared to other supports by students
who have been supported solely by teaching assistantships
or other forms of funding. It may also be that institutions
with less established funding pathways have fewer sup-
port options for students socially, for research surveys,
and for getting accommodations.
In previous work, peer mentoring has been identified as a

central support structure that could be made more formal-
ized to better serve students [60]. In our analysis, we see
how the peer mentorship item (E04) is often weakly
clustered with nodes from different themes, spending time
in both R clusters and E clusters. The only two demo-
graphic group networks where this item is stably clustered
are the research network—where it is grouped with other
social-centric items—and the mixed network—where it is
grouped with mainly research-centric items. The peer
mentorship that has been identified as important to build
up may need to be connected up with different types of
experiences for different students.
Additionally, we can see how some of the other E

nodes are occasionally clustered with R nodes, such as in
the later semesters network. This cluster brings together
the socializing, shared space, research survey, and
research flexibility (nodes E01, E02, E07, and E08,
respectively) with meetings consistency, project match-
ing, and presentations (nodes R06, R09, and R10, respec-
tively). One could imagine several reasons why these
types of support would be experienced in similar ways by
graduate students later on in their careers. It could be that
for later career graduate students, these supports have
been well established and remain consistent as they
continue their work. Since by this time in graduate
school, most students will have found a permanent

research group or topic of study that they are committed
to, they perceive the research survey and flexibility as
integral aspects of experiences that led to project match-
ing or defining meeting consistency.
From a methodological point of view, our analysis of the

E cluster revealed the flaws in assuming that an item
grouping in cluster analysis is relevant across all popula-
tions. Thus, when naming clusters in an attempt to capture a
dynamic set of experiences, caution should be taken to not
place too much emphasis on the names of the themes. In
this work, we used names that most closely resemble names
used in the original ASES work [25] to make it easier for
the readers familiar with the ASES work to connect
clusters derived using NALS with the original ones. We
have also shown that in analyzing the network of survey
items, researchers can identify ways that these themes are
built and how particular groupings are more or less stable
across different populations. Such new themes and
differences in thematic clusters revealed through the
NALS approach can lead to a more in-depth analysis
through more qualitative methods.
In previous qualitative work, social and academic sup-

ports were identified as some of the most influential aspects
of graduate student persistence [61]. Men graduate students
in bridge programs were found to have experienced a social
support system that was a deliberate part of their program,
while women in nonbridge programs experienced an
explicit lack of it. In the bridge network, we see that the
E nodes related to social support are more connected to
the other identified thematic nodes than in the nonbridge
network. In the women network, the clustering of E nodes
is highly unstable. Our analysis offers additional context for
previous findings in that the social support structures are
more well connected to other forms of support and stable
for bridge students, while they are experienced in highly
variable ways for women in the dataset.

Observation 4: Mentoring and research experi-
ences are formed from subthemes that highlight
different connections for different student groups.

The mentoring and research experience thematic R
cluster is well represented in most of the demographic-
based networks. Except for a few individual R nodes
moving around, the core nodes of the cluster stay together,
such as in the bridge and early semesters networks. This
means that for many of the demographic groups of students
represented in this survey, the mentoring and research
experience supports are experienced together. Interestingly,
for the nonbridge and the later semesters networks,
the same three R nodes—meetings consistency, project
matching, and presentations—get pulled out, leaving the R
thematic cluster focused mainly on interactions with
research mentors. This suggests that for these groups of
students, the relationship with their research mentor is
highly important.
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Another pattern we see within the R thematic cluster is
the emergence of “minithemes” that hold together a small
number of nodes during the sampling process. While these
small clusters are not necessarily seen in the overall
partitioning, they appear during the sampling. For example,
in the women network, although the larger clusters involv-
ing R nodes are unstable, there are some small groups of
nodes within these clusters that consistently cluster together
in the sampled networks. One such group, related to
presenting and discussing research progress and consisting
of research meetings, regular feedback, and presentations
(nodes R01, R08, and R10, respectively), emerges in women
network. Minithemes consisting of just two nodes that are
persistently grouped together are research meetings and
regular feedback in the research network and academic
planning and integration in the nonresearch network.
When researchers assume thematic clusters hold true

across all student populations, there is a danger in inflating
the importance of the theme names, rather than the specific
experiences that make up that theme. Through using the
NALS methodology on data representing demographic
groups, we are able to investigate whether the ASES themes
are represented within each of these groups and whether any
new themes emerge for them. We find that while some
thematic clusters from the original network are well repre-
sented in the demographic-based networks, other clusters
behave in different and unique ways, confirming that expe-
riences are different for each of the demographic groups.
Although the new clusters are not always stable, there are
particular features that are significantwithin the networks that
helpus shed light on the uniqueneedsof support structures for
different demographic groups of graduate students.

VI. CONCLUSIONS

In this paper, we have focused on two aspects of ASES
data analysis using the NALS methodology: the thematic
variability between various demographic-based networks
and the stability of the resulting themes. Using the full
ASES dataset, we have confirmed that the thematic clusters
found through NALS are stable against small data pertur-
bation which indicates that the themes are well suited
to capture patterns in graduate students’ experiences.
Additionally, we have shown that for demographic-based
networks, NALS can reveal certain unique features that
shed light on the needs of particular demographic groups.
For each of the four thematic clusters, we observed

varying trends across the demographic-based networks.
For example, not experiencing professional and academic
development was a shared theme among many of the
groups considered in this work, indicating that regardless of
demographics, students generally lack formal support from
their programs in this domain. Several groups of students—
students in departments with bridge programs, students
who have received funding from multiple sources, and
students who are early in their graduate studies—reported

experiencing financial support in similar ways as certain
aspects of social and scholarly exploration. For women, on
the other hand, the financial support was a unique enough
experience to form a persistent, stand-alone themewhile for
students with nonresearch support, who typically rely on
teaching assistantship throughout graduate school, finan-
cial support experiences were strongly connected with
teaching training.
Additionally, for some demographic-based networks—

like students in later semesters of their graduate studies—
themes tend to mix social and scholarly exploration with
mentoring and research experience, indicating that the early
exploration may tie strongly to their later research expe-
riences for particular groups. Finally, we are able to identify
minithemes, groupings of two or more items that cluster
together strongly. We found these appearing most in the
mentoring and research experience theme.
Through the use of the NALS methodology, we have

identified unique features related to each ASES theme
for different demographic groups. These features, made
explicit by a network approach, open new opportunities for
interpretation of the survey data. They indicate areas for
future research into the connections between the various
support structures as experienced by different demographic
groups. These results can inform deliberately designed
support structures targeting distinct groups of graduate
students within physics departments.

A. Limitations and future work

We present the limitations of this work in two parts:
limitations due to the dataset and limitations due to the
methodology. We also discuss how future work could
address these limitations and make further recommenda-
tions for improving graduate physics programs.
The ASES dataset represents only a small fraction of

physics graduate students nationwide. Additionally, the
fluctuation in response rates between departments may
result in overrepresentation of some departments which,
in turn, might influence particular demographic responses.
Some demographic groups, such as nonbinary students or
groups separated by specific racial and ethnic backgrounds,
were strongly underrepresented in the ASES dataset and thus
we had to omit them in our analysis. We urge researchers
across various physics graduate programs to use the ASES
instrument to build a more complete picture of the landscape
of experiences related to support structures.
Previously, ASES has been shown to reliably measure

differences between student experiences within bridge
and nonbridge programs by comparing the quantitative
differences of a principle component analysis with quali-
tative analysis of interviews about those programs’ support
structures [25]. However, evidence of measurement invari-
ance across other variables of respondent characteristics
was not included. For example, it is possible that students
who are later in their graduate school careers would
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interpret particular survey items differently than students in
earlier stages of their programs. Thus, these two student
groups may report different experiences due to differences
in interpretation of items rather than differences in expe-
riences. While there is evidence of measurement invariance
between bridge and nonbridge programs, the lack of
evidence across other demographic characteristics is a
limitation of this study.
Additionally, our dataset only represents the experience

of students at one point in time. It would be useful to
establish multiple data points in time to further explain how
these support structures can relate to student outcomes and
program general attrition rates. Research should continue to
grow in this area to understand the longitudinal effects of
different types of support structures. NALS would be well
positioned to investigate the evolution of these networks of
experiences of support structures.
Analyzing the thematic clusters has helped us identify

important groups of experiences for different demographic
groups. However, survey items that are particularly strong
within the network (as measured by node centrality) can
influence the clustering in ways that result in less stable
clusters. This is an inherent feature of the method that should
be noted as NALS is further developed. In our analysis, we
only looked at single-level demographics, however, the ways
in which particular categories intersect at a broad scale may
provide additional insight into the formation of the thematic
clusters. Finally, in making inferences about why particular
patterns emerge, we do not have deeper insights into the
experiences that could be captured by qualitative studies.
Pairing the NALS methodology with qualitative approaches
when analyzing other survey datasets will likely produce
more robust and comprehensive results.
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APPENDIX A: CLUSTERING CONVERGENCE
ANALYSIS

To determine the appropriate number of bootstrapping
iterations for our dataset, we perform a clustering

convergence analysis using the full ASES dataset.
Following the procedure described in Sec. III D, we ran
2000 bootstrapping tests. We then recorded the frequencies
of assigning nodes in the bootstrapped networks to their
clusters from the original NALS thematic partitioning of
the full backbone network. Figure 6 shows the convergence
plots for the four thematic clusters as a function of the
number of bootstrapping iterations. While the overall
frequencies vary between clusters as well as for nodes
within each cluster (except for cluster F), in all cases, we
observe a full convergence at around 700 iterations.

APPENDIX B: RELATIONSHIP BETWEEN
METRICS AND SAMPLE SIZE

Certain demographic groups in our analysis have some-
what unequal sample sizes between the subgroups (e.g.,
gender-based and the number of semesters since enroll-
ment-based splits). Thus, we found it is important to
investigate whether there exists a generalized relationship
between network comparison metrics and sample size. To
do this, we ran 2000 bootstrapping tests at the following
sample sizes: 50, 100, 150, 200, 250, 300, 350, and 381.
We then ran the NDC, EEJ, and purity similarity tests for
each bootstrapped test and calculated the mean and
standard deviation for each set of sample sizes.
As one may expect, the more of the dataset that was

drawn from, the more similar those networks became with

FIG. 6. Clustering convergence analysis for the bootstrapped
networks compared to the four thematic clusters from the full
ASES dataset. The three nodes from cluster F have identical
convergence curves. The assignment into the original clusters
convergences at νF ¼ 628, νE ¼ 705, νR ¼ 612, and νD ¼ 406
for clusters F, E, R, and D, respectively.
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respect to the full network. The gray plot in Fig. 7 confirms
this trend. In addition, Fig. 7 shows the NDC, EEJ, and
purity values for all demographic-based networks consid-
ered in this work. As one can see, not all of the differences
can be explained simply by sample size alone. For example,
the NDC value for the midsize research-based network is
significantly lower than for the other two funding networks,
see Fig. 7. For the program-based networks, both NDC
[Fig. 7(a)] and EEJ [Fig. 7(b)] are significantly higher
for the smaller bridge network than for the nonbridge
networks. For both gender-based and semester-based net-
works, the EEJ values are unusually low for the smaller
subgroups and unusually high for the bigger subgroups.
Purity for all networks seems to follow the expected trend.

APPENDIX C: THE EFFECT SIZE FOR
NETWORK COMPARISON

Cohen’s d measure, given in Eq. (6) quantifies the
strength of differences of network measures between
the relevant bootstrapped demographic-based networks
and full network. In our analysis, we used Cohen’s d to
compare the NDC, EEJ, and purity values based on
N ¼ 1000 samples. Table IV shows the Cohen’s d values
for all comparisons.
For the EEJ measure, all comparisons have a large effect

size. In contrast, for NDC, all but one comparison have a

small effect size. The one comparison with a medium effect
size—research vs full and mixed vs full—just barely meets
the d > 0.5 threshold. When looking at purity, the split
based on gender and the split based on semesters show
large effect sizes. The purity of research vs full has a
medium effect size when compared to both nonresearch vs
full and mixed vs full.

APPENDIX D: CENTRALITY MEASURES

Table V shows the degree and betweenness centrality
measures of all networks. The degree centrality CD dis-
tribution is fairly consistent between networks, ranging
from 1 to 9, with an overall MCD ¼ 3.1ð1.6Þ. The betwe-
enness centrality CB, on the other hand, varies significantly
between networks in terms of both the overall magnitude
and which nodes are identified as most central. It is
important to note that for networks with a two-component
network, the maximum possible betweenness will be less
than that of a single-component network, as more nodes are
reachable by the paths.
The bridge network has many nodes with high betwe-

enness, but the node with by far the largest is D02

[CBðD02Þ ¼ 267]. R09 has the highest degree in the bridge
network [CDðR09Þ ¼ 8]. In the nonbridge network, R01

and R06 have the highest betweenness [CBðR01Þ ¼ 56

and CBðR06Þ ¼ 51] while D09 having the largest degree
[CDðD09Þ ¼ 8]. For the women network, the node with high
betweenness is D12 [CBðD12Þ ¼ 182]. The two nodes with
the highest degree centrality is also D12 [CDðD12Þ ¼ 7]. In
the men network, on the other hand, E05 has the highest
betweenness [CBðE05Þ ¼ 91] and D09 has the highest
degree [CDðD09Þ ¼ 8], similar to the full network. In the
early network, R09 has both the highest betweenness
[CBðR09Þ ¼ 108] and degree [CDðR09Þ ¼ 9]. In the later
network, R05 and R09 have the highest betweenness
[CBðR05Þ ¼ 82, CBðR09Þ ¼ 80] while D09 has the highest
degree [CDðD09Þ ¼ 8]. In the research network, F01 has

(a)

(b)

(c)

FIG. 7. Network comparison metric values for different sample
size bootstrapped trial networks and demographic-based net-
works: (a) the NDC metric value, (b) the EEJ metric value, and
(c) the purity value. The point shape represents different sub-
groups within each demographic split as shown in the legend.
Note the different scales on the y axis for each plot. Error bars
indicate one standard deviation.

TABLE IV. Cohen’s d measure for comparisons based on
NDC, EEJ, and purity. The comparisons are made between the
network indicated in column 1 and the full network and the
network indicated in column 2 and the full network. A double
asterisk indicates large effect d values while a single asterisk
indicates medium effect d values.

Comparison 1 Comparison 2 dNDC dEEJ dpurity

Bridge Nonbridge 0.44 0.97�� 0.14
Women Men 0.11 3.68�� 1.92��
Early Later 0.14 3.14�� 1.16��
Research Nonresearch 0.49 1.75�� 0.54�
Research Mixed 0.50� 1.18�� 0.64�
Nonresearch Mixed 0.01 3.02�� 0.06
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both the highest betweenness [CBðF01Þ ¼ 348] and the
highest degree [CDðF01Þ ¼ 11]. In the nonresearch net-
work, E02 has the highest betweenness [CBðD08Þ ¼ 213]
while R01 has the highest degree [CDðR01Þ ¼ 7]. Finally,
R07 has the highest betweenness [CBðR07Þ ¼ 274] and D09

has the highest degree [CDðD09Þ ¼ 8] in the mixed
network.

APPENDIX E: NALS THEMES OF THE ASES
INSTRUMENT

Table VI provides additional context for the thematic
clustering identified through NALS [62]. It includes the
code for each survey item along with the shorthand name
and the exact text that is used in the ASES instrument. The
cluster titles are included at the beginning of each grouping.

TABLE V. Comparison of network centralities for the full and demographic split-based networks. The nodes are sorted according to
the themes found for the full ASES network. Betweenness is rounded to the nearest whole number.

Full Bridge Non bridge Women Men Early Later Research Non research Mixed

ID CD CB CD CB CD CB CD CB CD CB CD CB CD CB CD CB CD CB CD CB

F01 2 0 3 3 2 0 2 0 2 0 2 0 4 38 11 348 2 10 2 0
F02 3 38 4 40 4 41 3 64 4 42 7 60 3 4 7 77 2 26 3 42
F03 2 0 3 5 2 0 2 0 2 0 3 7 2 0 2 0 2 15 3 4

E01 2 0 3 81 2 0 2 41 2 0 3 2 2 0 2 0 2 0 2 20
E02 5 24 4 76 6 41 4 141 3 12 6 67 4 21 5 104 5 213 4 62
E03 3 13 4 186 3 10 3 40 3 20 3 12 3 13 2 33 2 0 3 19
E04 2 9 1 0 1 0 2 35 2 7 3 41 2 6 3 35 1 0 2 20
E05 6 106 5 169 4 32 3 38 6 91 3 30 5 50 3 27 2 4 6 89
E06 2 54 2 13 2 16 2 11 2 37 2 0 2 7 2 0 2 2 1 0
E07 3 4 5 41 2 5 3 132 4 28 2 0 4 13 2 0 2 0 3 70
E08 3 26 2 0 3 19 2 35 2 23 2 60 2 6 3 14 4 198 2 0
E09 2 0 2 0 2 0 2 19 2 0 2 1 2 0 1 0 2 14 2 0

R01 5 14 5 18 5 56 4 76 3 12 3 0 6 31 3 37 7 149 4 107
R02 3 10 2 0 3 14 3 34 3 8 2 4 3 10 2 50 3 8 3 16
R03 2 0 2 33 2 0 3 139 2 0 2 7 2 0 1 0 2 3 2 0
R04 3 10 3 64 3 10 4 120 4 14 4 13 3 10 2 1 5 90 3 16
R05 5 59 6 143 4 29 4 139 6 79 2 4 6 82 4 90 3 3 6 148
R06 3 10 3 22 4 51 3 105 3 12 3 1 3 13 3 41 4 42 3 168
R07 2 3 2 1 2 3 2 137 2 1 2 0 1 0 2 15 2 2 3 274
R08 2 2 3 7 2 4 2 17 2 3 4 1 2 0 1 0 6 155 2 9
R09 6 75 8 140 5 27 4 84 5 52 9 108 6 80 7 35 4 87 4 22
R10 2 0 2 0 3 20 2 4 2 3 3 0 3 12 2 17 1 0 6 178

D01 2 4 3 84 2 0 2 0 3 5 3 4 2 4 2 3 2 5 2 10
D02 2 1 4 267 3 22 2 0 2 1 2 3 2 1 2 1 2 73 2 1
D03 3 6 2 2 3 30 3 64 3 7 2 0 3 8 4 33 3 72 3 22
D04 2 0 2 0 2 0 1 0 2 0 2 2 2 0 2 0 2 0 2 0
D05 3 3 5 39 3 1 2 0 4 4 2 1 4 4 4 40 3 2 2 0
D06 4 3 3 1 3 2 4 112 4 3 4 5 3 1 4 78 2 5 5 7
D07 2 0 4 150 2 0 3 138 2 0 4 15 2 0 2 0 4 32 2 0
D08 2 0 2 0 2 0 2 6 2 0 2 1 2 0 2 11 3 93 2 264
D09 9 41 6 13 8 37 6 70 8 32 7 32 8 35 2 1 6 184 8 161
D10 2 3 3 1 2 0 2 0 3 3 4 6 2 2 3 23 3 3 2 0
D11 4 8 7 94 3 1 3 9 4 9 3 7 5 11 3 66 5 66 3 253
D12 5 9 5 16 7 26 7 182 5 11 3 4 5 12 6 214 4 63 6 89
D13 2 1 2 0 2 0 2 0 2 1 2 0 2 1 2 25 2 0 2 0
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TABLE VI. NALS themes of the ASES instrument. The first column indicates the item code, the second column gives the shorthand
name for an item, and the third column gives the item’s full description.

ID Shorthand name Full item description

Financial support (F)
F01 Tuition My tuition is covered for my entire program.
F02 Health My college, department, or program offers me health benefits.
F03 Life I have no financial concerns about completing my degree.

Social and scholarly exploration support (E)
E01 Socializing The department hosts social activities (e.g., a welcome dinner, regular lunches) that are valuable in

allowing me opportunities to share my thoughts and struggles with my peers, and discuss research
areas.

E02 Shared space The department offered a space where students can build an academic and social community (e.g.,
student offices, rooms for tutoring, rooms for student leader organizations).

E03 Accommodations People in my department were supportive and caring about my accommodation needs when I first moved
into town.

E04 Peer mentor I have or had a senior peer mentor that provided invaluable resources and inducted me into departmental
and/or laboratory cultures.

E05 Research match I had or have support and flexibility from my department in finding my research interests.
E06 Research exploration I had or have the opportunity to rotate through different research labs without making a commitment in

order to find my research match.
E07 Research survey I attend(ed) a research seminar surveying the areas of expertise within the department.
E08 Research flexibility My research mentor was very flexible with my research assignments when I was struggling with one or

more courses.
E09 Coursework support Whenever I face(d) a challenge succeeding on coursework, someone from my department helped me

overcome it.

Mentoring and research experience (R)
R01 Research meetings I have frequent meetings with my mentor to discuss on my research progress and any challenges I face.
R02 Academic planning My mentor(s) helped me selecting courses and develop my academic plans.
R03 Informal meetings I have informal meetings with my mentor(s) where I get assistance or support with any issues I face (for

example, on issues such as life-work balance, develop social network, set future goals, access health
care resources, etc.).

R04 Academic
integration

My mentor(s) helped me integrate into the program and the physics community.

R05 Apprenticeship My mentor(s) taught me what it means to be a research physicist and a scholar.
R06 Meetings

consistency
My research group meets at least once per week.

R07 Journal discussions In my research group meetings, we devote time in reading and discussing about the current state of
knowledge in the field.

R08 Regular feedback I have regular meetings with my research mentor and receive feedback on a regular basis.
R09 Project matching The research project I am working on matches my research interests.
R10 Presentations I have presented or am planning to present my research at a group meeting or in a journal club.

Professional and academic development (D)
D01 Academic

assessment
In the beginning of my program, I took a precourse assessment that was designed to measure my
incoming preparation.

D02 Academic
personalization

I was offered a personalized coursework plan in my graduate program.

D03 Structured
collaboration

The faculty, postdocs, or experienced TAs lead guided group-work sessions to encourage students work
collaboratively on concepts covered in core courses.

D04 Networking I attend mini-conferences where students from nearby universities can share research progress and learn
networking skills.

D05 Planning support At the beginning of each semester, my faculty advisor(s) and I developed time-management plan that
help me identify areas where my time could be used more effectively.

D06 Time-management
training

My department hosts a seminar that focuses on time-management skills.

E09 Coursework support Whenever I face(d) a challenge succeeding on coursework, someone from my department helped me
overcome it.

(Table continued)
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