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Physics education researchers are interested in using the tools of machine learning and natural language
processing to make quantitative claims from natural language and text data, such as open-ended responses
to survey questions. The aspiration is that this form of machine coding may be more efficient and consistent
than human coding, allowing much larger and broader datasets to be analyzed than is practical with human
coders. Existing work that uses these tools, however, does not investigate norms that allow for trustworthy
quantitative claims without full reliance on cross-checking with human coding, which defeats the purpose
of using these automated tools. Here we propose a four-part method for making such claims with
supervised natural language processing: evaluating a trained model, calculating statistical uncertainty,
calculating systematic uncertainty from the trained algorithm, and calculating systematic uncertainty from
novel data sources. We provide evidence for this method using data from two distinct short response survey
questions with two distinct coding schemes. We also provide a real-world example of using these practices
to machine code a dataset unseen by human coders. We offer recommendations to guide physics education
researchers who may use machine-coding methods in the future.
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I. INTRODUCTION

Education researchers are exploring the use of machine
learning to automate the process of applying coding
schemes to students’written work. Typically, human coders
painstakingly apply coding schemes to such responses.
“Machine coding,” by contrast, promises to utilize machine
learning and natural language processing (NLP) tools to
dramatically increase the efficiency of coding new data.
With efficient machine coding, coding schemes could be
applied at scale: across years, courses, and institutions.
This scale would allow researchers to answer research
questions and to evaluate diverse populations of students
[1] in ways that have been unavailable in the past because
of the large amounts of manual coding that would be
required. In addition to efficiency improvement, machine
coding could improve consistency. Machine coding algo-
rithms can be fixed such that they use the same procedure
to code each response, whereas a human coder might
code responses inconsistently because of fatigue or lack of
clarity about the rules of the coding scheme.
Skeptics of machine learning, however, worry that the

algorithms will introduce or perpetuate biases in training
data [2] or distrust that an imperfect algorithm may be

preferable to imperfect human judgment [3]. Here, we
seek to address this skepticism by presenting methods
of evaluating the trustworthiness of a machine learning
algorithm specific to physics education research con-
texts, drawing on data analysis techniques common to
experimental physics (namely, quantifying statistical and
systematic uncertainties).
We argue that these techniques particularly support

physics education researchers because we cannot neces-
sarily rely on mainstream machine learning techniques. For
instance, one common NLP exercise is to train and test
algorithms using aggregated banks of news headlines [4,5],
which contain many thousands of unique instances of
written text and come prelabeled by news curators with
codes like “politics” and “wellness.” By contrast, education
datasets of student writing are often small (e.g., one
thousand or fewer short paragraph responses) and training
data generally would need to be labeled by researchers.
In this work, we focus on machine learning processes

that can be designed to mimic human coding of students’
written text (responses). These processes center around the
coder learning a set of rules (a “trained model” in machine
learning or a “coding scheme” in human coding) that
define whether or not a label should be applied to a type of
response. The coder then applies labels to responses based
on these rules. Supervised machine learning algorithms are
particularly aligned to mimic human coding. A supervised
algorithm uses a training set of human-coded data to learn
the set of rules, then applies these rules to machine code any
new data shown to the trained algorithm.
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Machine coding with a supervised algorithm in this
manner is an emerging research practice in physics edu-
cation research, not simply a technical procedure. Machine
coding is a practice that aims to make quantitative mea-
surements and claims about student responses, such as
measuring the frequency of categories of ideas and themes
in students’ written responses. We contrast these quantita-
tive measurements and claims to qualitative measurements
and claims, such as identifying the existence of ideas and
themes. As a new quantitative research practice, it is vital in
these early stages to establish high-quality normative
practices [6].
Unfortunately, physics education research has not yet

established these norms, such that we can apply machine
coding to student text at scale, which we relate to two key
issues. First, relatively few studies have focused on using
machine learning for making quantitative claims (for
example, claims about the quantity or frequency of codes
within a dataset). Instead, most of the existing work by
education researchers that utilizes machine learning of
written text focuses on making qualitative claims. For
example, researchers have used unsupervised techniques to
identify themes within text and video data and to generate
insights that complement human analytical insights [7–11].
Others have performed computational grounded theory to
aid the human analyst in developing theoretical constructs
from text data [12–14].
Second, the studies that provide “proof of concept”

towards automating coding to make quantitative claims at
scale [15–24] primarily rely on human-coded data to test
the validity of their models and to establish trust in any
quantitative claims. For example, researchers using the-
matic analysis (sometimes called topic modeling in the
natural language processing field) to evaluate the preva-
lence of various themes within text data [25–28] noted that,
due to the unsupervised nature of their form of analysis,
these prevalence values cannot be taken to be a measure-
ment of the ground truth as there is no way to assess the
accuracy without comparing to human coders [25].
Researchers using supervised algorithms commonly evalu-
ate the validity of machine coding by computing reliability
metrics that compare the codes assigned by the algorithm to
the codes assigned by a human. Common reliability metrics
include Cohen’s kappa, quadratic weighted kappa, accu-
racy, recall, precision, F1 score, and area under the receiver
operating characteristics curve (AUC—ROC) [12,15–18].
When calculating these reliability metrics, researchers need
a large human-coded dataset that can be split into suffi-
ciently large training and test sets.
Even then, while researchers have developed algorithms

that can surpass threshold values for reliability [e.g.,
[12,15,17,21] ], it is not clear what to make of these
reliability measures when it comes time to make quanti-
tative education claims about machine coded datasets. For
example, if a machine coding model obtains a Cohen’s

kappa value of 0.65, indicating “substantial agreement”
with a human coder [29], we are left with questions such as,
did the computer systematically over- or underestimate the
code relative to the human coder? If we make a quantitative
education claim using the machine coded data, how much
uncertainty should we maintain toward that claim given this
value of Cohen’s kappa?
Furthermore, there is no guarantee that the threshold will

continue to be met in other, novel datasets. The field does
not yet have established norms for evaluating the validity of
the coding in novel datasets. This concern is especially
relevant when the datasets being assessed are small or
systematically different from the training dataset, as in most
human-coded education datasets. For example, the reliabil-
ity metric may change significantly if the algorithm were
applied to a test set from a new institution or student
population. Researchers in computer science and statistics
are developing advanced methods to tackle this problem by
improving the ability of trained models to accurately
process test data that is unlike the training data using a
causal inference perspective [30] or by leveraging the
causal instincts of human annotators [31]. These methods,
however, require substantial resources (e.g., amount of data
and amount of human coding) beyond what is accessible to
physics education researchers.
For now, as physics education researchers rely on the

reliability metric approach to evaluating machine coding,
we are left with a dilemma: if the only way to evaluate the
accuracy and reliability of machine coding is to human
code all (or at least a very large fraction) of the data, then
what is the benefit of machine coding?
Here we propose a set of methodological practices

that can be used to evaluate the trustworthiness (accuracy
and reliability) of machine coded data to make quantita-
tive education research claims while minimizing the need
for human coding through uncertainty quantification.
Researchers in other fields have similarly analyzed the
quantification of uncertainty when using natural language
processing [32], but these methods do not provide specific
steps that allow researchers in our field to make and evaluate
trustworthy quantitative claims. Our goal is to contribute to
the conversation onmethodological standards and review of
quantitative claims within PER [33,34], and we encourage
others in the community to expand on our framework.
We describe a four-part methodology for evaluating

machine coding that casts machine coding results as
experimental measurements with associated uncertainties
(statistical and systematic), summarized in Fig. 1. The
methodology (i) evaluates a trained model, (ii) quantifies
statistical uncertainty, (iii) quantifies systematic uncer-
tainty from the trained algorithm, and (iv) quantifies
systematic uncertainty in novel datasets. We argue this
approach addresses the concerns described above and
incorporates best practices in expressing measurements
with uncertainty [35].
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The rest of this paper is organized as follows. First, in the
methods section we present our data sources and our
approach to training a supervised machine learning algo-
rithm that uses natural language processing to perform
machine coding. Then, we devote a section to each part of
the methodology. We then work through an example of
applying this methodology to a dataset we have not
coded by hand. Lastly, we discuss the limitations of the
evidence available to us so far and suggest opportunities for
future work.

II. METHODS

A. Data sources

In this work, we use two distinct sets of student
responses to open-response survey questions: the trust-
worthy data (collected using a survey question from [36])
and the sources data (from [37]).
The trustworthy data consists of 1958 responses to the

survey question “How do you know whether or not an
experimental result is acceptable or trustworthy? What
gives you confidence that the data is trustworthy?” from
Ref. [36]. The question was included on pre- and post-
surveys administered at Cornell University across three
different academic years. Data are from students taking
calculus-based introductory mechanics and electricity and
magnetism courses. We developed a coding scheme with
seven codes adapted from the scheme used in Ref. [36]:

consistent results, uncertainty, expected result, good meth-
ods, ethics, peer review, and statistics. In this coding
scheme, individual responses can receive multiple codes
and the coders identify the presence or absence of each
code one at a time.
In the main analysis below, we focus on one of these

codes: consistent results (CR). For the CR code, two
human coders achieved a Cohen’s kappa value of 0.9 in
10% of the data. A kappa value of 0.8–1.0 is considered to
be very good agreement [29]. Then one human coder
hand-coded 1672 of the responses—all the data from
semesters prior to Fall 2022. The remaining 286 responses
were from the end of the Fall 2022 semester and were not
coded by humans.
The CR code is defined as “the same result is obtained

when looking at more data, either through repeated trials or
comparing with other people.” The inclusion criteria for the
CR code are

1. repeated, repeatable, and/or consistent across inde-
pendent measurements,

2. experiment conducted numerous times,
3. obtaining consistent results,
4. repeating experiments with different methods,
5. collecting additional data to verify trends,
6. multiple trials,
7. low variance or deviation from mean,
8. large sample size,
9. comparing with peers, other research groups, differ-

ent scientists, published results,
10. replicability or reproducibility,
11. consistency of results across different research

groups,
12. others get the same results.
In Sec. VII, we also examine another of these codes: the

uncertainty code, which will be defined there.
The sources data consist of 2413 responses to a survey

where respondents were shown experimental physics
scenarios and fictional distributions of data. The responses
in this analysis are to the question “What is causing
the shape of the distribution measured by the students?
List as many causes as you can think of.” from Ref. [37].
The survey was administered in over a dozen courses at 12
institutions. In total, the responses were written by 753
students, each of whom wrote multiple sources for each
experimental scenario (each source is treated as a unique
response). Upper-division students were shown up to
four different experiments and prompted to list sources
of uncertainty for each, so the dataset consists of students’
ideas about uncertainty for projectile motion (468
responses), Brownian motion (290 responses), single
slit (239 responses), and Stern-Gerlach (282 responses)
experiments [37]. An additional 1134 responses for the
projectile motion scenario came from introductory-level
students [38]. The responses were coded based on three
categories—limitations, principles, and other—as descri-
bed in Ref. [37]. Two human coders achieved a Cohen’s

FIG. 1. Flowchart depicting the stages of the methodology.
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kappa of 0.85 across 40 responses (10 responses from
each experiment). Then each coder coded a portion of the
rest of the data.
In the analysis below, we focus on the limitations code

(L), which was by far the most frequent code. The L code is
defined as: “A distribution is caused by practical limitations
in an experiment owing to our inability to perfectly model
and measure a real-world system.” No inclusion criteria
are listed in the coding scheme. Instead, human coders
primarily used exclusion criteria in coding. The exclusion
criteria for the L code are

1. A distribution is caused by some principle of
theoretical physics (theoretical abstraction of an
experiment, e.g., quantum theory) or of experimen-
tation (measurement is inherently random or has an
inherent normal distribution).

2. Vaguely worded responses about “uncertainty” or
“random errors.”

3. Physical mechanisms that determine the position
(distance) of the central value (average value) but
are not varying between experimental trials, e.g.,
gravity.

We chose to use these two codes because they are reliably
measured by human coders and provide one example of a
code mostly defined by inclusion criteria (CR) and one
example of a code mostly defined by exclusion criteria (L).
This choice allows us to investigate the applicability of
these methods across a range of rule types that physics
education researchers may encounter.

B. Natural language processing

In developing the machine coding algorithms, we
used a one-vs-all (OVA) approach, where we built
separate algorithms that focused on one code at a time.
The machine applies a label of 0 or 1 if the code is
absent or present, respectively. The OVA approach
mirrors the decision-making process the human coders
used (namely, focusing on one code at a time and
reading each response for evidence of that code) and has
been shown to perform as well as more complex,
multicode approaches [39].
To prepare the responses for automated coding, we used

the following bag-of-words natural language processing
(NLP) protocol: (i) split all words in each response into
individual words (often called tokens or features), (ii) fix
contractions (for example, “you’re” becomes “you are”),
(iii) use the Word Net Lemmatizer from the Natural
Language Toolkit python package [40] to combine words
from the same family such as plurals and verb conjugates,
and (iv) remove any remaining whitespace, punctuation,
and numbers. We then encode the modified responses as a
matrix where each row corresponds to a single response
and each column represents a single token (i.e., each unique
word in the total set of modified responses). Each entry in
the matrix is a 0 or 1 indicating whether that token is

present in the response. We found in initial testing that this
0 or 1 method outperforms other common word scoring
methods such as raw count of each word or term frequency
inverse document frequency [41,42].
We did not filter out stop words such as “and,” “it,” and

“the.” This form of filtering can be useful to reduce the
size of a large dataset or to perform machine coding tasks
such as categorizing technical texts [43]. In an education
research context, however, we are dealing with small data-
sets where reducing the size of the data in pre-processing
may be a less important consideration. Furthermore, stop
words like “only,” “but,” and “just” may be critical when
analyzing the nuances of student thinking as revealed by
their responses [44].
In this paper, all machine learning models were built

with bag-of-words logistic regression algorithms using the
scikit-learn package in python [45]. In initial testing, we
examined bag-of-words models built with logistic regres-
sion, naive Bayes, support vector machines, random forest,
k-nearest neighbors, and neural networks (both a single-
layer perceptron and a convolutional neural network
utilizing the GloVe word embedding [46,47]). We found
that logistic regression and single-layer perceptron had the
highest, most consistent performance across four metrics:
accuracy, precision, recall, and Cohen’s kappa. We chose to
use logistic regression because it is easier to view the
coefficients assigned to different features and because it has
been used in other physics education research literature,
such as [15].

C. Training and test sets

We split the available responses to create a training
dataset and a test dataset (Fig. 2); details about the test data
are further described in Sec. II D. In the majority of our
analyses, the training data include Ntrain ¼ 600 responses
to train each algorithm. While algorithm performance
generally increases as the size of the training set increases,
we previously found that performance plateaus around
Ntrain ¼ 600 student responses from the trustworthy
data [17]. In a few analyses, we use a smaller training
set because we need additional data for testing. We note
these instances as appropriate. We define ptrain as the
proportion of responses in the training set containing the
particular code, where 0 ≤ ptrain ≤ 1.
During model development, we keep the training data

and test data siloed from each other as suggested by Aiken
et al. [48]. Overestimation of model performance can occur
when training and test data are repeatedly split at random
from the full dataset and not kept strictly separate during
model development. This contamination can occur even if
test data are not directly included in the training set (for
instance, information from the test set can enter training
during feature selection or hyperparameter optimization),
especially when sample sizes are small [49]. By keeping the
two sets siloed, we remove this risk.

FUSSELL, STUMP, and HOLMES PHYS. REV. PHYS. EDUC. RES. 20, 010113 (2024)

010113-4



Whereas, in previous work, researchers reported results
averaged across multiple training and test sets [15–17,50],
here we analyze only one training set at a time, though
we use multiple sample test sets (each drawn from a test
bank). We suggest that this process better mimics the
intended process for education research in which one
trained algorithm would be used to machine code new
data. In addition, with limited resources, a researcher
should prioritize human coding one large training set as
opposed to many smaller training sets, because a larger
training set tends to create a more reliable algorithm [17].

D. Test set sampling

We divide the test data into a set of test banks, each of
which is of size Nbank. In the analysis below, we inten-
tionally create test banks that span the range of possible
proportions of responses that contain the code (as deter-
mined by human coders) between 0 and 1 inclusive, usually
a multiple of 0.1. We then draw multiple sample test sets of
size n from each test bank upon which we perform our
analyses. Naturally, Nbank > n and we seek to select values
of n such that Nbank is 2–3 times larger than n. This number
allows us to balance the need to produce samples that
are different from each other with the constraints of
limited data.
The trained model computes the proportion of responses

in the sample test set that contain the code, which we call
EC (the “computer’s estimate”). We resample the test bank
a set number of times (usually 100 or 1000) to develop a
distribution of EC and to calculate EC, the mean of the

distribution of repeated measurements of EC made with the
different sample test sets.
We define EH as the proportion of responses in each

sample test set containing the code as determined by the
human coder. With enough sample test sets pulled from the
test bank (that is, when the number of resamplings of the test
bank is sufficiently large), the mean of EH across the sample
test sets, EH, is approximately equal to the proportion of
responses in the test bank containing the code, based on
statistical properties of sampling from a population.

E. Optimizing a training model

A machine coding algorithm can be optimized in
multiple ways during development and researchers must
make informed decisions about optimization that are
relevant for their particular needs. For discussion of
optimizing hyperparameters (fixed parameters that deter-
mine how the algorithm behaves) in logistic regression
models, we refer the reader to [15].
In this article, we focus discussion about optimization on

a practical consideration that is particularly relevant to
physics education researchers, namely using training data
that has an equal distribution of responses across each of
the possible outcomes (referred to as “outcome balance”).
For example, when using one-vs-all coding as in this work,
a balanced training set would have 50% of the responses in
the training dataset with the code (i.e., ptrain ¼ 0.5). We
focus on this consideration as one particularly relevant to
education researchers who are constrained by the size of
educational datasets and the necessary investment of
human coding for developing training sets.
This recommendation is motivated by previous work,

such as Refs. [17,50], which suggest that an algorithm
becomes less reliable when trained with a dataset with
unbalanced outcomes (that is, a code is present in a
majority or minority of responses). The benefits of bal-
anced representation of the presence and absence of a
code also aligns with models of human learning, such as
through contrasting cases [51] and negative instances or
nonexamples [52].
We demonstrate the impact of balancing the training

set by training our algorithm with nine different training
sets for our CR code, each with a different value of ptrain
between 0.1 and 0.9 inclusive. The size of the training set
for each algorithm was 600 responses. We then create a set
of test banks where each test bank is of size Nbank ¼ 200
responses, each test bank is sampled 100 times, and each
sample test set is of size n ¼ 100 responses. For each
algorithm, we compute the proportion of responses with the
code according to the computer coder, EC, and according to
the human coder, EH. We fix the proportion of responses in
the test bank containing the code (according to human
coders) to be 0.5.
We observe that the magnitude of the difference between

EC and EH deviates from zero as ptrain deviates from 0.5

FIG. 2. The available data are split into training data and test
data. Purple points represent responses without the code and
orange points represent responses with the code. In this repre-
sentation, three test banks of fixed size Nbank are drawn outlined
in a dashed line, each with a different fixed proportion of
responses that contain the code: 0.2, 0.5, and 0.8. Test set
samples of size n are drawn at random from the test banks (in the
figure, data are sorted so random samples are not pictured).

METHOD TO ASSESS THE TRUSTWORTHINESS … PHYS. REV. PHYS. EDUC. RES. 20, 010113 (2024)

010113-5



(Fig. 3). The difference is such that the machine coding
overestimates the prevalence of the code in the test set
(i.e., EC > EH) when ptrain > 0.5 and the machine coding
underestimates the code (i.e., EC < EH) when ptrain < 0.5,
with the effect increasing as ptrain becomes more unbal-
anced (farther from 0.5). Crucially, we find no offset
between the machine coding and the human coding
when ptrain ¼ 0.5. In Appendix A, we show that these
findings also hold for the L code from the sources
dataset (Fig. 8).
An important question is whether the lack of offset at

ptrain ¼ 0.5 is based on a core principle of learning or
simply that the offset is zero if ptrain equals the proportion
of responses in the test bank (which in this case was set to
0.5). We test this effect empirically in Appendix A for two
different test set proportions. We indeed find that the
algorithm better matches human coding when the propor-
tion of responses with the code in the test set matches the
value of ptrain. In educational research settings, however,
our goal is to apply a trained model to new data that has not
been coded by humans, such that the proportion of
responses containing the code is unknown. The analyses
in Appendix A indicate that using training data with
ptrain ¼ 0.5 is the best option to use across a range of
possible test set proportions and, thus, is the best option for
applying training models to new data (Fig. 9).
Thus, we propose balancing the training set as a key

consideration when optimizing a trained model and we use
balanced training sets throughout this paper. This consid-
eration places constraints on the idea in previous work
that increasing the size of a training set will improve the
model [17]. A smaller, balanced training set may be better
than a larger, unbalanced training set. We generally
recommend that some balancing method (whether it be
balanced training sets or a different balancing procedure

such as random over-sampling of the minority case [53]) be
used in future PER research involving machine coding.
One consideration for many researchers is do I have

enough human-coded data to do this type of analysis?
We use 600 human-coded responses in the training set, as
justified above. To balance the 600 responses in the training
set, it is generally necessary for human coders to process
more than 600 responses in order to find 300 responses that
contain the code and 300 responses that do not. In some
cases, if the code is well captured by the trained algorithm,
a smaller training set may be suitable. An example of such a
case can be seen in Sec. VII.
The methods described up to this point leave us with a

single trained model—a “machine coder”—that has learned
a set of rules to consistently apply to each response. For
more methodological details, see the code for this research
on GitHub [54].

III. EVALUATING A TRAINED MODEL

The first step in establishing the trustworthiness of an
algorithm is to check whether the trained algorithm has
conceptual or theoretical validity. This is typically carried
out by evaluating the outputs of the algorithm on the
training set to see how it uses and connects individual
words to codes [7,13]. We can also peek at the coefficients
the model applies to individual words or other features. We
think of this as “looking under the hood” of the algorithm to
understand how it is characterizing words and codes.

A. Explanation of method

After optimizing the algorithm with a balanced training
set, researchers can evaluate, qualitatively, which linguistic
features the trained model uses to decide whether to include
or exclude a response from a code. We identify these
linguistic markers by evaluating the coefficients the model
uses to process individual words. These coefficients are
provided through the algorithm’s logistic regression model,
which models the probability p that a response contains the
code as a sigmoid function of the features, xi (in this case
individual words), defined as

p ¼ 1

1þ e−z
; ð1Þ

where z ¼ P
i βixi and βi are the coefficients that best fit

the training data. For each response, xi ¼ 1 if the word is
present and xi ¼ 0 if the word is absent. In the machine
learning process, a regularization procedure is applied that
shrinks the coefficients βi proportional to the square of
the coefficient, making this a ridge regression. We denote
the new coefficients (after shrinking) as κi. The shrinking
procedure protects against overfitting by preventing the
coefficients from growing too large. Note that the features
xi in this case are individual words from the training set.

FIG. 3. The difference between the human (EH) and computer’s
(EC) estimate of the presence of a code in a test set increases as
ptrain is less balanced (i.e., far from ptrain ¼ 0.5). (Code: CR,
proportion of responses in the test bank containing the code
is 0.5).
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The coefficient κi gives us information about if the
algorithm uses that word as an inclusion or exclusion
criteria for characterizing the code. A word with a coef-
ficient greater than zero indicates the machine coding
interprets the use of that word as evidence for inclusion
of the response in the code, while a word with a coefficient
less than zero indicates the machine coding interprets the
use of that word as evidence for exclusion of the response
from the code. The larger the magnitude of a coefficient,
the more impact the corresponding word will have on the
trained model. We then evaluate the extent to which these
coefficients align with the coding scheme. A lack of
alignment implies that human and machine coders use
fundamentally different linguistic coding rules. Next, we
provide an example of comparing the highest and lowest
coefficients to the inclusion and exclusion criteria in a
human-generated coding scheme.

B. Evidence and examples

We examine the features (individual words, xi) of our
two trained models (one for the CR code and one for the L
code) along with their associated coefficients, κi. In Tables I
and II we show the words with the highest and lowest
coefficients for the trained model for each coding scheme,
which we compare to the inclusion and exclusion criteria in
the associated coding schemes (described in Sec. II).

For the CR code (Table I), the words with the highest
coefficients are all either represented in the inclusion
criteria or are close synonyms of words in the inclusion
criteria of the human-generated coding scheme (for exam-
ple, a “lot” is close to “multiple,” “similar” is close to
“consistent”). Three of the twelve coding scheme inclusion
criteria (1, 7, and 8) are not represented in the list of high
coefficients. These three inclusion criteria are less common
in the data and may be missed by machine coding. Looking
at the distribution of coefficients, the trained model relies
more on positive coefficient words compared to negative
coefficient words (the magnitude of the positive coeffi-
cients are much larger than the magnitude of the negative
coefficients), which supports the way human coders relied
more on inclusion, rather than exclusion, criteria when
coding for CR.
For the L code (Table II), the magnitudes of the negative

coefficient words are much larger than we saw for the CR
code. All exclusion criteria from the human-generated
coding scheme are also represented by the words with
low coefficients. This result again matches the human
coding scheme, which relies almost exclusively on exclu-
sion criteria, rather than inclusion criteria. Based on the list
of words, two of the exclusion criteria (“vaguely worded

TABLE I. Coefficients for the trained model for the CR code.
Left side (coefficient > 0) corresponds to inclusion criteria in the
trained model and right side (coefficient < 0) corresponds to
exclusion criteria. Words in bold are listed in the inclusion criteria
for the human-generated coding scheme for this code (or share a
root and are part of the same word family as a word in the
inclusion criteria, e.g., “repetition” and “repeating”).

Word Coefficient Word Coefficient

trial 3.01 analysis −1.09
repeatable 2.23 accurate −0.92
repeated 1.90 how −0.90
multiple 1.80 model −0.72
replicable 1.73 bias −0.72
same 1.51 uncertainty −0.71
lot 1.47 unbiased −0.70
similar 1.32 statistical −0.68
time 1.30 theoretical −0.66
repetition 1.23 reviewed −0.62
consistent 1.09 look −0.61
replicability 1.08 possible −0.56
reproducible 1.06 margin −0.55
many 1.04 creating −0.54
others 1.02 fair −0.54
replicated 1.00 need −0.53
repeatability 0.99 into −0.52
reproducibility 0.83 properly −0.52
result 0.82 wa −0.51
whether 0.81 t −0.49

TABLE II. Coefficients for the trained model for the L code.
Left side (coefficient > 0) corresponds to inclusion criteria and
right side (coefficient < 0) corresponds to exclusion criteria.
Words in bold are listed in the exclusion criteria for the human-
generated coding scheme for this code (or share a root and are
part of the same word family as a word in the exclusion criteria,
e.g. “random” and “randomness”).

Word Coefficient Word Coefficient

human 2.49 distribution −1.41
friction 2.07 randomness −1.15
measuring 1.56 gravity −1.08
not 1.51 distance −1.05
ruler 1.49 variation −1.01
ball 1.38 motion −0.97
different 1.25 statistical −0.96
table 1.22 off −0.95
source 1.10 density −0.90
ramp 1.06 quantum −0.90
resistance 1.05 would −0.89
in 1.05 because −0.89
material 1.03 value −0.84
condition 1.03 count −0.81
between 0.95 random −0.79
difference 0.94 data −0.79
incorrect 0.93 probability −0.75
slightly 0.92 answer −0.75
wind 0.89 experimental −0.75
inconsistency 0.86 each −0.74
initial 0.83 average −0.74
too 0.82 principle −0.73
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answers” and “physical mechanisms that are not varying
between experimental trials”) are not obviously captured by
the algorithm. These criteria, however, by definition do not
have defining words, and all the examples explicitly listed
in these exclusion criteria (e.g., gravity) are present in the
low coefficient words.

C. Recommendations

We identify three key recommendations for evaluating a
trained algorithm:

1. Evaluate the correspondence between the inclusion
criteria of the coding scheme and the high (positive)
coefficient words. Do all the words with a high
coefficient correspond to an inclusion criteria?
Are all inclusion criteria represented in the high
coefficient list?

2. Evaluate the correspondence between the exclusion
criteria of the coding scheme and the low (negative)
coefficient words. Do words with low coefficients
correspond to exclusion criteria? Are all exclusion
criteria represented in the low coefficient list?

3. Compare the relative distribution of positive coef-
ficients to the distribution of negative coefficients.
Are the relative magnitudes appropriate based on the
importance of inclusion versus exclusion criteria in
the coding scheme and the answers to the previous
questions?

If the answer to any of the questions is no, an element of the
coding schememaynot be captured in themachine coding. In
some cases, such as coding schemes with inclusion or
exclusion criteria that are rare in the data, this misalignment
may be acceptable as long as the researcher is aware of the
omission when interpreting results from machine coding. If
the researcher thinks this misalignment is unacceptable,
consider expanding the size of the training set to include
more examples of underrepresented criteria.

IV. STATISTICAL UNCERTAINTY

The second step in establishing the trustworthiness of an
algorithm is to understand the statistical variability asso-
ciated with applying the algorithm to a finite number of
samples drawn from a larger population. Whenever we
calculate the frequency of a code in a finite dataset, we are
sampling only a subset of the total population. If we were to
take repeated measurements of the frequency of a code in
multiple samples drawn from the broader student popula-
tion, we would find natural variation across the measure-
ments. This variation occurs because each of the finite
sample of responses features a degree of random variation.
The random variation in these samples leads to variation in
the frequency a single coder (whether human or machine)
would measure between samples. The natural variation
caused by these factors can be quantified by calculating the
standard deviation of many randomly selected samples,

applying principles of statistics to machine coding stu-
dent data.

A. Explanation of method

To quantify the variation in the measurements made by
machine coding, we calculate σEC

, the standard deviation of
a distribution of values of EC drawn from many different
sample test sets of size n pulled from a larger test bank of
size Nbank. We expect some fraction of the measurements
of EC to fall within one standard deviation of the mean
EC (approximately 68% if the distribution is normally
distributed). We, therefore, define the uncertainty in a
single measurement of EC as the standard deviation of
this distribution, as it captures the typical variability
between individual measurements. While we can produce
this estimate from repeated tests of a large dataset, we need
a way for researchers to estimate the value of σEC

from a
single dataset (such as when applying a previously trained
algorithm to new data without human coding).
Fortunately, this estimation is possible because the

standard deviation, σEC
, is characteristic of the phenome-

non we are measuring. Because we are using an OVA
approach, such that each response either contains (1) or
does not contain (0) the code, our data are dichotomous.
Thus, EC, the computer’s estimate of the frequency the
code appears in a particular sample test set, can be
represented as the mean of a Bernoulli distribution, where
the number of times the code is present in the sample is
np ¼ nEC and the number of times the code is absent in
the sample is na ¼ nð1 − ECÞ. The standard deviation σB of
the Bernoulli distribution can be calculated as

σ2B ¼ 1

n
½nað0 − ECÞ2 þ npð1 − ECÞ2� ¼ ECð1 − ECÞ: ð2Þ

The central limit theorem implies that EC comes from a
distribution with mean EC and standard deviation σB=

ffiffiffi
n

p
,

where σ̄B is the average value of σB that emerges across all
sample test sets. Thus, the statistical uncertainty in a single
measurement of EC is equal to σ̄B=

ffiffiffi
n

p
. When only a single

measurement of EC has been taken (such as with new
data not coded by humans) and EC is unknown, we can
approximate that EC ≈ EC and estimate σEC

directly:

σEC
¼ σB=

ffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1 − ECÞ

n

s
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1 − ECÞ

n

r
: ð3Þ

This estimate can be computed with a single sample
test set, as it requires only the measurement EC in a single
sample test set and the number of responses n in that
sample test set. Importantly, this statistical uncertainty
can be applied to a machine-coded sample test set without
any new human coding beyond that used to initially train
the model. Below, we evaluate this estimate of statistical
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uncertainty with empirical results to demonstrate its robust-
ness to finite sampling.

B. Evidence and examples

We assess the validity of Eq. (3) in two steps. First, we
evaluate the relationship between σEC

and n. Second, we
evaluate the relationship between σEC

and EC.
To evaluate the relationship between σEC

and n
(sample test set size), we train an algorithm for the
CR code using a training set of size 600 responses with
ptrain ¼ 0.5 (as per the recommendation to balance the
training set, described above in the methods section). We
test 30 different values of n between 10 and 200. For
each value of n, we draw 1000 sample test sets of size n
from a test bank where the proportion of responses
containing the code is also 0.5 (so that we are controlling
for variability due to proportion of responses in the
test set sample). We then have our algorithm compute
EC for every sample. For each value of n, we calculate
an empirical value for σEC

by computing the standard
deviation across the 1000 samples.
We find that the empirical values of σEC

approximately
follow the predicted 1=

ffiffiffi
n

p
relationship [see Fig. 4(a)],

though the empirical values are consistently less than the
values predicted by Eq. (3). This overestimation may be
because our test set samples are pulled from a test bank of
finite size (Nbank ¼ 300), so the variability does not quite
reach the level we would expect if our samples were pulled
from a large population. That is, the number of ways data
may vary in different samples is diminished to some extent
by the fact that the test bank is only a few times larger than
n. Fortunately, Eq. (3) overpredicts, rather than under-
predicts, the standard deviation, meaning the calculated σEC

from a single test set sample will be a conservative estimate
of statistical variability.
To evaluate the relationship between σEC

and EC, we test
values of EC between 0 and 1. We use the same algorithm
for the CR code with a training set of size 600 and
ptrain ¼ 0.5. We create a set of test banks where the

proportion of responses containing the code (as determined
by the human coder) ranges from 0 to 1 inclusive in steps of
0.1. We draw repeated samples from each test bank; each of
these values corresponds to a fixed value of EC (these
values range from about 0.1 to 0.9 as systematic effects
narrow the range). For each value of EC, we take 1000
sample test sets of size n ¼ 100 and calculate σEC

across
the 1000 samples.
We find that the empirical values of σEC

again approx-
imately follow the predicted parabolic relationship [see
Fig. 4(b)]. As seen in the relationship to n, the empirical
values are consistently less than the values predicted by
Eq. (3), likely for the same reason. Again, the analysis
shows that Eq. (3) provides a conservative estimate of
statistical variability.
In Appendix B, we demonstrate the validity of estimat-

ing σEC
through a measurement of EC from a single sample

test set rather than the mean EC. We also show, for multiple
coding schemes and values of n, that this statistical
variability is independent of the size of the training set
(Fig. 12). This independence of variability with training set
size reflects that the statistical variability comes only from
sampling a subset of responses from the larger test set. This
means that σEC

is constant even if the size of the training set
is so small that past work would suggest the machine
coding would be quite poor [17].
Finally, we provide an example of calculating statistical

uncertainty using this method. Consider a dataset of 160
responses that have not been coded by humans. Without
performing any human coding, we can apply our trained
model to the 160 responses. Say the trained model applies the
code to 96 of the 160 responses. This means that
EC ¼ 96=160 ¼ 0.6. We take this value ofEC as an approxi-
mation of EC. Therefore, σEC

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.6 × 0.4=160

p ¼ 0.039.
In summary, σEC

can be conservatively estimated from
two characteristics of a sample test set: the computer’s
estimate of the presence of the code in the sample test set,
EC, and the number of responses in the sample test set, n.
The researcher can then report their estimate of the
presence of the code as EC � σEC

.

FIG. 4. Comparison between empirical data (black points) and Eq. (3) (red lines). (a) Standard deviation of EC as n, the number of
responses in each sample test set, varies empirically (code: CR, ptrain ¼ 0.5, EC ≈ 0.5, and the proportion of responses in the test bank
that contain the code is 0.5). (b) Standard deviation of EC as EC varies empirically (code: CR, n ¼ 100, ptrain ¼ 0.5).
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C. Recommendations

The analysis above leads to a single recommendation for
estimating statistical uncertainty:

1. Whenever reporting the frequency of a code in a
sample estimated by machine coding, report the
statistical uncertainty using Eq. (3).

We note that it is possible to do this without any human
coding beyond the initially human-coded training set.

V. SYSTEMATIC UNCERTAINTY
FROM THE TRAINED ALGORITHM

The third step in establishing the trustworthiness of an
algorithm is to understand any potential systematic effects
in how the algorithm codes data. When comparing two
coders, such as a machine coder and a human coder or even
two human coders, the two coders can apply the same
coding scheme in consistently different ways, leading to
systematic (as opposed to random) uncertainty. In this
section, we demonstrate how systematic effects, wherein a
machine coder can systematically over- or underestimate
the presence or absence of a code, emerge due to an
outcome imbalance in the sample test set (EC). We then
show how this systematic effect can be measured and thus
used to calibrate a measurement from a trained algorithm.
For now, we consider only systematic effects when apply-
ing an algorithm to data from a similar population. The next
section will explore impacts due to data from different
populations.

A. Explanation of method

We can evaluate potential systematic offsets between the
human and machine coder by calculating the difference
between an individual measurement of EC and the human
estimate EH. We observe that the computer systematically
over- or underestimates the presence of a code depending

on the prevalence of the code in the test bank. We can
estimate this relationship between EC and the systematic
uncertainty EC − EH through a predictive linear model,
which we define as a function SðECÞ. Following the
determination of this best fit function SðECÞ from a set
of human-coded test banks, researchers can then apply this
function to measurements without further human coding.
We assume that the human coder is “correct” whenever the
human and machine coders disagree, such that we calibrate
the machine coder to match the human coder (rather than
the other way around).

B. Evidence and examples

We calculate the systematic effect with trained models
for both the CR and L codes. Following the recommen-
dation above, we fix ptrain ¼ 0.5, which has the additional
benefit of controlling for a relationship between ptrain and
the systematic effect (as observed in Sec. II E). We generate
a set of eleven different test banks where the proportion of
responses containing the code varies from 0 to 1 inclusive
in steps of 0.1. The size of each test bank is Nbank ¼ 200.
For each test bank, we compute EC and EH for 100 sample
test sets of size n ¼ 100 pulled from the test bank.
We observe a systematic difference between the human

and machine coder that tends to be more extreme with more
extreme values of EC (Fig. 5). For the CR code [Fig. 5(a)],
the systematic effect is such that the model overestimates
the prevalence of the code when EC < 0.5 and under-
estimates the prevalence of the code when EC > 0.5. For
the L code [Fig. 5(b)], the direction of the systematic effect
is the same, but the boundary between over- and under-
estimation is shifted: the model overestimates the preva-
lence of the code when EC < 0.3 and underestimates the
prevalence of the code when EC > 0.3. Variability around
the average systematic uncertainty falls within the previ-
ously defined statistical uncertainty, as 95% of the data falls

FIG. 5. Given a value of EC, we compute the systematic uncertainty using the line of best fit SðECÞ. Scatter around the line of best fit is
within the statistical uncertainty, with at least 95% of the data falling within the black oval depicting 2 × σEC

[see Eq. (3)]. (a) SðECÞ for
the CR code (b) SðECÞ for the L code.
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within two standard deviations of σEC
as calculated by

Eq. (3) (indicated by the black ovals in Fig. 5). These
results imply that a measurement of EC is subject to a
systematic error that itself is dependent on the value of EC.
The effect is also dependent on the trained model, which

we demonstrate in Appendix C (Fig. 13). There, we see that
when we construct new trained models for the CR and L
codes using a different (yet still balanced) training set, the
best fit lines, SðECÞ, have the same overall downward linear
shape but have different parameters than the fit equations in
Fig. 5. The estimates for the systematic, therefore, depends
on the training set used (i.e., is unique to the trained model).
The analysis also shows that the difference in systematic
uncertainty for two different trained models can go beyond
the statistical uncertainty, especially at extremes. We expect
that this occurs because each trained model learns slightly
different coding rules.
To account for this source of systematic uncertainty in

subsequent analysis, a researcher can use the best fit function
for their trained model to find the systematic offset that
corresponds to their measured value of EC for a new dataset
(that has not been coded by humans). One should report the
estimate of SðECÞ for their estimate of EC along with its
corresponding statistical uncertainty as EC � σEC

− SðECÞ.
For example, for a measurement of EC ¼ 0.75 with the CR
code [and the trained algorithm that produced Fig. 5(a)],
we would use the equation for SðECÞ in Fig. 5 to obtain
SðEC ¼ 0.75Þ ¼ −0.33 × 0.75þ 0.17 ¼ −0.08.

C. Recommendations

We identify two key recommendations for determining
the systematic effects in machine coding:

1. For a single trained model applied to new data from
a similar population, measure the best fit equation
SðECÞ for the systematic uncertainty as a function of
the machine coding estimate, EC, using a test bank
of human-coded data. The larger the test bank size
and sample test set size and the larger the spread in
values of EC, the more confident you will be in the
function.

2. Report the systematic uncertainty alongside your
estimate and its statistical uncertainty in the form
EC � σEC

− SðECÞ.
If the magnitude of the systematic uncertainty of your result
is large enough that it calls your results into question,
improve your trained model with more data or through
improvements to the natural language processing and
machine learning.
We return to the question of how much hand-coded data

are needed to measure systematic uncertainty in this way. In
our analysis of the CR and L codes, we used test data that
included at least 200 responses that contained the code and
at least 200 responses that did not (separate from the 600
responses included in the training set). This full amount of
400 responses may or may not be necessary for researchers

to evaluate systematic effects, depending on the particular
code. One way this number could be reduced is by reducing
the range of EH values in the test banks, though there is a
trade-off as this will reduce precision in the calculated
systematic uncertainty value. In Fig. 5 we use the full
available range of values, as we include a test bank with
EH ¼ 0 and a test bank with EH ¼ 1. If the prevalence of a
code ranges from, say 0.2 to 0.6, and depending on
educational conditions, it may not be necessary to calculate
the best fit function SðECÞ on this full range. Alternatively,
one can reduce the size of the test banks at each value of
EH, which also reduces precision but would maintain the
full range.

VI. SYSTEMATIC UNCERTAINTY
IN NEW DATASETS

The fourth step in establishing the trustworthiness of an
algorithm is to evaluate any potential systematic effects
based on how an algorithm may code data that comes from
a distinct population of, in our case, student responses than
those used in the initial training. Quantitatively estimating
this source of potential systematic offsets is particularly
important for physics education researchers looking to use
machine learning and natural language processing at scale,
such that a model trained on data collected at a particular
time, institution, course, or course level could then be
applied to large quantities of data from other contexts
with limited additional human coding. In this section, we
demonstrate how to estimate such systematic effects using
similar methods to those in the previous section.

A. Explanation of method

In the previous section, we demonstrated that systematic
effects between the human and machine coder can be
written as a function of EC when the training set and test set
are pulled from the same population. Additional systematic
effects may arise, however, when the characteristics of
students in the test set are different from those represented
in the training set [50]. These characteristics can impact the
machine coding if, for example, the new population of
students use language differently than the initial dataset.
For example, students may use unique jargon or special
terms that a particular instructor introduced in a particular
physics class, but not in others. There are, of course, many
other ways in which the responses by one population of
students may differ systematically from those of another
population.
To account for this additional systematic effect, we

determine the function SðECÞ using human-coded test data
from the new population. When reporting results, account-
ing for the systematic effects then follows the steps from the
previous section. Though some new human coding is
needed to complete this step, we emphasize that this
method limits human coding to only the amount needed
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to establish trust in the researchers’ ability to measure
systematic effects in the new dataset. Next, we will provide
an example of estimating the functionSðECÞwith data froma
new population and we will compare it to an estimate of
SðECÞwith data from the same population as the training set.

B. Evidence and examples

Our trustworthy dataset includes several semesters where
the trustworthy survey question was asked only at post-
survey. Because the survey question is related to course
material for the populations being surveyed, we expect that
there are meaningfully different characteristics between the
presurvey and postsurvey responses. This provides an
opportunity to test for population systematic effects by
assuming that responses from students at presurvey re-
present a distinct population than responses from students
at postsurvey. To do so, we generate a trained model for the
CR code with a training set size of 500 majority postsurvey
responses (in this instance we had to reduce training set size
and could not use exclusively postsurvey responses because
of limited data). The training set is comprised of 80%
postsurvey responses and 20% presurvey responses. In
accordance with the recommendations above, we balance
the training set such that half the responses contained the
CR code according to human coders.
Using nontraining data responses remaining in the

dataset, we create two sets of test data: the first set (set
Pre-Post) mirrors the structure of the training set with 80%
postsurvey and 20% presurvey responses, while the second
set (set Pre) includes only pre-survey responses. Thus, set
Pre-Post is considered the same population as the training
set and set Pre is considered a different population.
We calculate the fit SðECÞ as a function of the computer’s

estimate EC using the methods outlined in the previous
section. We construct test banks where the proportion of

responses that contain the code varies from 0 to 1. Each test
bank is of size Nbank ¼ 200. From each test bank, we take
sample test sets of size n ¼ 100. We could not generate
samples with values of EC lower than about 0.3 using set
Pre because of insufficient presurvey data.
As per the previous section, we again find a linear trend

between the systematic uncertainty EC − EH and the
computer’s estimate EC. We find the systematic uncertain-
ties for set Pre-Post are given by the fit line SðECÞ ¼
−0.329 × EC þ 0.175 [Fig. 6(a)] and the systematic uncer-
tainties for set Pre are given by the fit line SðECÞ ¼
−0.494 × EC þ 0.273 [Fig. 6(b)]. Across the range of
possible values of EC, the systematic uncertainty tends
to be farther from zero when machine coding samples from
the set Pre, a different population than the training set,
compared to when machine coding samples from the set
Pre-Post, the same population as the training set. We also
see that the statistical variability is the same for both set Pre
and set Pre-Post and that 95% of the data fall within two
standard deviations as calculated by Eq. (3) (given by the
black ovals in Fig. 6).
We have presented just one example of the systematic

differences that may arise when the characteristics of
students in the test set are different from those represented
in the training set. The results motivate caution to be taken
in all instances involving changes to population character-
istics between training and test data, including changes in
the composition of, for example, student major, institution,
gender, race and ethnicity, or international student status.
Many variables can affect the way language is used and
thus how machine (and human) coders interpret it. We have
shown, however, that systematic differences can be mea-
sured by hand coding a relatively small set of data from the
new population. Future work should continue to investigate
the effects that arise from applying machine coding to
different populations of students.

FIG. 6. Sample test sets from the same population as the training set have lower systematic uncertainties than sample test sets from a
different population as the training set. The training set is identical in both plots, consisting of a 20=80 mix of pre-post responses.
(a) SðECÞwith sample test sets from same population as the training set (test bank is 20=80mix of pre or post responses). (b) SðECÞwith
sample test sets from different population as the training set (test bank is all preresponses). (Code ¼ CR, ptrain ¼ 0.5).
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C. Recommendations

We identify one key recommendation for determining
the systematic effects in applying a machine coding
algorithm to a new population:

1. When applying a trained model to a new student
population, regenerate SðECÞ by hand coding a
subset of the test data from the new population.
Then follow the recommendations of the previous
section using this new function SðECÞ.

Additional hand-coded data are needed to measure
systematic effects in the new dataset. The amount of data
needed will be comparable to the amount of data needed to
measure systematic uncertainty from the trained algorithm
in Sec. V, though it may be possible to use less data if it
can be shown with a smaller amount of data that syste-
matic effects are not greater than the previously calculated
systematic uncertainty in the trained algorithm. In this case,
the previously calculated function SðECÞ may be used to
compute the systematic.

VII. FULLY WORKED EXAMPLE

As a demonstration of this methodology altogether, this
section presents a fully worked example with a different
code than in the previous analyses. In what follows,
we train a new model, evaluate the optimized model,
and calculate the statistical and systematic uncertainties
associated with an estimate of the code in a new test set
without additional human coding, following the method-
ology summarized in Fig. 1.
For this example, we use a different code from the coding

scheme for the trustworthy data: Uncertainty, abbreviated
U. Two human coders achieved a Cohen’s kappa value of
0.9 in 10% of the data for this code. Then one coder coded
the rest of the data. The U code is defined as “measures
were taken during the procedure to reduce or account for
error or uncertainty and/or there is a small calculated
uncertainty.” The inclusion criteria for the U code are

1. uncertainty in measurements,
2. uncertainty of the results,
3. methods serve to reduce error,
4. error bars or bounds,
5. sources of error in measurements,
6. signal-to-noise ratio,
7. accounting for or reducing systematic error, random

error, or “human error” in the process of taking
measurements.

We use four distinct data groupings for this analysis: a
training set (400 pre- and postsurvey responses from
semesters prior to Fall 2022), a new dataset not coded
by humans (286 postsurvey responses from Fall 2022), and
two sets of test data. The first set of test data (labeled set
Pre-Post) includes responses from a similar population to
those in the training set data but different from those
in the new (un-coded) data (270 pre and postsurvey
responses from semesters prior to Fall 2022). The second

set of test data (labeled set Post) includes responses from
a different population to those in the training data but
similar to those in the new (uncoded) data (270 postsurvey
responses from semesters prior to Fall 2022). The res-
ponses for the training data and the test data were all hand
coded but the new (postsurvey from Fall 2022) dataset
was not.
We first trained an algorithm for the U code using a

training set of size 400. We set ptrain ¼ 0.5 as per the
recommendations (in this instance we had to reduce train-
ing set size because of limited data, as instances of the
U code were less common).

A. Evaluate the trained model

Table III presents the coefficients associated with the
trained model. The highest weighted words are uncertainty
and error, which are part of six of the seven inclusion
criteria for this code, such as accounting for or reducing
error, human error, and sources of error. One inclusion
criterion, “signal to noise ratio,” occurs rarely in the dataset
and does not appear in the top weighted words. Though the
U code does not have explicit exclusion criteria, percent
error was part of the inclusion criteria for a different code
and was understood by the human coders to not be related
to the inclusion criteria for the U code. Accordingly,
percent is the one of the words with the lowest (most
negative) coefficients. Overall, the trained model seems to
accurately capture our coding scheme based on these
coefficients.

B. Calculate statistical uncertainty

We apply the trained model to n ¼ 286 responses
in the uncoded dataset. This machine coding returns a
measurement of EC ¼ 0.409. With this measurement,

TABLE III. Coefficients for the trained model for the U code.
Left side (coefficient > 0) corresponds to inclusion criteria and
right side (coefficient < 0) corresponds to exclusion criteria.
Words in bold are listed in the inclusion criteria for the human-
generated coding scheme for this code (or share a root and are
part of the same word family as a word in the inclusion criteria,
e.g., uncertainty and the common typo “uncertainities”).

Word Coefficient Word Coefficient

uncertainty 4.76 percent −0.97
error 3.09 this −0.58
low 1.07 within −0.56
human 0.92 fit −0.50
source 0.84 it −0.49
uncertainities 0.70 likely −0.47
account 0.68 consistent −0.47
minimized 0.60 theoretical −0.46
possible 0.58 analysis −0.44
accounted 0.55 peer −0.42
reduce 0.53 same −0.39
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we calculate the statistical uncertainty from Eq. (3), giving
σEC

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.409 × ð1 − 0.409Þ=286p ¼ 0.029.

C. Calculate systematic uncertainties

To calculate systematic uncertainty associated with the
new uncoded data, we first need to determine a systematic
uncertainty function from the hand-coded test data. First,
we divide set Pre-Post (where data come from a population
similar to the training data but different from the uncoded
data) into nine different test banks, each with a different
proportion of responses containing the code (according
to human coders) between 0.1 and 0.9 inclusive. The size
of each test bank was Nbank ¼ 150. For each test bank,
we compute EC and EH for 100 sample test sets of size
n ¼ 100 pulled from the bank. Again, because U is a less
common code, we could not make larger banks without
losing the ability to estimate SðECÞ on as wide a range
between EC ¼ 0 and 1 as possible.
We generate a plot of EC − EH versus EC [Fig. 7(a)]

for the set Pre-Post data. The systematic uncertainties are
measured with the fit line SðECÞ ¼ −0.072 × EC þ 0.068
[Fig. 7(a)]. The systematic uncertainties follow the same
general pattern (negative slope) seen previously, but the
range is smaller than for codes we discussed previously.
The observed statistical variability of EC − EH is also much
smaller than the statistical uncertainty of EC, with nearly
all data falling well within 2 standard deviations (given by
the black oval). We expect that this reduced variability in
EC − EH reflects that the code is particularly and con-
fidently captured by the trained model.1

We then perform the same analysis using set Post, where
data come from a population different from the training
data but similar to the uncoded data. In this case, the
systematic uncertainty can be measured with the fit line
SðECÞ ¼ −0.051 × EC þ 0.0353 [Fig. 7(b)]. We again see
the same linear trend, but now with a slightly smaller slope
magnitude and a smaller intercept. This analysis demon-
strates that, in this example, perhaps counterintuitively, the
systematic effect is smaller when estimated using hand-
coded test data from a population different from the training
data, though this difference is indistinguishable given the
statistical uncertainty.
After doing this preparatory work, we calculate the

systematic uncertainty of the trained model with our
estimate of EC ¼ 0.409. The systematic uncertainty from
the set Pre-Post analysis is SðEC ¼ 0.409Þ ¼ −0.072×
0.409þ 0.068 ¼ 0.039. Next, we calculate the systematic
uncertainty using set Post because our uncoded data
are postsurvey data. The systematic uncertainty from the
set Post analysis is SðEC ¼ 0.409Þ ¼ −0.051 × 0.409þ
0.0353 ¼ 0.014.

D. Reporting the result

Based on our methodology, we would report that the
frequency of the U code in the new dataset is EC ¼ 0.409−
0.014� 0.029. We opt to use the estimate of systematic
uncertainty from set Post rather than set Pre-Post because
the student population in set Post is more similar to the
population in the new dataset. The difference between the
two calculations of systematic uncertainty are indistin-
guishable within the larger statistical uncertainty, so we
consider the estimate of systematic uncertainty from set
Post to also capture any systematic uncertainty from the
trained algorithm.
The skeptical reader may ask if this measurement aligns

with one made through human coding of the same dataset.
We do not wish to promote comparison with human coding
as a validation method because it eliminates our ability to
use machine coding as a tool to improve efficiency. We
can report, however, that upon skimming through the
spreadsheet of the machine’s codes, the machine coding

FIG. 7. Trained model for the U code applied to sample test sets from two different sets of test banks: (a) SðECÞ with set Post-Pre, and
(b) SðECÞ with set Post (Code ¼ U, ptrain ¼ 0.5. Black oval depicts 2 × σEC

).

1The ovals in Fig. 7 represent the statistical uncertainty of EC,
while the variability in the data about the line of best fit reflects
the statistical uncertainty of the quantity EC − EH. The variability
of EC—EH should be less than or equal to our prediction for
the statistical uncertainty of EC because EC and EH are not
independent variables (they are correlated). The purpose of
adding the ovals is not to provide a theoretical prediction for
the variability in EC − EH , but rather to provide a check that
the variability in the systematic uncertainty of the measurement
EC does not exceed what is already being reported as the
statistical uncertainty for the measurement EC.
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of individual responses appeared correct. Nonetheless, to
appease the skeptical reader, we human coded the first 60
responses in the uncoded new dataset and measured
EH ¼ 0.419� 0.064, where we calculate statistical uncer-
tainty using Eq. (3). This result is well within uncertainties
(both statistical and systematic) of the computer estimate.
It is notable that the systematic uncertainty for the

U code (Fig. 7) is significantly reduced compared to the
systematic uncertainty for the codes we examined earlier
(Fig. 5). Furthermore, the level of actual statistical variation
about the systematic uncertainty fit is smaller than in the
systematic uncertainty fits for the other codes (Fig. 5). We
interpret this reduced uncertainty to be a property of the
U code, specifically. That is, the trained model was able to
better capture the U code, likely because sentences that
contain this code tend to be more similar to one another
compared to the CR and L codes.

VIII. FUTURE WORK

We have presented a framework for measuring and
reporting quantitative education claims with machine cod-
ing of student text data. This framework was developed
using two example datasets, the trustworthy dataset and
the sources dataset, and only a handful of individual codes.
The limitations of human coding constrained the number of
datasets and codes we could include in this analysis. As this
framework continues to be applied, new data sources and
coding schemes should be used to reveal nuances that
improve and build upon our recommendations.
There are specific use cases of supervised natural

language processing where these methods cannot be used.
Most notably, these methods cannot be used to assist in
making inferences about individual students, because
these methods are designed to estimate the prevalence of
a code on a population level and to compute statistical and
systematic uncertainty of this estimate. Rather, these
methods should be used to evaluate samples of responses
from many students, such as individual classes.
The analyses above also relied on a one-vs-all approach,

where each code was evaluated independently and a
response could be coded for any number of codes. It is
possible to use a one-vs-all approach with a coding scheme
that uses multiple mutually exclusive codes, as in Ref. [15].
There may be some cases, however, where it is necessary to
enforce the constraint that the prevalence of these mutually
exclusive codes must add to one. Future work should
evaluate and adapt our methods for such cases. The estimate
of statistical uncertainty, for example, would be different
because the statistical processes would come from a differ-
ent probability distribution than the Bernoulli distribution.
Our machine coding algorithms also used logistic

regression and our method for evaluating the correspon-
dence between the trained model and human-generated
coding scheme in particular is based in the logistic
regression algorithm. Future work may use and expand

upon these methods by using other algorithms, such as
RandomForest, SVM, and neural networks. Additionally,
future work should investigate empirically if statistical and
systematic uncertainty are impacted by the use of these
other algorithms. One particularly promising avenue, as
pretrained large language models (LLMs) become available,
is to integrate LLMs into the construction of trained models
that classify PER data. Evaluating the correspondence
between trained models that use LLMs and a human-
generated coding scheme may pose a challenge because
you cannot read off parameters associated with unique
features as you can for logistic regression. This may be
worthwhile, however, as the LLM approach could reduce the
amount of training data needed while also reducing system-
atic uncertainty. With the LLM approach, it is still necessary
to account for statistical and systematic uncertainty in
analysis and we expect the methods above would apply.
A key constraint on the methods throughout is the amount

of hand-coded data required. An untested idea is that
generative AI could be used to generate additional responses
that do or do not contain a code (in a process similar to
efficientmass creation of isomorphic physics problems [55]).
These additional responses could particularly be used to
create much larger balanced training sets and larger test sets
for assessing systematic effects. The methodological and
ethical considerations that would go into this process are
beyond the scope of this paper, but wewould be interested in
seeing this idea explored in future work.
We focused our analysis of systematic effects from the

trained algorithmon the role of outcome imbalance in the test
set. Other sources of systematic uncertainty that we did not
explore may also exist, which is another area of future study.
In addition, we demonstrated how a difference in student
characteristics (whether they are taking a presurvey or a
postsurvey) impacts the level of systematic effects. Future
work should investigate explicitly the extent to which other
characteristics (gender, race, institution, course style) meas-
urably impact systematic uncertainty for a range of data
sources. For example, AI detectors have been shown to
systematically label writing from non-native English speak-
ers incorrectly as AI generated [56], so similar systematic
errors are likely to occurwhen usingmachine coding in PER.
Last, there may be ways to reduce the amount of

additional hand-coded data needed to compute systematic
error while making trustworthy claims. For example, a
researcher may be able to dramatically reduce the amount
of hand-coded data needed for evaluating systematic effects
if they are willing to accept the cost of increased systematic
error attributed to their claims. A researcher may choose not
to find the best fit function SðECÞ for a particular code and
student population group if they can instead provide
evidence to suggest that the systematic uncertainty is well
within the statistical variability from random sampling.
For example, it could be argued using approximately 50
responses that the U code has a systematic uncertainty much
less than the statistical uncertainty. As with any research that
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seeks tomake claims about largegroups of students, there is a
fundamental tension between the additional effort needed to
gather additional data and the fact that gathering additional
data will usually improve the trustworthiness, precision, and
accuracy of claims made with the data. By using these
methods based in uncertainty quantification, researchers
may stop collecting data and/or human coding as soon as
sufficient trustworthiness is reached.

IX. CONCLUSION

We have presented a four-part methodology that applies
established scientific tools and procedures (evaluating
models, calculating statistical uncertainty, calculating sys-
tematic uncertainty) to build trust in effective machine
coding. We demonstrated this method is effective for
more than one coding scheme and provided a real-world
example of using our method to machine code data from a
new dataset without additional human coding. We propose
(and provide evidence for) several recommended best
practices in machine coding: balancing training sets across
code outcomes, drawing comparisons between machine
coding mechanisms and human coding mechanisms
(coding schemes), and measuring and accounting for
statistical and systematic uncertainty whenever a quantita-
tive claim is made. We hope these recommendations can
continue to evolve as the use of machine learning and
natural language processing is applied to PER data.
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APPENDIX A: EFFECT OF TRAINING
SET IMBALANCE

1. Training set balance for the limitations code

In the main text, we presented evidence with the CR code
in the trustworthy dataset that balanced training sets (i.e.,
50% of the responses include the code) are most effective
for training a model. We additionally assess this effect for
the L code in the sources dataset with the same procedure.
We train our algorithm with nine different training sets,
each with a different value of ptrain between 0.1 and 0.9
inclusive. The size of the training set for each algorithm
was 600. For each algorithm, we compute EC and EH by

pulling 100 sample test sets of size n ¼ 100 from a test
bank of size Nbank ¼ 200. We fix the proportion of
responses in the test bank containing the code to 0.5.
Figure 8 shows that the difference between EC and EH is

zero for ptrain ¼ 0.5 but deviates from zero as ptrain deviates
from 0.5. Given that this finding is consistent for two
different codes from distinct datasets, we suggest the
finding is likely generalizable to other codes as well,
though future work should continue to test this empirically.

2. Training set balance for varying proportions of
responses in the test bank that contain the code

In the main text, we demonstrated the benefit of
balancing a training set using a test bank where the pro-
portion of responses in the test bank containing the code is
also balanced (50% of the responses contain the code). In
this section, we demonstrate what happens at other pro-
portions of responses in the test bank.
We test values of ptrain between 0.1 and 0.9 (in steps of

0.1) for two different test sets with different proportions of
responses that contain the code: (a) 0.3 and (b) 0.7. We use
the same algorithm for the CR code used above with a
training set of size 600. For each value of ptrain, we take 100
sample test sets of size n ¼ 100 and estimate SðECÞ across
the 100 samples. These data are displayed in Fig. 9.
We find that for the test bank where the proportion of

responses that contain the code is 0.3, SðptrainÞ is zero
around ptrain ¼ 0.4. For the test bank where the proportion
of responses that contain the code is 0.7, SðptrainÞ is zero
around ptrain ¼ 0.6. Thus, the optimal value of ptrain has
some correlation with the proportion of responses in the test
bank that contain the code.
In spite of the correlation between the optimal value of

ptrain and the proportion of responses in the test bank that
contain the code, we argue that a balanced training set with
ptrain ¼ 0.5 is the best choice for training a model. First, in

FIG. 8. Systematic uncertainty increases as ptrain is less bal-
anced (ptrain ¼ 0.5). (Code: Limitations, proportion of responses
containing the code in the test bank is 0.5).
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both of our test banks in Fig. 9, the systematic uncertainty is
within statistical uncertainty to zero when ptrain ¼ 0.5.
Second, when constructing a training set, we do not know
the proportion of responses in the new datasets to which the
model will be applied, and thus cannot make a priori
decisions about the best proportion to use in the training set
based on the correlation with the new dataset. Thus, we
must determine what value of ptrain is optimal on average
across all possible proportions of responses that contain
the code in the test set. Based on the analyses here, we
recommend balancing the training set (fix ptrain ¼ 0.5)
and modeling the remaining systematic uncertainty using
SðECÞ (with the process described in Sec. V).

APPENDIX B: STATISTICAL UNCERTAINTY

1. Validity of statistical uncertainty
expression for the L code

In the main text, we present evidence with the CR code
that Eq. (3) describes the statistical variability of the
machine coded responses. Here we assess the applicability
of Eq. (3) to the L code using a training set of size 600 with
ptrain ¼ 0.5, using the same procedures as with the CR code
in the main text.
We first probe the relationship between σEC

and n by
testing 30 different values of n between 10 and 200.
For each value of n, we draw 1000 test set samples of

size n from a test bank where the proportion of responses
containing the code is 0.5. We then have our algorithm
compute EC for every sample. For each value of n, we
calculate an empirical value for σEC

by computing the
standard deviation across the 1000 samples. As for the CR
code, we find that the empirical values of σEC

approx-
imately follow the predicted 1=

ffiffiffi
n

p
relationship but that

Eq. (3) slightly overestimates σEC
[Fig. 10(a)].

We then probe the relationship between σEC
and EC for

the L code. We test values of EC between 0 and 1. We create
a set of test banks where the proportion of responses
containing the code ranges from 0 to 1 inclusive in steps of
0.1. We draw repeated samples from each test bank to
calculate EC for each test bank. For each value of EC, we
take 1000 sample test sets of size n ¼ 100 and calculate
σEC

across the 1000 samples. As for the CR code, we find
that the empirical values of σEC

approximately follow the
predicted parabolic relationship but that Eq. (3) slightly
overestimates σEC

[Fig. 10(b)].

2. Validity of the estimate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1 −ECÞ

n

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1 −ECÞ

n

q
Here we assess the quality of the estimate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1−ECÞ

n

q
≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ECð1−ECÞ
n

q
that is made in Eq. (3). We check the assumption

as a function of n and as a function of EC.

FIG. 9. (a) SðptrainÞ where the proportion of responses in the test bank that contain the code (as determined by human coders) is 0.3,
(b) SðptrainÞ where the proportion of responses in the test bank that contain the code (as determined by human coders) is 0.7.

FIG. 10. Comparison between empirical data (black points) and Eq. (3) (red lines). (a) Standard deviation of EC as n, the number of
responses in each sample test set, varies empirically (code: L, ptrain ¼ 0.5, the proportion of responses in the test bank that contain the
code is 0.5 and EC ≈ 0.5). (b) Standard deviation of EC as EC varies empirically (code: L, n ¼ 100, ptrain ¼ 0.5).
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We train an algorithm for the CR code using a training
set of size 600 with ptrain ¼ 0.5. We use 1000 test set
samples for each value of n and EC, such that each test set
sample can be used to make an individual measurement EC.

We compute σEC
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1−ECÞ

n

q
for each individual EC value

from each test set sample. For each value of n and EC we
compute the 95% confidence interval for the 1000 values
and display it in blue to demonstrate the deviation fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ECð1−ECÞ
n

q
(in red).

To evaluate the quality of the estimate as n varies, we test
samples of size n, where n varies between 10 and 200. For
each value of n, we draw 1000 test set samples of size n
from a test bank with 50% of the responses containing the
code. This corresponds to EC ≈ 0.5. We compute EC andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ECð1−ECÞ
n

q
for each test set sample and then calculateffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ECð1−ECÞ
n

q
at each value of n. The results are plotted in

Fig. 11(a). Although there is moderately large deviation for
n < 30, for most values of n the size of the difference is
equal to or less than a rounding error if the statistical
uncertainty is reported with 1–2 digits.
We similarly evaluate the quality of the estimate as EC

varies. We test values of EC between 0 and 1. From the test
data, we create 11 different test banks where the proportion
of responses containing the code (as determined by the

human coder) ranges from 0 to 1 inclusive in steps of 0.1.
For each value of EC (each test bank), we draw 1000 test set

samples of size n ¼ 1000. We compute EC and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1−ECÞ

n

q
for each test set sample and then calculate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1−ECÞ

n

q
at

each value of EC. The results are plotted in Fig. 11(b). For
most values of EC included in the plot, the size of the
difference is equal to or less than a rounding error if
the statistical uncertainty is reported with 1–2 digits. There
are a few areas where the deviation is a bit larger, in
particular where EC < 0.2 or EC > 0.8.

3. Independence of statistical uncertainty
with training set size

Here we demonstrate that the statistical uncertainty σEC

is independent of the training set size. We separately train
algorithms for the CR code and the L code using ptrain ¼
0.5 and training set sizes Ntrain ranging from 100 to 600
inclusive in steps of 50. For each value of Ntrain, we draw
100 test set samples of size n ¼ 100 from a test bank of 200
responses with the proportion of responses in the test bank
that contain the code fixed at 0.5. We then calculate σEC

for
each value of Ntrain.
Figure 12 demonstrates that σEC

does not vary based on
Ntrain for either the (a) CR code or (b) L code. This result
provides evidence that statistical uncertainty is an effect of

FIG. 11. Accuracy of the approximation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ECð1−ECÞ

n

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðECð1−ECÞ

n

q
. Blue error bars show 95% interval of the approximation out of the

1000 samples.

FIG. 12. Statistical uncertainty is independent of the size of the training set. (a) Consistent results code. (b) Limitations code.
n ¼ 100; ptrain ¼ 0.5, the proportion of responses in the test bank that contain the code is 0.5, Nbank ¼ 200.
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the limited sample size rather than the size of the training
set (a proxy for the quality of the trained model).

APPENDIX C: EFFECT OF DIFFERENT
TRAINING SETS ON MODELS

OF SYSTEMATIC UNCERTAINTY

In the main text, we provide evidence that the systematic
difference between human and machine coders can be
modeled as a linear function SðECÞ. Here, we provide
evidence that the specific function is dependent on the
trained model. That is, if the training data used to generate a
trained model are changed, SðECÞ changes. This analysis
informs our recommendation to generate SðECÞ for a single
trained model that will be applied to new data.
We sample a training set of size 600 for the CR code

(different from the training set used in Fig. 5), both of
which are still balanced (50% of responses contain the
code). From the data not included in this training set,
we generate a set of nine different test banks where the
proportion of responses containing the code varies from 0.1
to 0.9 inclusive. The size of each test bank is Nbank ¼ 300.
For each test bank, we compute EC and EH for 100 sample
test sets of size n ¼ 100 pulled from the test bank. In
Fig. 13(a), we plot EC − EH vs EC for this new data
(in blue) alongside the data from Fig. 5 (in black). We
repeat this same process for the L code (panel b).
For the CR code, the difference between the systematic

uncertainty for the two different trained models extends
beyond statistical uncertainty throughout the range of EC.

For instance, for the CR code SðEC ¼ 0.25Þ ¼ 0.088 for
the original trained model in Fig. 5, but SðEC ¼ 0.25Þ ¼
0.035 when using the different training set shown in
Fig. 13. The statistical uncertainty where EC ¼ 0.25 is
σEC

ð0.25Þ ¼ 0.043; thus, the difference in these two
estimate, 0.088 − 0.035 ¼ 0.053, is slightly larger than
σEC

ð0.25Þ. The difference grows as EC increases. When
EC ¼ 0.75, for example, SðEC ¼ 0.75Þ ¼ −0.077 for the
original trained model and SðEC ¼ 0.75Þ ¼ −0.175 for the
different training set. This difference,−0.077 − ð−0.175Þ ¼
0.098, is more than twice the statistical uncertainty
σEC

ð0.75Þ ¼ 0.043.
For the L code, the difference between the systematic

uncertainty for two different trained models is indistin-
guishable for EC < 0.5 but extends beyond the statistical
uncertainty at high values of EC. Thus, changing the
trained model may be beyond statistical uncertainty,
especially at extreme values of EC. We expect that this
occurs because each trained model learns slightly differ-
ent coding rules, even though both training sets are
balanced.
We note that in this analysis we are comparing only

two specific examples of trained models for each code,
thus the comparison above cannot be generalized to
other examples. For instance, we cannot conclude that a
third example of a trained model for the L code is more
likely to be indistinguishable from our existing exam-
ples than a third example of a trained model for the
CR code.

FIG. 13. Given a value of EC, we can compute the systematic uncertainty using the line of best fit SðECÞ. SðECÞ is specific to a training
set. When the training data changes, with all else staying constant, SðECÞ changes. Scatter around line of best fit is a result of statistical
uncertainty as less than 95% of the data falls within the black oval depicting 2 × σEC

[see Eq. (3)]. (a) SðECÞ for CR code with a different
training set (blue) along with SðECÞ from Fig. 5(a) (black). (Code: CR, ptrain ¼ 0.5) (b) SðECÞ for L code with a different training set
(blue) along with SðECÞ from Fig. 5(b) (black) (Code: L, ptrain ¼ 0.5).
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