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Structural equation modeling (SEM) is a statistical method widely used in educational research to
investigate relationships between variables. SEM models are typically constructed based on theoretical
foundations and assessed through fit indices. However, a well-fitting SEM model alone is not sufficient to
verify the causal inferences underlying the proposed model, as there are statistically equivalent models with
distinct causal structures that equally well fit the data. Therefore, it is crucial for researchers using SEM to
consider statistically equivalent models and to clarify why the proposed model is more accurate than the
equivalent ones. However, many SEM studies did not explicitly address this important step, and no prior
study in physics education research has delved into potential methods for distinguishing statistically
equivalent models with differing causal structures. In this study, we use a physics identity model as an
example to discuss the importance of considering statistically equivalent models and how other data can
help to distinguish them. Previous research has identified three dimensions of physics identity: perceived
recognition, self-efficacy, and interest. However, the relationships between these dimensions have not been
thoroughly understood. In this paper, we specify a model with perceived recognition predicting self-
efficacy and interest, which is inspired by individual interviews with students in physics courses to make
physics learning environments equitable and inclusive. We test our model with fit indices and discuss its
statistically equivalent models with different causal inferences among perceived recognition, self-efficacy,
and interest. We then discuss potential experiments that could further empirically test the causal inferences
underlying the models, aiding the refinement to a more accurate causal model for guiding educational
improvements.
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I. INTRODUCTION

Structural equation modeling (SEM) is a widely used
statistical method for analyzing predictive relationships
among variables [1]. It enables researchers to examine both
the measurement properties of latent variables and the
structural relationships between them [1]. SEM has proven
to be highly valuable across diverse fields [1]. For instance,
in physics education research, SEM can help researchers
investigate predictive relationships between various factors
and students’ learning outcomes [2,3].
Conducting SEM analyses involves several steps, includ-

ing model specification, model identification assessment,
data collection, and model estimation and evaluation [1].
Model specification entails creating an SEM model
grounded in prior theoretical studies. Model identification

assessment determines the mathematical solvability of the
model. Model estimation and evaluation entail testing the
model using fit indices to gauge data fit. It is important
to note that while a well-fitted SEM model can assist
researchers in testing predictive relationships among stud-
ied variables, it is insufficient for establishing or verifying
underlying causal relationships between the variables [4,5].
Previous research has indicated that in a predictive
model [4,6], as long as independent variables are associated
with dependent variables, they can be used as predictors.
However, if researchers seek to evaluate the causal impact
of independent variables on dependent variables, the
accuracy of the model as a causal estimate depends on
whether the model reflects the actual causal relationships
between the variables [4,7]. In other words, predictors do
not necessarily have a causal impact on the dependent
variables. Therefore, relying solely on fit indices is not
sufficient to verify the causal inferences underlying a
proposed model since there exist statistically equivalent
models, which fit the data equally well but have different
causal structures. Therefore, one crucial element of the
model estimation and evaluation step is considering
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statistically equivalent models and clarifying why the
proposed model should not be rejected in favor of these
alternatives [1]. However, this element is often overlooked
in SEM studies, potentially undermining the robustness of
research findings [8].
In this study, we use the physics identity model as an

example to demonstrate how an SEM model can have
multiple statistically equivalent models with different
causal structures, how one can specify a model based upon
additional data and how the model can be refined further to
converge on an even more causally accurate model. In
particular, we specify a model based on our interviews with
students to make physics learning environments equitable
and inclusive as well as other supporting evidence. Then,
we examine different equivalent models with their distinct
causal structures. Finally, we discuss several experimental
studies that could help further distinguish the equivalent
models and determine a more causally accurate model.

II. BACKGROUND AND GOAL

A. General approach of SEM

Structural equation modeling typically encompasses
several key steps to analyze predictive relationships among
variables. The first step is model specification, in which
researchers establish the hypothesized relationships be-
tween observed variables and their corresponding latent
variables, as well as the relationships among the latent
variables [1]. This step relies on additional data, previous
research, and domain knowledge [1], providing the foun-
dation for the subsequent steps of the analysis.
After specifying the model, researchers evaluate its

identification [1]. Model identification refers to determin-
ing whether the model is underidentified, just-identified, or
overidentified [1]. An underidentified model is character-
ized by having more parameters to estimate than available
data points (variances and covariances of the observed
variables) within the model. In contrast, a just-identified
model possesses an equal number of parameters for
estimation and data points, and an overidentified model
holds more data points than parameters for estimation. To
enable parameter estimation, a model must be either just-
identified or overidentified [1]. Overidentified models carry
particular significance in SEM as they enable researchers to
assess model fit indices, which evaluate how effectively the
tested model portrays the observed data [9].
Subsequently, researchers proceed to data collection,

which involves gathering, preparing, and screening the data
to ensure its quality and suitability for analysis [1].
Appropriate data selection and preparation are essential
for obtaining reliable and valid results. Once the data are
prepared, researchers estimate and evaluate the model using
statistical software. The first step in estimation involves
assessing how well the model fits the data [1]. Fit indices
such as the chi-square test, comparative fit index (CFI), and

root mean square error of approximation (RMSEA), are
used to assess how well the model aligns with the observed
data. If the fit is unsatisfactory, researchers may need to
revise the model to improve its alignment [1].
In many previous studies involving SEM, researchers

often proceed to interpret the parameter estimates and draw
conclusions based on their model when the model fits the
data well without explicitly clarifying the details of the
model specification from among many statistically equiv-
alent models. However, not clarifying the process of model
specification and solely discussing good fit indices is
inadequate for verifying the causal inferences underlying
the proposed model, as there often exist statistically equiv-
alent models of the proposed model that fit the data equally
well but possess different causal structures [1]. Statistically
equivalent models are a collection of models that yield
identical correlation matrices, fit functions, chi-square
values, and goodness-of-fit indices [10]. Consequently,
these equivalent models can equally well explain the data
compared to researchers’ preferred model but might lead to
different causal claims [1]. Therefore, researchers should
explicitly acknowledge the existence of equivalent models,
and provide reasons for favoring their preferred model over
the equivalent versions [1]. Extra evidence supporting the
specified model is necessary in this regard. The more robust
the supporting evidence is to favor the specified model, the
more causally accurate that model would be.

B. Randomized experiment as a method
for establishing causal inference

Randomized experiments, involving the random assign-
ment of subjects into treatment and control groups, are
often considered the “gold standard” for establishing causal
inferences due to their ability to balance potential con-
founding factors on average [11]. Randomized experiments
typically incorporate several design elements that enhance
internal validity [12]. First, the manipulation of the inde-
pendent variable occurs prior to the measurement of the
outcome (dependent variable). Second, the control group
functions as a counterfactual benchmark for the experi-
mental (treatment) group. Third, randomization ensures
that the independent variable is uncorrelated with other
potential causes of the outcome.
In addition to establishing causal relationships between

two variables, the exploration of mediation relationships
amongmultiplevariables offers valuable insights to research-
ers. Mediation involves the transfer of causality from an
independent variable to a dependent variable through a third
variable knownas a “mediator.”Previous studies recommend
an approach to testing mediation hypotheses [13–16]. This
involves conducting two distinct experiments: one that
manipulates the independent variable and another that
manipulates the hypothesized mediator [13]. Moreover,
when a collection of experiments manipulates the indepen-
dent variable and another set manipulates the mediator,
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synthesizing these two sets of experiments through meta-
analysis can yield even more robust evidence for
mediation [13]. In this paper, we will discuss how exper-
imental studies can be used to test different statistically
equivalent models with regard to identifying the ones that are
more causally accurate based upon how consistent they are
with the results of experimental interventions.

C. Goal

In this study, we investigate the issue of SEM model
equivalence in the context of physics identity framework.
We begin by specifying a model based on our individual
interviews with students in physics courses to make physics
learning environments equitable and inclusive as well as
other supporting evidence from prior studies. Then, we
examine different equivalent models with their distinct
causal structures. Furthermore, we suggest a range of
experimental studies that could further help distinguish
among these equivalent models to determine a more
causally accurate model.

III. THEORETICAL FRAMEWORK

A. Physics identity framework

Prior studies have shown that physics identity is a crucial
motivational factor for explaining students’ participation in
physics related careers [3,17]. Physics identity pertains to
students’ perception of themselves as “physics people” and
influences their career decisions and academic goals [17].
Prior studies have identified three interrelated dimensions
of physics identity: perceived recognition by others as a
physics person, physics self-efficacy, and interest [17].
These dimensions have been shown to be important
predictors of students’ overall physics identity [3,18].
Perceived recognition in a domain, such as physics,

refers to students’ perception about whether other people
see them as a physics person [19]. Prior studies have shown
that perceived recognition is the strongest predictor of
students’ overall physics identity compared to self-efficacy
and interest [3,20,21]. Moreover, perceived recognition
also predicts students’ course grades in introductory phys-
ics courses [22,23].
Self-efficacy, defined as students’ beliefs in their capabil-

ity to succeed in a certain situation, task, or particular
domain [20,24,25], can influence students’ engagement
and performance in a given domain [26,27]. Students with
high self-efficacy often enroll in more challenging courses
than those with low self-efficacy because they perceive
difficult tasks as challenges rather than threats [28].
Interest is defined by positive emotions accompanied

by curiosity and engagement in particular content [29].
Interest has also been shown to influence students’ learning
outcomes [26,29,30]. For example, one study showed that
making science courses more relevant to students’ lives and

transforming curricula to promote interest in learning can
improve students’ achievement [31].

B. Relationships between perceived recognition,
self-efficacy, and interest

Research suggests that perceived recognition, self-
efficacy, and interest correlate to and interact with each
other [24,32], but the predictive relationships among them
are not very clear. Prior studies have proposed different
models with certain relationships among them. For exam-
ple, some prior studies used a model in which self-efficacy
is the predictor of both interest and perceived recognition
[3,33], while another study used the model in which interest
is the predictor of both self-efficacy and perceived
recognition [34]. Although most of these studies have
presented theoretical frameworks for their proposed mod-
els, they have not explicitly discussed the existence of
statistically equivalent models and how their proposed
models are favorable compared to the equivalent ones
based on evidence beyond model fit indices [35].
In this study,we specify anSEMmodel inwhich perceived

recognition predicts self-efficacy and interest, and self-
efficacy predicts interest. The schematic representation of
the SEM model is shown in Fig. 1. This model draws
inspiration from our previous qualitative research involving
individual interviews with students in physics courses to
make physics learning environments equitable and inclusive
[36–40] as well as findings from prior studies [24,32].
In particular, the paths from perceived recognition to self-

efficacy and interest in the model (Fig. 1) draw inspiration
from our prior hour-long individual interviews with 70
undergraduate student volunteers (55 women and 15 men
including some unpublished data) in physics courses about
their experiences in physics learning environments using a
semistructured protocol [22,36–39]. Our interview data
show that womenwere less likely thanmen to feel positively
recognized by physics instructors and TAs, and this lack of
recognition or discouraging feedback from instructors
and TAs deteriorated their self-efficacy as well as interest,
and lowered self-efficacy further lowered their interest
[22,36–39]. For example, some interviewed women

FIG. 1. Schematic representation of the SEM model we
specified in which perceived recognition (Recog) predicts self-
efficacy (SE) and interest, and self-efficacy predicts interest.
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reported thatwhen theywent to the course instructor or TA to
ask for help on physics problems, sometimes they were
explicitly told that the problems were “easy,” “obvious,” or
“trivial,” which they perceived as disparaging or belittling
(negative perceived recognition) in that they felt they were
being told that they are not smart enough to do physics if
they could not do such easy problems on their own
[22,36–39]. In addition, many interviewed women noted
that their instructors and TAs sometimes showed more
interest in male students’ questions and answered male
students’ questions with more attention than when they
answered their questions (negative perceived recognition)
[36,38]. Moreover, some interviewed women reported that
men in their physics courses were generally praised more by
the instructors and TAs than women, and sometimes
instructors and TAs called men who answered the questions
“brilliant,” which made them feel as though they were not
brilliant [22,36]. In the interviews, women with these types
of negative perceived recognition reported that these expe-
riences affected their physics self-efficacy and interested. In
particular, because of the negative experiences in their
physics courses, they started questioning “Why am I here
in the first place? Am I really interested in this?”, and some
confided that they had contemplated switching out of their
major (either engineering or physics) while men never
expressed similar concerns [36]. Some female students
noted that these negative experiences made them wonder
whether they were experiencing them because their ques-
tions were not good or too easy, and thus they started
doubting their ability to do well in this course [36,38].
On the other hand, our interview data show that positive

encouragement and recognition are likely to boost students’
self-efficacy and interest in physics [22,36–39]. For exam-
ple, some students reported that they feel better when the
instructors know what students tend to struggle with and
acknowledge that it is okay to not completely understand
the content and they just need more practice, and eventually
they will get over the struggle with that topic and move on
to the next topic [36]. In addition, some interviewed
students also mentioned that they felt really encouraged
when their physics problem solving, posters and talks were
recognized by their instructors [36]. Thus, our interview
data show that students’ perceived recognition from
instructors and TAs plays an important role in shaping
students’ physics self-efficacy and interest [36].
In addition, the path from perceived recognition to self-

efficacy also draws inspiration from Bandura’s social
cognitive theory [24], which suggests that individual’s
self-efficacy can be influenced by social persuasion (i.e.,
encouragement and discouragement pertaining to their
performance or ability to perform). For example, in the
educational context, prior studies have shown that con-
structive feedback and recognition from instructors can
significantly enhance students’ self-efficacy in writing
[41,42]. Similarly, another study showed that personalized

messages of encouragement provided by instructors on
students’ work can elevate their self-efficacy [43].
The path from perceived recognition to interest is also

inspired by findings from other prior studies [36–40,44–46].
For example, Shanab and colleagues [45] found that positive
verbal feedback during a puzzle-solving task prompted
undergraduates to invest more time and rate their interest
higher, compared to participants in a neutral feedback
control group. Similarly, a meta-analysis conducted by
Deci et al. demonstrated that verbal recognition positively
influenced self-reported interest in both children and college
students [46].
The path from self-efficacy to interest is also guided by

previous research. For instance, vocational investigations
have shown that self-efficacy in a domain can foster interest
in activities [47–49]. Silvia delved into this issue through
the lens of emotion psychology, revealing that one’s self-
efficacy in a domain can influence their perceived uncer-
tainty about an activity’s outcome, which in turn affects
their interest [50–52].
As shown in Fig. 1, there are paths from gender to

perceived recognition, self-efficacy, and interest, and phys-
ics identity. These paths are inspired by prior studies
showing gender differences disadvantaging women in
these constructs [2,3,17,18,53,54]. For instance, one study
reveals that women who receive A grades reported similar
levels of self-efficacy as men who earn C grades at the end
of a two-semester calculus-based introductory physics
course [54]. Prior studies have suggested that factors such
as societal stereotypes and biases about who belongs in
physics and who can excel in physics can contribute to the
gender gaps [55–59]. Additionally, the results of moder-
ation analysis provided support for conducting the SEM
analysis involving gender (further details about moderation
analysis will be discussed later in this paper).
In this study, we first evaluated the fit indices of the

model we specified inspired by our interviews to make the
physics learning environment more inclusive and equitable
as well as other supporting evidence discussed. Then, we
examined different equivalent models with their distinct
causal structures. Finally, we propose several experimental
studies that could help further distinguish the equivalent
models and determine a more causally accurate model.

IV. RESEARCH QUESTIONS

Our research questions are as follows:
RQ1. Are there gender differences in students’ self-
efficacy, interest, perceived recognition, and overall
physics identity at the end of the physics course
studied?

RQ2. How well does the SEM model we specified fit
the data?

RQ3.Howmany statistically equivalent models does our
model have?
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RQ4. How can one further determine a more accurate
causal model using experimental studies?

V. METHODOLOGY

A. Participants

In this study, we collected motivational survey data at the
end of the semester from students who took the introduc-
tory calculus-based physics 1 course in two consecutive fall
semesters. This course is taken mostly by students majoring
in engineering, physical sciences, and mathematics. The
paper surveys were handed out and collected by TAs in the
last recitation class of the semester. Finally, we combined
the two semesters’data. The demographic data of students—
such as gender—were provided by the university. Students’
names and IDs were de-identified by an honest broker who
provided each student with a unique new ID (which
connected students’ survey responses with their demo-
graphic information). Thus, researchers could analyze
students’ data without having access to students’ identify-
ing information.
There were 1219 students participating in this survey

including both semesters. In our final data analysis, we kept
1203 students (including 427 women and 776 men)
because the other 16 students did not provide their gender
information. The data used in this study were also used in a
prior publication for different research questions [2]. We
recognize that gender is a social construct and is not binary.
However, because students’ gender information was

collected by the university, which offered binary options,
we did the analysis with the binary gender data in this
study. 1.3% of the students who did not provide this
information were not included in this analysis.

B. Survey instruments

In this study,we considered fourmotivational constructs—
physics self-efficacy, interest, perceived recognition, and
identity. The survey items for each construct are listed in
Table I. The survey items were adapted from the existing
motivational research [17,60–62] and have been revalidated
in our prior work [63–65]. The validation and refinement of
the survey involved use of one-on-one student interviews
with both introductory and advanced students, exploratory
and confirmatory factor analyses (EFA and CFA) [66],
correlation between different constructs and Cronbach’s
alpha (which is a measure of the internal consistency of
each construct with several items) [67–69].
In our survey, each item was scored on a 4-point Likert

scale (1–4). Students were given a score from 1 to 4 with
higher scores indicating greater levels of interest, self-
efficacy, perceived recognition, and identity. Physics self-
efficacy represents students’ belief about whether they can
excel in physics. We had four items for self-efficacy
(Cronbach’s alpha ¼ 0.8) and these items had the response
scale “NO!, no, yes, YES!”. We also had four items for
interest (Cronbach’s alpha ¼ 0.82). The question “I won-
der about how physics works” had temporal response
options “never, once a month, once a week, every day,”

TABLE I. Survey items for each of the motivational constructs, along with CFA factor loadings. Lambda represents
the factor loading of each item, which is the correlation between the item and the construct with p < 0.001 indicating
the correlation is highly statistically significant. The square of Lambda for each item gives the fraction of its variance
explained by the construct. (†The response options for this question are “never, once amonth, once aweek, every day.”
‡The response options for this question are “very boring, boring, interesting, very interesting.”).

Lambda p value

Physics identity
I see myself as a physics person. 1.000 <0.001

Physics self-efficacy (Cronbach’s alpha ¼ 0.8)
I am able to help my classmates with physics in the laboratory
or in recitation.

0.796 <0.001

I understand concepts I have studied in physics. 0.829 <0.001
If I study, I will do well on a physics test. 0.787 <0.001
If I encounter a setback in a physics exam, I can overcome it. 0.742 <0.001

Physics interest (Cronbach’s alpha ¼ 0.82)
I wonder about how physics works† 0.710 <0.001
In general, I find physics‡ 0.893 <0.001
I want to know everything I can about physics. 0.854 <0.001
I am curious about recent physics discoveries. 0.748 <0.001

Physics perceived recognition (Cronbach’s alpha ¼ 0.86)
My family sees me as a physics person. 0.925 <0.001
My friends see me as a physics person. 0.940 <0.001
My physics TA and/or instructor sees me as a physics person. 0.780 <0.001
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whereas the question “In general, I find physics” had
response options “very boring, boring, interesting, very
interesting.” The remaining two items were answered on
the “NO!, no, yes, YES!” scale. Physics identity corre-
sponds to students’ belief about whether they designate
themselves as a physics person [17]. Perceived recognition
corresponds to whether a student thinks other people see
them as a physics person [17,70,71], and it includes three
items which correspond to family, friends and TA/instructor
(Cronbach’s alpha ¼ 0.86). These items involved a four-
point Likert response on the scale: “strongly disagree,
disagree, agree, and strongly agree” and they correspond to
1 to 4 points [72].

C. Data analysis

1. Descriptive statistics

In this study, we calculated the mean score for each
construct for women and men. We note that all motivational
constructs studied were measured using 4-point Likert scale
survey items and each item is a categorical variable. In our
previous study [20], we have checked the response option
distances for our survey constructs by using item response
theory (IRT) to support the use of means across ratings
[73]. Here, we performed IRTwith the new dataset to verify
the validity of using means across ratings. The parametric
grades response model (GRM) by using the R software
package MIRTwas used to test the measurement precision of
our response scale [74,75]. Some of the items have
response scales of “strongly disagree, disagree, agree,
and strongly agree” while other items had response scale
“NO!, no, yes, YES!”. GRM calculates the location
parameter for each response and calculates the difference
between the locations. For the first group—strongly dis-
agree, disagree, agree, and strongly agree—the differences
between the location parameters were 1.3 and 1.4. For the
second group—“NO!, no, yes, YES!”—the differences
between the location parameters were 1.4 and 2.0. These
results show that the numerical values for the location
differences for item responses are comparable, which
suggests that calculating the traditional mean score for
items is reasonable [73,75]. Furthermore, we estimated the
IRT-based scores with expected a posteriori (EAP) com-
putation method for each construct, and the results are
highly correlated with the mean scores (the correlation
coefficient are >0.98 for all constructs), which indicates
that the use of mean scores is reasonable [73].
Before investigating the gender differences in the studied

constructs, we assessed the normality of mean scores for
items under each construct using skewness and kurtosis.
Bulmer suggests that skewness values between −0.5 and
0.5 characterize a symmetric distribution, while values of
−1.0 to −0.5 and 0.5 to 1.0 indicate a moderate degree of
skewness, and values less than −1.0 and greater than 1.0
represent a high degree of skewness [76]. Other literature
suggests that data are considered normal if skewness falls

between −2 and þ2 and kurtosis between −7 and þ7
[77,78]. As shown in Table II, while the skewness of
interest suggests a moderate degree of skewness based on
the strict criteria mentioned earlier, most values of skew-
ness and kurtosis shown fall within the normal range. Since
physics identity is a categorical variable measured by a
single item, we did not calculate skewness and kurtosis for
it. In this study, we used the Wilcoxon rank-sum test to
estimate the gender differences in the constructs studied.
The Wilcoxon rank-sum test is commonly used to compare
two independent samples when normality assumption is not
satisfied or the data are ordinal [79].

2. Structural equation modeling

In this study, we used the R [80] software package
LAVAAN to conduct SEM [81] to investigate the relationship
between students’ perceived recognition, interest, and self-
efficacy. SEM is a multivariate statistical analysis technique
that is used to model the relations between observed
variables (items) and latent variables (factors), or between
multiple latent variables. This technique is the combination
of confirmatory factor analysis (which tests how well the
observed variables represent the latent variables) and path
analysis (which estimates the regression relationships
between latent variables). Compared with a multiple
regression model, a major advantage of SEM is that we
can estimate all of the regression links for multiple out-
comes and factor loadings for items simultaneously, which
improves the statistical power [81]. Another advantage of
SEM is that it shows not only the direct regression relation
between two constructs but also all the indirect relations
mediated through other constructs [81].
In SEM, it is generally recommended that ordinal Likert-

type items with more than 5 categories can potentially be
treated as continuous indicators eligible for the maximum
likelihood (ML) estimator [82]. In our case, where we
employed 4-point Likert scale, the use of polychromic
correlations is recommended. In addition, in this study, we
used diagonally weighted least square (DWLS) to estimate
parameters. DWLS estimation is commonly used to ana-
lyze ordinal variables and has also been shown to produce
unbiased parameters estimates with great statistical power
for ordinal data [83,84].
As noted earlier, the SEM includes two parts: confirma-

tory factor analysis (CFA) and path analysis. First, we
performed the CFA for each construct. The model fit is

TABLE II. Summary of the skewness and kurtosis.

Skewness Kurtosis

Constructs Statistic Std. error Statistic Std. error

Self-efficacy −0.50 0.07 0.79 0.14
Interest −0.58 0.07 0.48 0.14
Perceived recognition −0.13 0.07 −0.44 0.14
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good if the fit parameters are above certain thresholds. In
CFA, comparative fit index ðCFIÞ > 0.9, Tucker-Lewis
index ðTLIÞ > 0.9, root mean square error of approxima-
tion ðRMSEAÞ < 0.08 and standardized root mean square
residual ðSRMRÞ < 0.08 are considered acceptable and
RMSEA < 0.06 and SRMR < 0.06 are considered a
good fit [67]. In our study, CFI ¼ 0.997, TLI ¼ 0.996,
RMSEA ¼ 0.057, and SRMR ¼ 0.040, which represents a
good fit [67].
Before performing the path analysis, we calculated the

pairwise correlations between each pair of constructs
studied (see Table III) [69]. The correlation coefficients
were calculated using the R software package LAVAAN,
employing the DWLS estimator, which is a common
approach for estimating correlations between variables
involving categorical data [85,86]. As shown in Table II,
the correlation coefficients of all constructs are above 0.6,
and most of them are below 0.8, which indicates that even
though they have correlations with each other, the corre-
lations are not so high that the constructs could not be
separately examined in the SEM [87]. We note that the
correlation coefficient between physics identity and per-
ceived recognition is 0.89. This is consistent with Godwin
et al. and Kalender et al.’s prior work showing that
perceived recognition (external identity) is the strongest
predictor of physics identity (internal identity) [3,20]. In
addition to the correlations between the constructs studied,
we report the correlations between all measured items in
Appendix A.
Since the SEM model in this study involves gender, we

conducted a moderation analysis [1,88] to test whether
gender moderates the relationship between any two con-
structs in the model (i.e., do the strength of relationships
given by the standardized regression coefficients between
any two constructs in the model differ for women and
men?). We used the R [80] software package LAVAAN to
conduct multigroup SEM. We initially tested for measure-
ment invariance, which includes testing of factor loadings,
indicator intercepts and residual variances. Then, we
investigated whether the regression pathways were differ-
ent across gender. Results showed that in all of our models,
strong measurement invariance holds and there is no
difference in any regression coefficients by gender, which
allowed us to perform the path analysis involving gender
using SEM [1,88] as shown schematically in Fig. 1.

We first analyzed the saturated SEM model that includes
all possible links from left to right between different
constructs shown in Fig. 1, and then we removed the most
insignificant path line (with the highest p value) and re-ran
the model. We used this method to trim one path at a time
until all remaining path lines were statistically signifi-
cant [88].

VI. RESULTS

A. Descriptive statistics

Pertaining to RQ1, Table IV shows the descriptive
statistics of women’s and men’s physics identity, perceived
recognition, self-efficacy, and interest, alongwith the results
of Wilcoxon rank-sum tests for gender differences. Cohen
suggested that typically values of 0.1, 0.3 and 0.5 represent
small, medium and large effect sizes forWilcoxon rank-sum
tests [89]. As shown in Table IV, women have significantly
lower average scores in all fourmotivational constructs [90].
In particular, women’s average scores on physics identity
and perceived recognition were below the neutral score of
2.5. Thus, many women did not think others see them as a
physics person, and they did not see themselves as a physics
person either. In Appendix B, we report the percentages of
students who selected each choice for each survey item,
which show consistent results with the descriptive statistics
shown in Table IV.

B. Estimation of the specified SEM model

Pertaining to RQ2, we estimate how the specified SEM
model (model 1) in Fig. 1 fit the data. Figure 2 shows the
results of the SEM model. The solid lines represent
regression paths, and numbers on the lines are regression
coefficients (β values), which represent the strength of
regression relations. A regression coefficient reflects the
change in the dependent variable (outcome) associated with
a 1 standard-deviation increase in the independent variable
(predictor), while holding other variables in the model

TABLE III. Pairwise correlation coefficients of the constructs
studied. p values are indicated by *** for p < 0.001.

Constructs 1 2 3 4

1. Physics identity � � � � � � � � � � � �
2. Self-efficacy 0.74*** � � � � � � � � �
3. Interest 0.75*** 0.64*** � � � � � �
4. Perceived recognition 0.89*** 0.77*** 0.70*** � � �

TABLE IV. Descriptive statistics for women and men, in which
M stands for construct mean value, SD is the standard deviation,
and N is the number of students. Effect sizes and p values are
presented in the right most column with p < 0.001 indicating
highly statistically significant gender differences. A minus sign
indicates that men have higher scores than women.

Women
N ¼ 427

Men
N ¼ 776 Statistics

Constructs M SD M SD Effect size p value

Physics identity 2.17 0.83 2.63 0.83 −0.26 <0.001
Perceived recognition 2.24 0.72 2.60 0.73 −0.23 <0.001
Self-efficacy 2.71 0.57 2.99 0.50 −0.23 <0.001
Interest 2.72 0.64 3.10 0.58 −0.29 <0.001
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constant [91]. A summary of all direct and indirect effects
can be found in Table V.
The level of SEM model fit is represented by the

comparative fit index, Tucker-Lewis index, rootmean square
error of approximation, and standardized root mean square
residuals, and CFI > 0.9, TLI > 0.9, RMSEA < 0.08, and
SRMR < 0.08 are considered as acceptable (Hooper et al.).
The model in Fig. 2 fits the data well with CFI ¼ 0.998,
TLI ¼ 0.998, RMSEA ¼ 0.060, and SRMR ¼ 0.044 [67].
Apart from evaluating the overall fit indices, we assessed the
model’s local fit. This involves examining the residual
correlations among the studied items. The results of the
local fit evaluation are detailed in Appendix C, confirming
that our model fits the data well.
As shown in Fig. 2, gender directly or indirectly predicts

perceived recognition, interest, and self-efficacy, which is
consistent with the descriptive statistics in Table IV, show-
ing that women had statistically significantly lower score
on these three constructs. Figure 2 also shows that
perceived recognition, interest, and self-efficacy are all

significant predictors of physics identity and perceived
recognition is the strongest predictor (with β ¼ 0.52),
which is also consistent with prior studies by Godwin
et al. [3] and Kalender et al. [20] showing that how students
perceive themselves as a physics person is significantly
influenced by their perception of how others view them
as a physics person. Moreover, Fig. 2 shows that per-
ceived recognition also indirectly predicts physics identity
through self-efficacy and interest. Therefore, the total effect
of perceived recognition on physics identity is β ¼
0.52þ 0.44 × 0.31þ 0.71 × 0.17þ 0.71 × 0.27 × 0.31 ¼
0.84. We note that although there is a significant gender
difference in physics identity (as shown in Table III),
gender does not directly predict physics identity, which
indicates that the gender indirectly predicts physics identity
through perceived recognition, interest, and self-efficacy.
Table V shows the direct and indirect predictive relation-

ships in model 1. As shown in Table V, even though gender
does not directly predict physics identity, it indirectly
predicts physics identity with β ¼ 0.28 through perceived
recognition, self-efficacy, and interest, which is consistent
with the gender difference shown in Table IV. In addition,
we note that perceived recognition not only directly
predicts physics identity (β ¼ 0.52) but also indirectly
predicts physics identity (β ¼ 0.32) through self-efficacy
and interest. Moreover, perceived recognition also indi-
rectly predicts interest (β ¼ 0.19) through self-efficacy.
Overall, perceived recognition exhibits strong predictive
power for self-efficacy, interest, and physics identity, as
indicated by the total regression coefficients. We note that
even though self-efficacy indirectly predicts physics iden-
tity through interest, this indirect effect is small (β ¼ 0.08).

C. Equivalent SEM Models

The SEM model we specified demonstrates a strong fit
with the data. However, as mentioned earlier, a well-fitting

FIG. 2. Results of the path analysis part of SEM, in which
perceived recognition predicts interest and self-efficacy, and self-
efficacy predicts interest. Each regression line thickness quali-
tatively corresponds to the magnitude of β values. All β values
shown are significant with p < 0.001.

TABLE V. Results of the path analysis part of SEM. B represents unstandardized estimate, β represent
standardized estimate, and SE represents standardized error. The direct effect of gender on physics identity is
not statistically significant. All the other nonzero B and β values shown are significant with p < 0.001.

Direct Indirect
Total

Predictor Outcome B(SE) β B(SE) β β

Gender Perceived recognition 0.51(0.06) 0.24 0.00 0.00 0.24
Self-efficacy 0.18(0.05) 0.10 0.30(0.04) 0.17 0.27
Interest 0.21(0.04) 0.14 0.26(0.03) 0.18 0.32
Physics identity 0.03(0.04) 0.01 0.58(0.06) 0.27 0.28

Perceived recognition Self-efficacy 0.58(0.02) 0.71 0.00 0.00 0.71
Interest 0.31(0.03) 0.44 0.14(0.02) 0.19 0.63
Physics identity 0.53(0.03) 0.52 0.32(0.02) 0.32 0.84

Self-efficacy Interest 0.23(0.04) 0.27 0.00 0.00 0.27
Physics identity 0.21(0.04) 0.17 0.10(0.02) 0.08 0.25

Interest Physics identity 0.45(0.04) 0.31 0.00 0.00 0.31
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model alone is not sufficient to make causal inferences, as
there are statistically equivalent models with distinct causal
structures that equally well fit the data. Thus, it is crucial to
consider these statistically equivalent models, which offer
alternative representations of the data, and to evaluate
whether one model is more causally accurate compared
to the others. Pertaining to RQ3, we found that there are 27
statistically equivalent models in which gender indirectly
predicts physics identity through self-efficacy, interest, and
perceived recognition while considering the diverse asso-
ciations among these constructs. There are three possible
associations between each pair. These associations are
covariance, direct effect via regression from one to the
other, or direct effect via regression in the reverse direction.
For example, there can be a direct regression path from self-
efficacy to interest or from interest to self-efficacy, or there
may only be a covariance between self-efficacy and
interest. Similarly, there are three possible types of asso-
ciations between self-efficacy and perceived recognition,
and between interest and perceived recognition. Thus,
with the constraints that no regression arrows point to
gender and arrows can only point to physics identity since it
is the outcome variable, there are 3 × 3 × 3 ¼ 27 sta-
tistically equivalent SEM models in total. All 27 models
have the same fit indices as the model we specified:
CFI ¼ 0.998ð>0.90Þ, TLI ¼ 0.998ð>0.90Þ, RMSEA ¼
0.060ð<0.08Þ, and SRMR ¼ 0.044ð<0.08Þ [67]. Thus,
these statistically equivalent SEM models are all robust
from a statistical point of view.

D. Discussion of different statistically
equivalent models

Although all 27 models fit the data equally well, they
have different causal structures. Here, we discuss the model
we specified, inspired by our prior interviews to make
learning environment equitable and inclusive as well as
other prior research, along with two other statistically
equivalent models. In model 2 (Fig. 3), self-efficacy
predicts interest and perceived recognition, and interest
predicts perceived recognition. In model 3 (Fig. 3), interest
predicts self-efficacy and perceived recognition, and self-
efficacy predicts perceived recognition. We focus on
discussing these two equivalent models as they are repre-
sentative of the models in prior research [3,33,34] and
differ from the model we specified by having self-efficacy
and interest predicting perceived recognition. Furthermore,
we want each of the constructs (perceived recognition, self-
efficacy, and interest) to serve as the predictor of the other
two once, which can help better illustrate the differences in
the causal structures of statistically equivalent models.
As mentioned earlier, model 1 is aligned with our

previous interview findings, which show that women were
less likely than men to feel positively recognized by physics
instructors and TAs, and this lack of recognition negatively
impacted their self-efficacy and interest [22,37–39]. Models

2 and 3 may potentially encourage instructors to reduce the
gender gaps in self-efficacy and interest, considering prior
research shows that students’ interest and self-efficacy are
not fixed and that instructors have the ability to increase
students’ interest in science, technology, engineering,
and mathematics (STEM) [70]. However, given that
interest-based and self-efficacy-based accounts of gender
differences are historically interpreted as fixed [92–94],
models 2 and 3 also have the potential to reinforce college
physics instructors’ fixedmindset and result in lack of action
by them to make more effort to recognize students (par-
ticularly those from traditionally marginalized groups such
aswomendue to stereotypes aboutwho can excel in physics)
appropriately and create a learning environmentwith a focus
on closing demographic gaps [95].

E. Potential experimental studies to find more accurate
causal model from statistically equivalent models

As discussed in earlier sections, we used interview data
and other prior studies to specify our model, and in our
studies, we have refined our models [20,21] after analyzing
greater amounts of interview data [36]. We acknowledge

FIG. 3. Results of the path analysis part of the SEMmodels that
show how the relationship between gender and physics identity is
mediated through self-efficacy, interest, and perceived recogni-
tion. (a) In model 2, self-efficacy predicts interest and perceived
recognition, and interest predicts perceived recognition. (b) In
model 3, interest predicts self-efficacy and perceived recognition,
and self-efficacy predicts perceived recognition. Each regression
line thickness qualitatively corresponds to the magnitude of β
with 0.001 ≤ p < 0.1 indicated by ** and p > 0.05 indicated by
ns. All the other regression lines show relations with p < 0.001.
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that future studies should continue to gather and consider
other additional evidence to further guide and determine a
more causally accurate SEM model. Here, we discuss
several experimental studies that could help researchers
to find more accurate causal model from statistically
equivalent models of physics identity.
Previous research suggests that when one set of experi-

ments examines the effect of the independent variable on
the mediator, and another set examines the effect of the
mediator on the outcome variable, combining these experi-
ments through meta-analysis can provide robust evidence
for mediation [13]. Furthermore, if these experiments were
conducted in the field, both internal validity and external
validity would be maximized [13]. Therefore, we discuss
several experimental studies, each aimed at examining
specific paths between the variables studied. The paths
from perceived recognition to self-efficacy and interest
could be investigated by implementing interventions tar-
geting perceived recognition. Similarly, the path from self-
efficacy to interest could be investigated by conducting
interventions focusing on self-efficacy.

1. Experiments on perceived recognition

To examine the causal effect of perceived recognition on
self-efficacy and interest, one can implement interventions
targeting perceived recognition and then observe whether
improvements occur in self-efficacy and interest. To estab-
lish a causal relationship between perceived recognition
and self-efficacy and interest, it is essential to ensure that
the intervention solely targets perceived recognition, and
the effects of the intervention on self-efficacy and interest
should be mediated through perceived recognition.
One potential intervention aimed at enhancing students’

perceived recognition involves instructors directly acknowl-
edging their students. For instance, a study demonstrated
that students’ self-efficacy improves after instructors pro-
vide handwritten encouraging feedback on their assign-
ments [43]. This feedback was carefully tailored to each
student’s performance, incorporating phrases such as “You
demonstrated a solid grasp of the concepts!” and “Your
solution reflects excellent imagination!”Additionally, feed-
back included motivational statements like “I note that you
are working hard. You have done fine up until now—keep
trying.” Similarly, a prior study by Mueller and Dweck [96]
showed that children whowere praised for effort (e.g., “You
must have worked hard at these problems.”) after an initial
task exhibited greater task persistence, greater task enjoy-
ment, and better task performance in subsequent tasks
compared to the children who were praised for their
intelligence (i.e., “You must be smart at these problems.”)
or who were simply told they had scored high. These
intervention strategies can be implemented by instructors
to explicitly recognize their students’ performance on
quizzes, homework, and exams in one class, which con-
stitutes the treatment group. A suitable control group could

be another class taught by the same instructor during the
same semester, but this group would not receive the explicit
encouraging feedback; instead, they would only receive
scores on their homework assignments. Alternatively, the
control group could comprise the same instructor’s previous
students if an instructor does not teach two sections of the
same course. To ensure its impact across various instructors,
this intervention can be conducted in several different
instructors’ classes, allowing for a broader assessment of
its impact beyond the confines of a single instructor’s
teaching style.
Another form of perceived recognition intervention

draws inspiration from a previous study conducted by
Wang and Hazari [97]. This study demonstrates that
workshops focusing on training instructors in positively
recognizing strategies can effectively support the main-
tenance or cultivation of students’ physics identity develop-
ment. These strategies encompass acknowledging students’
accomplishments and potential [98], encouraging student-
led exploration and discussions [99], setting high expect-
ations for students [100], and incorporating activities that
foster recognition, such as having students teach a physics
concept to a family member or creating physics-related
videos for sharing [101]. The workshop conducted by
Wang and Hazari revealed that the implementation of these
recognition strategies by instructors correlates with a
positive shift in students’ perception of recognition. This
shift, in turn, contributed to the fostering of a stronger
physics identity. This workshop can be adapted to act as an
intervention for students’ perceived recognition by improv-
ing instructors’ recognition strategies. Researchers can
track the implementation of these strategies by instructors
and compare students’ perceived recognition, self-efficacy,
interest, and identity, with those of students taught by the
same instructors in previous years before the workshop
serving as the control group. Similarly, the workshop
should be conducted with multiple instructors to test its
effects across different teaching contexts, helping to
account for potential instructor-level effects.
For either of the aforementioned perceived recognition

interventions, researchers can employ regression analysis or
SEMmodels alongwith descriptive statistics to examine the
effects of the interventions. The pre and postsurveys can be
conducted with students in the intervention and control
classes asking students about the different variables in Fig. 1
to understand, e.g., the impact of perceived recognition on
self-efficacy and interest. Researchers can investigate the
effect of the intervention on students’ postperceived recog-
nition (measured at the end of the course) after controlling
for their pre-perceived recognition, pre-self-efficacy, and
pre-interest (measured at the beginning of the course).
Similarly, researchers can also explore the intervention’s
effect on students’ post-self-efficacy and postinterest. If, in
addition to a positive effect on students’ perceived recog-
nition, there is a positive effect on their self-efficacy and
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interest, then researchers can proceed to conduct SEM to
explore whether the effect of the intervention on self-
efficacy and interest is mediated through perceived recog-
nition. If the analysis confirms this mediation effect, it can
provide evidence to support the causal inference between
perceived recognition and self-efficacy and interest as
suggested by model 1. On the other hand, if intervening
on perceived recognition causes changes in physics identity
with no changes to self-efficacy and interest, then this
falsifies model 1, while models 2 and 3 remain possible.
In addition, the benefit of the quantitative model is that it

proposes quantitative effects (Table V) to be tested against
experiment. Although there are many reasons to believe that
the quantitative outcomes of intervention will not precisely
match observed coefficients, even if a proposed model is the
most causally accurate one, observed coefficients provide
one benchmark for comparison. For instance, model 1
predicts that aþ 1 standard deviation (SD) increase in
perceived recognition should yield aþ 0.71 SD increase
in self-efficacy, aþ 0.63 SD increase in interest, and aþ
0.84 SD increase in physics identity. Collecting data on the
effects of intervening in perceived recognition and compar-
ing the results against the predictions made by model 1 can
potentially show support for the model or refute it.

2. Experiments on self-efficacy

To test the causal effect of self-efficacy on interest, one
can conduct interventions targeting students’ self-efficacy
and observe whether their interest also improves compared
to the control group. To establish this causal connection, it is
important to craft an intervention centered on self-efficacy,
with the effects on interest mediated through self-efficacy.
According to Bandura’s social cognitive theory, self-

efficacy draws from several sources, including vicarious
experience, social persuasion, mastery experience, and
psychological state [24]. Vicarious experience, which
involves observing others’ accomplishments, fosters the
belief that similar achievements are attainable. Social
persuasion, achieved through encouragement and positive
feedback from others, can enhance self-efficacy by affirm-
ing an individual’s capabilities. Mastery experience,
derived from personal achievements and previous success-
ful endeavors, directly boosts self-efficacy. Additionally, an
individual’s psychological state, encompassing mood and
emotions, can significantly influence their self-efficacy.
Given that social persuasion closely relates to recognition
from others, the self-efficacy intervention discussed here
could center on the remaining three sources of self-efficacy.
Many self-efficacy interventions have been developed to

enhance students’ mathematical self-efficacy, which can be
adapted to develop physics self-efficacy intervention. For
example, in one study that targeted promoting student
mastery experience [102], participants in treatment group
were provided with opportunities to successfully complete
math-related tasks and receive high score on their

performance. The results showed that this intervention
had a positive effect on participants’ math self-efficacy.
In addition, in another study [103] focusing on vicarious
experience, a former successful student of a statistics
course gave a presentation to the current students about
her own math anxieties and shared the strategies that led to
her success in the same course. The presentation provided
current students with a peer model who had successfully
completed the course and resulted in positive impact on
student self-efficacy.
To examine the causal relationship from self-efficacy to

interest, one can employ similar regression and SEM
models as discussed earlier. This approach can help
determine whether the self-efficacy intervention not only
enhances students’ self-efficacy but also positively impacts
their interest, and whether the effect on interest is mediated
through self-efficacy. If intervening on self-efficacy causes
changes in students’ interest in physics, this would support
the regression path from self-efficacy to interest in models 1
and 2. In particular, model 1 predicts that aþ 1 SD increase
in self-efficacy should yield aþ 0.27 SD increase in
interest and aþ 0.25 SD increase in physics identity, while
model 2 predicts that aþ 1 SD increase in self-efficacy
should yield aþ 0.59 SD increase in interest and aþ 0.73
SD increase in physics identity. These observed coefficients
could be used for comparison with the quantitative out-
comes of self-efficacy interventions. In addition, it is
valuable to examine whether the self-efficacy intervention
also leads to improvements in students’ perceived recog-
nition and whether self-efficacy predicts recognition. If
such an effect is observed, it would support the regression
path from self-efficacy to perceived recognition in models 2
and 3 and suggest that model 1 is incorrect, or at least
incomplete.

3. Experiments on interest

As discussed earlier, the model we specified is inspired
by our prior interviews with students to make physics
learning environment equitable and inclusive [36,37] as
well other supporting evidence from prior studies [24,32].
For example, our interviews show that a lack of positive
perceived recognition can negatively impact students’ self-
efficacy and interest, and prior studies show that self-
efficacy plays an important role in shaping individual’s
interest. Therefore, the model we specified does not
include, e.g., how interest predicts self-efficacy and per-
ceived recognition. However, researchers can implement
interventions targeting interest to explore these potential
causal relationships, which are suggested by model 3. For
example, prior studies show that effective evidence-based
instructional conditions or learning environments that
include group work, puzzles, computers etc., can trigger
students’ situational interest [104–109]. In addition,
another study indicated that interventions targeting cur-
ricular modifications aligned with the specific interests and
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experiences of girls as well as enhancing teachers’ ability
to support girls in developing a positive physics-related
self-concept can enhance girls’ interest in physics [31].
Researchers can potentially adapt these methods to inter-
vene in college students’ interests in physics. Then, by
comparing the intervention and control groups, they can
evaluate the impact of these interventions on self-efficacy
and perceived recognition and whether these effects are
mediated by the changes in interest. Model 3 predicts that
aþ 1 standard deviation increase in interest should yield
aþ 0.61 SD increase in self-efficacy and aþ 0.67 SD
increase in perceived recognition. If targeted interventions
on interest also improve students’ self-efficacy and per-
ceived recognition, this would support the causal structure
of model 3 and suggest that model 1 was not causally
accurate.

VII. SUMMARY AND DISCUSSION

In this study, we investigated the predictive relationships
among the three dimensions of physics identity: perceived
recognition, self-efficacy, and interest. Our results revealed
that women scored significantly lower than men in all four
motivational constructs, and the gender difference in physics
identity is mediated through the gender differences in the
other three motivational constructs. Inspired our prior inter-
views with students to make physics learning environments
equitable and inclusive [36,37] and other supporting evi-
dence form prior studies [24,32], we specified a SEMmodel
to describe the predictive relationships among the constructs
studied. The statistical analysis shows that the model we
specified fits the data well. However, a well-fitting model
alone is not sufficient to verify the causal inferences under-
lying the model, as there are statistically equivalent models
with distinct causal structures that equally fit the data. For
instance, our model with perceived recognition predicting
self-efficacy and interest, emphasizes the role played by
instructor recognition. On the other hand, other models with
self-efficacy and interest predicting perceived recognition
emphasize the significance of students’ self-efficacy and
interest. While our model specification was based on prior
interviews with students to make physics learning environ-
ments equitable and inclusive [36,37] and other supporting
evidence form prior studies [24,32], to find more causally
accurate model from among these statistically equivalent
models, we discuss several experimental studies. These
intervention studies could help test the hypothesized causal
effects in different equivalent models. For example, by
intervening in one construct, such as perceived recognition,
we can evaluate whether students’ self-efficacy and interest
also improve, thereby further examining the causal relation-
ship between perceived recognition and self-efficacy and
interest.

In summary, this paper discusses that a good model fit
alone is not sufficient to verify the causal structure of a
SEM model due to the existence of statistically equivalent
models. Therefore, it is important for researchers to
consider statistically equivalent models to the specified
model and provide additional evidence for why the pro-
posed model is more accurate than the equivalent ones. In
this paper, we discussed several experimental studies that
could provide evidence for causal inferences.

VIII. LIMITATIONS AND FUTURE DIRECTIONS

In this study, since the gender data were collected by the
university using only binary categories, we did not have the
gender information of students who did not identify as men
or women. This issue has been resolved recently by
modifying the way the university is now collecting data.
However, since the sample size of these students is small
(less than 1% of participants), we would not be able to
analyze them as separate groups using multigroup analysis
using SEM even if we knew their gender identity beyond
women and men. Future studies can use, e.g., qualitative
research methods to investigate the motivational beliefs of
students in other gender categories. In future studies, we
also intend to investigate motivational characteristics of
students from other underrepresented groups such as ethnic
or racial minority students.
This study examined an introductory calculus-based

physics course. It would be valuable to investigate the
relationship among women and men’s motivational char-
acteristics in other physics courses, e.g., for physics majors.
Similar studies in different types of institutions and in other
countries would also be helpful for developing a deeper
understanding of the relationships among students’motiva-
tional characteristics in different contexts.
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APPENDIX A: CORRELATION
BETWEEN ALL ITEMS STUDIED

In the main text, we presented the correlation coeffi-
cients between all constructs studied. Here, we present
the correlations between all measured indicators as a
reference for readers who are interested (as shown in
Table VI).
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APPENDIX B: PERCENTAGES OF STUDENTS
WHO SELECTED EACH CHOICE

FOR EACH SURVEY ITEM

In the main text, we discussed an investigation of
women’s and men’s self-efficacy, interest, perceived rec-
ognition, and physics identity. Here, we present the
percentages of women and men who selected each answer
choice from a 4-point Likert scale for each survey item (as
shown in Tables VII, VIII, and IX). Students were given a
score from 1 to 4, respectively, with higher scores indicat-
ing greater levels of self-efficacy, interest, perceived rec-
ognition, and physics identity.
By comparing percentages of women and men who

selected each answer choice, we found that for all survey
items, the percentages of women who selected 1 or 2 were
larger than those of men, while the percentages of women
who selected 4 were smaller than those of men. These
findings are consistent with Table IV showing that there
were statistically significant gender differences in all
motivational constructs studied.

APPENDIX C: LOCAL FIT OF THE SEM MODEL

In themain text,we reported the fit indices showing that our
model fit the data well. In addition to global fit, local fit can
provide a deeper insight into the extent to which our model
aligns with the data. Here, we report the results of two
measures of local fit. Table X illustrates the residual correla-
tions among the studied items. The results reveal that all
residual correlations between the items are notably small,
indicating that our model effectively accounts for most corre-
lations among these items. In addition, we examine the
modification indices of our model. Modification index larger
than 3.84 indicates that the model fit would be significantly
improved, and the p value for the added parameter would be
<0.05 [110,111]. In our model, the only path omitted is from
gender to physics identity, and the modification index asso-
ciated with this path is 0.128—significantly lower than the
threshold of 3.84. Therefore, ourmodel’s local fit is also good.

TABLE VI. Correlation coefficients of the items studied using DWLS estimator, along with the mean value and standard deviation for
each item. All correlation coefficients shown are statistically significant with p < 0.001. The sample size is N ¼ 1203.

Items SE1 SE2 SE3 SE4 Interest 1 Interest 2 Interest 3 Interest 4 Recog1 Recog 2 Recog 3 Identity

SE1 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
SE2 0.65 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
SE3 0.58 0.66 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
SE4 0.55 0.57 0.69 � � � � � � � � � � � � � � � � � � � � � � � � � � �
Interest 1 0.30 0.36 0.29 0.30 � � � � � � � � � � � � � � � � � � � � � � � �
Interest 2 0.46 0.56 0.47 0.40 0.65 � � � � � � � � � � � � � � � � � � � � �
Interest 3 0.43 0.49 0.39 0.41 0.64 0.73 � � � � � � � � � � � � � � � � � �
Interest 4 0.36 0.43 0.34 0.34 0.54 0.65 0.66 � � � � � � � � � � � � � � �
Recog 1 0.56 0.56 0.47 0.45 0.48 0.60 0.57 0.48 � � � � � � � � � � � �
Recog 2 0.62 0.55 0.50 0.50 0.46 0.61 0.55 0.47 0.88 � � � � � � � � �
Recog 3 0.58 0.57 0.55 0.49 0.34 0.47 0.45 0.37 0.69 0.69 � � � � � �
Identity 0.60 0.62 0.58 0.53 0.51 0.69 0.65 0.54 0.83 0.82 0.70 � � �
Mean 2.73 2.97 2.97 2.88 3.12 3.03 2.82 2.89 2.57 2.55 2.30 2.47
SD 0.71 0.60 0.75 0.66 0.84 0.71 0.79 0.77 0.88 0.86 0.78 0.86

TABLE VII. Percentages of women and men who selected each
choice from a 4-point Likert scale for each survey item of self-
efficacy (SE) in the pre- and postsurvey, which have the response
scale: 1 ¼ NO!, 2 ¼ no, 3 ¼ yes, and 4 ¼ YES!. Mean repre-
sents the mean score value of the item for women and men
separately, SD represents the standard deviation of this item.

Gender Survey items 1 2 3 4 Mean SD

Women SE1 10% 31% 53% 6% 2.56 0.76
SE2 4% 18% 70% 8% 2.81 0.63
SE3 6% 29% 52% 13% 2.73 0.76
SE4 5% 25% 60% 10% 2.73 0.70

Men SE1 4% 22% 63% 11% 2.82 0.67
SE2 1% 10% 70% 19% 3.06 0.57
SE3 2% 14% 56% 28% 3.09 0.71
SE4 1% 17% 66% 16% 2.96 0.62

TABLE VIII. Percentages of women andmenwho selected each
choice from a 4-point Likert scale for each survey item of interest
in the pre- and post-survey. Interest1 has the response scale:
1 ¼ never, 2 ¼ once amonth, 3 ¼ once aweek, 4 ¼ every day”.
Interest2 has the response scale: 1 ¼ very boring, 2 ¼ boring,
3 ¼ interesting, 4 ¼ very interesting. The other two items have the
response scale: 1 ¼ NO!, 2 ¼ no, 3 ¼ yes, and 4 ¼ YES!. Mean
represents the mean score value of the item for women and men
separately, SD represents the standard deviation of this item.

Gender Survey items 1 2 3 4 Mean SD

Women Interest 1 8% 21% 47% 24% 2.85 0.88
Interest 2 7% 19% 61% 13% 2.81 0.74
Interest 3 7% 42% 41% 10% 2.54 0.76
Interest 4 7% 31% 50% 12% 2.66 0.78

Men Interest 1 3% 11% 42% 44% 3.26 0.79
Interest 2 2% 9% 61% 28% 3.15 0.66
Interest 3 3% 22% 50% 25% 2.98 0.76
Interest 4 3% 19% 53% 25% 3.01 0.74
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