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One expected outcome of physics instruction is for students to be capable of relating physical concepts to
multiple mathematical representations. In quantum mechanics (QM), students are asked to work across
multiple symbolic notations, including some they have not previously encountered. To investigate student
understanding of the relationships between expressions used in these various notations, a survey was
developed and distributed to students at six different institutions. All of the courses studied were structured
as “spins-first,” in which the course begins with spin-1=2 systems and Dirac notation before transitioning to
include continuous systems and wave function notation. Network analysis techniques such as community
detection methods were used to investigate conceptual connections between commonly used expressions in
upper-division QM courses. Our findings suggest that, for spins-first students, Dirac bras and kets share a
stronger identity with vectorlike concepts than are associated with quantum state or wave function
concepts. This work represents a novel way of using well-developed network analysis techniques and
suggests such techniques could be used for other purposes as well.
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I. INTRODUCTION

Physicists use mathematics for far more than computa-
tion: mathematical expressions and relationships are uti-
lized to help them understand and reason about the world
[1]. This is certainly the case in quantum mechanics (QM),
in which, due to its often nonintuitive nature, one needs to
rely on mathematical reasoning to understand and make
predictions for systems on the quantum scale. The level of
abstraction and mathematical sophistication used in upper-
division QM coursework has been shown to present many
challenges to students, including when interpreting Dirac
formalism [2], reasoning about possible wave functions
both symbolically and graphically [3], distinguishing
between Euclidean and Hilbert spaces [3,4], and studying
time dependence and time evolution [3–6]. Student under-
standing of representations of eigenequations has been
studied by education researchers both in mathematics [7–9]
and physics [10–12], as has the number of different
notations that are frequently used and the varied math-
ematics that each notation requires [13–15]. These nota-
tions typically include Dirac, vector-matrix, and wave

function notations—all of which require varied mathemati-
cal operations and understanding for fruitful application to
QM systems.
An interesting aspect of studying representational under-

standing in upper-division QM is the variance in how and
when the various aforementioned notations are introduced.
Commonly used texts often begin by either introducing the
Schrödinger equation and wave functions [16] or the Stern-
Gerlach experiments (spin-1=2 systems) and Dirac notation
[17,18]. These two different approaches are often referred
to as “wave functions-first” and “spins-first,” respectively,
and though each text does eventually introduce the other
notation, this can lead to courses with markedly different
structures and notational emphases.
One challenge when studying student understanding at

the upper division, in general, is the smaller sample size
when compared to introductory physics courses. Due to
attrition and a transition away from a general education
audience, the number of students taking upper-division
courses is naturally far smaller [19]; this typically manifests
in research studies as a focus on more qualitative method-
ologies (clinical interviews being a classic example). While
these methodologies are excellent opportunities for provid-
ing a deep view into individual students’ conceptual
understanding, they often also lead to a loss in the
generalizability of claims that can be made. This loss in
generalizability applies both within a given course (unless
every enrolled student is studied) and across equivalent
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courses at different institutions. One way to improve
generalizability is to expand the data pool to include
students at multiple institutions.
A technique that has seen increased use within the

physics education research (PER) community in recent
years is that of network analysis. Network analysis
encompasses any technique that focuses on connections
between different actors. Historically, these techniques
were developed to study transportation and information
networks [20] but have since been used within the PER
community to study social communities and interactions
among students and instructors [21–23] and to assess
conceptual inventories developed for physics courses
[24–29]. In general, these techniques are useful whenever
connections between actors are of interest.
While prior work examining student understanding of

the various notations used in quantum mechanics has been
conducted, this has commonly been done only at individual
institutions. Also, the ability to work and reason across
multiple representations is important for success in QM. To
better understand the ways in which students reason about
expressions in multiple representations and to glean a more
generalizable understanding of the same, we address the
following research questions:

1. How can survey design and network analysis tech-
niques be used in conjunction to efficiently collect
and analyze data on students’ conceptual connec-
tions between different QM expressions for many
students at multiple institutions?

2. What can network analysis show about students’
conceptual connections in spins-first courses?

We begin by laying out the work that has already been
conducted in this space and providing a brief background
on the relevant terms and concepts within network analysis
that are used later. Then we discuss the design of our survey
and the ways our networks were generated, before discus-
sing the results of our analyses.

II. BACKGROUND

We begin our discussion of relevant prior research by
reviewing work on student understanding of different math-
ematical representations used within quantum mechanics
courses. We then provide a brief overview of prior work
within PERusing network analysis techniques, before laying
out an overview of the specific network analysis concepts we
are using by means of a toy model network.

A. Prior work with quantummechanics representations

While much education research has been conducted at
the boundary of physics and mathematics, there has been a
focus more recently on the mathematics found in upper-
division QM courses. This is especially true for the three
mathematical notations commonly used to describe iden-
tical or analogous physical phenomena or concepts in

upper-division QM: Dirac, wave function, and vector-
matrix notations. Gire and Price examined all three nota-
tions from an expert perspective, noting the affordances and
limitations of each for the purposes of computation [15].
For example, they found that students elected to use Dirac
notation as a medium for coordinating expressions in other
notations and attributed that preference to qualities of the
notation, such as its compactness and symbolic support for
computation. Schermerhorn et al. modified this framework
to capture student preferences when calculating expectation
values [14]; they found that both the compactness of a
notation and its relative familiarity were the primary drivers
for student preference.Wawro et al. similarly studied student
judgments of vector-matrix and Dirac notations’ suitability
for particular applications and showed that a comprehensive
understanding of both how similar expressions in these
various notations interrelate and how to translate between
them is crucial for a deep, cohesive understanding of
QM [13]. Additionally, incorrect translation between wave
function and Dirac expressions has been shown to lead to
difficulties when developing models for calculating proba-
bilities [30]. Because of the importance of this skill, instruc-
tional materials have been developed to assist students in
working among and reasoning with multiple representations
concurrently (e.g., simulation-based tutorials utilizing
multiple types of graphs, integrals, and algebraic expressions
[31]). We believe more work is necessary to understand how
students reason about theways in which expressions in these
different notations interrelate, as this will allow better
characterization of student thinking and ultimately allow
for tailored pedagogy and instructional materials to improve
this essential skill.

B. Prior education research studies
using network analysis

Network analysis techniques have been developed and
used to study topics as diverse as physical real-world
infrastructure, neural networks, and social behaviors
among groups. These techniques have recently also seen
extensive use in both PER and studies in the broader
education research literature more generally. Community
detection and cluster analysis techniques have been used
to study response groupings for various conceptual inven-
tories [24–29] and, more recently, to interpret the results of
Likert-style surveys [32]. Some work has been done to
cluster students’ knowledge, skills, and beliefs in the
context of epistemological framing during computational
physics [33]. These techniques have also been used
extensively to study social communities and their various
impacts, both among communities of educators [22,23] and
of students [21,23,34], and to characterize how these social
communities are affected by different active-learning
pedagogies [35]. Recent work has even looked at how
these communities have been affected by remote physics
courses [36]. Though the techniques we use for community
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detection are much the same as those used in prior
literature, the use of these techniques to study student
interpretations of symbolic expressions is novel. An over-
view of these techniques is provided in Sec. III, and our
specific utilization is detailed in Secs. IV and V.

III. NETWORK ANALYSIS PRIMER

Because network analysis is so broad and contains a
multitude of terms that are still not commonplace in PER,
a brief introduction to the specific terms and analysis
methods that are applied to our data is merited. A toy
model network, used to demonstrate different methods of

our analysis, is shown in Fig. 1. Definitions of terms used
are in Table I.

A. Community detection methods

There are many ways to detect community structure
within networks, including by maximizing a network’s
modularity [37,38], agglomerative hierarchical clustering
algorithms [39], and using edge betweennesses to contin-
uously subdivide a network [40]. These various methods
each have their strengths and weaknesses, which often
manifest as trade-offs between computational speed, granu-
larity of results, and level of confidence that can be ascribed

FIG. 1. A toy model network highlighting terms discussed in Table I. (a) Network highlighting the geodesic between nodes 1 and 9.
(b) The same network, with the edges shaded by their edge weights; the edges lying within the three communities were made to have
more weight than those that cross between communities. (c) The network with the edges shaded by their edge betweennesses; the edges
lying between communities tend to have high betweennesses, while those within communities tend to have lower betweennesses.
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to the specific communities formed. Modularity maximi-
zation is relatively quick to compute but has limitations to
its resolution of smaller communities [41]. Hierarchical
clustering and edge betweenness-based methods both
provide a much higher resolution of subcommunities by
generating a hierarchical community structure, which can
be visualized succinctly with a dendrogram (see Fig. 2 for
the dendrogram for our toy model from Fig. 1). While
hierarchical clustering algorithms typically start with every
node disconnected and slowly cluster them together via
some similarity (distance) measure, betweenness-based
methods start with the larger network as a whole and
separate it into smaller and smaller subdivisions. In terms of
creating a dendrogram, one could view hierarchical clus-
tering as building the dendrogram from the bottom up and
betweenness-based methods as doing so from the top
down. Both are computationally intensive for networks
of even moderate size (for sparse graphs with n edges,
completion times are, at best, Oðn2Þ for hierarchical
clustering and Oðn3Þ for betweenness-based methods).
While hierarchical clustering techniques are afforded some
flexibility from their reliance on similarity measures
between nodes—from which there are many options to
choose—this also means that different metrics can provide
different clusters without an obvious way to know if one is
more correct than the others [42]. Additional drawbacks of
hierarchical clustering are that even central members of
communities can be left out of the communities they
“should” belong within, and that it often leaves some
peripheral members out as well [43]. Given the drawbacks
of modularity maximization and hierarchical clustering,
and the fact that the networks we will study are not overly
large (at only n ¼ 20 nodes), we decided to use edge
betweenness to determine how our expressions were
clustered.1 It is notable that the hierarchical nature of these

dendrograms leaves open the question of which number of
communities is “best” for a given network. This can be
visualized by slicing horizontally across a dendrogram at
various vertical positions. For the dendrogram in Fig. 2, for
example, we could say there are two communities [made up
of (1–9) and (10–15)], or three communities [consisting of
(1–4), (5–9) and (10–15)], or some other number, depend-
ing on where the cut is made. For example, the 5–9
community could be made from two subcommunities (5,
7, 8 and 6, 9), and/or the 10–15 community could be made
from 14, 12, 15 and 11, 10, 13. This question and others, as
well as how we go about answering them, are discussed in
more detail in Sec. III B.
The way that our chosen algorithm works is by sequen-

tially removing the edge within our network that has
the highest betweenness. As can be seen from Fig. 1(c),
edges that have the largest betweennesses are most likely
to connect communities [44]. Once the edge with the
highest betweenness is found, it is deleted, and the edge

TABLE I. Definitions and descriptions of relevant terms that will be used to discuss networks within this paper. For clarity, several of
these terms are highlighted in Fig. 1 for the toy model network.

Term Definition

Node Individual objects that may or may not be connected to each other
Edge Represents connection between nodes.
Edge weight Corresponds to the strength of the connection between two nodes. If an edge has a large edge weight, that means

that the connection between the two nodes on either end of that edge is particularly strong.
Community Clusters of nodes that have been determined by some means to be more closely connected to each other than to

the other nodes in the network.
Geodesic The shortest possible path between two nodes in a network.
Edge betweenness Determined by finding the geodesics between every pair of nodes in a network and counting the number that

passes through the edge in question. For a weighted network like our toy network, this number is then divided
by the edge’s weight. Effectively, an edge has low betweenness if there are many alternative geodesics that can

sidestep it, such as within a tightly knit community.

FIG. 2. Dendrogram showing the community structure of the
toy model network from Fig. 1 found using the edge betweenness
method. The three expected communities (1–4, 5–9, and 10–15)
are clearly visible.

1For the curious reader, Ref. [42] provides an excellent review
of various community detection methods and their respective
affordances and limitations.
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betweennesses of the resultant network are recalculated;
this process is repeated until every edge in the network is
removed and all vertices are fully disconnected. This
process will tend to separate a network into progressively
smaller communities, saving the most tight-knit for last; the
result can be visualized with a dendrogram. In these
dendrograms, the network begins with a single community,
represented by a vertical line. As the algorithm runs its
course, this single community splits into multiple branches
containing fewer and fewer vertices. This is visualized by
moving down the diagram until every edge is removed from
the network and every vertex is separated from every other
at the bottom of the dendrogram. While originally con-
ceived as a method for community detection in unweighted
networks, Newman extended this procedure to include
networks with weighted edges, as is the case both for our
toy model and for our survey data [45].

B. Determining community robustness

The relative height of a given vertical segment on these
edge betweenness-based dendrograms is indicative of the
number of edges that were removed between community
divisions. Divisions with very little vertical space between
them therefore occurred fairly close together during the
community detection process. Before beginning analysis of
these communities and drawing conclusions based on the
order in which they are formed, some questions arise:

1. How robust is the community structure, in that small
perturbations to the network would not produce a
meaningfully different community structure?

2. How confident can we be about these communities?
3. Where should we “stop” along the vertical axis, to

determine which community division or number of
communities is “best”?

There are numerous possible methods to bring to bear to
answer these questions, including determining which
division has the largest modularity [44] and various boot-
strapping procedures [42]. Due to the level of granularity
and transparency afforded by the latter, we utilized a
modified bootstrapping procedure to determine which
community configuration represents the overall data most
effectively and is robust and stable to perturbations.
In particular, we elected to use a technique based on

statistical bootstrapping discussed by Fortunato [42] and
Efron and Tibshirani [46] that was subsequently modified
by Speirs et al. [47]. The basic idea is to resample from the
pool of student responses to generate multiple hypothetical
datasets. For a dataset of N student respondents, hypo-
thetical datasets are created, each comprised ofN responses
drawn at random from the actual student responses. When
creating a hypothetical dataset, some respondents’ data will
be selected multiple times, and others not at all—otherwise
the process would simply reproduce the original dataset. A
network is then created from this hypothetical dataset and
the community detection algorithm is run. This process is

then repeated many times to create many slightly different
networks, with the resulting ensemble of dendrograms then
being compared to see where significant deviations occur
and what structure is common across all or most hypo-
thetical datasets. In practice, determining this common
structure means comparing the different communities
formed across the bootstrapped networks to see which
communities are consistently detected.
The modified bootstrapping procedure answers the

questions listed above regarding how to determine “good”
community divisions in the following ways: (i) It operates
by introducing perturbations to the original network and
drawing attention specifically to places where the pertur-
bations did not drastically alter the community structure;
(ii) the level of confidence afforded to any given com-
munity structure can be determined by the fraction of
bootstrapped networks that agree on a given community
structure. If 100% of bootstrapped networks have the
same three-community division, it is reasonable to be very
confident in that community division. Speirs et al. deter-
mined their confidence window to be for agreement
among >60% of bootstrapped networks [47]; (iii) which-
ever community division(s) has the greatest agreement
among the bootstrapped networks can be reasonably
treated as the “best” community division(s). This process
is described in more detail in Sec. VA as we apply it to
our data.

IV. METHODS

The discussion of our research methods begins with a
discussion regarding our survey design and implementa-
tion, before then describing the creation of our networks
from survey data.

A. Survey design

In an effort to be able to make more generalizable claims
about student understanding of the representations used in
upper-division QM, we developed and administered an
online survey with two primary goals in mind: to collect
and analyze responses from many students across multiple
institutions in a way that would scale efficiently and to
create a dataset that allows for analysis of students’
conceptual understanding of mathematical expressions
commonly used in QM—particularly those used to express
probability concepts. Because both wave function and
Dirac notations are used extensively in upper-division
QM courses, and because there are equivalent expressions
that look quite different between the two notations (e.g.,
hEnjψi and

R
φ�
nðxÞψðxÞdx) as well as similar-looking

expressions that represent concepts with very subtle dis-
tinctions (e.g., jEni & hEnj), we decided to focus on the
conceptual interpretations that various commonly used
expressions shared.
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The first goal was addressed by reducing the number
of free-response text entry questions as much as possible,
both to reduce participant attrition and to help our analysis
scale well to a large participant pool. This meant that the
second goal—gleaning students’ conceptual connections
between expressions—would need to be accomplished
without explicitly analyzing student reasoning. To this
end, the survey tasks were designed as sorting tasks, where
the students were presented with a list of expressions
commonly used in upper-division QM courses [Fig. 3(a)]
and a single quantum mechanical concept. Students were
tasked with selecting all of the expressions in the list that
they felt represented that concept. In all, the survey
consisted of 11 different concepts [Fig. 3(b)]. Each par-
ticipant was presented with one concept at a time [as shown
in Fig. 3(a)] to avoid having too much information on the
screen at one time. The expressions and concepts were
selected to balance the sufficient breadth of each while
avoiding overloading participants with too many options
and survey fatigue. The final list of expressions was settled
on after a pilot test of the survey. The concepts were chosen
to cover most of the normative interpretations for the
different expressions selected. Additionally, this survey
was used as a part of a larger research effort to investigate
student understanding of expressions for probability con-
cepts in QM; this also affected the selection of expressions
and concepts.

This survey was given to students in upper-division QM
courses at six different institutions (N ¼ 139); all courses
were taught using a spins-first textbook ([17] or [18]). As
discussed in Sec. II A, these courses typically begin by
using the results of the Stern-Gerlach experiment to
motivate the treatment of quantum states as state vectors,
often represented by Dirac notation bras and kets. After
some time studying systems with discrete measurement
outcomes in Dirac notation, including the time evolution of
these systems, these courses eventually transition to study-
ing continuous systems, connecting the Dirac state vectors
to their associated wave functions. The survey was dis-
tributed near the end of the course after students had
worked extensively with both Dirac and wave function
notations. Courses using the spins-first approach were
chosen for this study due to the increasing prevalence of
this curricular style as compared to more traditional wave
functions-first courses, which typically use the text by
Griffiths [16]. It was also a population of convenience, as
the institution at which this survey was developed and
piloted used a spins-first approach. We also suspect that due
to the increased and early focus on Dirac notation in these
courses, it was possible that expressions in Dirac notation
would be more commonly selected. As such, we viewed
this population as a useful one for testing this methodology
before extending it to study participants from wave
functions-first curricula.

FIG. 3. (a) Example of a prompt in the online survey administered to students. (b) Table showing the different concepts for which they
were tasked with selecting expressions.
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As a result of the survey design, student responses are
entirely relational, forming expression-concept pairs and
expression-expression pairs. An expression-concept pair is
formed between an expression and a concept when the
expression is dragged into the concept’s box, and an
expression-expression pair is formed when two expressions
are selected simultaneously for the same concept, i.e.,
dragged into the same box. Expression-concept pairs,
though important, are not the focus of this study. We focus
on expression-expression pairs as representative of a shared
conceptual interpretation on the part of the students in
Sec. V B. We also focus on the concepts for which students
selected these expression-expression pairs as that helps to
explain what those shared conceptual interpretations are.
Given the nature of the survey responses and our interest in
how and whether students view these expressions as
conceptually connected, we decided to use network analy-
sis techniques to analyze our survey responses. In particu-
lar, we implemented the edge betweenness community
detection method discussed in Sec. III.

B. Creating our network

To turn our survey results into a network for analysis of
how these expressions are related conceptually, we first
collapsed individual students’ responses into their own
networks. In these networks, the nodes were the 20
different expressions provided on the survey; a connection
was placed between two nodes if the student declared those
two expressions as representative of the same concept, i.e.,
placed those two expressions in the same concept box. Here
we made a choice that even if a student selected the same

pair of expressions for multiple concepts, each pair was
only counted once per student, resulting in “unweighted”
individual student response networks. This unweighting
was done to avoid overweighting any connections that may
be due to similar concepts given on the survey. For
example, if a student selected hE1j and jE2i simultaneously
for the concepts “vector,” “basis vector,” and “eigenvector,”
those two expressions would be connected by an edge of
weight 1 for that student (rather than 3). While we wanted
the granularity of these different types of vectors for other
analyses in our broader study, we did not want to over-
weight the strength of those connections for this inves-
tigation simply because there were more distinct vector
concepts on the survey than there were variations of other
concepts (e.g., those related to probability or quantum
states) while constructing these students’ individual net-
works. These links then served to connect expressions that
students believed could represent the same concept.
For N respondents, this process resulted in N

unweighted networks of 20 nodes each. These N networks
were then superimposed to generate the full weighted
network (Fig. 4), with a maximum possible edge weight
of N if all respondents selected the two expressions
connected by that edge simultaneously at least once on
the survey. This network is rather complicated, with myriad
low-weight edges that make it difficult to interpret. One
way to cut through this visual clutter and help meaningful
information rise to the surface is to find the clusters or
communities within the larger network as a whole. To this
end, we implemented the edge betweenness community
detection method discussed in Sec. III.

FIG. 4. The expression-concept network generated from 139 student survey respondents. The nodes represent the different
expressions on the survey. Edges between nodes show that students selected those two expressions simultaneously for at least one
concept. The edge weights represent the number of students who used the two expressions simultaneously and is shown by the shading
applied to the edges. The shading of the nodes is not a part of our analysis here but is representative of the nodes’ degree (the number and
weight of the edges connected to each node).
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V. RESULTS AND DISCUSSION

We begin the discussion of our results by first presenting
the details of the community detection process. We then
discuss the reliability of the detected communities as well
as the communities’ implications for student understanding
of mathematical representations within this context.

A. Running the betweenness algorithm
and determining its limits

The dendrogram generated by the edge betweenness
method for our network is shown in Fig. 5. Cutting
horizontally across this dendrogram at any point is repre-
sentative of a snapshot of the betweenness algorithm—it
represents the set of communities that exist at any given
point during the procedure.
As discussed in Sec. III B, community divisions that are

separated by relatively small vertical segments on the
dendrogram occurred relatively close together during the
betweenness algorithm. Given the importance of the order
in which these divisions occur for our analyses, a deter-
mination of the community divisions that can be considered
robust is of great importance. To this end, we implemented
the statistical bootstrapping-based method discussed in
Sec. III B to determine the robustness of these community
divisions. In particular, we ran the edge betweenness
community detection algorithm on 1000 bootstrapped
networks. This number was chosen to balance computation
time and accuracy: the bootstrapping procedure was run
several times, and 1000 networks were found to generally
produce consistent results while taking an acceptable
amount of time to compute. Figure 6 shows the number
of dendrograms that have identical community structures at
a given number of communities (level of the dendrogram).

Each bar on this plot represents a specific number of
communities—from 1 community (with every node
included) to 20 (with every node separated into its own
communities at the end of the betweenness procedure), as
indexed on the horizontal axis. Each differently shaded
segment of a bar represents a subset of the hypothetical
(bootstrapped) networks with both (a) the same number of
communities and (b) the exact same set(s) of communities.
Note that the bar on either end of the plot has only one
segment: there should only be one possible structure with 1
community—with all nodes connected (the top of the
dendrogram)—and one with 20 communities—with each
node as its own community (the bottom of the dendro-
gram). One interesting aspect of this figure can be seen
by observing the second and third bars on this plot. The
second bar shows that the 1000 bootstrapped networks
showcase three different initial divisions of the networks
into two communities: 525 networks result in one common
pair of communities, 343 in another distinct pair, and 132
divide a third way. Upon dividing once more and reaching
a three-community division of the bootstrapped networks,
however, more than 750 of the bootstrapped networks
share identical communities. This consolidation effect is
due largely to variability in the order of the early commu-
nity divisions, as the first two divisions visible in Fig. 5
frequently swap their order among the bootstrapped net-
works. The numbers of communities for which there are
very few different community structures, evidenced by a
small number of stacked segments, and/or one dominant
community structure, evidenced by one much larger
segment, are thus indicative of high agreement among
bootstrapped networks at that level of their respective
dendrograms, and vice versa. With this in mind, Fig. 6
shows where there is high and low agreement among the

FIG. 5. Dendrogram showing the community structure of the network in Fig. 4 after implementing the edge betweenness community
detection algorithm.
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bootstrapped dendrograms, and thus we can look for the
level of the community detection algorithm for which the
community structure is most stable under perturbations.
As discussed in Sec. III B, earlier work found agreement
among >60% of bootstrapped networks to be enough to be
confident as to the existence of a robust community [47].
As can be seen in Fig. 6, some variation occurs within the

2–5 community range (often with a single community
structure being represented in >60% of the bootstrapped
networks), but 100% of the bootstrapped networks have
an identical community structure once they are broken
into six communities. Thus, we primarily focus on these
six communities. For more than seven communities,
the stability swiftly devolves, before ultimately agreeing
strongly again once nearly every vertex is separated for all
of the bootstrapped networks (as should be expected: there
is only one way for 20 nodes to be separated into 20
communities). One finding to take from this is that while
there is minor variability in the relative order of the first
four divisions of our network (the four highest splits on the
dendrogram in Fig. 5), we have high confidence that the
division of the network into the six communities seen in
Fig. 7 happens prior to any of the divisions below it on the
dendrogram. This suggests that these initial six commun-
ities are highly stable.

B. Interpreting community structure

Separating our initial network into the first six commun-
ities determined by the edge betweenness algorithm gives
us the network seen in Fig. 7. Two of the communities
consist of Ŝz and fðxÞ individually (labeled SZ and FX in
Fig. 7, respectively), which shows that students did not

FIG. 6. Stacked bar chart showing the relative proportions of different community structures at each level across the bootstrapped
dendrograms. Each individual bar represents a specific community structure that is shared among some portion of the bootstrapped
networks at a given level of the edge betweenness algorithm.

FIG. 7. The network built from student survey responses, as in
Fig. 4, grouped into the six stable communities as determined by
the bootstrapping procedure shown in Fig. 6. FX contains only
the generic function fðxÞ; SZ contains only the spin-Z operator
Ŝz; DV contains Dirac bras, kets, and generic vector expressions v⃗
and ĵ; WF contains the wave function and its conjugate [ψðxÞ and
ψ�ðxÞ], as well as the wave function and conjugate wave function
expressions for eigenstates (φ3ðxÞ and φ�

4ðxÞ); IP contains inner
product expressions, including a generic dot product in both
Dirac and wave function notation; IS contains complex squares of
inner products in both notations.
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think of either of these expressions as especially concep-
tually similar to the other 18 expressions. The Dirac bras,
kets, and generic vector expressions v⃗ and ĵ were found to
form their own community (DV), as were the wave function
expressions (WF). The expressions for inner products,
including a generic dot product u⃗ · v⃗, were also separated
into a community (IP), as were the expressions for the
complex squares of inner products (IS).
IP and IS’s separation suggests a conceptual distinction

between inner products and the squares of inner products
(in QM, this is often a distinction between probability
amplitudes and probabilities). Similarly, the separation of
communities WF and DV suggests a meaningful distinction
between wave functions and Dirac bras and kets and
generic vector expressions.
A closer look at the earlier divisions of the network seen

in the dendrogram in Fig. 5 reveals two larger-grain-size
communities: that of IPþ IS and that of WFþ DV. A
simplified version of this dendrogram is shown in Fig. 8,
where the divisions beyond the six-community 100% con-
fidence limit determined by the bootstrapping procedure
are eliminated. The combination of this larger-scale
(IPþ IS and WFþ DV) community structure and our
survey design leads us to the conclusion that the expres-
sions in WF and DV are viewed as conceptually more
similar to each other than to the remaining expressions; the
same is true for the expressions in IP and IS. While the
edges connecting these subcommunities together represent
conceptual connections for our students, the connections
within each subcommunity are stronger than those con-
necting the subcommunities to each other. In other words,
the expressions within the WF subcommunity are more
tightly knit to themselves than to the expressions within
the DV subcommunity, but those two subcommunities are
still connected more closely (into a larger WFþ DV

community) than they are to the other expressions in the
survey. A similar statement can be made about the IP, IS,
and IPþ IS communities.
For the larger WFþ DV community, we can also look at

the conceptual makeup of these connections to obtain a
deeper understanding of which specific concepts connect
these expressions. To this end, we separate the expressions
within this larger group into three different groups, by
notational style: one for Dirac bras and kets (jψi, hψ j, jE2i,
and hE1j), one for the generic individual vector expressions
(v⃗ and ĵ), and one for the wave function expressions [ψðxÞ,
ψ�ðxÞ, φ3ðxÞ, and φ�

4ðxÞ]. We then look at the concepts that
connect these different types of expressions together
according to the students. These expressions are ultimately
connected because participants selected them as represent-
ing the same concepts, and thus we can examine pairs of
expressions along this axis by looking at which concepts
students connected them with. To this end, as we did with
the expressions themselves, we separate the concepts used
by students to connect these types of expressions into three
camps: vectors (“vector,” “eigenvector,” “unit vector,” and
“basis vector”), quantum states (“quantum state” and
“eigenstate”), and wave functions (just “wave function”).
We then break down the proportions of each type of
concept that connected the various types of expressions,
both within a given expression type or between different
expression types. We focus on a subset of these conceptual
connections between expression types, shown in Fig. 9.
These specific pairs were selected for their illustrative
nature; WF-vector and vector-vector were excluded
because these connections were either very uncommon
or uninteresting, respectively.
By examining these conceptual breakdowns, we can

see that the concepts for which students used both a Dirac
bra or ket (jψi, hψ j, jE2i, or hE1j) and a generic vector

FIG. 8. Simplified dendrogram showing the stable communities from the bootstrapping procedure, color coded and labeled to
match Fig. 7.
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expression (v⃗ or ĵ) (i.e., concepts represented by the
connections between those two subsets of nodes) are
almost entirely vector concepts. This is noticeably distinct
from the distribution of concepts that consistently linked
the Dirac bras and kets to the wave function expressions
on the survey (ψðxÞ, ψ�ðxÞ, φ3ðxÞ, and φ�

4ðxÞ), more than
half of which were those related to quantum states. Taken in
combination with the stable and distinct WF and DV com-
munities as seen in Figs. 7 and 8 (i.e., that these vector-
Dirac connections were stronger than the Dirac-wave

function connections), this suggests that the vectorlike
identity of the Dirac bras and kets was stronger for these
students than either their quantum state- or wave function-
like conceptualizations. Also, the edges connecting the
Dirac bras and kets to each other are split between vector
and quantum state concepts, while the connections between
wave function expressions are split between wave func-
tion and quantum state concepts. This would seem to
suggest that while Dirac bras and kets share a strong
identity as representing vectorlike concepts and wave

FIG. 9. Histogram comparing the types of concepts used to link Dirac bras and kets with generic vector expressions and wave function
expressions, as well as the types of concepts that connect Dirac bra and ket expressions to each other and wave function expressions to
each other.

FIG. 10. Network showing spins-first students’ connections between different expressions when prompted to select expressions
representative of “quantum state.” Edges are sized proportional to and colored according to their weight (i.e., the number of students who
selected the pair of expressions for this concept). Nodes are similarly sized proportional to and colored according to their vertex degree
(i.e., the sum of the weights of all edges that connect to them).
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function expressions share a strong identity as representing
wave function concepts, both appear to be recognized as
representing quantum state concepts. This can be seen more
explicitly by looking at a network composed of the
expressions students used simultaneously to represent
the quantum state concept, shown in Fig. 10. This network
displays strong connectivity between bras, kets, functions,
and conjugate functions, providing evidence that all of
these expressions are treated by these students as repre-
senting quantum states, despite the more siloed interpre-
tation of bras and kets representing vectors (and not so
much wave functions) and of wave functions representing
wave functions (and not so much vectors).
These findings are to be expected from the curricular

focus of the courses in which these students were enrolled.
Spins-first quantum mechanics courses begin by introduc-
ing Dirac notation in two-dimensional spin-1=2 bases and
lean heavily on familiar vector interpretations to help
students understand the mathematical operations at play.
Probability amplitude inner products at the beginning of the
course are very much treated as geometric dot product
projections, with state vectors having components along the
different eigenstates’ “directions.” This analysis suggests
that these curricular goals have been successful in getting
these students to think about Dirac bras and kets as
simultaneously representative of both vectors and quantum
states. That u⃗ · v⃗ is included within the IP community
likewise suggests that these students see this connection
between inner products (both as Dirac brackets and wave
function integrals) as sharing conceptual backing with dot
products—another common instructional goal within these
courses.

VI. CONCLUSIONS AND FUTURE WORK

Prior studies have shown that each notation used in QM
has certain aspects that make it more suited for certain tasks
[14,15] and that the ability to effectively and efficiently
translate between notations is a crucial skill for students to
develop [13]. In fact, incorrectly translating between
notations has been shown to hinder students’ ability to
develop models for calculating probabilities [30]. In our
study, network analysis techniques were used to investigate
the strengths of students’ conceptual connections between
common expressions in upper-division quantum mechan-
ics. We found that Dirac bras and kets and their associated
wave functions both have distinct shared conceptual
identities as vectors and wave functions, respectively, but
they also both represent quantum state concepts to the
participants in our study. It is possible that this shared
quantum state identity aids students by serving as a
touchstone when translating from one notation to the other
or that this could serve as a starting point for curriculum or
pedagogy aimed at improving this skill.
We also found from our community detection analysis

that Dirac bras and kets were considered more conceptually

similar to generic vector expressions than they were to their
equivalent wave function representations. This is clear from
their separation into the DV and WF communities. An
implication of this result is that Dirac bras and kets bear a
strong association with vectorlike concepts—even more
than with conceptualizations they share with wave func-
tions, such as both being representations for quantum
states. The strength of this association with vectorlike
concepts is perhaps to be expected due to the curricular
structure of these courses, as all of these spins-first courses
begin by first drawing attention to the discrete vectorlike
nature of bras and kets before eventually connecting them
to continuous wave function interpretations. While a lack
of resolution prevents us from looking closer at the
connections between the expressions within the inner
product community (IP in Fig. 7), the result that the generic
dot product remains a part of that community suggests a
seemingly dot productlike understanding of even the wave
function inner product integrals. This is an encouraging
finding, as the conceptual connections between discrete and
continuous inner products are important to develop and can
often prove elusive.
More broadly, we have shown that with the novel use of

online survey design and network analysis techniques, an
investigation of student understanding of mathematical
expressions in quantum mechanics and their interrelated
conceptual interpretations is feasible for a large number
of students at multiple institutions. We believe that the
scalability of this methodology can allow for greater
generalizability of findings. We also believe that these
methods could be used to study conceptual interpretations
of other expressions, both in QM and beyond. This study
focused on expressions relating to inner products, but there
are a multitude of expressions within physics that share
multiple conceptual interpretations—these methods could
prove useful in efficiently studying the ways that large
numbers of students relate such expressions to each other
and how strongly they relate them.
Furthermore, while much work has been done with

network analysis and community detection algorithms
within the PER community, there has been relatively little
work done in examining the relative stability and robust-
ness of the communities that have been studied. As
illustrated in Fig. 6, taking small grain-size community
structures at face value can be fraught with potential errors.
As the resolution of any community detection algorithm is
limited, the use of bootstrapping or similar techniques to
help determine the resolution of a given community
structure seems to be a productive approach for making
community-based claims about network structure.
Our next step is to extend this work to include students

enrolled in the more traditional wave functions-first
courses. While many of the broader findings from com-
munity detection for respondents in wave functions-first
courses may be similar to those seen here, we suspect that
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there may be quite different findings when it comes to the
vectorlike interpretations of the more quantum mechanical
expressions due to the relative lack of focus on linear
algebraic interpretations in such courses. Similarly, a
comparison of the expressions chosen to represent indi-
vidual concepts may be of interest, particularly vectorlike
concepts due to the lessened focus on linear algebra-based
reasoning at the beginning of wave functions-first courses.
Another possible extension of this work would be an

in-depth qualitative study of the specific conceptual inter-
pretations students deemed these various expressions to
represent. A natural framework to use for this type of

analysis would be that of Sherin’s symbolic forms [48] or
its recent extension, symbolic blending [49]. Applying either
or both of these frameworks could provide a deeper under-
standing of these expressions’ conceptual interpretations.
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