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Who and what gets recognized in peer recognition
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Previous work has identified that recognition from others is an important predictor of students’
participation, persistence, and career intentions in physics. However, research has also found a gender bias
in peer recognition in which student nominations of strong peers in their physics course disproportionately
favor men over women. In this study, we draw on methods from social network analysis and find a
consistent gender bias in which men disproportionately undernominate women as strong in their physics
course in two offerings of both a lecture course (for science and engineering, but not physics, majors) and a
distinct lab course (for science, engineering, and physics majors). We also find in one offering of the lecture
course that women disproportionately undernominate men, contrary to what previous research would
predict. We expand on prior work by also probing two data sources related to who and what gets recognized
in peer recognition: students’ interactions with their peers (who gets recognized) and students’ written
explanations of their nominations of strong peers (what gets recognized). Results suggest that the nature of
the observed gender bias in peer recognition varies between the instructional contexts of lecture and lab. In
the lecture course, the gender bias is related to who gets recognized: both men and women
disproportionately overnominate their interaction ties to students of their same gender as strong in the
course. In the lab course, the gender bias is also related to what gets recognized: men nominate men more
than women because of skills related to interactions, such as being helpful. These findings illuminate the
different ways in which students form perceptions of their peers and add nuance to our understanding of the

nature of gender bias in peer recognition.
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I. INTRODUCTION

Gaining recognition as a physicist is important for
students’ participation and persistence in their physics
course [1-8]. Recognition is particularly important for
the participation of historically underrepresented groups
in physics, such as women [3,7,9,10]. However, research
has found that men both perceive higher recognition from
others [2,7,11,12] and receive more recognition from their
physics peers [13,14] than women. To better understand
these effects, we investigated the nature of student recog-
nition of strong peers with a focus on the gender bias in
such peer recognition. Specifically, we probe two ques-
tions: whether and how gender bias in students’ nomina-
tions is related to patterns of peer interactions (who gets
recognized), and whether and how gender bias in students’
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nominations is related to their written explanations of these
nominations (what gets recognized). Throughout the paper,
we use the phrase gender bias to refer to a distinguishable
difference between the amount of peer recognition received
by men (women) and the amount of peer recognition we
would expect men (women) to receive if recognition were
distributed equitably across men and women.

A. Recognition in physics courses

A student’s sense of physics identity—the degree to
which they believe they are a “physics person” [15]—has
been shown to predict their participation, persistence, and
career intentions in physics [2,4,7]. Researchers have
modeled physics identity as containing three dimensions:
performance and competence, interest, and recognition
[3,4]. Previous studies demonstrate that recognition is
the most important of these three dimensions in relating
to and predicting student outcomes [1-8]. Recognition is
the extent to which meaningful others (e.g., peers, teachers,
and family) perceive an individual as a physics person.
When a student receives more recognition from others, they
are more likely to see themselves as a physics person and,
therefore, develop a stronger physics identity [5,16].

Published by the American Physical Society
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Recognition from others, however, is often shaped by
sociohistorical norms and stereotypes, such as those that
position men as more suitable to the field of physics than
women [3,7,9,17-26]. Perhaps as a result of such stereo-
types, a handful of research studies demonstrate that men
report higher perceived recognition (the extent to which
they feel recognized by others) in their physics classes than
women [2,7,11,12]. This difference may put men in a better
position than women to develop their physics identity,
contributing to the underrepresentation of women in
physics documented in, for example, Refs. [27-29].

B. Gender bias in peer recognition

Other studies have probed ‘“actual” peer recognition,
rather than perceived recognition, by asking students to
nominate peers they believe are strong in their science
course [13,14,30,31]. We use the term actual recognition
to mean a measure of how much others recognize an
individual as a physics person, though the others may not
have indicated that recognition to the individual, neces-
sarily. These studies largely draw on quantitative methods
of social network analysis to determine the extent to which
a gender bias exists in students’ nominations of strong
peers [14,30,31], finding mixed results. Grunspan and
colleagues [30], for example, examined three offerings
of an introductory biology course (the second in the course
sequence) for first-year students. They observed that men
disproportionately undernominated women, while women
proportionately nominated men and women, as strong in
the course material in all three offerings. Bloodhart and
colleagues [13] observed a similar gender bias in peer
recognition across many introductory physics courses for
first-year students, but found that women also dispropor-
tionately undernominated women as strong in the course
material. In the same study, researchers found that men
proportionately nominated both men and women, but
women disproportionately overnominated other women,
as strong in introductory life sciences courses for first-year
students. Salehi and colleagues [31], however, found no
gender bias in either men’s or women’s nominations of
strong peers across two offerings of a mechanical engineer-
ing course taken by second and third-year students.

Our previous work [14] examined peer recognition in
three different remote physics courses and added nuance to
these studies. We observed a gender bias in peer recog-
nition favoring men (in which men disproportionately
undernominated women, but women proportionately nom-
inated men and women) in two introductory physics
courses aimed at first-year students, but no gender bias
favoring men in an introductory physics course comprised
mostly of second-year students (though women dispropor-
tionately overnominated other women in this course).
Comparing across all four studies [13,14,30,31], the
presence or absence of a gender bias in peer recognition
seems to vary by course level more than any other aspect

of the instructional context: researchers find a gender
bias in peer recognition in science courses for first-year,
but not beyond-first-year, students. Gender bias in peer
recognition also seems related to student outspokenness
(i.e., verbally participating in class). In the two of these
four studies that measure outspokenness, a gender bias
in students’ nominations of strong peers (favoring men)
is present when there is also a gender disparity in who
is outspoken (i.e., when men participate more than
women), and there is no gender bias in peer recognition
when there is no gender disparity in who is outspoken
[14,30].

In physics, patterns of peer recognition also seem to vary
between lecture and lab contexts, with our previous study
of physics courses [14] finding more evidence of gender
bias in peer recognition in the context of lecture material
than lab material. This result may be attributable to these
two instructional contexts covering distinct content and
aiming to develop different sets of skills [32-37]. Indeed,
research has shown that students believe lecture skills
include knowing mathematics, while lab skills involve
handling equipment and using technical skills [18,19].
However, the difference in peer recognition across instruc-
tional contexts may also be attributable to pedagogy:
lectures typically contain many students who focus on
the instructor and labs typically contain a small number of
students who collaborate on tasks. This variation in how
much visibility students have in front of their peers may
impact patterns of peer recognition, especially during
remote instruction as in our prior work [14]. In the current
study, therefore, we determine the extent to which gender
bias in peer recognition exists when lecture and lab material
are taught with a similar pedagogical style and in person.
Specifically, we analyze physics courses for first-year
students where the lab and lecture material comprise
distinct courses (i.e., students co-enroll in one lab course
and one lecture course and receive a separate grade in each
course), and both of these courses contain a lecture session
where all students focus on the instructor and a small-group
session where students solve problems or conduct experi-
ments with their peers.

C. What is the nature of this gender bias?

While the quantitative studies mentioned above impor-
tantly determine the extent to which a gender bias in peer
recognition exists, they do not probe the nature of this
gender bias. Toward this end, separate threads of research
have started to unpack two possible mechanisms under-
lying recognition: peer interactions (i.e., students learn
about their peers’ skills during interactions with these
peers) and students’ reasons for recognizing others as
strong in their physics course (i.e., students recognize their
strong physics peers for different skills). Of course, there
may also be other explanations for the gender bias in peer
recognition, such as sociohistorical gender stereotypes
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alone, but, in this study, we seek to build on the existing
research threads.

1. Who gets recognized: Peer interactions
and indirect observations of peers

Previous work suggests that one mechanism through which
recognition forms is interactions with others [15,38,39]. In
their original conception of the identity framework, Gee states
that “the modern need for recognition places a particular
importance on discourse and dialogue...Individuals must
win recognition for them through exchange with others”
[15] (p. 112). We interpret this to mean that an individual
demonstrates their knowledge, skills, and personality traits
through conversations with others, who then form perceptions
of that individual as a certain kind of person. One study, for
example, conducted interviews with undergraduate students to
understand their experiences in a remote summer research
program [39]. The authors found that students’ research group
members and advisors started to recognize the students as
physicists and researchers during interactions with one
another: “Other recognition was supported by conversations
between the mentee and other group members” [39] (p. 10).

Similar work describes peer interactions as a way for
students to determine who of their peers is strong in
physics. In one study, researchers performed a longitudinal
case study of a woman in physics named Cassidy [38]. At
the beginning of her undergraduate physics studies,
Cassidy recognized her more senior peer tutor, one of
the only other physics students with whom she interacted,
as a “smart” physics student because they showed her an
unnecessarily complicated solution to a physics problem.
About a year later, however, Cassidy became a more
outgoing member of the physics community who fre-
quently collaborated with peers on assignments. These
peer interactions facilitated Cassidy’s understanding of the
“multiplicity of ways to be ‘good’ at physics,” [38] (p. 12)
such as bringing in different areas of expertise to a peer
collaboration. She then recognized many of her peers as
being strong physics students, rather than only her peer
tutor. This and other studies [15,39], therefore, suggest that
interactions are likely a mechanism for forming peer
recognition: interactions facilitate students’ understanding
of their peers’ knowledge and skill sets which informs who
gets recognized. This mechanism of forming peer recog-
nition may also relate to gender bias in peer recognition
because previous work has found that students tend to
interact with peers of their same gender [40,41].

Peer interactions, however, are not the only means
through which students determine who gets recognized.
Grunspan and colleagues [30], for example, demonstrate
that outspokenness—frequent verbal participation in front
of many others—also relates to which students receive peer
recognition. They found that students who actively par-
ticipated in lecture tended to receive more nominations
from peers as strong in their biology course despite these

students never directly interacting with one another. In
addition to direct interactions with peers, therefore, stu-
dents may determine who they recognize as a strong peer
by indirectly observing their peers.

In the current study, we examine the relationship
between peer interactions, indirect observations of peers,
and peer recognition by quantitatively comparing students’
self-reported peer interactions to their nominations of
strong peers. We also compare this relationship across
men’s versus women’s nominations to determine whether
patterns of interactions relate to the nature of gender bias in
peer recognition (we could not measure whether patterns of
indirect observations relate to the nature of gender bias in
peer recognition, see Sec. I C 3).

2. What gets recognized: Skill sets associated
with being a physicist

Other studies have explicitly probed the knowledge, skill
sets, and traits for which students recognize strong peers in
their physics or other science courses [18,19,42-51].
Doucette and colleagues, for example, asked undergraduate
physics students to describe their ideal lab partner [49]. The
authors identified 13 characteristics from the responses that
students recognized in a “good lab partner,” including
knowledgeable, hardworking, communicative, helpful, and
efficient. In another study, Irving and Sayre interviewed
upper-level physics students and asked them what they
think it means to be a physicist [47]. The participants noted
a wide array of skills or traits that they recognized in a
physicist, including intuition for learning physics, interest
in physics, solving physics problems, designing experi-
ments, and collecting and interpreting experimental data.
Some studies also relate the identified skills to gender.
Danielsson [18], for instance, found that undergraduate
students associate natural ability, tinkering with lab equip-
ment, and mathematical competence with men and dili-
gence and note taking with women.

In the current study, we expand on this body of work by
(i) collecting and analyzing a large number of student
explanations of their nominations of strong peers and
(i) comparing the frequencies of explanations written by
men and women when nominating men versus women to
determine whether and how the explanations relate to
gender bias in the nominations.

D. Current study

In summary, research has demonstrated that whether a
gender bias exists in peer recognition varies across courses
and instructional contexts. Prior work also suggests that
peer interactions and differences in what skills sets are
associated with being strong in physics might help to
explain the nature of this gender bias. To probe these two
possible mechanisms underlying who and what gets recog-
nized in peer recognition, we conducted a mixed-methods
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study of in-person physics courses to answer the following
research questions:

1. To what extent does a gender bias exist in students’
recognition of strong physics peers within distinct
lab and lecture courses?

2. Who gets recognized: In distinct lab and lecture
physics courses, how (if at all) is gender bias in peer
recognition related to patterns of peer interactions?

3. What gets recognized: In distinct lab and lecture
physics courses, how (if at all) is gender bias in peer
recognition related to the skill sets students associate
with being strong in physics?

We collected students’ nominations of strong peers,
explanations for these nominations, and self-reported
interactions with peers in two offerings of distinct intro-
ductory lab and lecture physics courses for first-year
science and engineering students at Cornell University.
Similar to prior research examining introductory biology
and physics courses for first-year students [13,14,30], we
find a gender bias in peer recognition in which men
disproportionately undernominate women compared to
men in all analyzed courses. We also find that women
disproportionately undernominate men in one offering of
the lecture course. Comparing the nominations of strong
peers to peer interactions, we observe in most cases that the

overall gender bias in peer recognition is related to gender
bias in interaction-based recognition, where students dis-
proportionately overnominate their interaction ties to peers
of their same gender. Finally, we find a difference in
students’ written explanations in the lab course, where men
nominate men more than women because of the ways they
interacted, such as being helpful, but not in the lecture
course, where men and women nominate men and women
for similar skill sets.

II. METHODS

In this section, we describe the instructional context of
our study and then discuss our data collection and analysis
methods.

A. Instructional context

The data come from two in-person offerings (fall and
spring) of two distinct introductory physics courses (sum-
marized in Table I), one lab course and one lecture course,
at Cornell University—a large, private, Ph.D.-granting
institution in the northeastern United States with a
Carnegie classification of very high research activity.

The lab course focused on developing experimental
skills rather than reinforcing physics concepts (see,

TABLE I. Summary of survey response rates and self-reported student demographics for the four courses we analyzed. All analyzed
students in the lecture course are also in the lab course of the corresponding semester. Percentages are relative to the number of students
included in the analysis unless specified otherwise. We grouped race or ethnicity by underrepresented racial minority (URM) status,
where non-URM students are those solely identifying as White and/or Asian or Asian American and URM students are those identifying
as at least one of any other race or ethnicity (including American Indian or Alaska Native, Black or African American, Hispanic or
Latinx, and Native Hawaiian or other Pacific Islander). We denote students’ demographic information as “unknown” if they preferred
not to disclose this information on the survey or if they did not complete the survey.

Lab course Lecture course
Fall Spring Fall Spring

Survey response rate (% of total enrolled) 95% 98% 99% 95%
Students in analysis 387 646 237 513
Gender

Men 200 (51.7%) 293 (45.4%) 111 (46.9%) 222 (43.3%)

Women 153 (39.5%) 302 (46.7%) 106 (44.7%) 256 (49.9%)

Nonbinary 4 (1.0%) 2 (0.3%) 2 (0.8%) 2 (0.4%)

Unknown 30 (7.8%) 49 (7.6%) 18 (7.6%) 33 (6.4%)
Race or ethnicity

Non-URM 291 (75.2%) 390 (60.4%) 174 (73.4%) 307 (59.8%)

URM 59 (15.2%) 164 (25.4%) 39 (16.5%) 140 (27.3%)

Unknown 37 (9.6%) 92 (14.2%) 24 (10.1%) 66 (12.9%)
Major

Physics or engineering physics 57 (14.7%) 51 (7.9%) 16 (6.8%) 19 (3.7%)

Engineering 260 (67.2%) 475 (73.5%) 178 (75.1%) 403 (78.5%)

Other 37 (9.6%) 35 (5.4%) 20 (8.4%) 28 (5.5%)

Unknown 33 (8.5%) 85 (13.2%) 23 (9.7%) 63 (12.3%)
Year

First-year 319 (82.5%) 594 (92.0%) 189 (79.8%) 480 (93.6%)

Second-year 52 (13.4%) 11 (1.7%) 37 (15.6%) 9 (1.7%)

Other or unknown 16 (4.1%) 41 (6.3%) 11 (4.6%) 24 (4.7%)
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e.g., [34-37]) and covered topics in both mechanics and
electromagnetism. For the lab course, students attended one
50 min lecture session (instructed by a faculty member of
the physics department) and one 2 hr lab session (instructed
by a graduate teaching assistant and often a supporting
undergraduate teaching assistant) each week. The lecture
sessions of the lab course included active learning ped-
agogies, such as students answering poll questions in small
groups. The course was split into two lecture sections per
semester, each with 200-300 students in a large stadium-
seating lecture hall. During the lab sessions, which con-
tained 20-25 students each, students conducted open-
ended investigations in small groups of two to four and
each group submitted lab notes at the end of every session
to be graded. Lab groups were formed by the teaching
assistants based on student preferences from a group-
forming survey and remained the same for the whole
semester. In forming the groups, the teaching assistants
were advised to avoid lab groups containing an isolated
woman. Outside of class, students completed individual
lab homework assignments using Jupyter Notebook each
week [52]. There were also multiple office hours per week
where students could receive individual help on course
content from graduate and undergraduate teaching assist-
ants or the main instructor.

Most students in the lab course were simultaneously
enrolled in one of two calculus-based mechanics lecture
courses: one intended for physics majors (the “physics
majors” course) and one intended for engineering and other
science majors (the “nonmajors” course). In this paper, we
only analyze the nonmajors lecture course (200-500
students) because the physics majors course only contained
30-50 students. Students in this lecture course attended
three 50 min lecture sessions (instructed by a faculty
member of the physics department) and two 50 min
discussion sessions (instructed by a graduate teaching
assistant and often a supporting undergraduate teaching
assistant) each week. This course used active learning
pedagogies including a “flipped classroom” model, such
that students read relevant sections of the textbook and took
a reading quiz before attending lecture. During lecture
sessions, which contained half of the enrolled students at a
time (there were two lecture sections per semester) and took
place in a large stadium-seating lecture hall, students
answered conceptual poll questions in small groups. The
course also made extensive use of interactive lecture
demonstrations. In the discussion sessions, which con-
tained about 20 students each, students completed physics
problems in small groups of two to four but this work was
not submitted for a grade. Discussion groups were not
formed by the teaching assistants, rather students formed
their own groups. Students typically worked with the same
discussion group every week. Outside of class, students
completed individual homework assignments (problem
sets) each week. There were multiple office hours per

week where students typically worked together on the
homework assignments with the help of graduate and
undergraduate teaching assistants.

In this study, all analyzed students in the lecture course
were co-enrolled in the lab course. Therefore, it was
possible for students to be surrounded by some of the
same peers in both courses: the lecture and lab sessions of
the lab course and the lecture and discussion sections of the
lecture course. Between 20% and 40% of students in the lab
course (depending on the semester), however, were not
coenrolled in the lecture course we analyze.

B. Data collection

We administered an online network survey as part of a
homework assignment in the lab course in the middle of
the 15-week semester (see Fig. 1). On the survey, we
distinguished peer recognition in the lab and lecture
courses because our prior work identified that patterns
of peer recognition varied between these instructional
contexts [14]. Specifically, we asked students to nominate
peers in each course who they believed were knowledge-
able about the course material [13,14,30,31] as a measure
of their recognition of strong peers. We also asked students
to describe why they nominated their peers.

A second set of questions asked students to self-report
peers with whom they had meaningful interactions about
the instructional material in each course [41,53-56]. As in
prior work, “students self-identified what counted as a
meaningful interaction” [56] (p. 6). We asked students
about whom they interacted with “this week” to capture
interactions that students were consistently having with

Please list the students in this physics lab class that you think are
particularly strong in the course material.
Please briefly explain why you chose this
Name student as strong in the course material.
I I |
Please list any students in your physics lecture class that you think are
particularly strong in the course material.
Please briefly explain why you chose this

Name student as strong in the course material.
I I |
Please list any students in this physics lab class that you had a meaningful

interaction* with about course material this week.

Name
Please list any students in your physics lecture class that you had a
meaningful interaction* with about course material this week.

Name
*A meaningful interaction may mean in class, out of class, in office hours, virtually
over zoom, through remote chat or discussions boards, or any other form of
communication, even if you were not the main person speaking or contributing.

FIG. 1. Online survey prompts analyzed in this study. Students
typed their responses into the text boxes and could enter up to
15 peers’ names for each prompt. Students were given access to
the course roster.
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their peers throughout the semester, while reducing the
possibility of recall bias (e.g., by asking them to recall all
peers with whom they have interacted throughout the
semester). This phrasing may have captured a few one-
off interactions that only occurred the week of the survey,
however these likely represent a small fraction of the
reported interactions.

Each question was in an open response format, where
students entered each peer’s name in a separate text box and
the associated explanation for each peer also in a separate
text box. Students could enter up to 15 peers’ names for
each prompt, though no student provided the maximum
number of names for any prompt. Students were also given
access to the course rosters to facilitate their remembering
and spelling of peers’ names. Students could nominate
anyone in their course; for example, they were not restricted
to naming peers in their specific lecture section.

At least 95% of enrolled students in each course
responded to the survey (see Table I). Students occasionally
misspelled peers’ names and/or reported just a first or a last
name. In these cases, the first author manually processed
the text to match the names in the survey responses to the
course roster when possible. We could not match students if
the respondent provided only a first (or last) name and
multiple students in the course had that first (or last) name
and so these responses were subsequently dropped from the
dataset. In each course, we were able to match at least 90%
of the nominations to strong peers and self-reported
interactions to the course roster.

Our analysis included all students who responded to the
survey and/or were listed by at least one peer on a given
survey prompt. Our analysis also included only the nom-
inations and self-reported interactions made by students
who consented to participate in research (more than 95% of
survey responders). If a consenting student wrote the name
of a nonconsenting student, we included the survey
response, but removed all information (e.g., demographics)
about the nonconsenting student. We were able to apply
social network analysis methods to our data because both
the survey response rate and the name matching rate (from
the raw survey responses to the course roster) were at least
90% and very few (<2%) nonconsenting students were
removed from analysis, and network methods are reliable
for datasets with less than 30% missing data [57].

We also collected students’ self-reported gender, race or
ethnicity, intended major, and academic year on the survey
(see Table I). Most students in the dataset intended to major in
engineering and the majority were in their first academic
year. Each offering of the lab and lecture course contained
roughly equal proportions of men and women. We grouped
race or ethnicity by underrepresented racial minority
(URM) status, where non-URM students are those solely
identifying as White and/or Asian or Asian American and
URM students are those identifying as at least one of any
other race or ethnicity (including American Indian or Alaska
Native, Black or African American, Hispanic or Latinx, and

Native Hawaiian or other Pacific Islander). The majority of
students (>60%) in each course were non-URM. Because the
role of race or ethnicity was not part of our research
questions, this categorization provided a limited ability to
control for possible effects of race or ethnicity in our
evaluation of the role of gender. We acknowledge, however,
the limitations of this categorization [58] and encourage
future work to probe this variable explicitly.

At the end of the semester, we collected students’
discussion and lab section enrollment, lab groups, and
final grades in each course.

C. Data analysis

We conducted our data analysis in four stages (summa-
rized in Fig. 2), largely drawing on methods of social
network analysis [55,59,60].

1. Recognition network structure

We first analyzed the four recognition networks, one for
each offering (fall and spring) of each course (lab and
lecture), using student responses to the first two questions
on the survey (Fig. 1). Similar to prior work [14,30,31], we
converted the nominations of strong peers into directed
networks (see Fig. 4) to identify broad patterns of peer
recognition. Nodes in the network represented students and
edges (or ties) in the network represented all nominations
made between students (including direction, from the
nominator to the nominee). We distinguish nonbinary
students from men, women, and students of unknown
gender in the network diagrams (Fig. 4) to visualize these
students’ positions in each network. However, nonbinary
students are not distinguished in the remainder of the
analysis because they make up 1% or less of the student
population in each course (Table I).

e eee N
Recognition network structure

Characterizing patterns of peer recognition with network
diagrams and descriptive statistics )

v

e A
Exponential random graph models

Testing variables related to gender bias in peer recognition
N J

v

e . . N
Peer interactions

Quantifying the relationship between peer recognition and

-

L peer interactions by student gender )
e . N
Explanations
Categorizing written explanations for nominations and
L comparing by student gender )

FIG. 2. Flowchart depicting our stages of data analysis.
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To characterize the structures of the observed networks,
we calculated three network-level statistics—density, inde-
gree centralization, and transitivity—for each network.
Density is the number of edges in the network that we
observed as a fraction of the number of possible edges in
the network. Indegree centralization measures the extent to
which the nominations are concentrated around a single
student or a small subset of students. This measure is
calculated as the sum of differences in indegree (number of
received nominations) between the node with the highest
indegree (receiving the most nominations) and every other
node in the network, divided by the maximum possible sum
of differences of indegree for all nodes. Higher indegree
centralization (i.e., closer to 1) indicates higher concen-
tration of nominations around one or a few students (i.e.,
“celebrities” [30] who receive many more nominations than
their peers). Finally, transitivity measures the tendency of
nodes to cluster together and is calculated as the proportion
of two paths (two edges connecting three nodes) that have a
third edge closing the triangle, not considering edge
direction. If node A is connected to node B and node C,
for example, an edge between nodes B and C would form a
triangle. A higher proportion of such triangles would lead
to higher transitivity values (i.e., closer to 1).

We determined the standard errors of each of these
statistics via bootstrapping: resampling the observed net-
work many times, calculating the statistic of each sampled
network, and then determining the standard deviation of the
statistic among all of the sampled networks [54,61]. The
bootstrapping was performed with 5000 bootstrap trials for
each network using the snowboot package in R [62].

2. Exponential random graph models

We determined the extent to which a gender bias exists in
each observed recognition network using exponential
random graph models (ERGMs). Such models assume that
an observed network is a realization from a random graph
that comes from a distribution belonging to the exponential
family [63,64]. ERGMs allow us to perform many stat-
istical tests at once, determining whether the frequencies of
certain configurations (e.g., ties between students of the
same gender) in our observed network are significantly
different than if the ties were formed randomly. The goal is
to use these k configurations g;(y) and their corresponding
coefficients 0, to predict the formation of the random
network Y. The model takes the form

exp (D x0kgk(y))
Zy exp (D 10k (v))’

where y is a realization of the random network Y and the
denominator serves as a normalization constant that ensures
that the probability sums to one. Given an observed
network y, the coefficients of the model are estimated

using maximum likelihood estimation (MLE). Because of

PolY = y] =

the dependence between the network ties, the MLE is
commonly approximated with Markov chain Monte Carlo
(MCMC) techniques [65]. The coefficients 6, represent
log-odds of tie formation and can be interpreted as a
weighting of the importance of each modeled configuration
for the realized network, where positive (negative) coef-
ficients show that the configuration is observed more (less)
frequently than by chance after accounting for all other
configurations that are modeled.

In our study, we fit an ERGM to each observed network
using a similar set of configurations, or predictor variables, as
our prior work [14]. For the lab course, we added two new
variables. The first variable measured the tendency for
students to nominate peers in their immediate lab group
given prior work that suggests students often report con-
nections to their group members on network surveys [66].
The second variable measured the tendency for students to
nominate peers enrolled in their same lecture course (the
separate course structure is different than in Ref. [14]). We
also only measured discussion section homophily in the
lecture course because our prior research found no significant
tendency for students to nominate peers in their discussion
section as strong in the lab material [14] and the discussion
sections are now even further removed from lab material
given the distinct courses. Different from our previous work,
students received separate final course grades in the lab and
lecture courses rather than one overall course grade that
encompassed lab and lecture content. Therefore, we used the
lab course final grades in the ERGMs for the lab course
recognition networks and the lecture course final grades in
the ERGMs for the lecture course recognition networks.
Finally, we did not include a variable measuring transitivity
in the models as we did in previous work [14] because the
MCMC MLE did not converge with this variable added. The
goodness-of-fit diagnostics, however, showed that our model
sufficiently captured the distributions of indegree, outdegree
(number of nominations reported by each student), and
transitivity for all four observed networks (see Fig. 8 in
Appendix A). The following predictor variables were
included in our model:

* Edges: intercept term equal to the number of edges in

the network.

* Reciprocity: number of mutual nominations (i.e.,
student A nominates student B and student B nom-
inates student A).

* Woman — woman: number of edges for which a
woman nominates another woman (base term is man
— man).

* Woman — man: number of edges for which a woman
nominates a man (base term is man — man).

* Man — woman: number of edges for which a man
nominates a woman (base term is man — man).

* URM — URM: number of edges for which a URM
student nominates a URM student (base term is non-
URM — non-URM).
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e URM — non-URM: number of edges for which a
URM student nominates a non-URM student (base
term is non-URM — non-URM).

* Non-URM — URM: number of edges for which a non-
URM student nominates a URM student (base term is
non-URM — non-URM).

e Physics majors — physics majors (lab course only):
number of edges for which a student in the physics
majors lecture course nominates another student in the
physics majors lecture course (base term is nonmajors
— nonmajors).

e Physics majors — nonmajors (lab course only):
number of edges for which a student in the physics
majors lecture course nominates a student in the
nonmajors lecture course (base term is nonmajors
— nonmajors).

e Nonmajors — physics majors (lab course only):
number of edges for which a student in the nonmajors
lecture course nominates a student in the physics
majors lecture course (base term is nonmajors —
NONMAjors).

e Lab group homophily: number of edges connecting
students in the same lab group.

e Lab section homophily: number of edges connecting
students enrolled in the same lab section.

* Discussion section homophily (lecture course only):
number of edges connecting students enrolled in the
same discussion section.

e Grade of nominee: correlation between final course
grade and number of received nominations.

We used the coefficient estimates of the woman — woman,
woman — man, and man — woman variables for the four
observed recognition networks to determine whether a
gender bias exists in student nominations of strong peers
after adjusting for the other network configurations included
in the model. While we only focus on these gender variables
in this paper, we keep the other variables in the model to
account for as many different aspects of students’ identity
and participation in the course as possible and because an
exploratory analysis indicated that removing these other
variables can change the results for the gender variables [67].
In particular, a few of the predictor variables (e.g., lab group
homophily, lab section homophily, and discussion section
homophily) explicitly control for patterns of student inter-
actions, allowing us to identify whether a gender bias in
students’ recognition of strong peers exists even after
accounting for any strong interaction trends (e.g., gender
homophily) [41].

Additionally, we note that the final four predictor
variables listed above (related to lab group, lab section,
discussion section, and grade) cannot handle unknown
data. Therefore, only students with known data for these
four variables were included in the ERGM analysis. While
this predominantly restricted analysis to students who
completed the course (i.e., students who did not have a
final course grade likely dropped or withdrew from the

course after we administered the survey), the ERGM
analysis still included more than 90% of students that
are part of our overall analysis. Thus, the statistical models
provide an accurate description of most students in the
class. We recommend for future work to investigate the
network positionality of students who do not complete their
physics course.

We also note that some sample sizes, particularly for
URM students, seem too small to make statistical compar-
isons with our models (Table I). ERGMs, however, consider
edges rather than nodes as the unit of analysis. Though the
number of URM students (i.e., nodes) may be small, the
networks we study include many of the possible edges
between students (Table II and Fig. 4). Smaller sample sizes,
furthermore, do not prevent valid estimation of the coefficient
values. Instead, they are reflected in the standard errors and p
values of the coefficients [68]. Quantitative modifications to
ERGMs are only necessary for very small networks (less than
six nodes) [69].

We finally note that students’ final grades in the lab
course were fairly skewed, with many students earning an
A or A-. This may introduce issues of range restriction for
the grade of nominee term, where low variability in
students’ final course grades limits the possibility of finding
a significant correlation between grades and received
nominations. We find in both offerings of the lab course,
however, that the model is able to distinguish a significant
effect of course grade on peer recognition (Table V).

3. Peer interactions

To measure the extent to which peer interactions are
related to peer recognition, we converted students’ self-
reported interactions (last two questions on the survey, see
Fig. 1) into directed networks. Similar to our analysis of the
recognition network structure, we first calculated the
density, the proportion of possible edges in the network
that we observe, of each interaction network. For each
offering of each course, we compared the recognition and
interaction network densities to determine whether there
were comparable numbers of edges in both networks or if
one of the two networks contained many more edges than the
other. This comparison was observational and not statistical.

For a more interpretable metric, we calculated the
percent overlap, the percent of directed edges in the
recognition network that also appear in the corresponding
interaction network (see Fig. 3, for example), for each course.
This measure allowed us to determine the extent to which
peer recognition was interaction based or observation based.
Higher percent overlap values indicate that most of students’
nominations of strong peers were interaction-based recog-
nition: many students nominated peers with whom they also
reported interacting. For interaction-based recognition, we
assume that the nominator came to understand the nominee’s
skill set through their direct interactions (e.g., talking to
immediate group mates during lab). Lower percent overlap
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FIG. 3. Toy interaction and recognition networks to exemplify
how we calculated percent overlap and fraction of interaction
network edges kept in the recognition network. Black edges
indicate edges that appear in the interaction network but not the
recognition network, blue edges indicate edges that appear in
both the interaction and recognition networks (edges kept), and
orange edges indicate edges that appear in the recognition
network but not the interaction network. In this case, the percent
overlap is % because three out of six recognition network edges
also appear in the interaction network. The fraction of interac-
tion network edges kept in the recognition network is % because
three out of nine interaction network edges also appear in the
recognition network.

values, on the other hand, indicate that most of students’
nominations of strong peers were observation-based recog-
nition: many students nominated peers with whom they did
not report interacting. For observation-based recognition, we
assume that the nominator came to understand the nominee’s
skill set through their indirect observations of them (e.g.,
seeing someone frequently participate in lecture) rather than
direct interactions.

We also calculated gender homophily as the percent of
edges in the interaction network where both the nominator
and the nominee are of the same gender (i.e., edges from
men to men and edges from women to women). Research
has shown that gender homophily is prevalent in student
interaction networks [40,41,70], thus this measure helped
us understand patterns between the interaction and recog-
nition networks related to gender, discussed next.

Finally, we compared the extent to which any gender
bias in peer recognition was specifically related to a gender
bias in interaction-based recognition (i.e., if there was a
gender bias in which of students’ interaction ties they also
nominated as strong in the course). This analysis only
included edges for which both the nominator and the
nominee self-reported their gender as either man or woman
(859 out of 1000 total nominations of strong peers and
1590 out of 1789 total self-reported interactions across all
four courses). For every possible combination of men and
women nominating each other (i.e., man nominating a man,
man nominating a woman, woman nominating a man, and
woman nominating a woman), we calculated the fraction of

interaction network edges kept in the recognition network
as the number of directed edges that appear in both the
interaction and recognition networks divided by the num-
ber of directed edges in the interaction network (see Fig. 3,
for example). We compared this measure by student gender
in each network. We did not perform statistical tests
because the goal of this analysis was to determine large-
scale trends in the measure and relying on p values can be
problematic [71-73]. Statistical tests of distinguishability
would involve many comparisons that increase the risk of
finding apparent statistical significance due only to chance.
Instead, we use overlap in error bars (given by standard
errors) to make qualitative interpretations about differences
in the measure between men and women and do not
comment on the possible distinguishability of small effects.
While this approach is more appropriate than statistical
testing, we acknowledge that using error bars may come
with its own set of limitations [74].

We note that we could not measure the extent to which
any gender bias in peer recognition was related to a gender
bias in observation-based recognition. An appropriate
measure of such a bias would be to calculate the fraction
of peers that students indirectly observed, but did not
interact with, that they nominated as strong in the course
material. However, we did not collect data about which
peers students indirectly observed—all we know is who
they do not interact with. In large classes, such as the ones
we analyze here, it is not reasonable to assume students
indirectly observed all of the peers with whom they did not
interact. We recommend for future work to investigate
gender bias in observation-based recognition by examining
peer recognition in small courses (where it is reasonable to
assume students have the chance to indirectly observe all of
their peers) or by also collecting data about peers with
whom students are familiar but did not directly interact.

4. Explanations

We conducted a thematic coding analysis of student
responses to the survey prompt, “Please briefly explain
why you chose this student as strong in the course material,”
to identify what gets recognized in peer recognition—
that is, the skill sets for which students recognized their
strong physics peers. The first author initially read all
responses to gain a sense of the data as a whole [75].
Upon recognizing similar themes to those identified in prior
research [18,19,42-51], the first author drafted an a priori
codebook informed by these themes. The research team then
iteratively developed this codebook by individually coding a
subset of the data and then meeting to modify the code
definitions based on coding disagreements [76]. We also
grouped together similar codes into four overarching cat-
egories: knowledge, processes, interactions, and other. These
categories were inspired by those in Ref. [77], in which the
authors categorized students’ problem solving skills as
related to knowledge, processes, and beliefs.
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After the coding scheme was agreed upon, three members
of the research team coded a stratified random sample of 10%
of the 1000 total explanations in our dataset. We stratified the
random sample by course (lab and lecture) because the two
courses had different learning objectives and course struc-
tures, which might have led students to associate different
skill sets with being strong in each course. Therefore, half of
the random sample contained explanations from the lab
course and the other half contained explanations from the
lecture course. We determined interrater reliability by cal-
culating Fuzzy Kappa [78] between each of the three pairs of
coders because each explanation could receive multiple
codes. All three pairwise Fuzzy Kappa values were greater
than 0.8 indicating sufficient interrater reliability [78]. After
reaching this level of agreement, the first author coded the
remaining explanations.

We then compared the fractions of nominations between
every possible combination of men and women nominating
each other (i.e., man nominating a man, man nominating a
woman, woman nominating a man, and woman nominating
a woman) containing each code. This comparison only
included explanations for which both the nominator and the
nominee self-reported their gender as either man or woman
(859 out of the 1000 total explanations across all four
courses). We also aggregated the data from the fall and
spring offerings because the results for each individual
offering were not substantially different from the aggre-
gated results and the larger dataset reduces possible
statistical noise. Similar to our explanations analysis, we
did not perform any statistical tests because the goal of this
analysis was to identify any large-scale differences in these
fractions. Instead, we used overlap in error bars (given by
standard errors) to make qualitative interpretations about
differences in code frequencies between men and women.
This comparison allowed us to determine whether and how
any gender bias in peer recognition in each course is related
to what gets recognized (i.e., students nominating one
another for different skill sets).

III. RESULTS

We present the results from each of the four stages of
analysis (Fig. 2): recognition network structure, ERGM
analysis, comparison to interaction networks, and explan-
ations of nominations of strong peers.

A. Recognition network structure

The structural features of the observed recognition
networks, summarized in Table II and shown in Fig. 4,
provide information about broad patterns of recognition.
We observe that the densities of the lab and lecture
recognition networks are similar within each semester (fall
and spring). Because there are many more nodes in the
lab recognition network than the lecture recognition net-
work in each semester (Table II), the densities suggest that
there is a higher level of connectedness in the lab networks

than the lecture networks (i.e., a higher proportion of
possible edges exist in the networks in the left column of
Fig. 4 than in the corresponding network in the right
column). We also observe relatively low indegree centrali-
zation values in each network. This observation indicates
that the nominations are fairly spread out among the
students in a course rather than concentrated around only
one or a few students. Correspondingly, there are no
outstanding “‘celebrities” in any network; no nodes are
much larger than the rest, which would be associated with
receiving many nominations (Fig. 4). While there is one
man in the fall lecture network who receives more
nominations than anyone else (seven), outstanding celeb-
rities in the large science courses analyzed in prior work
receive more than 30 nominations [14,30].

We also observe that all four networks contain one or two
relatively large components that connect many nodes along
chainlike formations and many smaller components of two to
four nodes that are only connected to each other. The
prevalence of these smaller components, however, is stronger
in the lab course than the lecture course as indicated by the
higher levels of transitivity. This pattern is likely due to the
lab course placing more emphasis on small group work
during the lab sessions (e.g., coordinating experimental
investigations and submitting the lab notes for a group
grade) than the lecture course does during the discussion
sessions (e.g., collaborating on problems but not submitting
work for a grade). We also see a large fraction of isolated
nodes (at least 30% of the total nodes in each network),
representing individuals who responded to the survey but did
not nominate any peers as being strong in the course material
and who were also not nominated by any other students. The
demographics of the isolated nodes (e.g., gender and race or
ethnicity) in each network are proportional to the demo-
graphics of the course population.

B. Exponential random graph models

As per our research questions, we focus on the coef-
ficient estimates of the ERGM terms that speak to the
extent to which a gender bias exists in the recognition
networks (see Fig. 5 and Table V in Appendix B). We find
that in both offerings of the lab course, women propor-
tionately nominate men and women as strong in the course
material as compared to men nominating men (red and
orange dots on the left panel of Fig. 5). Women also
proportionately nominate men and women as strong in the
course material as compared to men nominating men in the
fall offering of the lecture course (orange dots on the right
panel of Fig. 5). Women nominate men less frequently than
men nominate men, however, in the spring offering of the
lecture course.

Additionally, in both offerings of both courses men
disproportionately undernominate women as strong in the
course material as compared to men nominating men (pink
dots on both panels of Fig. 5). Although comparing ERGM
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TABLE 1II. Network-level statistics for the observed recogni-
tion networks. Standard errors of the last digit are shown in
parentheses.

coefficient values across different-sized networks is ill
defined [79], we tentatively observe that this bias from
men occurs to a similar extent in every course, with the
possible exception of the spring offering of the lab course

Lab course Lecture course . . . . .
which has a slightly smaller coefficient estimate for the
Fall Spring Fall Spring man — woman variable.
Nodes 387 646 237 513 In all cases, the comparisons are made after adjusting
Density 0.002(2) 0.0009(8) 0.002(3) 0.0008(9) for the other variables in our model. We particularly note
Indegree centralization 0.011(4) 0.005(2)  0.03(1)  0.009(3) that these results related to gender bias hold even after
Transitivity 0.2433)  0.26(2) 0.133) 0.11(2) controlling for the gender composition of lab groups (lab
group homophily variable), which were intentionally made to
Lab course Lecture course
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FIG. 4. Recognition networks for all analyzed courses. Nodes are colored by gender and sized proportional to indegree (number of
received nominations as strong in the course). Edges point from the nominator to the nominee.
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FIG. 5. Coefficient estimates, represented as log-odds, for the
gender variables of the exponential random graph models (values
shown in Table V in Appendix B). The base term (i.e., coefficient
estimate of zero) is nominations from man to man. Error bars
represent standard errors and asterisks indicate statistical signifi-
cance.

avoid isolated women, and other patterns of student inter-
actions (e.g., lab section homophily and discussion section
homophily variables). In the lab course, the results also hold
after controlling for any bias based on lecture course enroll-
ment (physics majors — physics majors, physics majors —
nonmajors, and nonmajors — physics majors variables).
While the nonmajors lecture course is fairly gender balanced
(Table I), the physics majors course contains a majority of
men (70%—-80%, depending on the semester). A bias in
which nominations favor students in the physics majors
course, therefore, would make men more likely to be
nominated than women. The gender bias we observe,
however, is present even after controlling for the lecture
enrollment variables included in our model (and thus the
different student populations in the two lecture courses).

C. Peer interactions

To further understand how students identify who to
recognize as strong in their physics course, we also analyzed
students’ self-reported interactions. The interaction network
diagrams are shown in Appendix C (see Fig. 9).

Comparing the densities of the interaction networks
(Table III) to the densities of the corresponding recog-
nition networks (Table II), we find in all four courses that
the interaction network is more dense (i.e., students are more
connected by edges) than the recognition network. This
comparison may suggest that when making their nomina-
tions of strong peers, students select a subset of the peers with
whom they interact to nominate as strong in the course
material.

The percent overlap values, the percent of edges in the
recognition network that are also in the corresponding

TABLE III. Densities and gender homophily of the observed
interaction networks and percent overlap of the recognition and
interaction networks. Standard errors of the last digit of the
densities are shown in parentheses.

Lab course Lecture course

Fall Spring Fall Spring

Density 0.003(3) 0.002(1) 0.005(5) 0.0015(9)
Percent overlap 56% 54% 57% 55%
Gender homophily 67% 67% 69% 72%

interaction network, however, indicate that interactions
only account for a little more than half of the nominations
of strong peers in each recognition network (Table III).
That is, students also nominate peers with whom they did
not report interacting. These results indicate that interac-
tion-based recognition (e.g., learning about peers’ skills by
working together on a problem set or discussing concepts
together in lecture) and observation-based recognition (e.g.,
learning about peers’ skills by seeing a student ask a
question in class or watching a student in a nearby lab
group collect data for an experiment) occur with similar
frequencies in the observed courses.

We examined the extent to which the gender biases in peer
recognition identified in the ERGMs (in which men under-
nominate women in all courses and women undernominate
men in the spring lecture course) are related to gender biases
in the interaction-based nominations. We identified the
fraction of students’ interaction ties that they also nominate
as strong in the course, split by gender of the nominee
(Fig. 6). In three out of the four courses (all but the spring
offering of the lab course), we observe that men dispropor-
tionately “keep” more of their interaction ties with men than
with women (see top panel of Fig. 6). This pattern indicates
that the gender bias coming from men that we observed in the
ERGM analysis for these courses is (at least partly) related to
a gender bias in interaction-based recognition. Men exhibit
strong gender homophily in their peer interactions (Table III)
and, after adjusting for this homophily (i.e., the metric shown
in Fig. 6 is normalized by the number of interactions made to
peers of a given gender), men exhibit a gender bias in which
of their interaction ties they select as strong in the course
material.

In the spring offering of the lab course, in contrast, men
proportionately nominate their interaction ties to men and
women as strong in the course (see top panel of Fig. 6). The
gender bias in peer recognition coming from men in this
course, therefore, is likely related to a gender bias in
observation-based recognition, though we could not mea-
sure such a bias in our study (see Sec. II C 3).

Finally, the gender bias in the spring lecture course, in
which women undernominate men as strong in the course,
is (at least partly) related to interaction-based recognition:
women disproportionately nominate more of their inter-
action ties with women than with men (see bottom panel of
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FIG. 6. Fraction of edges in each interaction network that also
appear in the corresponding recognition network for each
combination of nominator and nominee gender. Error bars
represent standard errors of the proportions.

Fig. 6). In all other semesters, where we do not observe a
gender bias coming from women in the ERGMs, we
correspondingly find that women nominate proportional
numbers of men and women from their interaction ties as
strong in the course material.

D. Explanations

We devised a coding scheme characterizing students’
written explanations of their nominations of strong peers to
determine what gets recognized in peer recognition—that
is, what are the specific skill sets that students associate
with being strong in their physics course (see Table IV).
The coding scheme illuminates the features of peer inter-
actions and indirect observations of peers that students
consider when selecting which of their peers to nominate.

Related to knowledge, students describe strong peers as
those who have understanding of the course material and
have high performance (e.g., earn high grades). Students
also mention that the peers they nominate have experience
or background knowledge relevant to the course and have a
natural ability for learning physics. Nominees were also
described as hard-working or having motivation to learn the
course material.

Students identify multiple processes associated with being
strong in their physics courses. These codes are course
specific. In the lab course, students describe strong peers as
those who carried out the data analysis for their experiment,
contributed to the planning or experimental design, partici-
pated in data collection, and engaged in writing up the lab

TABLE IV. Definitions and examples of our coding scheme for students’ explanations of why they nominated their peers as strong in
the course material. Some codes were only present in either lab or lecture course nominations, indicated in parentheses. N indicates the
total number of occurrences of each code in each course, lab or lecture.

Category or code Definition Example N Niecwre
Knowledge
Understanding Knowledgeable about the course “Seems to have a strong sense of the 228 112
material topics in class.”
Performance Receiving good grades; answering “Did well on the quiz.” 16 38
questions correctly
Experience Having relevant background “Previous understanding of the class 36 16
knowledge or experiences outside from AP Physics.”
of the course
Natural ability Having an innate aptitude for “Has an innate ability to view a 6 12
understanding the course material problem in its simplest terms.”
Motivation Putting a lot of time or effort into the =~ “Works harder than anyone I know to 88 44
course; determined improve their physics lab
knowledge.”
Processes
Analysis (lab only) Analyzing and interpreting “Has great understanding of software 148
experimental data to help analyze data.”
Planning (lab only) Designing and evaluating an “Knows a lot about experimental 90

experimental procedure

design and what to do to answer the
experimental question.”
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TABLE 1V. (Continued)

Category or code Definition Example N Niecture
Data collection (lab only) Carrying out an experimental “Good at experimental setup/ 26
procedure conducting trials with relatively
small errors when possible.”
Writing (lab only) Writing lab notes about an experiment ~ “Good at making detailed write-ups.” 21
Problem solving (lecture only)  Visualizing or reasoning through “Very good at identifying the topics 54
problems; applying the right that a problem contains and quickly
equations to problems connecting it with a formula.”
Interactions
Helping Providing support with the course “Helped me understand the 77 58
material to others (nominator homework.”
mentions benefits from this
support)
Explaining Describing or clarifying the course “Explained concepts to me very well.” 23 31
material to others (nominator does
not mention benefits from this
explaining)
Participation Active contributor to in-class “Participates effectively during the 54 7
discussions and activities; asking lecture.”
questions
Leading Taking charge during in-class group “Organizes the group quite well and 17 2
work gets the group rolling, keeping us
on track throughout the lab.”
Other
Other Part or all of the explanation is vague  “Thinks outside the box.” 52 22
or does not fit with above codes’
None No explanation provided [Blank] 57 26

"A more detailed description of explanations coded as other, with examples, is provided in Appendix D.

notes. In the lecture course, students acknowledge the
problem solving abilities of their strong peers.

Students also consider features of their interactions with
others in the course when forming perceptions of their
peers. Some students describe strong peers as helping
them learn the course material and explaining the course
material to others. Students also describe nominees as
having high levels of verbal participation during lectures
or group work and leading group work during in-class
activities.

Finally, some students note other reasons that they viewed
their peers as strong in the course material. These explan-
ations are either too vague to associate with one of the above
codes or too infrequent to create a separate code.
Explanations left completely blank are coded as none.

Students proportionately recognize their interaction-
based and observation-based nominees for each of these
skills, except for process-related codes. In the lab course,
students are more likely to describe their observation-based
nominees than their interaction-based nominees as being
strong in processes (specifically, data analysis). In the
lecture course, students are more likely to describe their
interaction-based nominees than their observation-based
nominees as being strong in processes (specifically, prob-
lem solving). More detail about this comparison can be
found in Appendix E (see Fig. 10).

Comparing fractions of nominations containing each code
by the nominator and nominee gender, we find that in both
the lab and lecture courses women proportionately nominate
men and women for each category of the coding scheme
[bottom row of Fig. 7(a)], with small differences for most
individual codes [bottom row of Fig. 7(b)]. One interesting
exception is that women disproportionately nominate men
more than women for understanding in the lab course,
though women do not exhibit a gender bias in their
nominations in either offering of this course (Fig. 5).

In the lecture course, men also proportionately nominate
men and women for each category despite the gender bias
identified in the ERGMs [top right box of Fig. 7(a)]. In the
lab course, however, men nominate men more than women
for features of their interactions [top left box of Fig. 7(a)].
Examining the individual codes, we see that men dispro-
portionately overnominate men as strong in the lab course
for two of the individual interactions codes [top row of
Fig. 7(b)]—helping and explaining—with the largest dif-
ference occurring for helping. It is important to note that
these comparisons for individual codes are limited by small
sample sizes (Table IV).

These results add nuance to our previous stages of
analysis. The gender bias in the lecture course is seemingly
related to who gets recognized (i.e., students dispropor-
tionately overnominating interaction ties to peers of their
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FIG. 7. Fraction of nominations falling under each (a) category of our coding scheme within each course and (b) code of our coding
scheme for the lab course only, split by gender of the nominator and nominee. Results are aggregated across the fall and spring offerings
of each course. We coded 300 (205 in lab and 95 in lecture), 106 (79 in lab and 27 in lecture), 179 (127 in lab and 52 in lecture), and 274
(168 in lab and 106 in lecture) explanations from man to man, man to woman, woman to man, and woman to woman, respectively.
Fractions do not necessarily sum to one because each explanation could receive multiple codes. Nominations made by men and women
received comparable numbers of codes: men’s nominations received an average of 1.4 codes and women’s nominations received an
average of 1.3 codes. Error bars represent standard errors of the proportions.

same gender) and not what gets recognized. In the lab
course, however, the observed gender bias is also due to
what gets recognized: men nominate more men than
women because of the ways they interacted.

IV. DISCUSSION

In this study, we aimed to disentangle who and what gets
recognized in peer recognition to better understand the
nature of gender bias in such recognition (identified in,
e.g., Refs. [13,14,30]). Across two offerings of distinct lab
and lecture physics courses, we found that students
determine who gets recognized in peer recognition in
two ways, each with a similar frequency: interacting with
peers and indirectly observing peers with whom they do not
interact. We also identified what gets recognized in peer
recognition: students mention skill sets related to knowl-
edge, processes, and interactions in their written explan-
ations of nominations.

In the following sections, we synthesize these results
related to gender bias in peer recognition (in which men
disproportionately undernominated women as strong in
both courses and women disproportionately undernomi-
nated men as strong in one offering of the lecture course)
and relate our findings to prior work. We also discuss other
implications for research suggested by our analysis.

A. The nature of gender bias in peer recognition

In both offerings of the lecture course, we found a similar
gender bias in peer recognition (in which men under-
nominated women compared to men) to previous work
examining science courses aimed at first-year students
during in-person and remote physics courses [13,14] and
in-person biology courses [30]. Such a bias was not
previously observed in in-person mechanical engineering
courses [31] and remote physics courses [14] aimed at
beyond-first-year students, which is likely due to students
in those courses being more familiar with each other, as
noted in Ref. [14]. Different from prior work [13,14,30], we
also observed a bias from women in the spring offering
of the lecture course: women disproportionately under-
nominated men as strong in this course. Surprisingly, we
also found a gender bias in peer recognition (in which
men disproportionately undernominated women) in both
offerings of the lab course even though we did not
previously observe a gender bias within a comparable
lab context of a remote physics course (Course A in
Ref. [14]). We build on the body of previous work by
also probing the nature of these gender biases in peer
recognition, finding that whether the gender bias is related
to who and/or what gets recognized varies by instructional
context, whether lecture or lab, described next.
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1. Gender bias in the lecture course is related to
who gets recognized, not what gets recognized

Our analysis suggests that in both offerings of the lecture
course, the gender bias in peer recognition coming from
men’s nominations is related to men disproportionately
overnominating men with whom they interact as compared
to women with whom they interact as strong in the course
material (i.e., there was a gender bias in interaction-
based recognition). We observed that this bias is likely not
attributable to men recognizing men and women for different
skill sets because, of the people they recognize, men
nominated men and women for similar skill sets.

The latter result is somewhat surprising given the research
literature showing that students associate men and women
with having different skill sets in lecture [44,46,49]. One
study, for example, found that students associate men
more than women with having a natural ability for learning
physics and associate women more than men with asking
questions [44]. If our observed gender bias in the lecture
course is instead due to who gets recognized, rather than
what gets recognized, then the observed bias may be due to
gender stereotypes more broadly (i.e., students generally
associating men more than women with being strong in
physics) [3,7,9,17-26]. Alternatively, this gender bias may
be related to prior literature’s suggestion that students’ social
networks, and subsequently peer perceptions, exhibit strong
gender homophily [40,41,70]. This interpretation is supported
by our analysis of women’s nominations, described next.

We found that women undernominated men in the spring
offering of the lecture course, opposite of what prior work
would predict (i.e., a gender bias in peer recognition in favor
of men, rather than against men) [13,14,30]. In this offering,
the observed bias was related to women nominating more of
their interaction edges to women than men as strong in the
course. Similar to nominations from men in this course,
women proportionately nominated men and women for the
skills identified in our analysis. The gender bias in the lecture
course coming from both men and women, therefore, is
related to who gets recognized (particularly, students nom-
inating their same-gender interaction ties) and not what gets
recognized.

2. Gender bias in the lab course is related to both
who and what gets recognized

We found that the gender bias in the lab course (in which
men disproportionately undernominated women as strong
in the course) is related to a gender bias in interaction-based
recognition in the fall offering (similar to the patterns
observed in the lecture courses described above), but is
likely related to a gender bias in observation-based recog-
nition in the spring offering (though we could not measure
this). Different from the lecture course, the nature of peer
interactions are also a possible source of the gender bias in
the lab course: men nominated men more than women for
skills related to their interactions, such as helping them with

the course material and explaining course material to others
more generally. This result is consistent with prior work
proposing that the “chilly climate” for women in physics
may be due to the nature of their peer interactions rather
than their number of peer interactions [66]. It is surprising,
however, that the men and women in our study propor-
tionally nominated one another for specific experimental
skills in lab, such as handling the equipment to collect data
or leading the group, despite evidence of students’ gen-
dered engagement in these roles [18,19,80].

One possible explanation for why we observed a gender
bias (from men) in the in-person lab course but not the
remote labs (Course A in Ref. [14]) is that these two labs
had very different course structures, which ultimately
shaped opportunities for peer interactions and observations.
In the remote course, the lab was attached to the lecture
course and almost all work for lab was done during the lab
sessions within lab groups in isolated breakout rooms on
Zoom. The lab had no whole-class lecture session or
summative assessments (e.g., exams or quizzes) and
students’ lab grades were combined with their lecture
course grade. The in-person lab course, in contrast,
included a whole-class lecture session that included peer
instruction activities and three summative quizzes. Students
also received a separate course grade for the lab material.
We suspect that these changes in course structure facilitated
more out-of-lab-group interactions, including both in-
lecture interactions and out-of-class interactions. Out-of-
class interactions may also have been more common during
the in-person course simply due to the evolving nature of
the COVID-19 pandemic.

3. Summary

The results from both courses add nuance to our previous
work which found that the presence or absence of a gender
bias in peer recognition varies between the instructional
contexts of lab and lecture [14]. In this study, we observed a
gender bias in peer recognition (either from both men and
women or just men) in both the lab and lecture course but
found that the sources of this bias varied—whether only
due to a bias in who gets recognized (lecture) or also due to
a bias in what gets recognized (lab). These results may
suggest that pedagogical style (e.g., having both lecture and
small-group sessions related to instructional material) may
impact gender bias in peer recognition more than the
instructional material itself. Future investigations of peer
recognition, however, should continue to analyze peer
recognition in these instructional contexts separately and
should examine the nature of gender bias in peer recog-
nition in other lab and lecture contexts, such as those
at other institutions, with students from other types of
majors, or with students in studio physics courses.
Researchers should also more closely investigate how
students develop perceptions of strong physics peers, such
as through interviews, that may better illuminate some of
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the differences we observed between courses and semesters
and between men’s and women’s nominations.

B. Other implications for research

Here we synthesize our findings that are not directly tied
to the research questions of this study with those of
previous research and suggest directions for future work.

1. Structure of peer recognition networks

The structures of the peer recognition networks in this
study differ from those observed in prior work. Specifically, a
relatively small fraction of nodes in the recognition networks
of the in-person lecture courses in this study comprised the
giant component (the largest cluster of connected nodes),
with connections instead forming short chainlike structures
and some small, disconnected components. In previous
studies [14,30,31], in contrast, the lecture recognition net-
works for both in-person and remote science courses had
relatively large giant components (i.e., a large proportion of
the nodes connected together in a main cluster). We propose
that this difference in network structure is due to differences
in course structure and populations. Refs. [30,31], for
example, examined second-semester (or later) in-person
courses within a multicourse sequence, when students have
likely developed familiarity with one another. Thus, students
could likely identify many of their peers, including out-
spoken students in lecture who then become celebrities in the
network. Similarly, in the remote physics courses studied in
Ref. [14], Zoom likely expedited name familiarity and
connections across many different peers (not just those in
close physical proximity) even for students in the first course
of the sequence. The in-person lecture courses analyzed in
this study, however, are the first in the physics sequence when
students are likely still getting to know one another and each
other’s names (e.g., even if some students are really out-
spoken during in-person lectures, other peers likely do not
know their name). Future work should examine this effect
of peer familiarity on peer recognition further through a
longitudinal study, for example, modeling how recognition
networks change (or not) throughout a course sequence (e.g.,
similar to Ref. [81] in which the authors analyze changes in
peer interaction networks over time).

We also observed lower transitivity (small group cluster-
ing) in the peer recognition networks of in-person lab
courses (this study) than the peer recognition networks of
remote physics labs [14]. This difference is likely due to the
different course structures mentioned above and the differ-
ent instructional modalities. In the remote physics labs [14],
students only attended low-enrollment lab sessions where
they worked in Zoom breakout rooms with the same peers
every week. Therefore, students had limited access to peers
(and these peers’ names) outside of their immediate lab
group. Students in the in-person lab course (this study),
however, could see and interact with other students in their
lab section, including those outside of their immediate lab

group. These students also attended a large lecture each
week where they could interact with peers outside of their
lab group and lab section entirely. Increased visibility of
out-of-lab-group peers within individual lab sections and
the addition of a lecture session to the lab, therefore, likely
increased the number of peers students had access to, which
in turn reduced the amount of small, isolated clusters in the
recognition network. Future work should investigate peer
recognition in other course structures containing structured
small group activities, such as studio physics and modeling
instruction, where patterns of recognition might also vary.

2. How does peer recognition form?

We found that both peer interactions and indirect
observations of peers play an important role in shaping
peer recognition, in line with what prior work suggests
[15,30,38,39]. Our analysis, therefore, illuminates the
complexities behind how students form perceptions of
their peers (i.e., interaction-based versus observation-based
recognition). Future work should further investigate the
relationship between interactions and peer recognition, for
example by conducting egocentric network analyses to
probe the more fine-grained social processes underlying the
development of peer recognition. Our results also suggest
that future analyses of peer recognition should continue to
probe and analyze interaction networks alongside student
nominations of strong peers. Examining both networks
together will likely provide a more nuanced understanding
of how patterns of recognition form.

Finally, we devised a coding scheme to identify the
different skill sets for which students nominate their peers
as strong in their physics course. These codes encompassed
a variety of skills students identified in their explanations of
nominations: knowledge (e.g., content knowledge, getting
high grades, and having a natural ability to learn physics),
engagement in processes (e.g., designing an experiment,
analyzing data, and solving problems), and interac-
tions (e.g., helping, explaining, and leading). Such skills
have been identified across qualitative research studies
investigating how students define being a good physics
student or a good physicist [18,19,42-51], however our
study is the first to evaluate these skills at the scale of a
large introductory physics course. Future work should
examine whether this coding scheme is applicable to
explanations from students in other institutions or experi-
encing different instructional styles and pedagogies.

C. Limitations

We end this section by acknowledging the limitations of
our study. First, the online network survey may not have
captured all nominations of strong peers and all peer
interactions. Students may not have remembered the names
of individuals they perceived as strong in the material and/
or with whom they interacted, for example due to recall
bias. We also only collected survey responses in the middle
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of the semester. Previous work administered surveys either
both at the middle and end of the course [30] or only at the
end of the course [31] and so this methodological choice
allowed us to compare our results to that previous work.
Future research examining in-person physics students’
recognition of strong peers at multiple points in their
physics course, or just at the end of their physics course,
however, may add nuance to our results.

Additionally, we categorized students’ race or ethnicity
by URM status because the number of students in some of
the individual racial or ethnic groups was too small for our
statistical analysis to produce useful and interpretable
results. This treatment of race or ethnicity, however,
inevitably masks differences in peer recognition between
students of individual racial or ethnic groups. Because our
research questions were focused on the role of gender in
peer recognition, this categorization allowed us to account
for race and ethnicity in a cursory way in our analysis.
Future work should seek to study the role of race and
ethnicity in peer recognition explicitly by using more
diverse student populations with statistically sufficient
representation across racial or ethnic groups. Researchers
should also aim to differentiate peer recognition among
White and Asian students and between Asian and Asian
American students [82,83].

We also observed more sparse recognition networks than
those in prior work [14,30,31], particularly with regard to the
proportion of students who were isolates (nodes with zero
adjacent edges in the network). It is impossible for us as
researchers to know if these isolates are “true isolates,”’
students who truly have zero nominations to make or receive,
or if they are essentially non-respondents who fill out the
survey quickly and do not nominate anyone, even though
they may actually have nominations to make. Therefore, our
analysis may have missed some nominations and the network
structures may not represent all connections between stu-
dents. Fortunately, social network data is robust to up to 30%
missing data [57] and our recognition networks contain a
range of 32%—48% isolates. Assuming some students are
true isolates, our analysis likely captures a fairly accurate
picture of peer recognition. Furthermore, all of our ERGMs
converged with appropriate goodness-of-fit diagnostics,
indicating that the statistical analysis is reliable; any uncer-
tainties due to small sample sizes are reflected in the standard
errors and p values of the coefficient estimates.

Finally, the majority of our analysis assumes that any
overlap in the recognition and interaction networks implies
that peer recognition was formed through peer interac-
tions. Alternatively, interactions may plausibly be formed
through recognition, such as by a student deciding to
interact with peers they perceive as strong in the course
material. We believe the former is more likely than the latter
in this study because the courses we analyze are the first in
the course sequence, when students have likely not met
each other before, and because the survey was administered

in the middle of the semester, when students may not have a
strong sense of each other’s grades. Nonetheless, future
work should seek to disentangle this relationship between
interactions and recognition, if possible.

V. CONCLUSION

In this study, we observed a gender bias in student
nominations of strong physics peers in distinct lab and
lecture courses. In both courses, men undernominated
women as strong in the course. Women also undernomi-
nated men as strong in one offering of the lecture course. To
understand the nature of this gender bias in peer recog-
nition, we built upon two existing threads of research. First,
we investigated the role of peer interactions in students’
determination of who gets recognized in peer recognition.
Second, we examined what gets recognized—whether the
skills students associated with being a strong physics
student or strong physicist are related to the gender bias
in peer recognition. We found that roughly half of nom-
inations of strong peers formed through peer interactions,
with the remaining nominations likely coming from indi-
rect observations of peers. We also observed that the nature
of the gender bias varied between the lab and lecture
courses. In the lecture course, the bias was related to who
gets recognized: both men and women disproportionately
overnominated their interaction ties with students of their
same gender as strong in the course material. At the same
time, men and women nominated men and women for
similar skill sets in this course. In the lab course, in contrast,
men also disproportionately undernominated women for
certain skill sets, particularly those related to their inter-
actions, such as being helpful. These results add nuance to
our understanding of how students form perceptions of
strong peers in their physics courses and prompt future
work to examine the nature of gender bias in peer
recognition in other course structures, instructional styles,
and student populations.
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APPENDIX A: ERGMs: GOODNESS-OF-FIT
DIAGNOSTICS

Figure 8 shows one example (for the fall offering of the
lecture course) of the diagnostics used to assess the good-
ness-of-fit of ERGMs. When an ERGM fits an observed
network well, the thick black line always falls within the
boxplots. Because this is the case in Fig. 8 and for the other
three analyzed courses, our model sufficiently captures the
characteristics of the observed networks.
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FIG. 8. ERGM goodness-of-fit diagnostics for the recognition

network of the fall offering of the lecture course. The horizontal
axis represents a network measure (outdegree, indegree, or
edgewise shared partners—a measure of transitivity) and the
vertical axis represents either the proportion of nodes or pro-
portion of edges in the network. Plots compare the distribution of
each network measure for the observed data (thick black line) to
that for 10 network simulations generated using the estimated
model coefficients (box plots).

APPENDIX B: ERGMs: FULL MODEL RESULTS

Table V shows the coefficient estimates for all predictor
variables in our exponential random graph models, fit to
each of the four analyzed networks.

APPENDIX C: INTERACTION NETWORK
DIAGRAMS

Figure 9 shows the network diagrams of students’ self-
reported peer interactions for all four analyzed courses.

APPENDIX D: EXPLANATIONS CODING
SCHEME: Other CODE EXAMPLES

We coded an explanation as other if it was not related to
one of the other codes (see Table IV) or if the reason(s)
provided in the explanations did not appear often enough in
the full dataset to form a new code. Examples of vague
explanations coded as other are “Good at working in the
lab” and “She’s amazing.” Examples of ideas that were too
infrequent to form their own code are:

 drawing (e.g., “She draws good.”)

* open-minded (e.g., “[He] is open-minded and explains
concepts materials when I don’t understand.”)

* patient (e.g., “Patient with other members.”)

e listening (e.g., “He listens to new ideas and knows the
course material very well.”)

e revising their own thinking (e.g., “She understands
and is confident in the course material and can
iteratively revise her thinking.”)

e creative (e.g., “He quickly comes up with good ideas
for experiments and is very creative with collect-
ing data.”)

¢ hearing from someone else that the nominee is strong
in the course (e.g., “I've heard great things of
this man.”).

TABLE V. Coefficient estimates for the exponential random graph models, represented as log-odds, fit to each observed recognition
network. Standard errors are given in parentheses. Asterisks indicate statistical significance (*p < 0.05; **p < 0.01).

Lab course Lecture course
Fall Spring Fall Spring
Edges —10.37* (0.73) —11.11** (0.56) —9.49** (0.87) —10.70"* (0.48)
Reciprocity —0.14 (0.31) 0.46* (0.23) 2.95 (0.52) 4.84* (0.32)
Woman — woman —0.04 (0.19) 0.04 (0.13) 0.19 (0.22) 0.15 (0.15)
Woman — man 0.02 (0.19) 0.02 (0.15) —0.57 (0.30) —0.41* (0.20)
Man — woman —0.83" (0.25) —0.42* (0.17) —0.98"* (0.36) —1.06"* (0.26)
URM — URM 0.19 (0.44) —0.23 (0.24) 0.92* (0.41) 0.47 (0.25)
URM — non-URM 0.01 (0.25) 0.10 (0.15) 0.19 (0.29) —0.17 (0.20)
Non-URM — URM —0.25 (0.26) 0.08 (0.16) 0.30 (0.31) —0.11 (0.24)

Physics majors — physics majors 1.36" (0.41)

1.59** (0.43)

(Table continued)
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TABLE V. (Continued)

Lab course Lecture course
Fall Spring Fall Spring
Physics majors — nonmajors —0.96* (0.40) —0.07 (0.28)
Nonmajors — physics majors 0.20 (0.25) 0.69** (0.21)

Lab group homophily

Lab section homophily
Discussion section homophily
Grade of nominee

4.64* (0.26)
1.96* (0.27)

0.71** (0.19)

420" (0.18)
2.50" (0.20)

0.75* (0.15)

1.70 (0.56)
—0.04 (0.47)
2.14* (0.21)
0.79" (0.23)

2.07" (0.38)
0.17 (0.33)
1.62* (0.32)
1.01% (0.13)

Lab course Lecture course

@ Nonbinary

O Unknown

FIG. 9. Interaction networks for all analyzed courses. Nodes are colored by gender and sized proportional to indegree (number of
received nominations). Edges point from the nominator to the nominee.
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APPENDIX E: EXPLANATIONS SPLIT BY INTERACTION-BASED
AND OBSERVATION-BASED NOMINATIONS

Figure 10 shows the fraction of interaction-based nominations (i.e., nominations of strong peers with whom the nominee
also reported interacting) and observation-based nominations (i.e., nominations of strong peers with whom the nominee did
not report interacting) falling under each category or code from our coding scheme.
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FIG. 10. Fraction of nominations that are interaction-based and observation-based falling under each (a) category and (b) code of our
coding scheme, split by course. Fractions do not necessarily sum to one because each explanation could receive multiple codes. Error
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