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Beyond normalized gain: Improved comparison of physics educational outcomes
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This study proposes methods of reporting results of physics conceptual evaluations that more fully
characterize the range of outcomes experienced by students with differing levels of prior preparation,
allowing for more meaningful comparison of the outcomes of educational interventions within and across
institutions. Factors leading to variation in post-test scores on the Force and Motion Conceptual Evaluation
(FMCE) across different instructors, semesters, and course models in a sample collected in introductory
calculus-based mechanics at a large, eastern land-grant university were examined. The sample was
collected over nine years and contains a total of N = 4409 matched pretest and post-test records. The data
showed a systematic semester-by-semester variation in both pretest scores and ACT or SAT mathematics
percentile scores. Neither the normalized gain nor Cohen’s d removed the semester-to-semester variation
observed in post-test scores. The local average curve plotting post-test scores against pretest scores, which
we call a conceptual growth curve, allowed for the characterization of outcomes for students with different
pretest scores. Regression models were used to produce an approximation to this curve. By using either the
full curve or a mathematical approximation developed through linear regression, the post-test score that
would be observed if a class enrolled students with a given level of prior preparation measured by pretest
scores can be predicted. This predicted post-test score can then be used to calculate the predicted
normalized gain if desired. These methods rely on using the natural variation of incoming student
preparation at one institution to predict how a class would perform if it enrolled students with different prior
preparation. The study presents an example of converting the outcomes at an institution with a weakly
prepared student population to the outcomes which would have been observed if the course enrolled a more
prepared student population; converting the outcomes for a different student population dramatically

changed the interpretation of how the class studied was functioning.
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I. INTRODUCTION

Assessing student learning is fundamental to improving
the quality of instruction and in evaluating the performance
of instructors. Comparing the performance of instructional
models across classes and institutions is vital to identifying
instructional models that promote learning and in arguing
for the broad dissemination of those pedagogies. The
incoming preparation of students both in general and in
physics varies among classes at the same institution and
may vary broadly between institutions making these
comparisons difficult.

Within physics, standardized research-based conceptual
instruments have become one of the most commonly used
assessments of physics instruction. For an extensive review
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of research-based instruments in physics see Madsen et al.
[1]. Popular instruments include the Force Concept Inventory
(FCI) [2] and the Force and Motion Conceptual Evaluation
(FMCE) [3]. These instruments measure a student’s con-
ceptual understanding of Newton’s laws. The assessment is
given early in the semester as a pretest to gauge student
incoming preparation, then late in the semester as a post-
test to measure student knowledge after instruction. Pretest
and post-test experimental designs have been common in
physics education research (PER) since its inception; many
excellent summary articles provide an overview of the
field and of subfields where their use is particularly
widespread [4-6].

In 1985, Halloun and Hestenes used pretest and post-test
data to show little conceptual understanding was gained in
a traditional physics class [7]. This work ultimately led to
the development of the FCI, the first broadly adopted PER
research-based instrument. In an effort to determine the
effectiveness of reformed instruction, Hake collected FCI
pretest and post-test data from 62 courses across a broad
variety of institutions [8]. To compare learning across these
institutions with substantially different pretest scores, Hake
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plotted the average gain (post-test to pretest) for each
institution against the average pretest score. Examination of
the resulting plots led Hake to propose the normalized gain,
g, the ratio of the average gain to the average total possible
gain (100%—pretest) as shown in Eq. (1), as a useful
statistic to compare gains across diverse institutions:

(Post) — (Pre)

977100 — (Pre)

(1)

where pretest is abbreviated as Pre, post-test as Post, and
both pretest and post-test are scored out of 100%. The
average of a variable X is represented by (X).

Hake stated [8] “I infer from features (figures in [8]) that
a consistent analysis over diverse student populations with
widely varying initial knowledge states, as gauged by
(pretest), can be obtained by taking the normalized
average gain (g) as a rough measure of the effectiveness
of a course in promoting conceptual understanding. This
inference is bolstered by the fact that the correlation of (g)
with (pretest) for the 62 survey courses is a very low
+0.02.” The Hake study was central to the effort to
encourage the adoption of interactive methods of physics
instruction; the influential nature of the study also led to the
broad adoption of the normalized gain in PER.

The use of research-based instruments has grown to the
extent that large studies aggregating data from multiple
institutions are now possible. Von Korff et al. [9] gathered
the results of studies administering either the FCI or
FMCE from 1995 to 2014 producing a sample containing
50 000 students. A synthesis of this data demonstrated that
interactive instruction produced superior normalized gains
when compared to traditional instruction. Freeman et al.
showed that interactive instruction was superior to
traditional instruction in producing learning gains and
promoting student success; this result held across a variety
of science, technology, engineering, and mathematics
(STEM) domains [10].

Since its introduction, substantial evidence has accumu-
lated that the normalized gain does not completely correct
for differing student prior preparation. Coletta and Phillips
showed that normalized gain scores were correlated with
FCI pretest scores (correlation coefficient r = 0.33) [11].
This result has been replicated by a number of other studies
[12,13]. The current study shows this correlation between
normalized gain and pretest scores is also found for the
FMCE. Coletta et al. went on to establish that some of this
relation could be explained by a correlation between
standardized test scores (SAT scores) [14] and the normal-
ized gain. Several recent studies have reported correlations
between either FCI or FMCE pretest and standardized test
scores (either the ACT or SAT) [15-17].

While broadly reported in PER for many years, the
normalized gain has recently become somewhat contro-
versial. The statistic is generally only reported in PER, and

as such, if it is not accompanied by more broadly used
measures such as pretest scores and post-test scores, its use
may make PER studies difficult to interpret by the broader
education research community. The statistic has been
inconsistently reported [12] with some studies first calcu-
lating the averages (Pre) and (Post) then using Eq. (1) to
calculate the normalized gain while other studies have first
calculated a normalized gain for each student, g;, [Eq. (2)],
then averaged this result to produce the average normalized

ga-ina <gi>’

Post; — Pre;
9= 100 - Pre; ’ @)
where Pre; is the pretest score of student i and Post; the
post-test score of student i; both pretest and post-test are
scored out of 100%. The two methods do not yield
equivalent results [18]. In the current work, we use the
method applied by Hake in Eq. (1). If the student-level
method is used, singularities may occur which led Marx
and Cummings to propose an alternate statistic, the
normalized change [13].

In an analysis of conceptual inventory data from biology,
chemistry, and physics, Nissen et al. found that normalized
gain was positively biased in favor of populations with
higher pretest scores, which they suggested resulted in an
overestimation of course-level gender bias. They proposed
discontinuing the use of the normalized gain in favor of
Cohen’s d between the pretest and the post-test

. (Post) — (Pre) ’ 3)

Sp

where sp is the pooled standard deviation of the pretest and
post-test. The pooled standard deviation is the sample size
weighted square average of the pretest standard deviation,
S pre> and the post-test standard deviation, s, as shown
in Eq. (4)

- (npre - 1>s%re + (npost - 1)ngst (4)
d (npre + Npost — 2) '

where n; is the sample size. They argued that using Cohen’s

d mitigates both ceiling and floor effects [12].

This suggestion was strongly opposed by Coletta and
Steinert, who argued that normalized gain is not prescore
biased. They suggested retaining normalized gain as a
measure of the effectiveness of pedagogical approaches
while proposing that scores on the Lawson Classroom Test
of Scientific Reasoning, ACT, or SAT must also be
considered when making comparisons [19].

The primary innovation of the present work is the use of
the natural variation of student prior preparation and
outcomes at the institution studied to allow the prediction
of how classes would perform if they enrolled a different
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student population. This work proposes reporting the
functional relation between post-test scores and pretest
scores to make use of this natural variation. This functional
relation may either be reported using a visualization of the
relation of pretest to post-test or by reporting the mathe-
matical function relating pretest to post-test.

Reporting such measures of preparation or ability for
student populations studied is not universal in published
PER studies. The likelihood of authors noting the impact
sample characteristics have on the generalizability of
published results has increased as the field has matured
[20], and while tools such as PhysPort allow instructors to
construct histograms to compare their class outcomes on
conceptual inventories to those of similar classes [21],
these do not facilitate comparison across classes with
differing incoming preparation. While visualization of
pretest and post-test score distributions is common in
published studies, the visualization of the relation of
pretest scores to post-test scores is not. Visualizations
of data allow researchers to leverage both computation
and human cognition to make sense of large, hetero-
geneous datasets [22].

The most common graphical representation of pretest or
post-test scores that moves beyond reporting of overall
averages presents histograms of pretest and post-test scores
[23-26]. Multiple studies [27,28] have used a histogram to
provide a more nuanced characterization of gender
differences on the FMCE by showing average postscore
for a range (bin) of pretest scores disaggregated by gender.
This representation is related to that proposed in the current
work. Unfortunately, the nonlinear binning used does not
allow the extraction of the full pretest or post-test response
curve. Histograms have also been used to represent the
distribution of items scores [29].

While graphical representations of the relation of pretest
and post-test scores are rare in PER, graphical representa-
tions of the relation of pretest scores to individual items
responses in the form of item characteristic curves for
nominal item response theory [30] or item response curves
[31,32] have been reported. Stacked histograms have also
been used to represent pretest to post-test changes to item
responses [3].

A representation related to the heat map used in Fig. 3
was used by Thornton et al. [33] to show the relation of
FMCE scores to FCI scores.

Reporting the mathematical relation of pretest to post-
test as a linear regression is fairly common in PER [15—
17,34]. This is generally done in studies investigating the
effect of a set in independent variables including pretest
scores on post-test scores. The regression is reported to
characterize the relation of the variables, not as a means to
report the variation in the data. As such, the regression
equations reported generally contain additional variables
beyond pretest scores making them difficult to use to
predict student outcomes from data drawn from different

institutions. The studies rarely report the additional quan-
tities needed to compute confidence intervals for predicted
post-test scores (see Supplemental Material [35]). Further,
these studies seek to optimize model fit, selecting models
that fit well in regions with many pretest observations, but
for reporting purposes, the models should fit well over the
range of pretest scores. In the present work, we will need to
include a quadratic term in pretest to fit the data well over
its full range; higher order powers of pretest scores are
rarely explored.

A. Research questions

The purpose of this study is to propose methods that
allow student conceptual learning to be compared across
classes at the same institution and to allow published
research results to be evaluated as to determine if they
are likely to increase student success when implemented at
a different institution.

This study seeks to answer the following research
questions.

RQ1 Do either the normalized gain or Cohen’s d allow
productive comparison between classes at one insti-
tution if the student characteristics vary between
classes?

RQ2 How can the natural variation of student prior
preparation within a course be used to compare classes
enrolling students with differing levels of prior prepa-
ration?

RQ3 How can the natural variation of student outcomes
within a course be used to evaluate the efficacy of
published PER results when transferred to a local
context?

II. METHODS
A. Sample

This study was performed at a land-grant university in
the eastern United States with total undergraduate enroll-
ment of 20500 in fall 2020. Data were collected in the
introductory calculus-based mechanics class taken by
scientists and engineers from Fall 2011 to Fall 2019.
The general demographic composition of the university
in 2019 was 82% White, 4% Black or African American,
4% Hispanic/Latino, 4% nonresident alien, 4% two or more
races, with other groups 2% or less. The 25th percentile to
the 75th percentile range of ACT composite scores range
was 21 to 27 [36]. This is equivalent to a range of
composite scores of 59th to 85th percentile. Pell grants
are available to students of lower socioeconomic status;
31% percent of undergraduate students were Pell eligible.
This study collected FMCE pretest and post-test scores;
students received assignment grades in the course for good
faith efforts on these assessments. Standardized test scores
were accessed from institutional records.
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B. The FMCE

The FMCE [3] is a 43-item multiple-choice instrument
(excluding the four energy questions added after its initial
publication). The instrument measures a student’s under-
standing of Newton’s laws and one-dimensional kine-
matics. Thornton et al. [33] proposed a modified scoring
methodology, which eliminated scoring of some questions
typically answered correctly even by students with non-
Newtonian beliefs and one question not consistently
answered correctly by experts. Certain related questions
are scored as groups, producing a total instrument score of
33. The present study uses the modified scoring method.

C. The instructional environment

The class studied was presented in two instructional
models over the period studied. Data were collected for 18
semesters numbered 1 to 18. The first model, the learning
assistant (LA) instructional model, was in place from
semester 2 to semester 9. This model presented four
50-min lectures each week. The lectures were taught by
a variety of faculty, many of whom used some interactive
engagement method. Students also enrolled in a two-hour
required laboratory section. The lab section was split into
two hour-long halves. The first half was led by under-
graduate learning assistants [37] who helped the students
work through a lesson from the University of Washington’s
Tutorials in Introductory Physics [38]. The second half of
the lab involved a traditional experiment overseen by
graduate teaching assistants (TA). The LAs were required
to enroll in a physics teaching methods course in which
they received training in science teaching methods in
general and specific instruction in presenting the upcoming
week’s lesson. The program was supported as part of a
larger general science grant which allowed the LAs to be
compensated for their efforts. Coordination between the
lecture and laboratory parts of the course was variable and
depended on the lecture instructor. This instructional model
had to be abandoned when funding for the LA stipend was
discontinued with the end of the grant.

From semester 10 to 18, an alternate model not requiring
LAs to staff each lab was implemented. This model focused
on coordinated lecture and laboratory instruction and is
called the coordinated learning (CL) model in this work.
This model shifted to three 50-min lectures and one 3-h lab
each week. A single lead instructor assumed the course
coordinator role and ensured that all lecture sections
progressed on a fixed schedule in concert with laboratory
sections. Lecture instructors were encouraged to implement
Peer Instruction [39], and all lecture sections included
clicker questions. Labs were modified to feature a combi-
nation of activities including whiteboarding of conceptual
problems, TA-led demonstrations, group problem solving,
hands-on inquiry activities, and traditional experiments.
The LA program was modified to one requiring the election
of the physics teaching methods class for credit; however,

LAs were no longer compensated, and LLAs could not be
provided for each laboratory section. The Tutorials in
Introductory Physics were abandoned because of their
cost to students and because they could not be modified
to fit the instructional setting. The materials were replaced
with a combination of some modified elements of the Open
Source Tutorials in Physics Sensemaking [40] along with
other interactive activities to produce a coherent 3-h
session.

Semester 1 was a control semester for the LA program
and is not reported because only one semester of data was
collected. It is not included in the graphs or other analyses.

D. Variables

The FMCE was given as a pretest early in the semester
and as a post-test during the last week of the semester. The
students received credit for a good faith effort. Standardized
test scores were accessed from institutional records.
Students reported either ACT or SAT scores; the mathe-
matics subscore was converted to a percentile using
conversions published by the testing companies. If both
scores were reported, the percentiles were averaged. The
quantity will be represented by the variable ACTM%.

III. RESULTS

Table I presents descriptive statistics for the class
studied. The quantities are reported as mean 4 standard
deviation. Both the normalized gain and Cohen’s d are
calculated at the class level and as such no standard
deviation could be calculated. The statistics are reported
for the aggregated overall sample and disaggregated by
instructional model.

For semester 1, the control semester using a traditional
instructional model, 175 students completed the pretest and
post-test. The average pretest score was 23.6% 4 19%, the
average post-test score as 41.1% + 27%, and the average
ACTM% percentile score was the 80.1 £ 15. This yielded a
normalized gain of 22.9%.

A. Variation of course outcomes

Figure 1 plots the various measures of prior prepara-
tion and class achievement by semester. Semesters are

TABLEI Descriptive statistics. The mean =+ standard deviation
is presented.

Variable Overall LA model CL model
ACTM % 79 £ 15 77 £ 16 80 + 15
Pretest % 23+ 18 22 +17 24 + 19
Post-test % 48 £ 28 49 + 29 47 + 28
Normalized gain % 36 4+ 32 38 +32 34 + 32
Cohen’s d 1.06 1.16 0.98

N 4409 2088 2321

010123-4



BEYOND NORMALIZED GAIN: IMPROVED ...

PHYS. REV. PHYS. EDUC. RES. 20, 010123 (2024)

2 100 4
7]
.2
2 904
g
S 80+
=
= 70
>
<601 : :
= (a) ACT/SAT Mathematics Percentile
L<) 50- T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Semester
50
X 40 4
7
230 4
,:‘f ./-\./I\./I\./.\./H—l—i—"\./.\"
m 201
@)
S 10
= (b) FMCE Pretest Percentage
0-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Semester
X 70 4
7
£ 60 1
z
g_‘s()'
m
O 40 A
2
301 (c) FMCE Post-test Percentage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Semester
0\060-
g
<
QO
=]
K 40+
=
£
—
=}
Z. 20 1 . .
= (d) FMCE Normalized Gain Percentage
= 1 23 4 5 6 7 g 9 10 11 12 13 14 15 16 17 18
Semester
1.5 1
~
2 1.0 7
5]
=
(=}
QO 0.5 A
0.0 (e) Cohen’s d
. T T T T T T T T T T T T T T T T T T
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Semester

FIG. 1.
semester.

numbered from 1 (Spring 2011) to 18 (Fall 2019). Spring
semesters are odd numbers; fall semesters even numbers.
Error bars are provided for most plots; these represent the
standard error of the mean. Normalized gain is calculated at
the semester level using Eq. (1). Cohen’s d between the

The average ACT/SAT mathematics percentile (ACTM%), FMCE pretest, post-test, normalized gain, and Cohen’s d per

pretest and post-test and the normalized gain require
semester-level variables, and as such, no error bars could
be calculated. For fair comparison while maintaining ease
of reading, Figs. 1(a) to 1(d) are plotted in a 50% wide
range.
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All plots show an oscillation from spring to fall, with
spring (odd) semesters having both higher incoming ACT
or SAT mathematics percentile (ACTM%) scores and
FMCE pretest scores and higher outcome values on the
FMCE post-test, FMCE normalized gain, and Cohen’s d.
This is likely a result of the prerequisite structure of the
course studied. The course has Calculus 1 as a prerequisite;
students ready to enroll in Calculus 1 in their fall freshman
semester enroll in the course studied in their spring fresh-
man semester. This is the university’s intended course
progression for most students in the course as outlined in
published four-year degree plans. However, many students
taking the class in fall semesters were not eligible to take
Calculus 1 upon entering college; these students were not
“math ready” and thus delayed enrollment in introductory
physics.

The pretest and ACTM% plots clearly show that
instructors teaching in the spring semester have a more
academically prepared student population; these instructors
produce superior academic outcomes measured by FMCE
post-test scores. Because of the differences in incoming
student preparation, it is difficult to determine if differences
in academic outcomes result from differences in instruction
or differences in student population. It is thus challenging
to use post-test scores fairly to evaluate instruction. It is also
very difficult to evaluate the results of educational reform
against this background of student variation.

There are not instructional reasons for this variation by
semester to exist. The class is presented in the same format
in both the spring and the fall semesters. Instructors are also
fairly randomly assigned among semesters.

Figure 1 also clearly shows that neither the normalized
gain nor Cohen’s d does much to remove this semester to
semester variation. If either the normalized gain or Cohen’s
d were effective at controlling for varying student charac-
teristics, one of their plots would be randomly distributed
around some value; they are not. As such, neither metric is
useful in providing an assessment of instruction that is
independent of variation in student characteristics. Because
Cohen’s d seems the have the same flaws as the normalized
gain which is more widely reported in PER, we will focus
on normalized gain for the remainder of this study.

Figure 2 plots the normalized gain against both FMCE
pretest score and ACTM%. Each point represents a single
lecture section. A regression line has been added to each
plot. This line was calculated using the student-level data
aggregating all lecture sections and all semesters. The
regression lines show that, due to the variation in the
student population, one could expect a variation of nor-
malized gain of 15 percentage points between the lowest
and highest preforming classes.

The level of relation between pretest, normalized gain,
and ACTM% can be characterized by the correlation
coefficient r. The pretest and ACTM% (r = 0.30), the
post-test and ACTM% (r = 0.43), and the normalized gain

(2) °

FMCE Normalized Gain Percentage

° °
15 20 25 30
FMCE Pretest Percentage
b) i
50 (
® [ ]
“ °

40 1

o8]
[=}
1

FMCE Normalized Gain Percentage
[}

70 75 80 85
ACT/SAT Mathematics Percentile

FIG. 2. (a) The normalized gain plotted against FMCE pretest
percentage. (b) The normalized gain plotted against ACT/SAT
mathematics percentile (ACTM%). Each point represents the
average of an individual course lecture section. The line is the
regression line using the full dataset.

and ACTM% (r = 0.39) were all significantly correlated
(p < 0.001). All were medium effects by Cohen’s criteria
[41]. The correlation between these variables is well
established in the literature with many studies showing
both ACTM% and pretest scores are important in models
predicting post-test scores [15,17]. These levels of corre-
lation between the normalized gain and ACTM% were
similar to but somewhat smaller than those observed by
Coletta et al. [14] between SAT scores and FCI normalized
gains in both university and high school students. These
results suggest the correlation of standardized test scores to
conceptual inventory results is fairly general. The student-
level normalized gain was also significantly correlated with
pretest scores (r =0.43, p < 0.001) which contradicts
Hake’s observation that they were not correlated [8].

B. Representing the variation in student outcomes

The course studied has been presented in many indi-
vidual lecture sections taught by a variety of instructors
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FIG. 3.

FMCE post-test scores vs pretest scores. The local average is plotted in black with its 95% confidence interval. The Hake

Model for the normalized gain is plotted in green. The background is a heat map showing the density of the data at each point.

over the period studied. The variation in student preparation
between sections makes it very difficult to fairly compare
the outcomes of two instructors or two pedagogical models.
We need to be able to answer questions such as “What are
the predicted post-test outcomes of class A given its student
composition based on the overall performance of the
course?” While one cannot change the student composition
of class A, the course as a whole over the time studied has
enrolled students with a broad range of prior preparation.
The range of outcomes of these students can be used to
predict the expected outcome of class A given the prior
preparation of its students. To accomplish this, a repre-
sentation of how post-test scores change with pretest scores
(and other variables) is needed.

A prior study of this course using only the CL instruc-
tional model, but with access to a substantial number of
control variables examined the relation of post-test scores
to pretest scores [17]. Linear regression analysis showed
that the most important factors in predicting post-test score
were pretest score explaining 44% of the variance in post-
test score followed by ACT/SAT scores explaining an
additional 6% of the variance. The remaining 32 variables
together explained only 4% additional variance. As such, it
seems reasonable to start with a representation of how post-
test scores vary with pretest scores. Linear regression
analysis of this data is explored in Sec. III C.

The natural variation of student incoming preparation
can be used to build a model predicting post-test scores
from pretest scores and other variables. As such, the
variation in student preparation in the course overall is
used to predict how a class section should have performed
given the prior preparation of its student population. One
method to build such a model that does not rely on any

assumptions about the statistical properties of the distribu-
tion of the variables of interest is to report a plot of post-test
scores against pretest scores including a local average
curve. A local average curve computes the average of
post-test scores for a narrow range of pretest scores
possibly adding some smoothing. Many methods exist to
produce a local average curve; some will be discussed in
this work. Figure 3 shows a plot of post-test scores against
pretest scores. The black curve in the figure represents the
local average. We propose these curves be called “con-
ceptual growth curves” (CGC). The underlying scatterplot
is not shown as the large number of stacked data points
results in a figure that is difficult to interpret. Instead a grid
heatmap in the background of the plot depicts the numer-
osity of students in the dataset with each pretest or post-test
score combination. As might be expected, there is a strong
density of students earning scores near the average pretest
or post-test score; however, there is also a substantial
population of students away from the average. The
Supplemental Material [35] contains a table showing the
average post-test score for each of the 34 (0 to 33) possible
pretest scores as well as the number of students with that
pretest score. This table may be easier to interpret than the
heat map.

There are many ways to calculate the local average
curve. The most straightforward is the calculate the average
post-test score for each pretest score. One can also compute
the average of the post-test for a small range of pretest
scores centered on each pretest score (this is sometimes
called a moving average). Both methods are shown in the
Supplemental Material [35]. Using an average including
three consecutive pretest scores generated an excellent
approximation to the curve shown in Fig. 3. In general,
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more sophisticated methods yield smoother curves. The
local average curve in Fig. 3 was calculated with the
geom_smooth function in the ggplot2 package in “R.” For
the sample size in this study, this package applies a
general adaptive model to fit a set of splines to the data.
For sample code to draw the curve, see the Supplemental
Material [35]. Note, using the default settings of the
“geom_smooth” algorithm in R will select a diffe-
rent fitting algorithm if N < 1000; the code in the
Supplemental Material [35] forces the use of the general
adaptive model for consistency.

Figure 3 can also help to explain why the normalized
gain was not productive at the institution studied. The
normalized gain hypothesizes a specific relation between
pretest scores and post-test scores. For the normalized gain
to be constant for different pretest scores, the CGC growth
curve must be well fit by the model in Eq. (5).

(Post) =100-g+ (1 —g) - (Pre). (5)

This results from solving Eq. (1) for (Post). The equation
has been plotted in Fig. 3 as the “Hake model.” It is a fairly
poor approximation to the CGC. For the normalized gain to
be used for comparison, one first needs to confirm that the
Hake model is a good approximation to the CGC. We know
of no instance, where the normalized gain was reported,
that this crucial step was performed.

We note that the Hake model is an exceptionally
reasonable model, perhaps the only reasonable model, if
the only information available is the pretest and post-test
averages. The Hake model interpolates between the point
representing the average pretest and post-test score and the
point (100, 100). We further note that, in general, the Hake
model and the CGC will cross near the average of the
pretest and post-test and the point (100,100); the Hake
model is a chord of the CGC between these two points. If a
higher pretest score had been observed, the chord becomes
a better approximation for pretest scores greater than the
average score. In the figure, if the pretest score had been
50%, the Hake model would be a very good approximation
for scores greater than 50%, but an extremely poor model
for scores less than this value.

To understand the use of a CGC to predict what outcome
was expected from a class section, we examine the lecture
sections with the lowest and highest pretest scores. The
lowest pretest score class section, class L, had a pretest
average of 15% for a post-test average of 25%. The highest
pretest section, class H, had a pretest average of 32% for a
post-test average of 48%. The CGC can be used to
determine what post-test score the course produces on
average for this pretest score. Reading the value of the CGC
at 15%, for class L, a post-test score of 37% is predicted;
class A under performed its expected average by 12%. For
class H, a post-test score of 67% was predicted; class H also
substantially under performed its predicted average by

19%. The same correction can be performed with the
Hake Model yielding a predicted post-test score for class L
of 43% and for class H of 54%. As might be expected from
Fig. 3, the Hake model over predicts for very low pretest
scores and under predicts very high pretest scores. As one
can see, the error is substantial. From this, we can see that
both class L and H perform more weakly than anticipated
correcting for differences in pretest scores and that using
the normalized gain produces substantial errors in the
predicted results.

The figures presented in Sec. III A and prior work [17]
suggest post-test scores may vary with both ACTM% and
pretest scores. It is possible that pretest scores may fully
explain the effect of variation of ACTM%. This possibility
can be investigated by further plotting a CGC for each
quantile of ACTM% scores; this analysis is shown in the
Supplemental Material [35]. This analysis suggests ACTM%
scores are important in addition to pretest scores in explain-
ing post-test scores consistent with prior work [17].

Figure 4 illustrates how the CGC can be used to compare
the efficacy of an educational intervention for the range of
incoming student preparation to provide a more nuanced
picture than that provided by a single general metric. A
CGC for each instructional model is plotted, with LA in
black and CL in orange. The shaded area represents the
95% confidence interval for each curve. The LA instruc-
tional model outperforms CL for all but students with
extremely low pretest scores; however, the difference in
model outcomes for the best-prepared students is minimal,
with results of the LA model within the 95% confidence
interval of the CL model. The overall effect will be
quantified in the next section as mathematical models are
built.

Beyond productively comparing classes at the same
institution, the instructional personnel also need to make
informed judgments about whether published educational
reforms would be effective at improving local instruction.
As such, they wish to answer the question, “How would
the educational model presented in the published work
perform if it enrolled students at the local institution?”
Unfortunately, with the normalized gain failing to correct
for student differences, this generally cannot be answered
using existing reporting of PER results. The CGC allows
the answering of a somewhat less useful but valuable
question, “How would the local class perform if it enrolled
a student population with similar characteristics to those
in a published study?”

As an example of productively answering this kind of
question, we use the course results of a recently published
study. Salehi et al. [15] presented pretest and normalized
gain results as well as standardized test scores for three
institutions in an effort to understand the effects of prior
preparation on final exam scores for a number of demo-
graphic groups. The largest sample reported (N > 4000),
referred to as PM in the study, reported FMCE scores and
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FIG. 4. Conceptual growth curve comparing LA instruction (black) with coordinated learning CL instruction (orange) including the

95% confidence interval.

ACT or SAT mathematics percentile scores. As in this
study, a mixture of ACT and SAT results were available.
Students at PM had an average ACT or SAT mathematics
percentile score of 89% and pretest scores for multiple
semesters ranging from 38% to 49%. The center of
this range of pretest scores is used for comparison,
Pre = 43.5%. Post-test scores were not reported; however,
PM achieved a normalized gain of 49% to 54%, the center
of the range of normalized gain is 51.5%. Using the
reported average normalized gain and pretest score, one
can calculate that the post-test scores at PM were approxi-
mately Post =72.6%. This study was chosen as an
example because enough parameters were reported for
evaluation and because the FMCE was used; this study
does not present the pedagogy used. As such, if analysis
indicated that PM was performing substantially better than
the local course, additional investigation would be needed
to identify its instructional model.

Using the CGC in Fig. 3, one can determine that if the
local course (the course studied) enrolled students with an
average pretest score of 43.5%, then the CGC predicts the
local class would produce an average post-test score of
76% yielding a normalized gain of 57%. As such, the local
class would outperform the class in Salehi et al. [15] giving
evidence that it would not be productive to try to determine
the pedagogy used in this study so as to adopt the pedagogy
to the local context. We note that this does not mean the
class Salehi et al. would not produce superior results if it
enrolled students like those in the local course; it is simply
not possible to determine this with the data published. If the
Hake model were used to perform the correction, a post-test
score of 62% would be predicted, much less than that

predicted by the CGC. This would inaccurately suggest that
PM would outperforming the local model indicating that
investigating adopting the pedagogy in the published study
would be efficacious.

C. Modeling the conceptual growth curve

The CGC in Fig. 3 allows the prediction of post-test
scores from pretest scores; however, its use requires the
reading of the graph for each class of interest. This can
become onerous with a large number of class sections
and makes it hard to evaluate how all the factors work to-
gether. It becomes even more problematic when ACTM%
scores or other variables are added. It would facilitate the
use of the CGC to have a mathematical model of the
curve. Beyond practical convenience, a mathematical
model allows one to quantify the amount of variance
explained by the model as well as the relative importance
of the variables the model.

Hierarchical linear regression (HLR) was used to build a
model of the CGC. HLR calculates a set of nested models
where more complex models add variables to less complex
models. This nested set of regression models is presented in
Table II. All models were a significant improvement upon
the model in which they were nested using a likelihood
ratio test (p < 0.001). The curves resulting from models
only involving pretest scores are shown in Fig. 5. The
overall fit of the nested models is characterized by the
Akaike information criterion (AIC) as shown in Eq. (6).
AIC measures the relative information lost between the
model and a “true” model while correcting for overfitting
[42,43]. Smaller values of AIC represent better fitting
models.
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TABLEII. Post-test regression models. B is the regression coefficient, SE the standard error, f the standardized regression coefficient,
t the ¢ statistic, and p the probability a value as large or larger than ¢ occurred by chance. The 95% confidence interval (CI) is also
presented. All models are statistically significant improvements over the null model containing only an intercept (p < 0.001). Each
nested model is a significant improvement over the model in which it is nested (p < 0.001).

B SE 95% CI s t R2 AIC
Linear model
(Intercept) 24.8687 0.52 [23.83, 25.91] 0.00 47.62 0.42 27053
Pretest 1.0150 0.02 [0.98, 1.06] 0.65 56.63
Quadratic model
(Intercept) 14.4190 0.83 [12.76, 16.08] 0.00 17.31 0.45 26811
Pretest 1.8567 0.06 [1.74, 1.98] 1.19 33.18
Pretest? —0.0104 0.00 [-0.0117, —0.0091] -0.57 -15.83
Quadratic model with ACTM%
(Intercept) —16.5557 1.63 [—19.82, —13.30] 0.00 -10.16 0.51 26363
Pretest 1.6254 0.05 [1.53, 1.73] 1.04 29.97
Pretest? —0.0089 0.00 [-0.0077, —0.0102] -0.49 —14.29
ACTM% 0.4453 0.02 [0.41, 0.49] 0.24 21.74
Instructional model

(Intercept) —15.0754 1.63 [—18.34, —11.82] 0.09 -9.27 0.51 26293
Pretest 1.6353 0.05 [1.54, 1.74] 1.05 30.39
Pretest? —0.0090 0.00 [-0.0102, —0.0078] -0.49 —14.51
ACTM% 0.4584 0.02 [0.42, 0.48] 0.25 22.50
Course model —5.0945 0.60 [-6.29, —3.89] —0.18 -8.53

AIC = 2k —21In(L), (6) this line is drawn as the blue linear model in Fig. 5.

where £ is the number of parameters and L is the likelihood
function.

The simplest model predicting post-test score from pretest
score is shown as the linear model in Table II which fits the
equation Post = By + B; - Pre, where B, is the intercept
and B, is the slope. This yields Post = 24.9 + 1.02 - Pre;
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FIG. 5. FMCE post-test scores vs pretest scores. The local
average is plotted in black. The Hake model for the normalized
gain is plotted in green. The linear model is plotted in blue. The
quadratic model is plotted in orange.

This model explains 42% (R> = 0.42) of the variance in
post-test score. The line does not qualitatively capture the
shape of the CGC; the CGC is visually not a line. The fit to the
local average can be improved by the addition of a term
quadratic in pretest score to the regression model. This
regression is shown as the quadratic model in Table II. The
model fit was Post = B, + B, - Pre + B, - Pre* which
yielded Post = 14.4 + 1.86 - Pre —0.0104 - Pre?>. More
digits were reported because of the range of the Pre? term.
This model explained 45% of the variance in post-test score
and is shown as the orange curve in Fig. 3. This model
provides a good approximation to the local average curve
except at very low pretest scores. A model adding a cubic
term did not improve the visual fit of the model.

This model can be improved somewhat by including
standardized test scores. These scores are available for most
students at many institutions and are often reported in PER
studies. The quadratic model using both pretest score and
ACTM% score is shown as quadratic model with ACTM% in
Table II. This model explained 51% of the variance in
post-test score, R? = 0.51. The model fit was Post= B+
B,-Pre+B,-Pre*>+B;-ACTM% which yielded Post =
—16.6 + 1.63 - Pre — 0.0089 - Pre? + 0.45 - ACTM%.

Linear regression can also quantify the general difference
of the two instructional models. Adding the dichotomous
variable course model (0 = LA, 1 = CL) to the quadratic
model with ACTM% is shown as the instructional model in
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FIG. 6. Predicted FMCE post-test percentage vs observed
FMCE post-test percentage by class section. The line has slope
one. Classes above the line outperformed predictions; classes
below the line under performed predictions.

Table II. The regression coefficient of the course model
variable measures the difference between the two models;
the LA model produced on average post-test scores which
were 5.1% higher than the CL model.

Using the models presented in Table II allows the
department to partially correct for the variation in student
characteristics by class section. This allows the department
to develop a more accurate picture of the instructional
success of different faculty (allowing help to be directed
where needed) and to more accurately characterize future
course reforms. Figure 6 plots this predicted post-test score
against the observed post-test score for each class section in
the period studied. A line of slope one has been added to the
figure. Class sections above this line outperform predic-
tions. Many classes are near the line and perform approxi-
mately as expected. Some are well above the line; the
methods of these instructor may be worth emulation. Some
are substantially below the line indicating some additional
support is needed.

The quadratic model with ACTM% model in Table II
shows that general academic factors such as ACT and SAT
scores are important to predicting student conceptual
learning beyond pretest scores; however, the additional
variance explained by these factors is small compared to
that explained by pretest score alone. It also shows that
neither pretest scores nor ACTM% scores fully account for
the variation in post-test scores at this institution.

Using the regression models in Table II, the average
post-test score at the institution studied can be modified to
reflect the post-test score which would have been expected
if the prior preparation of the class studied mirrored that of
another institution, allowing for comparison with results
at other institutions. The core insight of this method is that
while two classes at different institutions may enroll
wildly different students on average, it is likely that the
less selective institution enrolls some students like those
of the more selective institution. For example, institution
PM in the study by Salehi et al. [15] had an ACTM% of

89% and average pretest score of Pre =43.5%. The
regression model using only pretest score (quadratic
model Table II) predicts a post-test score of Postpq =

14.4 +1.86-43.5-0.0104 - 43.5> = 75.6%; once the
predicted post-test score is calculated, then a predicted
normalized gain could be calculated as ¢ = 100%-
(75.6% — 43.5%)/(100% — 43.5%) = 57%. If ACTM%
scores are used as well, the regression model
(Quadratic Model with ACTM% Table II) predicts a
post-test score of Postyq=—16.6+1.63-43.5-0.0089-

43.52 4+0.46 -89 = 78.4% would have been observed if the
students from the Salehi study were enrolled in the class
studied. The predicted normalized gain is then g =
100% - (78.4% — 43.5%)/(100% — 43.5%) = 62%. This
again exceeded the normalized gain reported for PM of
51.5% and commensurate with the 61% normalized gain
calculated in the previous section using the CGC. Again,
this suggests locally adopting the pedagogy implemented
at PM would not improve local instruction.

The instructional model variable produced a statistically
significantly better model in Table II, but explained little
additional variance. The Supplemental Material [35]
presents further exploration of this and other variables
local to the class studied. In general, the additional
variables explain little additional student-level variance,
but did improve the semester-level fits.

Care should be used when reporting a regression or other
mathematical model to represent the CGC. If using a local
average or binning, the CGC presents an average or
representative value for each possible pretest score. This
allows a CGC to represent the data (with error) even in
regions where relatively little data are available. The CGC
then represents a fairly high dimensional model with k + 1
parameters where k is the number of items. For the FMCE
using the scoring method suggested by Thornton et al.,
k = 33; as such, the CGC fits 34 parameters. The models of
this section are far more parsimonious with the most
complex model (instructional model) estimating only 7
parameters. This reduction in the parameters fit comes with
a cost; the Quadratic Model (Table II) underestimates the
CGC by approximately 5% at moderate pretest scores and
overestimates it by 10% at very low pretest score. If
ordinary least squares is used to fit the model, model fit
around the average pretest will be prioritized. This may
cause the model to fit poorly away from the average. For
use in correcting post-test results for student differences,
the model should fit over the entire range of the data. As
such, the higher dimensional CGC is preferable. The
mathematical model of the CGC should be checked to
ensure it fits well over a wide range of the data.

IV. DISCUSSION

This study investigated three research questions. Many
of the results have been discussed in previous sections; the
most important will be summarized.
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RQI: Do either the normalized gain or Cohen’s d allow
productive comparison between classes at one institution if
the student characteristics vary between classes? This
study added to a substantial body of evidence indicating
that the normalized gain does not sufficiently correct for
differences in student prior preparation. Coletta et al. [14]
showed that FCI normalized gain scores were related to
ACT or SAT scores 15 years ago suggesting that the
normalized gain did not fully correct prior preparation.
This work was supported by several additional studies
[12,13]. Multiple recent studies have established relations
between pretest scores and standardized test scores. This
work added additional support for the correlation between
both pretest scores and ACTM% and normalized gain as
shown in Fig. 2. Normalized gain was significantly
(p < 0.001) correlated with ACTM% r = 0.39 and with
pretest score r = 0.43. These correlations were somewhat
smaller but in the same range as those reported by Coletta
and Phillips [11].

The current work adds to the evidence that normalized
gain does not fully account for student differences while
providing some further nuance as to why this is the case.
The failure to eliminate the spring to fall variation in Fig. 1
provides visual evidence of the failure of the normalized
gain to eliminate the effects of student variation. The
introduction of the CGC allowed further understanding
of the approximation involved in using normalized gain.
With the CGC, one realizes that Hake proposed a specific
model of the relation between pretest and post-test scores,
called the Hake model above [as shown in Eq. (5)]. This
model is a reasonable choice if only limited information
about the student response is available; that is if one only
knows the pretest and post-test average not the distribution
of scores. This realization allows one to graphically
determine if the Hake model is a good fit to the actual
response; both the Hake model and the actual response, the
CGC, are plotted in Fig. 3. For the institution studied, there
is a substantial difference between the Hake model and the
CGC over a broad range of pretest scores. Comparison of
Hake-model-corrected and CGC-corrected post-test scores
in Sec. Il B gives additional evidence that the normalized
gain does not accomplish what it was introduced to do,
allowing the comparison of post-test scores for classes with
different levels of pretest scores for the institution studied.
These scores also showed the error was sufficient to cause
one to draw incorrect conclusions from the normalized
gain. As such, the normalized gain should cease to be used
for the purpose of comparing scores for courses with
different levels of prior preparation.

RQ2: How can the natural variation of student prior
preparation within a course be used to compare classes
enrolling students with differing levels of prior prepara-
tion? The work above introduced the CGC, multiple
methods to calculate a visual representation of the curve,
and several linear regression models of the curve. If the

CGC is constructed with data drawn from many offerings
of a course, then it can be used to evaluate whether a single
section of the course performed better or worse than the
course as a whole (over the time frame aggregated)
correcting for incoming student characteristics. This is
done by using either a visual representation of the CGC
(Fig. 3) or a mathematical model of the CGC to predict the
post-test score from the measured pretest score (and
possibly ACTM% scores) of the class section. If this
predicted score is below the score actually achieved, the
class section outperformed the average course performance
corrected for student composition.

RQ3: How can the natural variation of student outcomes
within a course be used to evaluate the efficacy of
published PER results when transferred to a local context.
Using the same method as in the prior research question,
the predicted results which would be produced by the local
class if it randomly enrolled a class section with the same
composition as the used in a published study can be
calculated. This could then be compared against the
published results to determine if the current course would
produce inferior or superior results as those published if it
enrolled a student population with a similar composition to
those in the published study. We note that this is not quite
what would be most useful; ideally we would like to
determine what results would be produced if the published
course enrolled students of the same composition as the
local course. While not optimal, the result that can be
calculated would be informative to the decision to elect the
published pedagogy.

V. IMPLICATIONS

Following the discussion in RQ 1, normalized gain
should not be used to compare conceptual inventory
outcomes for institutions with different student popula-
tions. It may still be an interesting statistic to characterize
educational outcomes; it is simply not reliable for compar-
ing outcomes.

The observation that normalized gain, as well as post-test
score, fluctuate with the incoming characteristics of the
students implies that it is not appropriate for departments to
use uncorrected scores for evaluation purposes or to
evaluate the effect of curricular modifications.

Many studies have reported normalized gain and drawn
comparisons based on the presumption that they correct for
student differences. These studies and conclusions should
be revisited. The Hake model in Fig. 3 suggests that the
normalized gain may substantially overestimate post-test
scores of more weakly prepared student populations while
underestimating the score of more prepared students.

The errors produced by using the normalized gain to
compare institutions may be having serious negative
consequences for the adoption of PER materials at insti-
tutions with weaker student populations. Henderson et al.
showed that adoption of research based methods was very
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uneven and that methods were often abandoned after they
were tried [44]. The course studied in the CL instructional
model presents what course personnel believed was a fairly
high fidelity implementation of Peer Instruction [39]. The
average normalized gain of 36% was viewed as dis-
appointing based on published work and the results of
the Hake study [8]. The correction of the 36% to that of the
characteristics of the students enrolled at PM in the Salehi
et al. [15] study produced a normalized gain of 62% which
is near the range of high performing programs in Hake’s
study. The inaccuracy in the normalized gain may cause
programs with less well prepared students to underestimate
the efficacy of their implementation of PER curricula
possibly leading them to discontinue the use of that
curricula.

The prediction of the educational efficacy of a PER
intervention when implemented for different student popu-
lation and the comparison of educational outcomes
between classes and institutions are crucially important
to PER. If the normalized gain does not allow meaningful
comparisons between student populations with different
characteristics, new methods and statistics must be created
for the field to move forward. We propose the reporting and
use of CGCs as one such method.

VI. RECOMMENDATIONS

In this work, CGCs were used only for internal evalu-
ation. They allowed two critical questions to be answered:
(i) What is the expected conceptual performance of a class
section based on the prior preparation of its students? and
(i1) What is the expected conceptual performance of a class
if it enrolled a student population similar to that in a
published PER work? There is a third equally important
question which could not be answered: What is the
expected conceptual performance of the course in a
published work if it enrolled students similar to those in
a local course? Answering this question would shed light
on whether a published course had particular efficacy for a
student population with a particular set of characteristics.

The CGC and the methods used in this work represent
one partial solution (the models were not perfect) for
comparing conceptual outcomes for students with different
characteristics. Until a more efficacious method can be
developed, we recommend the following four-step report-
ing of results. (Later steps are less important than ear-
lier steps).

(1) Report a summary of the data as fully as possible:
We recommend reporting a table similar to Table I in
the Supplemental Material [35] which calculates the
post-test average for each possible pretest score. It
also includes some additional statistics needed to
compute the standard error if a local average is
calculated. If the CGC is not reported, it could be
calculated from this data.

(2) Report the conceptual growth curve: Report the
CGC with a representation of the standard error
using either binning, a local average, or a more
sophisticated smoothing method. All yielded
approximately the same results.

(3) Report a mathematical model of the data: To
allow ease of comparison and to identify the
variables most important to the variation in post-
test scores, build a mathematical model that accu-
rately (as possible) captures the variation in post-test
score with pretest score. If possible, report the
additional statistics required to calculate the
95% confidence interval of the curve as explained
in the Supplemental Material [35].

(4) Report a post-test score corrected to a standard
value: None of the above methods allow the simple
single-number comparison of outcomes provided by
the normalized gain. We propose a post-test score
corrected to an incoming ACT/SAT mathematics
percentile score of 80% and a pretest score of 35%
be reported to allow quick comparisons between
studies. The selection of these values is discussed in
the next section.

Reporting a post-test score or normalized gain corrected
to a standard value is a convenience that allows readers to
quickly compare multiple studies. It does not convey the
same information about the variation of post-test outcomes
with pretest scores as does a CGC; as such the post-test
score corrected to a standard value should be reported in
addition to the CGC. If a CGC is reported, the actual
standard values for pretest score and ACTM% are not
particularly important, because the CGC can be used to
convert the reported score to any desired pretest score.

VII. SELECTING AND REPORTING
A STANDARD VALUE

The standard pretest and ACTM% scores proposed
above (35% and 80%, respectively) were selected by
examining many studies. Madsen et al. [45] reported 11
FCI and 2 FMCE pretest scores disaggregated by gender;
FCI pretest scores were somewhat higher than FMCE
pretest scores. Examination of the data presented suggests
that a representative pretest score of 35% is appropriate for
the FCI or FMCE for US universities excluding the most
elite institutions. Thornton’s et al. [33] study also showed
FCI scores are somewhat higher than FMCE scores for all
but the most prepared students. Many of the institutions
reported were very selective and the 35% value was
selected weighting more strongly less selective institutions
taking into account Kanim and Cid’s [46] warning that
most PER research has been performed at highly perform-
ing institutions and may not be representative of all
students. Fewer studies report ACTM% and the 80% value
observed in the current study may be reasonable for
national comparison.
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For the FMCE, the 35% value is within the range of
reported scores, but toward the higher side of the range. We
note that while many studies use the FMCE, only a
relatively small subset of these report descriptive statistics
complete enough to infer an overall pretest score. Beyond
the pretest scores of the class studied (23%) and of PM in
Salehi et al. [15] (43.5%), FMCE pretest percentage scores
reported include: 24.5% and 42% (2 institutions) [47]; 24%
(American students) and 30% (Japanese students) [48];
30% (one institution) [49], and 16% (one institution) [50].

Using our suggested standard pretest score of 35%, if
only pretest score was available, the quadratic model
regression equation in Table II predicts a post-test score
of Post=14.4+1.86-35-0.0104-35% = 67%. The
methods in the Supplemental Material [35] allow the
calculation of confidence intervals; these methods produce
a 95% post-test confidence interval of Pre = 35% is
[65.6%, 67.8%]. Using the quadratic model with ACTM
% in Table Il at Pre = 35% and ACTM% = 80% yields a
post-test score of 65% and a 95% confidence interval for
the post-test of [64.0%, 66.0%].

VIII. LIMITATIONS

This study was performed at a single institution; we
expect similar studies at different institutions to produce
different results. As such, the results should not be
considered as general. In fact, as the variation between
institutions is reported, we expect important new insights
about physics instruction to emerge.

The primary variable accounting for the variance in post-
test score in this study was pretest score. The study also
reported models using standardized test scores to improve
predictions. Standardized test scores have often been used
as control variables in PER studies which resulted in their
inclusion in the present study. As more institutions move
away from requiring the reporting standardized test scores
to support holistic admission policies, these measures may
become less commonly available. It is possible in the future
that PER studies move to another control variable such as
high school grade point average (HSGPA). In anticipation
of this eventuality, the Supplemental Material [35] present
the CGC disaggregated by HSGPA, the by-semester plot of
HSGPA, and the quadratic regression model predicting
post-test from pretest and HSGPA. HSGPA does not have
the same explanatory power of ACTM% explaining only
1% additional variance over pretest alone.

Although the conceptual understanding of mechanics
measured by FMCE scores is an important outcome of
introductory physics classes, it is far from the only goal of
such courses. The FMCE fails to capture students’ growth
in areas such as mathematical sophistication and indepen-
dent problem solving, and, as such, should not be used as
the only metric for evaluating instructional success.

This study did not use demographic variables such as
gender or first-generation college student status. Gender

has long been identified as an important variable in
predicting pretest and post-test scores [45]. Gender predicts
about 3% of the variance in post-test scores when added to
a model containing pretest and ACTM%, much less than
pretest score and about half the variance of ACTM%. We
chose not to include it in the analysis or the recommen-
dations for comparison between institutions. Until the
source of these gender differences is identified, it seemed
irresponsible to suggest post-test scores be corrected for
gender composition.

This study investigated the results of the FMCE and
discussed the FCI. Recently, quantitative analysis has
shown these now venerable instruments have significant
flaws. Factor analysis has shown neither instrument has a
useful factor structure [29,50-56]; the factor structure
extracted for the FCI differs from that published with
the instrument. Classical test theory has been used to
identify some items in each instrument which are prob-
lematic [57,58]. Differential item functioning theory iden-
tified many items in the FCI which were unfair to either
men or women as well as a few unfair items in the FMCE
[57,58]. As such, while the present study focuses on the
FCI and FMCE as examples, it is our hope these instru-
ments will soon be revised and the CGC will be used to
report the results of applying these new instruments.

IX. FUTURE WORK

The wealth of FCI and FMCE data collected since the
introduction of the instruments opens the possibility of
computing the CGCs for many institutions implementing
a variety of pedagogies. This would allow the determi-
nation of instructional techniques which best support
students with different levels of academic preparation
allowing the targeting of the most effective instructional
methods for all students. This work will also be extended
to demographic groups underrepresented in physics
classes to determine if physics classes are reaching all
students and to identify pedagogies that equitably serve all
students.

X. CONCLUSIONS

FMCE pretest, post-test, and ACT/SAT percentile scores
varied by semester at the institution studied. Neither the
normalized gain, nor Cohen’s d removed this variation. The
local average of a graph of post-test scores plotted against
pretest scores provided a more detailed characterization of
the conceptual outcomes of the class for students with
differing incoming preparation in physics. Such a plot
could be included in educational studies to facilitate
comparison of educational innovations across institutions
and instructional models; one could also report an approxi-
mate mathematical model of the curve. If a single metric for
comparison is desired, correcting results to a standardized
pretest score would allow accurate comparison between
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institutions. Predicting the results of the class studied using
the incoming characteristics of students in a published PER
work dramatically changed the interpretation of the relative
effectiveness of the class studied, showing such correction
is crucial to understanding the general impact of peda-
gogical methods.

The variation observed in student preparation in the class
studied implies that the conceptual inventory outcomes of
the class cannot directly be used to compare instructors or
educational reforms. Graphical or mathematical models
which incorporate the student variation should be

constructed before using conceptual inventory scores
(or other outcome metrics) to evaluate differences in
instruction.
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