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Computational thinking in physics has many different forms, definitions, and implementations
depending on the level of physics or the institution it is presented in. To better integrate computational
thinking in introductory physics, we need to understand what physicists find important about computa-
tional thinking in introductory physics. We present a qualitative analysis of 26 interviews asking academic
(Na = 18) and industrial (Ni = 8) physicists about the teaching and learning of computational thinking in
introductory physics courses. These interviews are part of a long-term project toward developing an
assessment protocol for computational thinking in introductory physics. We find that academic and
industrial physicists value students’ ability to read code and that PYTHON (or VPYTHON) and spreadsheets
were the preferred computational language or environment used. Additionally, the interviewees mentioned
that identifying the core physics concepts within a program, explaining code to others, and good program
hygiene (i.e., commenting and using meaningful variable names) are important skills for introductory
students to acquire. We also find that while a handful of interviewees note that the experience and skills
gained from computation are quite useful for student’s future careers, they also describe multiple limiting
factors of teaching computation in introductory physics, such as curricular overhaul, not having “space” for
computation’, and student rejection. The interviews show that while adding computational thinking to
physics students’ repertoire is important, the importance really comes from using computational thinking to
learn and understand physics better. This informs us that the assessment we develop should only include the

basics of computational thinking needed to assess introductory physics knowledge.

DOI: 10.1103/PhysRevPhysEducRes.20.010128

I. INTRODUCTION

Computational thinking (CT) has been a growing area of
interest due to its applicability across many disciplines
[1,2], and the Next Generation Science Standards (NGSS)
placed CT as a key practice of science and engineering in
2013 [3]. Within physics in particular, there is a synergy
between learning discipline-specific content and develop-
ing CT skills: physics bolsters CT skills and practices by
providing a context rooted in mathematics while CT
practice bolsters physics learning by streamlining the
process and expanding the physics that is accessible
[4-9]. Because of this synergy, incorporating CT into
the physics degree is a logical outcome. However, curricula
in introductory physics often limit their content to problems
that can be solved analytically. To better serve physics
education, therefore, we need to examine how we can
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update and modernize these curricula to meet the chal-
lenges of incorporating CT and maintaining the relevance
of physics in the preparation of all students [10,11].
Multiple researchers and curriculum designers have
attempted such reforms by implementing and evaluating
CT in physics and other science, technology, engineering,
and mathematics (STEM) curricula. Projects and Practices
in Physics (P?), for example, is a curriculum at Michigan
State University (MSU) in which students solve highly
contextualized problems computationally within small
groups. Researchers have examined group interactions in
this context [12,13], finding that the ways the group
interacts with finding bugs in a program are either more
strategic by checking line by line or less strategic by
playing (a form of guess and check) with the program until
the bug was found. In a phenomenographical study of (P?),
Hawkins et al. found that in their theme of “computation
helps to learn physics,” a majority of the students inter-
viewed mentioned variations that pointed toward students
having some positive computational experience in the class
[14]. Hawkins results are promising as computation in
conjunction with physics can often be viewed negatively by
students [15]. Finding implementations that can reduce
computational fear for students is important for further
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adoption. The Partnership for Integration of Computation
into Undergraduate Physics (PICUP) is a separate organi-
zation that focuses on providing resources for instructors
wishing to add computation into their undergraduate physics
curricula [16]. Additionally, the American Association of
Physics Teachers Undergraduate Curriculum Task Force has
released a set of recommendations for computational physics
in the undergraduate physics curriculum. Among others,
these recommendations include that physics departments
should be integrating computation into the curriculum.
However, the authors also identified the lack of research
on the assessment of CT skills as a problem [10].

Thus, the integration of computation into the introduc-
tory physics curriculum requires the development of assess-
ment protocols for CT that can be used across a variety of
classes, but this tool does not yet exist. Our research is
working toward the development of such an assessment.
Developing assessments is an iterative and cyclical process
in which one identifies the criteria to be assessed, gives and
evaluates the assessment, and reflects upon the validity of
the assessment [17,18]. In this paper, we address the first of
these three stages by identifying the learning objectives of a
computational introductory physics course. To do so, we
conducted interviews with 26 academic and industrial
physicists to identify broad learning goals in a computa-
tionally integrated introductory physics class, which will
guide our assessment development in the future. We
specifically aim to answer the following research question:

e What are the learning goals for a computationally

integrated introductory physics class?

A. What is computational thinking?

CT is a complicated concept regardless of your experi-
ence level with it. Thinking and consequently CT is
esoteric. A definition that varies based on interpretation
can be confusing when it comes to scientific research. One
such way to address this issue in definition perspective is to
provide and explain our own definition which has parts
from other definitions provided by Wing and Weintrop:

In general, CT is a specialized form of thinking involving
problem decomposition, pattern identification or recogni-
tion, abstraction of complicated systems along with proper
justification, and algorithms brought to bear in order to solve
problems that necessitate numeric modeling and problem
solving (often involving the use of computers to aid the
solving of these problems) [1,19]. Computational literacy is
the state of having competent knowledge and use of
computational programming environments. Computational
literacy is not needed to perform computational thinking in
physics; yet, to manipulate physics programs, some compu-
tational literacy is required. Computational thinking in
physics is thinking in such a way that computations describ-
ing physical phenomena are streamlined, efficient [20], and
well documented, and this is typically executed via pro-
gramming environment.

B. CT in introductory physics

CT is an emerging fundamental skill. Only in the past
70 years has it become a specific focus in education [21]. In
particular, Wing in 2006 popularized the idea of CT and has
in part fueled the integration of CT in many disciplines
[1,22]. Providing physics students the opportunity to learn
CT skills will not only help them obtain jobs in their future
but also help develop and promote more ideas that may
have been left behind otherwise.

In PER, computational thinking research is sparse
compared to other areas. A paper in 2020 by Odden
demonstrates this. In his paper, he thematically coded
18 years (2001-2018) of physics education research
conference proceedings using natural language processing.
Of the ten themes found, none of them involved CT or CT
education [23]. There is decent literature involving general
computational thinking research, but it drops off as we get
more specific to STEM and physics. This sparseness presents
an excellent opportunity for researchers to explore the
various facets of physics computational thinking education.

A report from the AIP Statistical Research Center
investigated the initial employment of physics bachelors
and Ph.Ds in 2019 and 2020. According to the report, 46%
of new physics bachelors are employed and 59% of these
are employed in the private sector. Of those 59%, 35%
work in an engineering field and 24% in a computer science
field. Over 50% of these engineers and computer scientists
indicated that they use programming on a daily basis [24].
Computational practices are expected for some of our
physics graduates, and so we should be equipping them
with skills they might need along the path to their degree.

Introductory physics is in many ways an ideal space to
begin learning computational methods while learning
physics. In introductory physics classes, standard textbook
problems are a primary means of assessment of students
[25]. These problems are typically limited to those that can
be solved analytically. Students are given idealized prob-
lems that often have internal assumptions made for them.
While the reason for introducing problems in this way is to
help better understand physics with basic examples, it has
been inadvertently stifling physics education [26]. Students
have the means and the access to cheat the current educa-
tional system. For example, students can use Chegg to
answer book problems immediately. This has the potential
to perpetuate inequality in the classroom, as a student could
essentially purchase a good grade. Chegg does not have
computational method solutions as of yet, although
ChatGPT’s introduction and recent popularity may even
complicate computational assignments. A recent study by
Kortemeyer found that in having ChatGPT take an intro-
ductory physics course, ChatGPT outperformed the other
real students on the programming assignments [27].
ChatGPT is a language model, so it definitely has its
limitations when doing physics, but this highlights what
can come in terms of artificial intelligence. More work will
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need to be done to learn how we can leverage services like
ChatGPT to supplement student learning.

Computational methods might force students to make
their own assumptions explicit and foster creativity. Odden
and Caballero produced a paper on a pilot study on
computational essays. One of their results was that students
reported that the computational essays helped facilitate
creative investigation [28]. Computational methods allow
exploration of different physics principles and can address
this early on in their physics career so that they may
continue to build creativity and truth of messiness in
physics throughout their education.

Explicit integration of computational methods and think-
ing in introductory physics courses can present challenges.
For example, it may be that on top of current math
prerequisites or corequisites, these courses might need
computational prerequisites or corequisites. This is likely
an institutional level decision and cannot be determined
solely by the physics community. That being said, we do
argue that CT should be explicitly added to the introductory
physics courses for physics majors. Classes for physics
majors typically have a smaller number of students. This
means that instructors have more opportunities to provide
individual support to them all, and learning these CT ideas
potentially prepares students for their future careers [24].

II. LITERATURE REVIEW
A. Computational thinking in STEM

There is an ongoing effort to integrate CT into many
aspects of STEM curricula and degree programs. Samar
Swaid examined the many aspects of CT and how they
might be integrated into different STEM courses. Swaid
took careful note of what affordances CT could bring to
each individual STEM discipline. For example, calculus I
and II afforded a great environment for abstraction, data,
and retrieving, but not so much for algorithms, design, and
evaluation. Alternatively, biology I and II afforded all of
those aspects besides abstraction and design [29]. While the
integration of CT into STEM is generally agreed upon as
the correct course of action, it is important to note that CT is
going to look different for each discipline. This paper
serves as a way to further define what CT looks like in the
physics context.

A paper by Harangus and Kétai presented a question to
be solved using algorithms for secondary and higher
education students and found a relation between reading
comprehension and problem-solving skill. They noted that
many of the students did not even attempt the problem if
they viewed it as too difficult [30]. This work is important
because it points out the motivation of students when
tackling CT-intensive problems. Physics, programming,
and STEM overall are commonly associated with being
high intelligence fields. This conception can be especially
detrimental toward the attitudes of students taking STEM

courses. In order to help retain students in STEM, the
misconception of it being only for the intelligent students
needs to be addressed. It is very important for STEM fields
integrating CT to consider the attitudes of their students.
CT problems should be introduced in such a way that eases
students in. There should be a clear scaffolding of these CT
concepts and practices so that students do not feel that the
problems they encounter are too hard to even attempt.

In a literature review of CT in STEM, Wang et al. found
that few studies examined equity associated with these
courses [31]. Most of the studies that addressed equity, did
so focusing on various student groups like gender, socio-
economic status, and geographic location. There was one
paper that focused on instructional strategies to increase
equity. Wang also found that while studies assessed student
outcomes with CT integrated into the course, there were
limited studies of assessments of the integrated CT course
itself. In this paper, we do not directly address the equity of
CT in introductory physics. We recognized that CT can be
intimidating to students at first but did not investigate how
it may differ for different student populations. Our focus of
this paper is on the learning goals of a CT-integrated
introductory physics class. We chose not to focus on equity
because we did not want to do too many things at once and
divide our attention. Equity in CT in physics is important
and needs to be researched carefully and wholeheartedly.

Malyn-Smith and Lee developed the “learning occupa-
tion” of a CT-enabled STEM worker and then identified
and validated it with expert CT workers the computational
thinking skills or competencies that are used by scientists
and engineers in STEM careers [32]. In their work, they
found eight job functions that a computational thinking
enabled STEM professional would use. They were iden-
tifies problem, specifies constraints, designs the model or
system, builds the model, develops experimental design,
verifies the model, optimizes the model and user-interface,
and facilitates knowledge or discovery. They provided
examples of CT in action for students. They also showed
educational programs that foster CT development bases on
specific tasks within the job functions. Some programs
covered more tasks but were also at a higher educational
level. This work helps to further identify what we as
educators are looking for in CT skills and how exactly we
can foster or assess this development.

Lyon and Magana examined model-building activities
for engineers to elicit CT [33]. Besides decomposition,
algorithms, and abstraction, they also added evaluation and
generalization to their CT practices. They found in their
study that there were more outcomes in the evaluation
practice than in the others. The outcomes included time
efficiency, code flexibility, code accuracy, design criteria,
code complexity, debugging, and solution usability. They
suggested that model building activities can help students
build their CT skills and that some skills are more focused
than others.
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Weintrop et al. in 2016 defined computational thinking
for mathematics and science classrooms. They said that
with more traction of making CT a core scientific practice, a
concrete definition of CT is needed along with a theoretical
grounding for the form it should take in classrooms. They
provided a definition of CT with four main categories: data
practices, modeling and simulation practices, computa-
tional problem-solving practices, and systems thinking
practices. There are 5—7 subcategories within each. They
did this by reading CT literature, interviewing mathema-
ticians and scientists (mostly physicists and physics instruc-
tors), and reading good CT instruction materials. They
emphasized that the definition is CT in the science and
math context. They created three lessons (physics, biology,
chemistry) to implement their taxonomy and stated that
implementing it in high school reaches a wider audience
[19]. Weintrop defined the computational thinking practi-
ces of a science course and provided examples of how they
implement these practices in a physics class. In designing
our assessment, we will use this framework to connect
physics learning goals to a specific CT practice.

There are a few other works where computational thinking
and physics were examined with Weintrop’s Taxonomy in
mind. The Bootstrap for physics initiative for high school
physics teachers is another area where Weintrop’s framework
is used [34]. This was proposed as a way to provide
professional development for high school teachers so that
they could teach computational practices to their students.
They used modeling instruction pedagogy as it implicitly
emphasizes many computational thinking skills. Vieyraet al.,
in an interview analysis of 12 physics teachers and their
views on computational modeling, incorporated Weintrop’s
framework [35]. They had their participants discuss as a
group about the taxonomy that Weintrop presented. They
used this in conjunction with bootstrap as a way to address a
lack of consensus on the definition of CT. Orban and Teeling-
Smith examined CT in introductory physics from the lends of
Weintrop’s framework. They defined CT and described how
computational thinking aligned with physics instruction
[36]. They also discussed how the modeling instruction
pedagogy mixed well with CT instruction as modeling
instruction emphasizes multiple representations, and a com-
puter program provides another representation.

We see from these papers on CT in STEM that there are
many aspects to integrating CT into a STEM course.
Weintrop focused on the practices that students should
learn to develop their CT skills. Wang reviewed and
discussed the equity of CT in STEM finding that there
were very few studies on this intersection. Although this is
currently an understudied area, the importance of both CT
and equity will push research in this direction when CT in
specific disciplines is better understood. Harangus found
the relation between reading comprehension and problem-
solving skill. They also pointed out that problems that were
seen as too difficult by the students were not even

attempted. This can be an issue in physics. Finally,
Swaid discussed how different STEM courses afford
different CT aspects. With a general foundation of knowl-
edge of CT in STEM, we can narrow down our focus to
how these aspects are present in the physics domain.

B. Computational thinking in physics

Caballero et al. in 2012 implemented and assessed
computational modeling in introductory mechanics. They
claimed that implementing computation in intro physics
courses had many benefits: modeling processes make
complex problems tractable, and computation can explore
the applicability and utility of physical principles. They
also affirmed that students who compute are doing work
that is more representative of their potential future work as
scientists and that learning how to debug code is part of
learning computational modeling. They questioned the
challenges students face when learning and applying
computational problem-solving techniques, and how they
could mitigate those challenges through instruction. They
found no statistical difference between the performance of
analytic vs computational homework. They also found that
students with some previous programming were no more
successful than those without. They introduced computation
to a large enrollment calculus-based mechanics course at the
Georgia Institute of Technology. Students were taught the
computational language of VPYTHON. [37]. The first thing we
discuss in this paper is the two benefits of tractable complex
problems and physical principal exploration. Introductory
physics education as we have said before is often limited in
what can be solved analytically. Itis not that it cannot be done
or is too difficult but that there is not enough time in a
semester to spend the time effectively exploring these
phenomena analytically. Computational modeling provides
the tools to tackle complex problems in a feasible and time-
efficient way. Along these lines, it also provides a place to
play and explore. Computational modeling allows quick
changes of parameters so that students can explore more
nuances of physical phenomena. Again, it is not that this
cannot be done analytically, it is just that computational
modeling provides a feasible and time-efficient way to learn
and explore physics.

Obsniuk et al. in 2015 did a case study on novel group
interactions through introductory computational physics.
They questioned what computation of physics in a group
setting looks like. Their research was on an extended
version of M&I (Matter and Interactions), where students
work with computational physics in a group setting. M&I
was developed by Chabay and Sherwood and is a VPYTHON
based curriculum. Students working with computational
physics in a group setting was a part of Projects and
Practices in Physics or (P*). They found two distinct
strategies suited to computational tasks. They focused on
the social exchanges between group members and the
interactions between the group and the computer. The
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group and computer interactions varied from actively
sifting through code to observing a 3D display. Students
were to debug fundamentally correct code with wrong
physical results. Bug recognition and bug resolution were
the two necessary limits on physics debugging. When
students found a bug, they blamed the error on their
understanding of PYTHON and not their understanding of
physics. Students parsed through every line of code, asked
each other if the line was correct, and moved on. The paper
classified two debugging types as more strategic and less
strategic. Self-consistency was when they checked line by
line and confirmed with each other (more strategic). Play or
productive messing about was the less strategic way. Play
showed the benefit of immediate visual display as a check
where analytic tasks did not have that [12]. This paper
examined the intersection of computational physics and
group work interactions. Researching how students interact
with each other and the programming environment are
important because teamwork and adjacently communica-
tion are skills used on a daily basis for physics graduates
employed in the private sector [24].

Weller et al. introduced a CT framework. They described
14 practices that emerged from an integrated computational
physics course: decomposing, highlighting and fore-
grounding, translating physics into code, algorithm build-
ing, applying conditional logic, utilizing generalization,
adding complexity to a model, choosing data representation
form, intentionally generating data, analyzing data,
manipulating data, debugging, demonstrating constructive
dispositions toward computation, and working in groups on
computational models [38]. Many of these practices that
emerged in a computational physics course were practices
that were found in Weintrop’s paper. There are a few that
are not directly matched. For example, working in groups
on computational models and applying conditional logic
are not found in Weintrop’s CT practices. This may be an
example where conditional logic is better suited in the
physics context than the general STEM context.

CT practices are getting better defined for physics in
general, but there is still a lot of research to be done in many
of the specific physics courses. The CT practices of an
introductory course will be different from a capstone
course. It may be that the practices are the same, however
the sophistication of the practice would be different, which
is still an important distinction. We will now discuss the
methods of our project and how we went about determining
learning goals for introductory computationally integrated
physics course.

III. METHODS

A. Participant selection

To identify learning objectives in a computationally
integrated introductory physics course, we conducted inter-
views with participants having some relation to the field,

either within academia or within industry, beyond a
bachelor’s degree. Including both academic and industrial
professions in physics provided a broader perspective on
the role of computation. Our subjects needed to meet at
least one of the following criteria:
e Is an active or past researcher on computational
education in a physics classroom.
e Is an active or past instructor of a computational
physics course.
e Is an active or past instructor of an introductory
physics course.
¢ Is a physics graduate who works or worked in industry.
Using these search criteria, we identified potential
participants via web searches and created a list to invite
them individually to be interviewed. A total of 26 partic-
ipants accepted and were interviewed. Eight of these
participants were physicists from industry while the
remaining 18 were physicists in academia. Of the eight
industry physicists, five have their doctorate in physics, one
has their doctorate in astronomy and astrophysics, one has
their doctorate in electrical engineering, and one has a
bachelor’s degree in physics. The industry physicist’s
occupations ranged from software engineer, experimental
physicists in quantum computing, geoscientist, yield engi-
neer, scientist in data informatics, and materials physics
research. We did not collect any demographic information
from our participants. While a diverse population is always
preferred, we made a deliberate choice not to focus on the
reporting of our participant demographic pool. This may
have provided an additional insight into how CT is defined
for different populations within physics, however, our goal
is to determine the learning goals so that we may develop
an assessment. It also would have increased credibility to
provide information on the years of experience of the
participants, but since we decided not to collect demo-
graphic information, this information was not obtained.

B. Interviews

The interviews were semistructured, about an hour in
duration, and recorded and conducted online via Zoom.
The interview questions focused on computation in the
introductory physics classroom. For example, we asked,
“What is the most important skill students can learn from a
computational intro mechanics class?”” and “What evidence
would you look for to see if students met the learning goals
in a computationally integrated intro mechanics class?” The
full list of interview questions is provided in the
Supplemental Material [39]. Of the 35 total interview
questions, there were 24 that were asked to every partici-
pant, while there were a few that we only asked the industry
or academic participants. For example, we asked industry
physicists if programming is a skill they are expected to
know, and we asked academic physicists about the classes
they have taught before and how many times they have
taught introductory mechanics. In total, industry physicists
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were asked 31 questions and academic physicists were
asked 28 questions. Most questions we thought of our-
selves, but there were three questions that stemmed from a
theory of computational physics literacy described by
Odden et al. [40].

Before starting the interview, we defined the difference
between programming and coding (you must write code to
write a program, but you need not write a program to write
code) and then stated “When we say computation, it will
typically be in the context of computation in physics.” We
chose to not explicitly define computation and computa-
tional thinking to the interviewees for a few reasons. First,
computational thinking is hard to define and we did not
want to bog down interview time with us trying to define it
for them. Next, providing a concrete definition would
force our narrative onto the interview participants and bias
responses. Finally, a majority of the interviewees work
closely or have worked closely with computation in
physics, and so they responded based on their own
interpretation of computational thinking. Leaving the
definition open ended, allowed the interviewees to use
their own interpretations and definitions in their
responses. Then, we were able to refine our own definition
and understanding based on the interviews.

C. Analysis

The interviews were first transcribed and then imported
into the qualitative analysis software program Nvivo 12 Plus
[41]. Because our analysis methods involved coding partici-
pant responses about program environment coding, we
distinguish the two interpretations of the word ‘“code”
throughout the rest of the manuscript as follows: code/
codes/coding? will represent qualitative codes used in the
analysis of participant responses while code/codes/coding®
will represent the computational or programming side
referenced by the interviewees.

In this paper, we focus on our analysis of the five
question topics that are most informative for the develop-
ment of an assessment: Important computational topics,
class programming environment, limitations or difficulties,
reasons for computation in introductory physics, and how
to assess. We drew on methods of constant comparison and
grounded theory to generate codes? that capture common
themes related to these topics [42,43]. Glaser describe four
stages of the constant comparison methodology:
Comparing incidents, integrating categories, delimiting
the theory, and writing the theory [43]. They also describe
that throughout the four stages of the constant comparative
method, the researcher continually sorts through the data
collection, analyzes and codes? the information, and
reinforces theory generation through the process of theo-
retical sampling. The benefit of using this method is that the
research begins with raw data; through constant compar-
isons, a substantive theory will emerge [43]. Thus, this
methodology not only shaped our interpretations of the data

but also influenced our data collection process. The
research team went back and forth between collecting
and analyzing qualitative data, and comparing individual
interviews to one another as they were being conducted to
modify the interviews to focus on certain questions more
closely tied to our research goals. For example, initially, we
asked questions about the programming environment
“scratch,” but these were found to be not as useful and were
dropped from the later interviews.

Once all interviews were completed, the first author
devised an initial coding? scheme and coded? all of the
interviews. Then, the first and second authors met to discuss
any disagreements in the way the interviews were coded?
and refine code? definitions. These authors also discussed
common themes that emerged from the interviews and
iteratively grouped the emergent codes under each theme.

Once a final coding scheme was defined, we calculated
interrater reliability with a third researcher by having the
first author, the third researcher go through 50 responses.
Using a subset of 20 responses, we reached an agreement
rate of 75%. Then, the first author coded the rest of the data.

IV. RESULTS

This section is organized around each of the five
questions of interest (see Fig. 1), with an additional section
about simulations at the end. We begin each subsection
with a description of the interview question itself and then
describe the themes and codes? identified from the inter-
views, with examples.

A. Important computational topics

This question elicits computation-specific topics or ideas
in introductory physics that either the research team or the
respondents themselves deem important. We identified 44
different response codes? for this question. These response
codes? fell under five broader themes: technical program-
ming skills and knowledge, programming environment best
practices, physics and programming, barrier reduction
strategies, and constraints. Response codes? could fit
within multiple themes, but we place the response codet
with the theme we believe it most aligns with even though
this categorization is not necessarily exclusive.

1. Technical programming skills and knowledge

This theme encompasses technical knowledge and skills
believed to be used more often in the programming and
computational science context than the physics context.
The following individual codes related to this theme:

1. Read Code®. This response coded had the highest
response rate out of all the response codes? in this
study. Of the 26 participants, 20 (77%) mentioned
that students should know how to read code® by the
end of a computationally integrated introductory
physics class. There was one participant who explic-
itly stated that students should not be expected to

010128-6



ANALYZING INTERVIEWS ON COMPUTATIONAL ... PHYS. REV. PHYS. EDUC. RES. 20, 010128 (2024)

All Interview questions

Reasons for

Important Computation in

Computational Topics

Class Programming Limitations or
Environment Difficulties

Introductory Physics

Results Section C Results Section D :
,_best Practices 1
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: { Results Section E
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1
1
1
1

Results Section A

FIG. 1. General outline of our results, in the order we present them. Of all the 35 interview questions, 5 are highlighted in this paper
(represented in blue boxes). For each of the five questions, themes were extracted based on the participants’ responses (represented in
green boxes). The orange box represents individual response codes? that fit into each theme. Responses could fall under multiple themes
within a specific question.

know how to read code® by the end of the term.
This participant wanted students to focus on the
underlying numerical calculations performed.
They wanted students to use the medium most
comfortable to them and so that meant that not all
students should be expected to know how to read
code®. Almost all participants who mentioned
that students should be able to read code®, also
added that students should only be able to read
code® that they have seen before. Note that all
participants were given pseudonyms to protect
their identity. Ore provides a typical response from
the interviews.

Ore: I would expect them to be able to look at a
code and be able to read out the different
parts. So you should be able to identify
where in the code are objects defined,
where in the code is your initial conditions
that run the code, where you are doing your
calculations, What kind of calculations this
list code is doing, and then also be able to
make some predictions about what they
think the code should produce.

In Indiana’s response, we can see how they
talk about how it is unfair to ask students
about “for loops” if they have spent the
entire term learning and practicing with
“while loops.”

Indiana: Yeah, they should be able to read the code
that was introduced to them in the course.
So for example, I brought up the idea that
some people won’t introduce for loops. So
if you hand them a for loop after they spent
the whole semester only learning about
while loops. That’s not fair.

This is an interesting point in the development of the
assessment. We do not want to assess students with
programming code that they have not seen before, but
every class is going to be taught a little differently. There
will need to be adjustments to the assessment with time to
calibrate a base set of programming fundamentals that are
universal to every class.

2. Data Visualization. Nine participants (35%) men-
tioned that plotting is an important skill to learn in an
introductory computationally integrated physics
course. Data visualization and data communication
are good skills for all scientists as well as many other
professions to know and learn. Data visualization
also provides another representation of physical
phenomena which can be helpful for student learn-
ing. Kerry points out that making and describing
plots is an important skill that is not necessarily
constrained to computational methods, while Lee
describes how making plots and plot interpretation
deserve a lot of attention in the course.
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Lee:  But yeah, to meet the minimum (learning
goals) is lots of practice doing visual
representation using the computer. So a lot
of plots and a lot of interpretation.

One could argue to what extent this is
specific to computation, but once you
have a program that’s producing results:
actually making plots and understanding
plots and being able to describe plots.
That’s a very important skill, although
that’s a skill that also applies equally well to
experimental measurements.

Kerry:

While data visualization and interpretation have been a part
of physics, it seems that giving students more practice with
the creation and interpretation of plots within a computa-
tional environment is a path to be explored more.

3. For Loops and While loops. Eight participants
(31%) explicitly mentioned for loops or while loops
as important skills to learn in an introductory com-
putationally integrated physics course. Looping
statements are typically the backbone of visualization
of physical phenomena in motion or throughout time.
A similar idea of iteration was mentioned by six
participants (23%) as important, however, we kept
these ideas as separate codes? because for loops and
while loops are used specifically in programming
environments, while iteration is a general concept
used in CT. Another reason we kept these two
separate is because iteration is a concept that can
be explored in spreadsheets, while for loops and
while cannot. Mason talks about how it is important
to know which parts of a program need to be inside of
a loop or not.

Mason: Since almost all these calculations involved
iteration, can they understand how a loop
works. Can they make us a small prediction
about the functioning of the loop, can they
explain why or why not you could move
some lines of code out of the loop or not.

Something that was not nearly mentioned as much as the idea
of computing time. There are plenty of variables that can
included in a looping statement that do not change. It does not
make the program wrong or produce an error, but it does
increase the computational time required to finish the
program. We postulate that most introductory physics are
not introducing programs that are computationally intensive
enough to affect the computing time in a noticeable way.
4. Writing Code® Seven participants (27%) mentioned
that writing code® is important but did not always
specify conditions (i.e., writing from scratch or
writing from minimally working programs). Kerry
describes writing programming as being important
by relating it to playing the piano.

I think with anything, you need to do some
writing in order to really understand it; to
really understand what’s happening there.
One could make the same argument with
playing a piano, right, that you might be
able to read the music. That’s a useful skill,
but that doesn’t mean you’d be able to play
the piano. So if you want to play the piano,
you need to actually play some notes right.
We’re not trying to make great pianists out
of the intro mechanics students, but they
should be able to do more than just read the
music. They should be able to play a

few notes.

Kerry:

Kerry essentially says that students should be able to write
some programming code® and that it is not enough to just be
able to read it. They mention that reading is an important skill,
but it just is not quite enough for these introductory students.

These four response codes? had the highest response
rate: Read Code® (77%), Data Visualization (35%), For
Loops and While Loops (31%), and Writing Code¢ (27%).
There are a few other response codes? that we found
interesting but not interesting enough to have their own
subsection. Six participants (23%) mentioned Euler or
Euler-Cromer methods as a skill for students to learn. The
Euler method is an approximation method typically used in
introductory computational physics because it is easy to use
and provides a good enough result when modeling physical
phenomena. Four participants mentioned execution order
and functions. Execution order comprised responses
involving how computers interpret commands in a certain
order (first this, then that, etc). Functions was interesting
because four participants advocated for the inclusion of
functions as a skill to learn, however, it is almost entirely
counteracted by three participants advocating that students
should not learn functions (in constraints section). When
designing the assessment, we will need to be sure to limit
the number of functions used. This sort of makes sense
because while some courses may use the same programming
environment, they may not necessarily use the same func-
tions. Other response codes? that are within this theme but did
not have as many responses were Conditional Statements
and Arrays, Debugging, Spreadsheet Manipulation,
Numerical Integration, and Step Size. Numerical integration
was not mentioned as often. This might be because as Chabay
and Sherwood say, “Computers are now fast enough that it is
not necessary to teach sophisticated numerical analysis
techniques; simply using a very small time step provides
adequate computational accuracy” [44].

2. Programming environment best practices

This theme encompasses the best practices used in
programming environments. These involve cleanliness,
communication, and structure within and of programs.
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1. Code® commenting. Nine participants (35%) men-
tioned that students should comment code® and
should know how to comment code®. This is a
multifaceted and deeply rooted goal because it covers
reading and understanding the code® and effectively
communicating the physics within a program. There
was one participant who stated that students should
not comment their code®, however, this participant
then followed up to say that the code® should explain
itself with meaningful variable names and not need
comments. Aiden discusses how program documen-
tation is important and that communication is a big
part of this process as well.

Aiden: And I think both of those are important. I
think that documenting the code is impor-
tant for any kind of programming. And then
I would hope that this would be ideally built
into the structure of the class where it would
involve communication and collaboration
as part of that.

2. Meaningful variable names. Eight participants
(31%) mentioned that students should either know
how to create and assign variables or that students
should make meaningful variable names. Hunter
describes well-written code® as being able to speak
for itself. They talk about how commenting is still a
helpful practice, but in the end, the code® and
variable naming should be all that is needed to
understand what is going on.

Hunter: But definitely if you’re working part of a
large team, and if you're developing soft-
ware that’s going to be used by hundreds of
people in perpetuity for many years, then I
think it’s critical. The last thing I would say
is that I think commenting is not always the
mechanism for making sure that code is
understandable, and well written code can
speak for itself, especially in a language like
PYTHON, which is a very nice naturalistic
syntax. Surely commenting often does help
and enhance the codes ability to stand on
its own.

3. Intelligible code®. Two participants specifically
from industry mentioned that student code® should
be intelligible: it should be clean, neat, and easy to
follow. One participant stated,

...it’s basically that someone could come in after
you and understand your code... I have PhD’s
where we still can’t figure out what they did in their
code, and they don’t seem to care. Because they
understand it, they don’t care that their teammates

can use it. So if you learn from the very beginning
to have proper code hygiene and comment, every-
thing should be logical. Someone else should be
able to follow this because it’s in a logical
sequence. I think it becomes natural for you and
you’ll always be you’re always write code that at
least someone has a chance of following without
having you sitting there next to them.

This participant notes that proper code® hygiene involves a
logical sequence. This participant from the industry
describes how sometimes Ph.D. students do not follow
code® hygiene and how it can be detrimental to the team if
the program cannot be passed on to someone else without
the program’s translator.

3. Physics and programming

This theme heavily focuses on physics and how physics
intermingles with computational programming environments.
1. Identifying core physics. Nine participants (35%)
found it important for students to be able to identify
the core physics statements within a computational
program. We show two participant excerpts from

Zion and Lee, respectively:

They should be able identify where it (the
physics) is. So again it depends how you designed
your course. If it is designed with ’T want to teach
them physics and this is a tool,” then they should
know how to use the tool... I know how to use a
car, but I don’t know how every bit of a car works.
There is a gas pedal and a steering wheel. I know
those really well...

Here Zion describes the use of programming environments
as a tool for understanding physics. Zion relates this
relationship of tool understanding to the operation and
use of cars. Zion says that they do not understand all the inner
workings of a car, but essentially they don’t need to because
those inner workings are unimportant. The real importance is
in getting to the location Zion wants to be. This analogy in
this context, we understood Zion as meaning that as long as
students know and understand the physics in the program, the
rest does not matter as much.

Providing minimally working codes or maybe
minimally not quite working codes. It eliminates
all of that barrier to just even getting started and then
it’s just concentrate on these lines right here, the
physics is all in here. Do the physics. And yes, you
do have to encode it, but take a look at the equations
we’ve written down. And there’s the translation.
That translation right there is not easy I think for
students. So for that to happen to concentrate on
something that’s not easy. That’s what you want

010128-9



JUSTIN GAMBRELL and ERIC BREWE

PHYS. REV. PHYS. EDUC. RES. 20, 010128 (2024)

them to do. You don’t want them to say,’Oh, I gotta
comment this’ and ’Oh, I missed a colon’ or
something like that. No. Put the cognitive burden,
where it belongs.

Here we see Lee talking about minimally working programs.
Lee goes on to say that students’ cognitive burden should not
be on the technical underpinnings of program syntax but
instead on the physics. We believe that Lee is advocating the
importance of focusing on the physics within a program out
of everything else to make it easier for students.

2. Modify physical systems. Eight participants (31%)
want students to at the very least be able to modify
physical systems computationally after taking this
course. This response code? ranges from things like
changing numeric values in a program, as Kerry states,
to extending existing programs as Mason states.

I think it is important and useful. And I think
there’s not much lost and a fair amount
gained by having them see code and interact
with code and change lines of code and then
run a program. Theyre not going to become
good programmers. That would be an
unrealistic goal to say they’re going to
become good programmers as a result... So
that’s where they’re taking some code that
exists and they’re running it and they’re
analyzing the results and they’re under-
standing something from it and they’re
changing parameters. Yeah, that’s very
appropriate.

Mason: ...And really understand enough of the
model that they can extend it. So, for
example, asking them to calculate and plot
kinetic and potential energy means they
have to understand what the constructs in
the code mean, how they would calculate
kinetic energy or potential energy of the
system, and then how can they plot it. Now
for that part I let them look at their old
programs so they can pull out graphing
code or energy calculated code or whatever
they want.

Kerry:

3. Physics-program translation. Seven participants
(27%) advocated that students should be able to
translate program notation physics into some other
form or representation physics. Aiden describes how
program notation physics is just another physics
representation to learn. They talk about how it adds
to their other representations like equations, graphs,
and physical phenomena description. This is a place
where reading comprehension may come into play.
Is the reading and analyzing of a program considered

reading comprehension or is it something else? This
is similar to reading comprehension of a graph. Are
graphs read or are their data interpreted? For now,
we will consider the analysis and interpretation of
programs as reading comprehension.

Aiden: In the same way that in any intro mechanics
class like we would want students to be able
to translate between the description of a
situation and equations and graphs and
translating among these different repre-
sentations. I think that computation would
add one more kind of representation. So I
think a goal would be for students to be able
to take a physical situation and figure out
how to translate that into an algorithm or
into a program that they could run and vice
versa, to be able to look at a program and
figure out how that translates into to the
physical situation.

3. Justification. Five participants (19%) advocated that
students should be able to justify their program’s
output. This concept is not specific to CT as
justification is an ever present skill to be learned
in physics and STEM. In Riley’s quote, we can see
how it is more important to them that the students
can explain and justify the results and output of the
program. This notion is also seen in experimental
physics labs.

Riley: I want them to explain what the program
does. I don’t really care about the colon and
all that stuff. Just tell me what the program
does, and tell me how you know it’s
legitimate. That’s why when they turn it in,
I have them make a video where they show
me their program and they just, show me
how it works and show the output and show
that’s legitimate.

Some other response codes? in this theme were output
prediction, authentic programming practice, and system
assumptions. Respondents mostly focused on students
being able to read code® and find the physics within the
program. Along with finding the physics, participants
wanted students to translate between program notation
physics and some other representation. They also expect
students to be able to modify a program in some manner
and be able to justify or explain the output of programs.

4. Barrier reduction strategies

This theme represents practices or skills added to the
course that are more focused on making CT easier for
students to begin working with.
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(1) Scaffolding incomplete code® Twelve participants
(46%) mentioned including code® writing as a skill
for students but only prefaced by the fact that
scaffolding is in place.

Gale: I firmly believe that the way you learn to
write code is first writing, and filling in
incomplete code. Filling in the blanks for
incomplete code is scaffolding to be able to
write the whole function or sentence or
whatever yourself. It is much less intimi-
dating than starting from a blank screen.
Providing minimally working codes or
maybe minimally not quite working
codes. It eliminates all of that barrier to just
even getting started and then it’s just con-
centrate on these lines right here, the
physics is all in here. Do the physics. And
yes, you do have to encode it, but take a
look at the equations we’ve written down.
And there’s the translation. That translation
right there is not easy I think for students.
So for that to happen to concentrate on
something that’s not easy. That’s what you
want them to do. You don’t want them to
say, 'Oh, I gotta comment this’ and *Oh, I
missed a colon’ or something like that. No.
Put the cognitive burden, where it belongs.

Lee:

With scaffolding, we can see that participants really care
about students not being overwhelmed. It serves at least
two purposes: (1) to make programming less scary for
students, and (2) to focus student’s attention on the part of
the program that is important which is the physics. What we
take from this is that any program writing a student is doing
in this course should be set up in such a way that students
are only adding or editing the physics concepts. This way
the focus is on learning physics and not program syntax.
(2) Learn real applications. Six participants (23%)
advocated for students to learn about, but not
actually practice, real computational physics appli-
cations. The reason why they do not want students to
practice these applications is because they are too
complicated for an introductory class. Dakota talks

about the value of learning some real applications.

Dakota: I think if you’re going to put that in
computational physics or computational
component to the introductory physics
courses, it might be worth spending a lecture
talking about the range of types of compu-
tations, even if they’re not going to use the
full range. There are analytical computa-
tions, but there are other things. There are
Monte Carlo’s. Okay, so they are not going
to do a Monte Carlo calculation or

programming up but they should know what
a Monte Carlo calculation is and when you
apply it. Nowadays neural nets are incred-
ibly popular, especially in the industry. So
they ought to know what a neural net is and
how it works and why you would apply it, so
there there are a number of computational
tools in the toolkit.

Some other codes that fit this theme were Pseudocode€,
Experience Error Messages, and Exposure Comfort.
Pseudocode® is the idea of writing a program outline
outside of the program environment. Typically, this is done
with pencil and paper. When participants mentioned
pseudocode®, they described it as a way that presented
CT and programming as a lower risk, lower fear way to get
students thinking computationally. Experience Error
Messages had a couple responses where participants
wanted students to get used to seeing error messages that
arise from programming. The hope was that students could
build emotional resilience to the common frustrations
involved with errors encountered while programming.
Exposure Comfort had responses about students getting
comfortable with programming environments by just being
exposed to it. They talked about how using a programming
environment as a calculator was a low risk way of getting
them used to the way the environment and tool works.

5. Constraints

Many of the constraint theme response codes? have
already been mentioned. This theme focuses on ideas or
skills that participants do not expect students to know or are
limited in some way. Constraint often implies a negative
tone but know that is not our intention in this case.

1. No code® from scratch. Nine participants (35%)
advocated that students should not be coding® from
scratch in an computationally integrated introduc-
tory physics course. Participants who mentioned this
also often mentioned scaffolding as important.

Vesper: It makes a huge difference for student
frustration level. So, especially at the
intro level. I always give them some kind of
structure where they have a couple lines,
they have to fill in, but they’re given that
template and there are students in the class
who would be capable of coding from
scratch, especially if you build up to it, but
that requires sort of a deeper understanding
of code logic and having a deeper level of
mastery of coding and I don’t have enough
time in class to give all my students those
things. and some of them are chem majors
who are not taking computer science. So I
don’t even attempt to have them write code
from scratch in intro physics ever.
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Vesper says that they never have their students write from
scratch ever because it involves a deeper level of under-
standing that they do not have time to delve into. They also
mention that it helps with keeping the students from
becoming frustrated.

Xoan: so we give them Templates. It’s not quite
the right word. Incomplete programs to
start from scaffolding. So some of the basic
stuff is there already. But we insist on
having them do the key physics statements
that are in those programs, which in the
case of a PYTHON program is a significant
fraction of the number of lines unlike many
programming environments. But it’s still
they cannot write from scratch, and we
were sort of given up that as a goal.

Xoan mentions that they have given up on students writing
code® from scratch as a goal insinuating that at some point,
they tried incorporating that as a goal and later decided
against it.

Earlier in our important computational topics sections,
we showed that some participants mentioned writing code®
as important, but they did not mention whether it should be
from scratch or not. Assuming all the participants earlier
were talking about writing from scratch (seven partici-
pants), these nine participants saying students should not
write from scratch entirely counter them.

2. Programming is supplemental. Three participants
mentioned that programming is not the focus of the
course and that it is purely supplemental to learning
physics. Mason bolsters the idea that physics is the
main topic to learn and that computational methods
are just a means to that end.

Mason: Any computation things they’re doing
should be in the service of deeper learn-
ing and understanding of physics.

3. No functions. Three participants said that functions
should not be learned in intro physics. This essen-
tially counters the four participants who said that
functions should be included.

B. Class programming environment

This question had 109 responses, with all 26 participants
contributing to it. This question represents the program-
ming environment(s) or language(s) that participants
believe should be used in the introductory physics course.
This question is not broken up by theme because all
responses fall under the same theme: The environment
that has the lowest barrier for students. A programming
environment is the application that the programming is
conducted within, while the programming language is the
specific way of writing instructions for the computer to run.

1. PYTHON and VPYTHON

PYTHON (20 participants, 77%) and VPYTHON (14 par-
ticipants, 54%) had the highest response rate in this
category. PYTHON and VPYTHON are free, open-source
programming languages. VPYTHON is short for Visual
Python and has a focus on animation and visualization
of code®. While these two had the highest response rate,
they are languages and not environments. Some environ-
ments that were mentioned that use these languages but did
not have as high of a response rate were Glowscript (six
participants), Jupyter Notebooks (two participants), Trinket
(four participants), and Spyder (one participant).
Glowscript and Trinket are both web-based with no local
file storage and use VPYTHON. Three participants describe
why they advocate for PYTHON/VPYTHON:

I exclusively use PYTHON and VPYTHON. Just
because it has become the most accessible lan-
guage and most popular language. I guess all over
the world. And it’s easy to get help. It’s easy to get
set up with PYTHON more than with other lan-
guages. So I guess I’d vote for PYTHON and the
PYTHON.

And most physics labs are equipped with PCs or
Macs or tablets or laptops. So even if students
don’t have devices that they can do the compu-
tation on, all these are codes that run in a few
seconds. So, you know, there’s no reason why
they should not be able to do them. And if you’re
using a browser based platform like Glowscript or
you know Trinket there is no added problem or
challenge of installing software. So the hurdle is
less or minimal.

So for intro mechanics, the most likely one that I
would expect to see would be using Glowscript,
VPYTHON on because from a logistical point of
view, it’s easy, that it’s just you running into web
browser without having to download things and
you get visualization built right in.

We see participants describing how these languages and
platforms are more accessible to students as they do not need
to deal with downloading software. This means that they can
run computational programs on any device as long as they
have Internet access. This is a great option for students who
might share a computer or who do not have a computer they
can reliably use. There were two responses that advocated for
not using VPYTHON or Jupyter Notebooks. The main argu-
ment for them was that VPYTHON would not be used later on
in their career and that Jupyter Notebooks were too much to
learn for introductory physics students.

2. Spreadsheets

Spreadsheets were the next highest response rate (11
participants, 42%). The most common spreadsheet
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environments mentioned were Microsoft Excel and Google
Sheets. Participants described spreadsheets as serving as a
noninvasive way to teach CT and that most students have
already used or heard of spreadsheets so there is less
apprehension toward learning or doing physics in them.
Another reason participants advocated for spreadsheets was
that students could actively see iterations and how data
change with each iteration. They also note that students will
likely be working with spreadsheets in the future so more
experience does not hurt. Participants Frankie and Paris talk
about how they use spreadsheets for CT.

...I do sometimes use Excel or Google Sheets,
just because when you code and you use loops in
PYTHON or any other language, what happens in
the loop is pretty much a black box. So you don’t
see the intermediate numbers being generated
step by step. So it’s useful to demonstrate that
through a spreadsheet. So, for the Euler method
for every delta t increment, you can see how the
velocity changes or how the acceleration changes
or how the position changes and whatnot...

I’'m also partial to Excel programming. Because a
lot of students may not have come in with
previous exposure to PYTHON or other program-
ming languages. But it’s far, far more likely that
they’ve come in with exposure to Excel or other
spreadsheets, not necessarily programming in it.
They may have used it just to like organize their
books or keep track of like business finance it
your family finances or whatever. But at least
they’re familiar with that software so that when
you start introducing ideas of iteration into it.
There’s a little bit less of an overhead to that.

3. Language exposure nonspecific

The third highest response rate was that the language
exposure be nonspecific (10 participants, 38%). Essentially,
participants stated that as long as students were getting
practice with a programming environment, it did not matter
which one they used. Dakota says that programming
environments change over the years so focusing on learning
a language is not for the language itself, but learning the
ideas associated with using a programming environment:
Computational thinking.

Dakota: Yeah, that’s a tough one, if there’s one
language that’s been used for the course
then the answer probably is yes, but the
reality is, languages come and go... I think
I tell people the language is going to change
the language that they’re going to use five
years from now isn’t going to be any of
those. There’s no reason to get too caught
up in the specifics of the language.

Elliot: As long as you can program I think picking
up another language is not such a huge
problem. I think it’s maybe learning your
first programming language, and making

sure that you have one.

Some other similar response codes? to this one were Easy
or Quick to Learn (five participants) and Knowledge of
Multiple Languages (two participants). The Easy or Quick
to Learn response code! was again language nonspecific
with the stipulation that the language used be the easiest
language to learn. The Knowledge of Multiple Languages
response code? described the idea that students should learn
more than one language in introductory physics. Their
reasoning is that the more languages students learn, the
more computational thinking strategies students can learn
and can be applied to any language.

4. Other languages

There were other languages that were brought up,
however, none of them were brought up as frequently as
PYTHON or VPYTHON. The next highest language was
MATLAB (five participants) but every other language had
three or fewer participants. There were, however, three
participants who mentioned that students should not learn
C/C++ and three that mentioned that students should not
learn JAVA. Both of these environments were described as
being overly complicated compared to PYTHON/VPYTHON.

C. Limitations and difficulties

This question represents the struggles of adding com-
putation into an introductory physics course. Knowing
what to expect in terms of roadblocks to integrating
computation into introductory physics is important so that
aspiring instructors know what things to look out for. This
question code? had 21 participants contributing responses.
These limitations and difficulties range from curriculum
changes that need to be made to student attitudes toward
computation.

1. Curriculum changes

This theme has the two most cited difficulties: No Room
for Computation (14 participants, 54%) and Curricular
Overhaul (8 participants, 31%). The most cited difficulty is
that the introductory physics class does not have the space
to learn computation as well as physics. Of those 14
participants, 3 of them were from industry so it shows
that industry physicists are even thinking of this. How can
computation be added to an already full content physics
course? This difficulty, while a valid concern, was also
addressed by most of the participants who mentioned it.
They mentioned the idea that some things would have to be
removed from the course in order to add computation,
however, the things removed are gained back in a better
fashion through the implementation of computation. Jesse
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talks about this: ‘... Another limitation that gets brought up
is that integrating computation will come at the expense of
other material, sort of time on task spent solving analytical
problems or covering additional concepts or what have you.
I feel like that’s bunk because if you integrate computation
in the right way, you don’t get so much of that loss, and in
fact, it can simplify certain aspects of the physics teaching
and learning like planetary motion. For example, it’s a lot
easier to simulate planetary motion and explore Kepler’s
laws through a computational simulation than it is to go
through the full complete analytical derivation and all of it’s
intense glory”.

The second difficulty is the response code? Curricular
Overhaul. This is the idea that in order for computation to
be effectively introduced into the introductory physics
course, an entire overhaul of the curriculum is needed to
integrate most of the content with computation.

Aiden: It’s to do computation. Right. It’s not
something that can be done with just
throwing in this one assignment here. It’s
something that in the classes that do it well,
they really build it up over the course of the
whole semester. So it feels to me like more
of a sort of all or nothing that if I'm going to
do it, I need to really overhaul the whole
class to do it, which is not something that
I’ve done yet. I mean, if there are ways to do
it in smaller doses then I would do that.

Just like how adding simulations to the course does not
make the course a computational course (see Sec. IV F),
adding some computation without overhauling the entire
curriculum is not an effective way of making the course
computational. This then requires that to transition from
introductory physics to computational introductory phys-
ics, instructors will need to spend a good portion of time
overhauling their curriculum to include computation in
most aspects of the course. This is a very time-consuming
task that is not always incentivized.

2. Student issues

This theme focuses on issues that are more specific to the
students than the class or curriculum itself. The three highest
response codes? in this theme are Student Rejection (seven
participants, 30%), Differing Levels of Computational
Literacy for Incoming Students (six participants, 23%),
and Technology Accessibility (four participants).

Student Rejection. Talks about students will not accept
computation in the course. Here are some excerpts talking
about this:

There are people though, who I think there are
students who would resist it, because they would
think to themselves, well I sign up for a physics

course, not a computational course. So you
definitely have to be careful about the context
and the support.

But there’s also a lot of maybe fear or anxiety
around programming. That when students are
given code if they haven’t seen it before, then that
can be a barrier for them.

The only difficulty there, especially with the pre
meds, is that the pre meds have to pass this thing
called an MCAT exam. And they are expecting a
physics problem solving bootcamp when they
wander into our classes and anything innovative
like using a spreadsheet or programming language
to solve problem isn’t going to help them because
they’re purely there to pass an MCAT exam.

In the first quote, we see the participant talking about
how students would resist the course because the students
view computational practices and physics as separate and
nonoverlapping things. The second excerpt talks about how
students have a fear or anxiety toward programming. This
fear is described as a barrier for students and that barrier can
lead to students shutting down and rejecting CT practices.
The third excerpt is interesting because it discusses the
MCAT. The Medical College Admission Test (MCAT) is a
standardized, multiple-choice examination that is a pre-
requisite to the study of medicine [45]. They discuss how
these students who are only taking a physics class to
prepare for the MCAT are not interested in computational
methods. Does the integration of computational methods
and CT into an introductory physics class have any effect
on the physics portion of the MCAT for these students?
Research will need to be done to shed light on this area.

Along with student rejection comes the idea of Differing
Levels of Computational Literacy for incoming students.
Every student has a different knowledge level when enter-
ing this course. Because computational practices are
becoming more prevalent even at the high school level,
some students have worked with computational environ-
ments before they reach introductory physics while others
have not. Just like how students have differing levels of
physics knowledge coming into the class, practices will
need to be put into place to make sure that any student
regardless of background and prior knowledge can excel in
this course. Jesse provides their take on this: “There’s a
limitation in terms of preparation. I feel like this starts to
touch on a bit of an equity angle as well. If you don’t spend
so much time teaching the students computation, then those
who come in with computation already in their back
pocket, who are typically the students coming from these,
these well resourced high schools or, you know, families
with parents who are engineers or programmers, that kind
of thing, those students will have an inherent advantage.
That I do think is a legitimate complaint and a legitimate
limitation here. And something that the instructor of course
themselves is going to have a hard time addressing unless
you know you offer students a whole bunch of extra sessions
to brush up on their computational skills or the computational
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literacy, which most instructors don’t have the time for. So
really, that’s something that has to kind of be addressed
before the students even arrive at the university like what
Norway is doing right now with their integration of compu-
tation across the high school curriculum”.

Jesse views this student limitation from an equity lens.
They also bring up what Norway is doing. Norway is
integrating CT and programming into their mathematics,
music, social sciences, and English classes in an attempt to
emphasize CT and programming in a multitude of disci-
plines and incorporate CT and programming as a core
subject itself [46]. Caballero er al.’s 2012 paper found no
statistical difference between the performance of students
who took the class with prior programming experience and
students with no prior experience [37]. It could be that this
is true of other courses, and so it may not be an issue. Also
if other countries follow suit with what Norway is doing,
then that may fix this issue as well.

The last response code? in this theme is Technology
Accessibility. This is not only a student issue but also a
course issue as well. To program, students will need a
computational device or computer to do so. This means that
either students need to have this device themselves or the
course needs to provide them. While computers are quite
prevalent now, not every course or student has access to them
so it is important to provide them. This is probably not a
common problem, but when it is a problem, it can be a
major issue.

Uri: Well, one limitation of course is both
hardware and software. Students have to
have hardware, they’re going to work at
home, they have to have hardware at home.
Not all of them can afford it. Same with
software.

Uri talks about how students will need to have the
hardware and software at home if they are going to work on
these computational problems. They talk about how we
need to be cognizant of students’ financial situations. Even
if students can use a computer on campus, this may prove to
be a burden for commuter students.

D. Reasons for computation in intro physics

This question represents the reasons why computation
should be added to the intro physics class. We do not spend
too much time on this because it has already been discussed
why computation should be added to physics classes in the
introduction section. That being said, we will briefly discuss
some reasons why our participants found it important.

1. Career skills

About 16 participants (62%) mentioned the idea that
having computation in intro physics is important for
building career skills. Many of the participants believe

that the skills learned in this class will be used in the
students’ future careers. There was also the idea of this
being a 21st century scientist skill (six participants, 23%).
Of the 16 participants who contributed to this code?, 6 of
them were physicists from industry. As there were only
eight participants from industry, this became a little
interesting. There is definitely bias because these physicists
either work with computational practices or were computa-
tionally adjacent, however, one even mentions that it is not
necessarily a skill just for physics:

Yes, I think that would be very beneficial. Just to
help even students making the connection be-
tween how a computer works which can be very
useful for jobs is even outside of physics. It’s if
they go work in technology in a bank or they go
work in other areas. It just helps to have that
connection early on.

Well, yes. I think it should be somehow because
it’s an important part of doing real physics.
Computation ultimately is going to be something
that even if you don’t do it yourself, you’re going
to need to know. And know enough about it that
you can appreciate what’s going on and you
know, maybe even have a chance to collaborate
with people who that’s what they do... You know,
whatever branch of physics to go into is going to
be very complex and likely going to need some
kind of computation to really do.” This industry
participant talks about how it is an important part
of doing real physics. They go on to mention that
even if students don’t do computation them-
selves, they will likely be around it and so having
the knowledge to be a part of those conversations
is useful.

2. Physics understanding

The next few response codes? mostly involve student
understanding of physics as the reason to include CT. They
are Understand Physics Better (12 participants, 46%),
Modeling Physics (11 participants, 42%), Skills Useful for
Later Physics Courses (10 participants, 38%), Allowance of
Non-trivial Phenomena (10 participants, 38%), and
Creativity (7 participants, 27%). Most of these involve
bolstering physics concepts and practices among students.
It makes sense that the main reason for adding CTis to further
increase students’ physics understanding overall.

E. How to assess

This question was asked near the end of the interview as
a way to solicit ideas for the development of our assess-
ment. The participant responses were broken up into three
different themes: Comprehension test, skills test, and
attitudinal test.
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1. Comprehension test

About 14 participants (54%) talked about how they
would assess for learning of CT by having students read
code®, comment code®, or find the physics inside code®.

Frankie: That is a part of the learning outcome that
what I meant by them being able to inter-
pret what the code does is, and I assess it by
looking at the comments that they wrote.

Mason: So our minimum expectations are that
students should be able to read and inter-
pret a very short program that instantiates a
physical model.

This seemed to be the most agreed-upon method and is a
measure of students’ comprehension more than anything
else. Another response code? in this theme is predict and
explain results (nine participants, 35%). This entails stu-
dents predicting the outcome of a program or explaining the
results of a program.

Noel: I think it would be important to learn the
assumptions one makes in setting up a
computation. It can make the difference
whether the result is reasonable or doesn’t
make any sense at all. I think often it seems
to be easy to come to the conclusion that
because the computation gave you a result
that it must be true without trying to figure
out ways to test them. In a sort of like a
design of experiments, try different
parameters, and making adjustments and
seeing if the expected change and results is
consistent so that you can say something
more about whether the results that you're
getting is actually believable.

These responses track with what has been discussed so
far. Many of the participants would assess via reading,
commenting, finding physics, or justifying a program
output. Most of these have a focus on physics but in the
context of a computational environment. We have noticed
an emphasis on physics being important and the program-
ming being supplemental to learning physics. Assessing
students in this way seems to meet all of their expectations
of not having them too engrossed in the syntax of coding®.

2. Skills test

About 4 participants (15%) said they would assess
students by having them write and run a program. This
assessment style is both comprehension and skill based.
Here is an excerpt from

Gale:  So I think it’s a performance assessment.
You give them a task and they have to

encode that and send you the code and
hopefully when you hit run it will compile
and run. But yeah, you might be able to
assess aspects of coding you know, in a
written assessment, but No, there’s no
substitute for the real thing.

Gale says there is no substitute, in terms of assessment,
for the real thing which is writing and running a program.
Many of these four participants also mentioned that the
students do not need to write and run a program from
scratch. This skills test is harder for students holistically as
they are combining many different aspects of CT and
physics. On top of that, there are many different places
where a student can go wrong and make it so that their
program does not run. It is not great for partial credit in
that sense because if the student gets stuck debugging part
of their code®, they cannot exactly move on until it is
fixed. Parsing through student code® to find their issues is
also no easy task as well. It can be quite difficult
debugging or grading multiple student computational
assignments.

3. Attitudinal test

About 4 participants (15%) said they would assess
students by checking to see if the students have a better
outlook or feeling toward computational practices.

So I guess what I would look for is just
more of a classroom climate aspect. Like,
does it seem to me that students are taken to
this or excited about it or maybe the
negativity of are our students actually
rejecting it or they at least kind of pre-
senting themselves saying like "yeah I
guess this is what science does. So we have
to do that.” Obviously I prefer them to be
excited about it, but considering the spec-
trum of people who go through these
courses, I think that’s maybe one thing to
look for is just is there active rejection or
not. That’s the hard thing to really measure
and assess especially when most of class-
room assessments are geared towards you
know content assessments.

Paris:

Paris talks about how they care most about how students
feel about CT and physics together. They talk about how
they hope for excitement from the students. This is
important because excitement is a form of interest and
that is related to persistence in physics [47]. They talk about
how most assessments are geared toward content and view
attitudinal assessments as harder to administer because of
this. If we want physics to be an inclusive place, student
attitudes become important to analyze.
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F. Simulations

One of the things we sought out was to learn more about
whether simulations were considered computation or not.
We found that while simulations are computational in
nature (made from computational practices), they indeed
were not considered one of the computational skills
students should learn. One excerpt that we feel highlights
what most respondents said was this one:

...especially with that simulation, you are very far
away from what’s happening under the hood. You
don’t see how the computer is actually working.
For a [physics] major I think it’s important to see
that there’s a few important lines of code here that
implement basic physics that we want you to
know about and you should be able to go in and
make changes to a couple of lines of code in order
to generate different results.

Respondents often said that simulations are great for
learning. It is an excellent learning tool that any student can
use to supplement their understanding of physics [48]. The
main point that was often brought up was that simulations
were not enough for physics majors. For physics majors,
respondents wanted them to see, create, and manipulate the
physics that would make a simulation. In most simulations,
students do not have that kind of access. This was a very
important point for our participants. There has been a push
to include computation in physics classes, and so many
curricula have added simulations to meet these criteria.
What we have learned from these interviews is that
simulations are not enough if the course is for physics
majors. Simulations are not bad, they are great learning
tools and should be added to physics courses, but they do
not give students the opportunity to learn the computational
skills that most participants mentioned to be important from
these interviews. The Next Generation Science Standards
view using simulations in science class as a clear example
of computational thinking so it is interesting that it was seen
as not enough by some of the interviewees [3].

V. DISCUSSION

The goal of the interviews was to discern what student
skills or ways of thinking are important to learn after taking
a computationally integrated introductory physics course so
as to come closer to answering (RQ1). We attempted to
answer this by interviewing 26 physicists and asking them
about CT in introductory physics. We used constant
comparative method, grounded theory, and emergent
coding? on these interviews to pull out codes? and themes.
We analyzed and presented five question topics deemed
important from these interviews: Important computational
topics, class programming environment, limitations or
difficulties, reasons for computation in introductory phys-
ics, and How to assess. Within important computational

topics, we found that Reading Code®, Data Visualization,
Code® Commenting, Identifying Core Physics, Scaffolding
Incomplete Code®, and Not Coding® from Scratch were
some of the most prevalent response codesd. Vieira et al.
examine the role of comments in computational education
[49]. They found that students who did not understand the
material well would use comments as a learning oppor-
tunity. Perhaps, this is why comments were viewed as
important in our interviews. Within class programming
environment, we saw that PYTHON and VPYTHON by far
were the preferred languages to be used in introductory
physics. The reasons for PYTHON and VPYTHON tend to
follow the same reasons outlined in Backer’s paper in 2007
[50]. We also saw that spreadsheets were also brought up
frequently as an acceptable environment. Even though
MATLAB was not mentioned as frequently, Flannery dis-
cusses an implementation of computational physics using
MATLAB. One benefit of MATLAB that Flannery talks about
is the one-to-one equation to MATLAB statement translations
[51]. As translating physics into code and finding physics
in code was viewed as important, MATLAB could be a
suitable environment to hone this skill. Within limitations
or difficulties, we saw that changing the curriculum was the
most cited difficulty in integrating computational practices
into the course. As Young et al. found, it is often the choice
of the instructor to incorporate computation rather than an
institutional or department-level decision [52]. This sort of
isolation may contribute to the difficulties of adding
computation to a course. We also had a few responses
that focused on the student perspective and how they might
have difficulties with accessibility, differing levels of
incoming literacy, and rejection of material. Magana and
Coutinho also found many similar themes in their interview
analysis on modeling and simulation practices for CT-
enabled engineers. They also found that their interviewees
were worried about students’ incoming math and program-
ming skills [53]. Within reasons for computation in
introductory physics, we saw that career skills were the
most cited response with student physics understanding
following after. Landau argues that physics discipline
specific knowledge is not as important as the computational
skills students can learn because there are more occupations
that can make use of the skills than the discipline specific
knowledge [54]. Chabay and Sherwood talk about how
computer modeling can help students make concrete
visualization of abstract quantities [55,56], and
Macdonald et al. also believed that computers could help
emphasize the fundamental physics [57]. While it is often
not the subject of introductory mechanics, there are many
aspects of physics that are either invisible, or not visible to
the naked eye, and computer modeling can help students
visualize phenomena to help with their understanding.
Within how to assess, we saw participants discuss ways
on how they might assess CT in intro physics. They
mentioned attitudinal tests, skills tests, and comprehension
tests. Comprehension tests had the most responses.
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In Weller’s framework, we notice a few similarities like
translating physics into code, adding complexity to a
model, analyzing data, and demonstrating constructive
dispositions toward computation that were also found in
our interviews [38]. Debugging was something that only
three of our participants mentioned. This has its own
category in Weller’s paper so we were surprised to see
that it was not mentioned more in our interviews. Other CT
practices were not explicitly mentioned either. Highlighting
and foregrounding were not mentioned by our participants
explicitly, however, our participants did describe some
processes of highlighting and foregrounding like making
system assumptions, understanding execution order, and
practicing pseudocode.

One overarching theme we notice from the interviews is
the idea of students reading and understanding program
code® as a learning goal. In the interviews, codesd, and
themes, we see that students Reading Code® is the most
agreed upon skill to learn. Reading Code® permeates
through many aspects of the response codes? from the
interviews. Another overarching theme we notice is the
general barrier-reducing strategies mentioned. Many par-
ticipants mentioned that CT in physics can be daunting.
They brought up ways and strategies instructors could
attempt to mediate this via scaffolding incomplete code®,
focusing on physics rather than computational environment
syntax, and using computational environments and lan-
guages that are more accessible. The learning goals are still
the same introductory physics learning goals. Additional
learning goals for CT in introductory physics are needed
though, and we have seen that they mostly take the form of
computational reading comprehension.

We would be remiss not to mention that part of the
reason that many participants talked about students reading
code is because we specifically asked them if students
should be able to. It is important to note that it was
explicitly brought up in the interviews by the interviewer.
Most of the questions were open ended and not necessarily
prompted about a specific facet of CT. For example we
asked participants about programming environments in
general and not PYTHON or “spreadsheets.” All of their
responses (to this question) are more valid in the qualitative
sense because their responses were not steered by the
interviewer. Even though participants were explicitly asked
about reading code, we believe the results are still valid
because aspects of reading code were present in partic-
ipants’ answers to other questions. We hypothesize that if
we did not ask explicitly about reading code, it still would
have come out of the interviews thematically.

Twelve participants mentioned something about scaf-
folding incomplete code®, nine participants mentioned not
coding® from scratch, eight participants mentioned that
students should be able to modify physical systems, and
seven participants mentioned that students should be able to

write code®. What we can see from these interviews is that
participants generally expect that students should be able to
use a programming environment to at the very least edit a
program with physical phenomena. Almost all of these
participants were very adamant about how students should
be writing their code®. Some reasons were that they were
very conscious of how coding® and programming were
perceived by students. They recognized that programming
and coding® are viewed by students as scary or only for
computer people, so to reduce this sentiment, they focus on
having students only work on specific parts of the program
rather than the program as a whole. This is often seen as
better for students since they can essentially avoid the less
fun and potentially deterring aspects of coding® like syntax
and debugging and can in turn focus on the physics that
they likely have more of a passion for.

A lot of these responses from these four codes? elude to
minimally working programs. Minimally working pro-
grams in the physics context have been adapted slightly to
fit their goals. Typically, a minimally working program
would involve a short program with one small focused bug
to be found and corrected by the user. In its adaptation to
physics, it is now typically a full working program but
with incorrect physics to be found and corrected by the
user [58].

Another selling point that Mason makes is that coding®
in real practice does not involve coding® from scratch.
Often times, we will be building off of someone else’s work
or our own, and so starting from a blank program is rare. It
makes sense that participants do not want students writing
from scratch if it is a practice that they do not do
themselves. Mason mentions that this is something that
the pros do.

To answer our research question, we see that the learning
goals do not differ much between an introductory physics
class and a computationally integrated introductory physics
class. The main goal of the course is for students to learn
and practice physical principles. In the computationally
integrated course, the way students practice is different
since they are using a computational environment as a tool.
While there are some base skills and practices that are more
computational than physical (learning for loops and while
loops, commenting code, creating variables), students are
mostly expected to learn another representation of physics.
This suggests that our assessment should focus on the base
CT skills needed for students to modify physics in a
minimally working program and focus on the intricacies
of switching between various physics representations and
the program physics representation. From our interviews,
we see that this assessment should be written using the
language of PYTHON, VPYTHON, or spreadsheets. The
assessment should also be written and presented in a form
that is less intimidating for students so they can continue to
learn physics confidently.
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VI. FUTURE WORK

Our future work involves a computational physics read-
ing comprehension assessment. This assessment will be
mostly multiple choice and multiple-choice response. In
terms of determining how we can design an assessment for
the computational learning goals found from these inter-
views, the most “concrete” learning goal we can test is
reading code. This is also bolstered by most participants
mentioning that they would attempt to assess CT in
introductory physics via comprehension test. While skills
tests and attitudinal tests are also feasible and need to be
researched, based on this study, we have determined that
we will design a comprehension test via reading pro-
gram code.

VII. LIMITATIONS

One limitation of this work is the lack of demographic
information on the participants. We describe our recruit-
ment process, but ultimately it would have been beneficial
to provide more information on the participants like years
of experience teaching introductory physics, years in the
workforce, and institutional information. One of the chal-
lenges we encountered was recruitment of industry phys-
icists. We drew from the APS database of industry mentors.
We agree it could be interesting to identify graduates of
physics programs who are working as data scientists, but
they are hard to find and not centralized. Another limitation
is that we did not have a working definition of CT in
physics when we conducted these interviews. We decided
to develop our definition based on the interviews. The
interviews could have gone very differently if we framed
them in terms of a provided definition.

VIII. CONCLUSIONS

Another form of assessment that should be explored is
the attitudinal test. While this may not be in the scope of
this project, it will be important to design an attitudinal
assessment for student sentiments toward CT in introduc-
tory physics. The reason this is important is because
computational science, CT, programming, and physics
are associated with the nerd-genius stereotype in STEM
as described by Starr [59]. Adding CT to physics makes
sense for bettering student understanding and learning
practical skills for their future careers, but it does not help
in the long run if it is also deterring and pushing out certain
demographics. Shoaib et al. interviewed 8 men and 20
women engineering students about their identity with

computation and engineering [60]. They reported incon-
gruence between perceived feminine norms and computa-
tional identity. They state that students’ computational
identities can be supported through the intentional miti-
gation of bias by their instructors. Blaney and Stout
examined computing self-efficacy and sense of belonging
for first-generation women [61]. They showed that
first-generation women have very negative computing
self-efficacy and sense of belonging in computing com-
pared to their counterparts (non-first-generation women,
first-generation men, and non-first-generation men). They
suggested that increasing instructor and student time both
in and out of class can help increase sense of belonging
promote high self-efficacy. It is important that we can
analyze students’ attitudes toward introductory computa-
tional physics so that we can make changes to create an
inclusive and welcoming environment for any person who
wants to learn physics. Computation is very much a real
and important part of physics. As many have said before,
in physics, it is the third pillar alongside theory and
experimental. Computational practices will become more
and more integrated into physics as time progresses. CT in
general will become more integrated with STEM as a
whole as time progresses. It is important that we can learn
from other disciplines about how they integrate and define
CT. Learning how CT is being integrated in the K-12
sphere is also important. With students getting earlier
exposure to CT, it will become less of a burden for physics
instructors to teach both physics and basic computational
principles.

With these interviews complete, we will now work on a
draft assessment of CT in introductory physics. The
assessment, informed from this study, will be a computa-
tional reading comprehension assessment. We will focus
on questions that show if students can read a physics
program written in VPYTHON and can identify the physics
principles involved, translate between algebraic notation
and program notation, and explain if the results of a
program are reasonable physically. Because we wish to
focus on student comprehension more than a skills test,
the assessment will not involve the creation, editing,
manipulation, or extension of a program in a program-
ming environment. Instead, the assessment will take on a
multiple-choice style to concentrate on reading compre-
hension. This assessment will need to be validated and
tested. When the assessment has reached acceptable
validity, we will then pilot the assessment to student
populations.
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