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Instructor’s feedback plays a critical role in students’ development of conceptual understanding and
reasoning skills. However, grading student written responses and providing personalized feedback can
take a substantial amount of time, especially in large enrollment courses. In this study, we explore using
GPT-3.5 to write feedback on students’ written responses to conceptual questions with prompt engineering
and few-shot learning techniques. In stage I, we used a small portion (n ¼ 20) of the student responses on
one conceptual question to iteratively train GPT to generate feedback. Four of the responses paired with
human-written feedback were included in the prompt as examples for GPT. We tasked GPT to generate
feedback for another 16 responses and refined the prompt through several iterations. In stage II, we gave
four student researchers (one graduate and three undergraduate researchers) the 16 responses as well as two
versions of feedback, one written by the authors and the other by GPT. Students were asked to rate the
correctness and usefulness of each feedback and to indicate which one was generated by GPT. The results
showed that students tended to rate the feedback by human and GPT equally on correctness, but they all
rated the feedback by GPT as more useful. Additionally, the success rates of identifying GPT’s feedback
were low, ranging from 0.1 to 0.6. In stage III, we tasked GPT to generate feedback for the rest of the
students’ responses (n ¼ 65). The feedback messages were rated by four instructors based on the extent of
modification needed if they were to give the feedback to students. All four instructors rated approximately
70% (ranging from 68% to 78%) of the feedback statements needing only minor or no modification.
This study demonstrated the feasibility of using generative artificial intelligence (AI) as an assistant to
generate feedback for student written responses with only a relatively small number of examples in the
prompt. An AI assistant can be one of the solutions to substantially reduce time spent on grading student
written responses.
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I. INTRODUCTION

Developing conceptual understanding is one of the
key learning goals in many introductory physics courses.
There has been extensive research investigating students’
conceptual understanding and reasoning in introductory
physics courses [1]. This body of research is often aligned
with constructivist learning theory, which assumes that
prior knowledge sets the foundation for new knowledge.
Thus, effective teaching often requires eliciting and build-
ing on students’ existing ideas [2].
Conceptual questions on homework assignments in free-

response format provide students with great opportunities

to practice articulating reasoning and justifying conclu-
sions. In addition, the free-response format allows instruc-
tors to gain deep insights into student reasoning so that
instructors can provide useful feedback and refine instruc-
tion when needed.
Instructor feedback plays a critical role in student

learning. According to Ericsson’s framework of “deliberate
practice” [3], frequent feedback from an expert in addition
to repeated and targeted practice is essential in acquiring
expert performance. Moreover, empirical studies have
confirmed that frequent feedback leads to substantial
learning gains [4,5].
Although free-response questions provide opportunities

for deliberate practice, grading, and providing personalized
feedback to students can be extremely time-consuming,
especially in large enrollment courses. Institutions may not
have sufficient resources to hire enough teaching assistants
to grade homework assignments in large enrollment
courses. Even when there is a sufficient number of graders,
the quality of grading and feedback can be inconsistent
among individual graders without proper training.
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In response to these challenges and constraints, instructors
may choose to give students credit based on completion
rather than on correctness of response. However, without
personalized feedback, students may not realize their
mistakes even with the instructor’s solutions provided [6],
let alone how to improve.
One possible way to overcome the challenge of limited

resources and providing feedback on free-response ques-
tions is to offload some of the grading tasks to generative
artificial intelligence (GenAI), in particular large language
models (LLMs). There has been a rapid recent increase in
innovations using GenAI technology in education [7]. In
particular, LLMs have been applied to a wide range of
areas, such as personalized learning, intelligent tutoring,
content creation, and essay grading (for a recent compre-
hensive review, see Ref. [8]).
Earlier efforts using LLMs to grade or provide feedback

to short answers or essays often utilize smaller pre-
trained language models such as Bidirectional Encoder
Representations from Transformers (BERT) [9–12].
However, those earlier models require a significant amount
of fine-tuning for satisfactory performance, a process that
demands a significant amount of technological expertise,
computational resources, and large amounts of existing
labeled text data (i.e., text data that are already classified).
Those requirements prevented the technology from being
widely adopted in teaching. With the rapid development
in capability and enhanced accessibility of LLMs, recent
studies have focused on using more powerful LLMs, such
as Generative Pretrained Transformer 3 (GPT-3). Models
such as GPT are capable of achieving high performance
with only simple prompt engineering (i.e., the process of
developing and refining the prompt for LLMs to get the
desired output [13]).
We are only aware of one study that uses GPT to provide

feedback on physics tasks. Steinert et al. [14] examined
ChatGPT’s capacity to provide formative feedback to
students on a task that asks students to explain the underlying
physics principle of an experiment. The study demonstrated
that ChatGPT can be prompted to provide feedback that
focuses on different theoretical aspects of learning, such as
cognition, metacognition, and motivation. However, this
study included only a single example of student response,
and it did not evaluate the quality of feedback.
In this paper, we report our initial attempt at exploring

the feasibility of using GPT-3.5 as a grading assistant for
providing feedback on students’ written responses to one
physics conceptual question. By combining our existing
knowledge of students’ preconceptions with a simple
prompt-engineering technique, we tested if it would be
possible to turn GPT-3.5 into an adequate grading assistant
with only a few examples of graded student responses. This
approach could potentially save a significant amount of
instructor grading effort and provide useful feedback to
students.

II. PRIOR RESEARCH ON USING LLMS
IN EDUCATION

LLMs such as GPT are being created to process and
generate natural language. They are complex neural net-
works with billions of parameters that are pretrained using
a large corpus of text. A human user interacts with an
LLM by inputting a piece of text, which is frequently
referred to as a “prompt” in AI literature. The LLM
generates text output by predicting the most likely words
to follow the prompt.
Multiple prior studies have tested LLM’s capacity to

answer disciplinary questions. Kortemeyer [15], for exam-
ple, tasked ChatGPT to complete all the course assignments
like a human student would in an introductory physics
course. With all the assignments graded and counted toward
a final course grade, Kortemeyer found that ChatGPT could
barely pass the course. Dahlkemper et al. [16] evaluated
students’ perceptions of linguistic quality and scientific
accuracy of ChatGPT responses to physics comprehension
questions. Students’ ratings of linguistic quality were essen-
tially the same between ChatGPT and human-written sol-
utions, but the ratings of scientific accuracy were much
higher for human-written solutions than for ChatGPT
responses. Moreover, the perceived difference in scientific
accuracy decreased as the difficulty level of the questions
increased.
Other studies have examined the opportunities and

limitations of LLMs to generate disciplinary questions.
Küchemann et al. [17] compared the quality of physics
questions developed by preservice teachers who used
ChatGPT and those who used textbooks. They found that
the correctness and specificity (i.e., all relevant informa-
tion to answer a question is present) of the questions were
about the same between the two groups, but the clarity
was much better in the questions developed by students
who used a textbook. Additionally, pre-service teachers
who used ChatGPT reported that ChatGPT is easy to use,
but they felt neutral about the usefulness and quality of
ChatGPT’s output.

A. Prompt engineering

The quality of the output from an LLM may vary
significantly depending on the quality of the prompt.
Prompt engineering is the process of developing and
refining a prompt in order to get the desired output [13].
For example, Polverini and Gregoricic have shown that
the performance of GPT on conceptual physics tasks can
be significantly improved by using prompt engineering
techniques [18].
As detailed in Polverini and Gregoricic, designing an

effective prompt requires some understanding of how
LLMs work, including their strengths and weaknesses.
Since GPT is sensitive and responsive to context, the
performance can be improved by providing the relevant
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context for response in the prompt. Providing context often
includes specifying the domain (e.g., specific topics or
concepts) and specifying how to act (e.g., act like a physics
teacher or an undergraduate student). However, Polverini
and Gregoricic also cautioned that LLMs’ context sensi-
tivity and responsiveness can also be seen as a weakness.
Shi et al. demonstrated that an LLM can be distracted by
excess details resulting in decreased performance [19].
In addition, it has been widely documented that LLMs

can sometimes generate outputs that are factually incorrect
or contextually implausible (which is termed “hallucina-
tion” in AI research) [20–22]. Hallucination in LLMs can
be effectively reduced by either employing better prompt-
ing engineering techniques or through domain-specific
fine-tuning of the model (see below for definition). Yet
because the output of LLMs is probabilistic, hallucinations
of LLMs cannot be completely prevented, which makes it
critical to establish human-in-the-loop procedures to min-
imize its potential negative impact [8].
Moreover, research in other disciplines also indicates

that prompt engineering is an essential skill for learners.
Woo et al. [23] explored English as a foreign language
(EFL) students’ prompt engineering pathways to writing
using ChatGPT. The results suggest that prompt engineer-
ing is an important emergent skill for EFL students to
improve their writing. Heston and Khun discussed the
necessities challenges and concerns of using prompt
engineering techniques in medical education [24].

B. Few-shot learning or prompting

Few-shot learning [25] is a framework in machine
learning. It allows the pretrained model to learn the
underlying pattern from a few examples so that the model
can generalize to new scenarios. Few-shot learning is often
achieved by including a few examples in the prompt to
demonstrate how LLMs should respond to a similar task.
A notable recent example of using few-shot prompting
in the science education context is by Zong and
Krishnamachari [26], who used few-shot prompting to
train GPT to solve math problems. They found that GPT
was able to solve the problems with high accuracy, and the
accuracy improved with an increased number of examples.

C. Chain-of-thought prompting

When the task requires multiple intermediate steps,
chain-of-thought prompting [27] can be used to improve
the accuracy of the LLMs’ response. A chain-of-thought
prompt instructs an LLM to first generate a chain of
intermediate reasoning steps before it generates the final
answer. Chain-of-thought prompting can be combined with
few-shot prompting to further enhance the LLM’s perfor-
mance. When combined, the examples provided in the
prompt should include a chain of necessary intermediate
reasoning steps, such as intermediate steps toward solving a
math word problem.

D. Fine-tuning

Fine-tuning is the process in which the parameters of
an existing pretrained LLM model are updated based on a
large corpus of domain-specific data, for the purpose
of better performance on tasks within that specific
domain [28]. For example, Latif and Zhai [29] found that
a fine-tuned GPT is effective at automatically scoring
student written responses to science questions. Zong and
Krishnamachari [26] found that on math problem gener-
ation tasks, a fine-tuned GPT model outperformed the
native GPT model plus prompt engineering methods.
However, fine-tuning can be expensive as it requires large
amounts of domain-specific, labeled data.

III. RESEARCH QUESTIONS

In this study, we use few-shot prompting to task GPT to
generate feedback on students’ written responses to one
physics conceptual question. We investigate both student
researchers’ and physics instructors’ perceptions of the
quality of GPT-generated feedback. For students, we are
interested in how they compare AI-generated feedback to
human-written feedback, in terms of both perceived cor-
rectness and perceived usefulness. We are also interested in
whether students can notice if a feedback statement is
generated by AI. For physics instructors, we are inves-
tigating their perceptions of how much modification to the
feedback, if any, is needed before they deem the feedback
ready for students. Answering those questions could
provide insights into the extent to which an AI-based
assistant could potentially save instructors’ time and effort
on grading and writing feedback. Specifically, we address
the following three research questions (RQs):
RQ1: How do student researchers rate the correctness

and usefulness of GPT-generated feedback messages on
student written responses to a physics conceptual question?
RQ2: Can student researchers distinguish between

AI-generated and human-written feedback?
RQ3: How do instructors rate the level of editing

needed to make GPT-generated feedback messages
satisfactory?

IV. METHODS

A. GPT-3.5 turbo complete mode

We used GPT-3.5 turbo in “complete” mode through
Azure OpenAI Studio. The complete mode is different from
the more popular “chat” mode used in applications such as
ChatGPT. In complete mode, GPT functions by treating the
input prompt as an unfinished piece of text or a document
and generates output by predicting the most probable words
and sentences that would follow the prompt text. The
complete mode is well suited for tasks that require a single,
well-structured response following instructions or prior
examples. In contrast, the chat mode is optimized for
multiple rounds of conversation with a human, in which
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GPT treats the prompt as a transcript of a conversation
with a human and tries to predict the response to the
human. In chat mode, GPT is much more likely to
generate text such as “Sure! Here is what you requested.”
Since our purpose is to task GPT to only generate
feedback on individual student written responses rather
than having a conversation with the grader, the complete
mode was chosen for our study.

B. Question selection and feedback design

The student responses to the one conceptual question
were collected from an introductory physics course taught
by the first author with 99 students. The course was taught
in studio mode, in which lecture, recitation or tutorial, and
lab were integrated. During one class meeting, students
were tasked to complete a tutorial that was adapted from the
University of Maryland Open Source Tutorials [30]. The
tutorial targeted Newton’s second and third laws for a
multiobject system. Students received credit for comple-
tion, but their answers were not graded for correctness.
Students submitted their work (either a scan of their hand-
written work or work done in an electronic file) through an
online portal. A total of 85 student responses were collected
from the class. The first author (also the instructor of
record) typed out students’ written responses before they
were provided to GPT.
Figure 1 shows three questions A, B, and C from the

Maryland tutorial, in which question C was chosen for the
current study. The scenario involves a student pushing
two adjacent boxes with a force of 200 N. The first two
questions asked students to consider whether the accel-
erations of the boxes are the same and then calculate the
acceleration of the boxes. Question C asked whether the
contents of box B were in danger of breaking given that
they would break if the box experienced a force greater
than 200 N. The question explicitly asked students not to
do any calculations but to answer intuitively and explain
their reasoning.

In the tutorial, question C was designed to elicit students’
preconceptions about forces, while the remainder of the
tutorial guided students to answer question C using
Newton’s second and third laws without doing calculations.
Specifically, it prompted students to draw a free-body
diagram for each box and then asked students to tentatively
assume that the force exerted by box A on box B equals
200 N and see where the assumption leads. By working
through the tutorial, students were expected to recognize
that this assumption would lead to the incorrect and
inconsistent conclusion of the net force on box A (as well
as its acceleration) being zero, and thus they should reject
this assumption. At the end of the tutorial, students were
asked to refine their intuition about question C.
We chose question C because it elicited students’ ideas

as to whether a force can be “transmitted.” We expect
students’ ideas to be rich in variety and thus the question is
well suited as a test case for a potential GenAI-based
grading assistant that can provide feedback.
The feedback that we intended for GPT to generate

includes a judgment statement on whether the students’
conclusion and reasoning are correct. If either the con-
clusion or reasoning was incorrect or missing, then the
feedback will directly point out what was incorrect and give
a hint toward an alternative direction of thought for the
students to consider, which is the acceleration of the boxes
(see the Appendix).
It is worth pointing out that this type of feedback is not

designed to be given to students who are in the middle
of completing the tutorial. Rather, a more likely use case
would be when a question similar to question C is given
again on following exams or homework, which will serve
as an assessment of whether students have developed
intuitions that are aligned with Newtonian physics after
having completed the tutorial. Therefore, we designed the
feedback to directly hint at Newtonian physics-aligned
reasoning, rather than trying to attend to and build on
students’ existing ideas in their response. Another reason
for this choice is that usually a multiround dialogue

FIG. 1. The first three questions in the tutorial. We used students’ responses to question C (in bold) in our study.
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between the instructor and the student is required to
build on students’ existing ideas (for example, see studies
based on the resource framework [31]). This type of
multiround conversation is significantly more complicated
to develop using GenAI and out of the scope of the current
exploratory study.

C. Study design

The study consisted of three stages. In stage I, four
student responses and human-written feedback pairs were
used as examples to develop a prompt for the GPT model
using few-shot prompting. The prompt was then refined
to generate satisfactory feedback for another 16 student
responses. In stage II, four student raters were asked to rate
both human-written and GPT-generated feedback for the
16 responses. In stage III, the same prompt was used to
generate feedback for the rest of the 65 responses, and four
instructors were asked to rate the 65 feedback messages
based on perceived modifications needed.

1. Stage I: GPT feedback generation
with few-shot prompting

To prepare examples to include in few-shot learning, we
first manually categorized all student responses based on
whether the conclusion (as to whether or not the glassware
in the box is in danger of breaking) is correct, and whether
the explanation is correct, incomplete, incorrect, or not
present. We ended up with four categories: correct con-
clusion with correct explanation, correct conclusion and
incomplete/incorrect explanation, incorrect conclusion,
and no explanation. We did not see any students who
gave correct explanation but arrived at an incorrect con-
clusion. Also, for those who did not give an explanation, we
did not divide them based on whether their conclusion was
correct or not.
In each of the four categories, we selected five responses

that we considered quite dissimilar to one another. The
authors of the paper wrote feedback to those 20 responses
as if we were writing feedback to students in our own
classes. One student response plus feedback from
each category was included in the prompt given to GPT.
We then tasked GPT to generate feedback to the remaining
16 responses.
The prompt we developed includes the following ele-

ments: the context (i.e., an instructor is giving feedback on
student written responses), the physics problem, an expert
response, physics concepts and principles involved, feed-
back instructions (i.e., what the feedback should look like),
and four examples of student response with human-written
feedback.
To use GPT to generate a new feedback message, a new

student response is appended to the end of the prompt,
following the same structure as the four previous human-
written response-feedback examples, one for each category.
GPT then attempts to complete the text by predicting the

most likely text that appears next, which is the feedback.
Unlike ChatGPT which is trained to respond in a chat
format, GPT in complete mode generates the feedback only
(with the setting of a proper “stop sequence,” which are
specific character(s), such as a “new line” character, that
signals GPT to stop generating following text).
The feedback generated by GPT in the first round had

some obvious mistakes that resemble some of the common
preconceptions identified in the PER literature. In an earlier
study, it was also documented that ChatGPT’s outputs
reflect student preconceptions [32]. Therefore, as contex-
tual information, we included in the prompt those common
preconceptions that are well documented in PER literature,
such as “force can be transmitted through objects” and
“force can be divided between objects” [33]. In addition to
addressing preconceptions, we also added numbers to the
physics concepts and principles in this section and specified
what “not to do” in the feedback instructions. The prompt
engineering process went through several iterations to
optimize performance on the remaining 16 selected
responses. The final version of the prompt is shown in
the Appendix.
All 16 GPT-generated feedback messages were deemed

to be correct by both authors [34]. By correct, we mean
there were no apparent or indisputable mistakes, such as a
misjudgment of the correctness of the student’s response
or a statement that resembles a student’s preconception.
This is different from judging the feedback as potentially
helpful to the students.

2. Stage II: Student researcher evaluations

The 16 student responses and the corresponding human-
written and GPT-generated feedback messages were
given to four student raters who were involved in physics
education research (PER). Three of the students were
undergraduates and one was a first-year graduate student.
All three undergraduate students had already completed the
calculus-based physics I course and received high grades in
the course. They were majoring in aerospace engineering,
computer science, and medical laboratory sciences, respec-
tively. One of them was a learning assistant in physics I
during this study. All students were asked to evaluate the
correctness and usefulness of each feedback message. They
were also asked to indicate which one of the two feedback
messages for each response they think was generated by
AI. The survey questions are shown in Fig. 2.
We note that the order of the responses was randomized

rather than organized based on the categories we developed
in stage I. The order of the feedback messages was also
randomized such that GPT-generated feedback messages
were not always listed first or second.

3. Stage III: Instructor evaluations

In stage III, we tasked GPT to generate feedback to the
65 responses that were not used in stage I, based on the
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same prompt as we developed in stage I with no modifi-
cation. The 65 feedback outputs were rated by four
instructors, two of whom were the authors of this paper,
and the other two were non-PER faculty members who had
ample experience teaching this course.
The goal of instructor ratings is to examine the potential

of GPT to reduce the instructors’ grading effort. Therefore,
the scoring criteria are based on the instructor’s perceptions
of how much modification is needed. All four instructors
rated the feedback on a scale of 0–3. A score of 3 means
that the instructor would give the feedback message to a
student without any modifications. This requires that the
feedback is not only correct but also addresses the student’s
specific response. However, the feedback does not neces-
sarily need to address all the incorrect ideas in the response.
A score of 2 means the feedback needs some quick
modifications, such as some minor wording changes or
partial deletion. A score of 1 means the feedback needs
major revisions that often require deliberation and would
take a longer time to write than a feedback message of

score 2. Finally, a score of 0 means the feedback needs to be
rewritten completely. Those scoring conditions were fully
communicated with the instructor raters.

V. RESULTS

A. Student researcher ratings

We report student researchers’ ratings on perceived
scientific correctness and usefulness for both GPT-
generated and human-written feedback on the 16
responses. We also show results for success rates for
identifying the GPT-generated feedback.

1. Perceived correctness

Figure 3 shows the distribution of correctness ratings
of GPT-generated and human-written feedback by all four
student researchers. Recall that all the feedback messages
were considered correct (i.e., no apparent and indisputable
mistakes) by the authors. Student A seemed to slightly
favor feedback generated by GPT. This student rated both
feedback messages as being correct in approximately half
of the cases; for the other half, the student rated more GPT-
generated feedback messages as being correct. In contrast,
student B appeared to favor the feedback written by a
human instructor. There was only one instance in which
student B rated both feedback messages as being correct;
the human-written feedback messages were rated by
student B as correct more frequently. Both students C
and D showed no clear preference. They rated both human-
written and GPT-generated feedback messages as being
correct for three-quarters (or above) of the responses.
Overall, we did not find a clear trend for favoring either
human-written or GPT-generated feedback regarding cor-
rectness. It seemed that both human-written and GPT-
generated feedback messages were equally correct as

FIG. 3. Distribution of correctness for GPT-generated and human-written feedback for all four student researchers.

FIG. 2. Survey questions given to student researchers to rate the
16-student responses with human-written and GPT-generated
feedback.
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perceived by the student researchers. The graduate student
(student B) seemed to favor human-written feedback.

2. Perceived usefulness

Figure 4 shows the distribution of usefulness ratings for
GPT-generated and human-written feedback for all four
student researchers. It appears that all the student research-
ers rated the GPT-generated feedback as more useful.
Student A showed the strongest preference toward GPT-
generated feedback: three-quarters of the GPT-generated
feedback messages were rated more useful than human-
written feedback messages. Even student D, who had the
highest frequency of rating both human-written and GPT-
generated feedback messages as being equally useful,
tended to favor GPT-generated over human-written feed-
back. Interestingly, student B, who rated more human-
written feedback statements as being correct in the previous
task, still rated significantly more GPT-generated feedback
statements as more useful.
To gain insights into characteristics of the GPT-

generated feedback that were perceived as more useful,
we examined the feedback messages that were rated as
more useful by all four student researchers. As shown in
Table I, there were five instances in which the GPT-
generated feedback messages were rated as more useful
by all four student researchers, while only one instance
in which the human-written feedback was unanimously
rated as more useful.
At a quick glance, all five GPT-generated feedback

messages that were perceived as more useful are much
longer than the corresponding human-written feedback
messages. Taking a closer look, GPT-generated feedback
addresses students’ responses to a greater extent. The five
student responses happened to come from either the
category “correct conclusion with correct explanation”

or the category “no explanation.” The feedback statements
generated by GPT always prompted students to take a step
further in their reasoning when the explanation was correct;
it gave a hint even when students did not provide an
explanation.
The GPT-generated feedback message, which was

perceived as less useful, appeared to address the student’s
response to the same extent as the human-written feed-
back. Two of the student researchers rated that only the
human-written feedback message was correct, and the
other two rated both messages as correct. We infer that
the lower rating in the usefulness of the GPT-generated
feedback might have been due to the lower perceived
correctness.

3. Which feedback messages were generated by AI?

Interestingly, although all student researchers tended to
rate the GPT-generated feedback messages as more useful,
the success rates of correctly identifying AI-generated
feedback were much lower than chance, as shown in
Table II. The graduate student researcher had a much
higher success rate (63%) than the three undergraduate
students (ranging from 13% to 31%), but it is unclear to us
why this was the case.
It is worthwhile to point out that the feedback messages

in this study are rather short and follow a rather rigorous
pattern. Therefore, it can be challenging for most people
to distinguish between human-written and AI-generated
feedback. The purpose of this question is to test if the
feedback created by AI seems natural and humanlike
to students at first glance. If students could easily tell
AI-generated feedback from human-written feedback, it
might cause them to perceive the AI-generated feedback
as untrustworthy.

FIG. 4. Distribution of usefulness for GPT-generated and human-written feedback for all four student researchers.
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B. Instructor ratings

The distribution of instructor ratings is shown in Fig. 5.
Since the scoring was based on instructors’ perception of
how much modification the feedback needed, we did not
expect the instructors to reach an agreement on the
individual feedback messages. Overall, the distribution
across all four instructors appeared similar. Although the
instructors were not quite aligned with the number of
feedback messages that could be readily used with no
modifications (score 3), they seemed to be consistent on the
number of feedback messages that required either no

modification (score 3) or only a minor modification
(score 2). The percentages of feedback messages that
required minor or no modification ranged from 68% to
78%. In addition, the average rating across all four
instructors was 2.06 (on a scale of 0–3), which suggests
that on average, the feedback messages only required minor
modifications.
There was one instance in which all four instructors

agreed to use the feedback without any modification.
The student stated, “Yes, because both boxes will experi-
ence the same amount of force.” GPT’s feedback stated,

TABLE I. List of GPT-generated feedback messages perceived as more useful or less useful by all four student researchers. The
corresponding student responses and human-written feedback messages are also provided.

Student response Human-written feedback GPT-generated feedback

GPT-generated
feedback rated
unanimously as
more useful

No, because the force of
box A on box b would
not be 200 because box
b has a smaller mass
and would not take
200 N to move.

Both your conclusion and
explanation are correct.

Your conclusion is correct and your explanation
is on the right track. However, you may want
to explain why smaller mass means smaller
force. Think about an equation that relates
force, mass and acceleration.

Yes, I think the glassware
is in danger of
breaking.

Your conclusion is incorrect.
Please give an explanation
so that we can provide some
feedback on your reasoning.

Your conclusion is incorrect. You should think
about why the force on box B may not be
equal to the applied force of 200 N by the
student on box A. Hint: Think about the mass
and acceleration of the boxes.

Box B will be safe
because it has a lower
mass and requires less
force to accelerate at
the same rate as box A.

Both your conclusion and
explanation are correct.

Your conclusion and explanation are both
correct. To further strengthen your answer,
think about the relationship between the
force, mass, and acceleration in this scenario.

Yes Your conclusion is incorrect.
Please give an explanation
so that we can provide some
feedback on your reasoning.

Your conclusion is incorrect. Even though the
student pushes on box A with 200 N, it does
not mean that the box B receives a 200 N
force. Think about the mass and acceleration
of the two boxes and explain why the force on
box B must be smaller than the 200 N applied
force.

Yes, the glassware could
become in danger of
breaking.

Your conclusion is incorrect.
Please give an explanation so
that we can provide some
feedback on your reasoning.

Your conclusion is incorrect. The force on box
B is not necessarily equal to the force that the
student applies to box A. Think about the
mass and acceleration of these two boxes and
consider what the force on box B must be to
maintain the same acceleration.

Human-written
feedback rated
unanimously as
more useful

Yes, the force would be
transmitted because
they are moving
together at 200 N.

Your conclusion is incorrect.
The boxes moving together only
means they have the same
acceleration, not necessarily the
same force. The 200 N force is
only applied to box A, not box
B. Will the force on box B be
greater than or smaller than
200 N given its mass and
acceleration?

Your conclusion is incorrect. It is true that the
two boxes are moving together with the same
acceleration, but the force on box B does not
necessarily need to be 200 N. Consider how
the masses of the two boxes impact the force
acting on them.
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“Your conclusion is incorrect. Both boxes may experience
the same acceleration, but they need to have different forces
depending on the mass. Think about this in terms of net
force and the mass of box B relative to box A.” GPT
correctly pointed out that the acceleration was the same, but
the net forces are different because the masses of the boxes
are different.
The lowest-rated GPT feedback statements received

three “0”s and a “2,” which occurred in two instances.
For example, a student stated, “That force will have been
transferred and the glassware will break.” GPT’s feedback
stated, “Your conclusion is incorrect, but it seems like you
have a good understanding of the concepts. Think more
about why the force can’t possibly be transferred to box B.”
One possible explanation might be that GPT “interpreted”
the students’ expression of “force will have been trans-
ferred” as indicating that the force will actually not be
transferred to box B.

VI. DISCUSSION

In this study, we tested the feasibility of using GPT to
assist in grading and generating personalized feedback on
students’ written responses to one conceptual question.
Taking advantage of existing rich PER literature on student
preconceptions of Newtonian mechanics, we included

relevant common preconceptions in the prompt to improve
the accuracy of feedback. We also categorized student
responses and provided GPT one example response-
feedback pair from each category to initiate the few-shot
learning process.
The results showed that three out of four student

researchers perceived GPT-generated and human-written
feedback messages to be equally correct. At the same time,
all the student researchers rated GPT-generated feedback
messages as more useful. This was probably because GPT-
generated feedback messages are generally longer and
address students’ responses to a greater extent, especially
when students gave a correct conclusion with a correct
explanation or when they did not provide an explanation.
In contrast, the authors gave identical feedback to students
whose responses were classified in either of those catego-
ries. Our justification for the short feedback is that it saves
time and the saved time can be used to write more detailed
feedback to students who the instructor judged as needing
more instructor input, such as those who gave incorrect
conclusions or explanations. However, this practice could
potentially leave students who gave the correct answer with
the feeling of being neglected, which is where GPT can be
extremely helpful as it treats every response with equal
patience and effort.
Moreover, the percentages of correctly identified GPT-

generated feedback messages were overall low among
the student researchers, which suggests that the student
researchers often perceive GPT-generated feedback as
humanlike and perceived brief human feedback as being
created by a machine. A possible explanation might be that
students expect the human expert to be more helpful and a
machine to be more repetitive. It is worth noting that
the purpose here is not to evaluate student researchers’
ability to distinguish between AI and humans, as student

TABLE II. Distribution of GPT-generated feedback statements
being indicated correctly and incorrectly.

Correct Incorrect %Correct

Student A (UG) 5 11 31
Student B (G) 10 6 63
Student C (UG) 2 14 13
Student D (UG) 3 13 19

FIG. 5. Distribution of ratings on a scale of 0–3 for all four instructors. The number of GPT-generated feedback messages is 65.
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researchers based their judgments on just a few lines of
feedback text in each case. The outcomes might be different
if the feedback messages were more extensive or a multi-
turn conversation was involved. For example, Jones and
Bergen [35] showed that in a multiturn conversation
situation, GPT-3.5 is only misclassified as a human in
14% of the cases. However, the results do suggest that
students are unlikely to quickly judge the AI-generated
feedback as “artificial” or “machine generated” at the first
glance. In addition, our results also speak to one strength of
GenAI, which is that it has infinite patience and will always
respond to student answers with enough detail. In contrast,
human graders’ performance can be easily impacted by
fatigue and emotion, which can result in short and repetitive
feedback that may be perceived as more “machine like.”
The four instructors only considered a major modi-

fication or rewriting of GPT-generated feedback mes-
sages about 30% of the time, indicating a relatively high
extent of satisfaction with GPT’s performance in the
current setting. However, it should be cautioned that the
number of student answers is relatively small, so it
remains to be seen whether the 70% satisfactory rate can
be generalized to more diverse student answers and to
situations where more sophisticated feedback is
required. There are some studies that show that the
performance of LLMs might be artificially boosted by
the models relying on certain common keywords that
exist in the specific dataset or expected in the output
(also known as short-cut learning [36]).
In summary, our results suggest that LLMs such as

GPT-3.5 have a promising potential for serving as a grading
assistant using only prompt engineering and few-shot
learning, and without the need for additional fine-tuning.
Even though the feedback is only satisfactory in 70% of the
cases, it could still save a significant amount of time and
effort required from the instructors. This allows instructors
to assign open-response problems to students more often.
From students’ perspectives, GPT-generated feedback
statements are perceived as more useful and sometimes
even more “humanlike” than the ones that were actually
written by humans. Moreover, GPT-generated feedback has
the unique advantage of being highly consistent in the level
of detail regardless of the amount of grading workload,
which could provide a more equitable learning experience
to all students.

VII. LIMITATIONS AND FUTURE WORK

As an explorative initial study, there are many limitations
and caveats that are worth discussing. We also propose
ideas for future work on how to efficiently use LLMs in
generating personalized feedback.
First, one of the authors manually categorized all

the student answers and provided GPT with one answer-
feedback pair from each category as an example. The
manual categorization process can be very time consuming

and impractical if LLMs are to be used as an actual grading
assistant. Future studies could explore two possible alter-
nate solutions. First, the LLM could randomly select a
small number (for example, 10–20) of student answers
and ask a human to write feedback on those as examples.
Alternatively, one could task the LLM to perform clustering
analysis on student responses using text embedding and
machine learning (for example, see Ref. [37]). The LLM
could then select 1–2 representative student answers from
each cluster and require a human to write feedback on those
as examples.
Second, the current study only involves one conceptual

question. Future studies could evaluate the performance
of GPT-based grading assistance on a wider variety of
problems. Moreover, a valuable future direction is to
investigate whether GPT can generate quality feedback
for a class of similar problems involving the same physics
principle, given a single, context-independent general
prompt. Future studies could also explore the possibility
of using LLMs as chatbots and engaging students in
multiround conversations that build on students’ existing
knowledge, based on theoretical frameworks such as the
resource model [31].
Third, the feedback was only evaluated by four student

researchers. Moreover, all of them were involved in PER
projects, and two of them were working on projects that
involved LLMs, which could have an influence on their
judgments. In future studies, we plan to survey students who
are enrolled in introductory physics courses about their
perceptions of the AI-generated feedback they receive. We
also plan to survey more graduate teaching assistants who do
not have prior knowledge of GenAI and evaluate their
perceptions of the quality of the AI-generated feedback.
Fourth, we tasked instructors to rate the feedback based

on their perceptions of the amount of editing needed
before they would deem the feedback ready for students.
We did not provide more contextual information regarding
the use of the problem and feedback, such as whether
the problem was used as part of a homework assignment,
an exam, or an in-class activity. Nor did we ask the
instructors to rate the quality of the feedback. A content-
specific rubric will need to be developed for instructors to
rate the quality of the feedback.
Furthermore, the number of student responses in this

study was still relatively small, which enabled the study to
be conducted using GPT-3.5 turbo (a large 20B parameter
model), at a minimum cost to the researcher. For future
applications with a much larger student body and many
more problems, the usage cost could be significant.
Therefore, it is worth investigating whether smaller models
pretrained on materials from a specific discipline or a
specific course could reach a similar level of performance.
Finally, using GenAI to assist in grading has some

potential caveats. For example, AI-generated feedback
could be potentially biased [38,39] because LLMs like
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GPT are pretrained using a large amount of data from
different sources including the Internet and social media.
The outputs can be influenced by existing biases contained
in the training data. LLMs could also generate an incoher-
ent chain of arguments or even factually incorrect infor-
mation. Currently, we recommend instructors who intend to
use GPT as a grading assistant to check all the feedback
messages and make edits if needed before sending the
feedback to students. Future research should explore using
AI or machine learning methods to automatically suggest
the feedback messages that are most likely to be incorrect
for instructors to review. Finally, another issue worth
considering regarding the use of AI as an assistant in
grading is its environmental impact, as training and running
AI systems often require substantial computing power and
thus significant electricity consumption [40].

VIII. CONCLUSION AND IMPLICATIONS

In conclusion, we believe that GenAI holds a significant
potential to serve as a grading assistant for open-response
questions. One possible model of using GPT as a grading
assistant could be as follows: First, the instructor is asked
to write feedback on several student responses chosen
by the assistant and given the opportunity to input
common student preconceptions from either research
literature or experience. Second, the assistant grades and
writes feedback on all student responses, using a prompt
that incorporates the instructor’s example feedback and
preconception input. Third, all response-feedback pairs
are presented to the instructor, and the instructor edits
the feedback messages. Finally, the corrected feedback
messages will be presented to students and students will
have an opportunity to request the instructor to review the
GPT-generated grading outcomes and feedback. Such a
process could significantly reduce the grading load for
instructors and increase the quality and consistency of the
feedback, potentially leading to improved student concep-
tual understanding.
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APPENDIX

Final version of GPT prompt
# Context
A physics instructor is rating students’ answers to the

following physics problem:
## Physics Problem:

A student pushes two boxes, one in front of the other, as
shown in the diagram. Box A has mass 75 kg, while box B
has mass 25 kg. Fortunately for the student, the boxes are
mounted on tiny rollers and slide with negligible friction.
The student exerts a 200 N horizontal force on box A.
Box B contains kitchen stuff, including some poorly

packed glassware that might break if the force pushing on
the side of the box approaches 200 newtons. Recall that the
student pushes on box A with a force of 200 newtons. Is
that force “transmitted” to box B? In other words, is the
glassware in the box in danger of breaking? Don’t do any
calculations; answer intuitively, and explain your thinking.
# The instructor rates students’ answer and gives feed-

back based on how similar it is to this expert answer:
## Expert Response:
No, the 200 N force is not ‘transmitted” to box B. For

box A, there is a 200 N applied force to the right and a force
by box B to the left, thus the net force on box A is less than
200 N. Box A and box B have the same acceleration,
but box B has a smaller mass. To maintain the same
acceleration, net force on box B needs to be smaller than
net force on box A. Therefore, the force on box B must be
smaller than 200 N.
## Physics principles involved:
1. The net force on an object is equal to the mass times

its acceleration.
2. “Force”, “energy”, and “power” are different concepts.
3. Force is never transmitted from one object to another.
4. Force is never divided among objects.
5. Force is never distributed among objects.
6. Force is never absorbed by an object.
7. Force cannot pass through an object.
8. Two forces acting on different bodies do not

“cancel out”.
9. Box B has smaller mass, so to maintain the same

acceleration, force on box B needs to be smaller,
which means that it must be smaller than 200 N.

# The feedback should start with whether the answer is
correct or incorrect, followed by a justification, and then a
follow up question for further thinking. The feedback should
not give away the expert answer. Those physics principles
should not all be repeated in the feedback to students.
# Here are several examples of student answer and

instructor feedback:

Answer: No because in order to maintain the same
acceleration, the force on box B must be
lower than 200 N.

Feedback: Both your conclusion and explanation are
correct.

Answer: No, the 200 N push force does not transfer to
box B. The push force is only being applied to
box A and you cannot assume that the force is
transferred. The force acting on box B would
be the force of A on B, not from the push force.
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Feedback: Your conclusion is correct, but your explan-
ation needs some improvements. You are
correct that the force does not transfer to box
B, but you will need to explain why force of A
on B must be smaller than 200 N. Hint: Think
about the mass and acceleration.

Answer: Yes, it will break because the forces are equal
and opposite force on each object.

Feedback: Your conclusion is incorrect. Yes, the force by
Box B on Box A is equal and opposite to the
force by Box A on Box B. However, it does not
necessarily mean that those forces are equal to

200 N applied force by the student on Box A.
You may want to consider whether the force on
box B is greater than or smaller than 200 N
based on its mass and acceleration.

Answer: No, it is not in danger there isn’t a 200 N force
on the box.

Feedback: Your conclusion is correct, but you need to
provide an explanation for why the force on
box B is not 200 N.

Answer: [new student response goes in here.]
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