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Solving problems is crucial for learning physics, and not only final solutions but also their derivations are
important. Grading these derivations is labor intensive, as it generally involves human evaluation of
handwritten work. AI tools have not been an alternative, since even for short answers, they needed specific
training for each problem or set of problems. Extensively pretrained AI systems offer a potentially universal
grading solution without this specific training. This feasibility study explores an AI-assisted workflow to
grade handwritten physics derivations using MathPix and GPT-4. We were able to successfully scan
handwritten solution paths and achieved an R-squared of 0.84 compared to human graders on a synthetic
dataset. The proposed workflow appears promising for formative feedback, but for final evaluations, it
would best be used to assist human graders.
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I. INTRODUCTION

A. Generative pretrained transformer

In Fall 2022, generative pretrained transformer (GPT) [1]
rapidly gained the World stage as a publicly available AI
tool with surprising capabilities. Not only would this large-
language model (LLM) likely pass the Turing test for many
situations [2], but the massive training effort behind GPT
resulted in the emergence of capabilities that are not
necessarily expected from a language model. For example,
GPT-4 has been found to pass several standardized exams
in the upper percentiles [3–5]. A previous version, GPT-3,
could already pass an introductory physics course at a
nominal level [6], and there are indications that GPT-4
performs even better on physics concepts [7].
GPT is probabilistic and essentially predicts the next

so-called token in sequences, where tokens are similar to
syllables in words. It does so based on probabilities
“learned” from a huge text corpus consisting of materials
gathered from the web, unpublished books, papers, etc.
While being used, apart from continued human fine-tuning
by OpenAI, the company behind GPT, the system does not
learn anymore as a whole; it is pretrained. There are
preliminary indications, though, that in spite of continued
fine-tuning, GPT does not consistently get better over

time [8]. However, GPT does learn within the confines
of a particular dialogue, so it can refer to statements made
earlier in the same dialogue.
GPT-4 itself is multimodal, so it can accept image

input [5]. Relevant to the proposed workflow, OpenAI
demonstrated how handwritten mathematical formulas are
turned into machine-readable documents. Using this fea-
ture, however, is still restricted by OpenAI and thus
unavailable for this feasibility study; instead, preliminary
results using Mathpix [9] for the same functionality are
presented.
GPT is limited by memory restrictions: at some point,

it hits its internal so-called “token limit;” it can only keep a
limited number of tokens in memory, comparable to the
working memory limitations of a human. Inputs thus
cannot become too extensive before either an error message
occurs or the system simply appears to forget earlier input.
which will turn out to be a limitation for the proposed
workflow.

B. Mechanisms for grading

Strategically solving physics problems requires logical,
conceptual, and mathematical competencies [10,11], and
hardly a topic in physics education research has been
investigated more extensively [12]. Feedback on problem
solving is one of the most powerful tools for learning [13]
but providing it frequently on a large scale poses chal-
lenges. While the final solution to physics problems, as
well as predetermined, scaffolded steps along the way,
can be assessed to varying degrees using computer systems
[14–21], a deeper analysis of the complex problem-solving
competencies of learners requires an evaluation of the
solution path and derivation [22,23]. However, grading
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more than just the final answer generally requires human
effort (either from faculty or from peers), as learners may
take very different paths toward the same solution; there
may even be errors along the way that cancel each other,
such as the famous “even number of sign mistakes.” As
opposed to solution-focused systems, grading the journey
instead of the goal requires intelligence.
Intelligence is also required to even communicate

mathematical content between the learner and the graders.
Short of extensive typesetting, which is inappropriate
during exam situations, the best way of communicating
derivations or proofs is still handwriting. Making the
solutions available to machine-assisted grading requires
optical character recognition (OCR). While OCR has
been around and successfully used for decades [24], the
recognition of handwritten mathematical formulas poses
challenges due to their two-dimensional structures (super-
scripts, indices, fractions, matrices, etc.) [25,26].
For the longest time, the only intelligence available

was human, which due to the involved cost and limited
availability of expert graders resulted in learners having few
assessment opportunities and time delay before feedback is
returned [27]. The idea of instead using artificial intelli-
gence (AI) has been around for a while [28] but was
oftentimes hampered by the effort and cumbersomeness of
training and validation. Even for short answers, AI systems
(including LLMs like BERT [29]) needed to be specifically
trained for each class of problems [30–33], with very few
exceptions [34].
In contrast, extensively pretrained systems hold the

promise of ad hoc being able to grade problems that they
have not encountered before [34,35]. Such a turnkey
solution seems within reach since these same systems
successfully grade short student-generated answers from
standard benchmark datasets [36] without even the need to
provide reference answers [35].
Table I illustrates the benefits and drawbacks of different

mechanisms for grading. These categories, of course, are
rather general, and mixed forms also exist; for example,
short answers can be processed without the use of artificial
intelligence [37] or pretrained artificial intelligence can be
used to adaptively and automatically support peer feedback
among humans [38].
This feasibility study explores using pretrained LLMs

(rightmost column in Table I) as standalone grading
engines, formative feedback tool, or as support mechanism
for human graders. In particular, it is investigated if
meaningful feedback on the derivations and solution paths
in free-form written homework and exam problems can be
obtained, thus affordably and pragmatically providing more
assessment opportunities.

II. SCENARIO

The proposed scenario has multiple steps, illustrated in
Fig. 1. Learners are writing problem solutions on paper;

while this might seem quaint, paper and pencil are far
more efficient and intuitive than any method of typesetting
(there are even arguments that this materiality is essential
[66]). The scenario is particularly well suited for exams,
which can then take place in traditional, supervised,
“offline” modes.

1. The first step is simply scanning the assignment
papers into a PDF or image format; this could be
accomplished not only with most copy machines but
also with smartphone apps.

2. The PDF is then processed by optical character
recognition (OCR) and translated into a machine-
readable format, for example, LaTeX. Scanning
errors can be corrected using AI tools.

3. The LaTeX documents are then graded by an
extensively pretrained AI tool.

These steps would be automated in a web-based plat-
form: A PDF with student solutions would be uploaded,
and the system would internally and automatically manage
the workflow using API access to the tools.

III. METHODOLOGY

A. Machine readability of handwritten solutions

To explore the feasibility of the second step in the
workflow illustrated in Fig. 1, two handwritten documents
with embedded physics formulas were scanned to PDF
using the smartphone app Scanner Pro [67] and transcribed
into LaTeX using MathPix [9]. The output of MathPix was
subsequently cleaned up using GPT-4. Had direct access to
the multimodal capabilities of GPT-4 been available, the
intermediate step of using MathPix could likely have been
skipped.

B. Generation of sample solutions

To generate a dataset for this feasibility study, we
chose to avoid the privacy and data security concerns
associated with processing identifiable information
such as handwriting in cloud-based systems. Instead,
GPT was used to synthetically generate solutions for a
simple time-dependent RC-circuit problem, which is
shown as the prompt in Fig. 2. The problem involves
some conceptual, strategic, and mathematical challenges
but is likely in one form or the other a part of most
calculus-based introductory physics courses. The initial
potential difference across the capacitor is given, even
though it is not needed; this superfluous information
makes it tempting to immediately calculate the initial
current through the capacitor, leading to a less than
straightforward solution since that current later drops
out. Particularly when not working symbolically, but
immediately “plugging and chugging,” this involves
unnecessary steps [68].
Since GPT uses a probabilistic algorithm, presenting

the same prompt twice will lead to different responses.
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This property was used to generate a set of 25 unique
sample solutions for this study. GPT-4 has better reasoning
capabilities than its predecessors, so it is more likely to
produce correct solutions. To also have plausible, but

incorrect solutions in the sample, the majority of the
solutions were generated by earlier releases.
At the time of this study (mid-April 2023), three different

models of GPT were available through ChatGTP: GPT-4

TABLE I. Comparison of assessment methods and mechanisms. This study explores the rightmost mechanism.

Human graders
Traditional computerized

systems
Traditional AI-based

systems
Pretrained large language

model

Benefits • Traditional, thus generally
accepted

• Highly scalable [15,27] • Highly scalable • Highly scalable

• Can provide empathic
feedback [39]

• Robust [40] • Can evaluate
solution paths and
derivations [41]

• Can evaluate solution
paths and derivations

• Can deal with scenarios that have
not been anticipated [42]

• Immediate feedback
[43,44]

• Immediate, adaptive
feedback [45]

• Immediate, adaptive
feedback

• Can use “common sense” [42,46] • Can provide meaningful
feedback on mastery of
concepts [47,48]

• In formative scenarios,
could engage in
limited dialogue [49]

• In formative scenarios,
could engage in
dialogue

• Can be used in adaptive
testing [50,51]

• Can deal with scenarios
that have not been
anticipated

• Generally less complaints
about unfair grading [47]

• Does not require
problem-specific
training [34,35]

• Deterministic

Drawbacks • Expensive [52] • Most frequently limited to
examining the final
solution [53,54]

• Requires training for
each problem [28]

• Reliability a possible
issue

• Does not scale well [52] • Adaptive feedback limited
to anticipated,
preprogrammed solution
scenarios [53]

• Reliability an issue [55] • Feedback might be
strongly rubric-
specific [22,56]

• Reliability an issue [57–59] • Does not assess the
ability to communicate
concepts [42]

• May fail to deal with
scenarios that have not
been anticipated [60]

• May hallucinate, which
students might be
unable to detect [61]

• Might be influenced by
presentation [62]

• Can be perceived as
inflexible [42,48]

• Probabilistic • Probabilistic

• Feedback might be strongly
rubric-specific [22,56]

• Might be particularly
vulnerable to cheating and
guessing [63,64]

• Time-delayed feedback can have
influence on learning success,
depending on course [65]

• Subjective

FIG. 1. Possible workflow for AI-assisted grading of handwritten work.
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(March 23, 2023 release [69]), Default GPT-3.5, and
Legacy GPT-3.5. In particular, based on the prompt in
Fig. 2, solutions 1–5 were generated by GPT-4, solutions
6–13 by default GPT-3.5, and solutions 14–25 by legacy
GPT-3.5; these solutions are listed in Figs. 2–7.
As an output format, LaTeX was chosen. During the

output phase, ChatGPT converts display equations into a
symbol font, so upon copying these expressions into a text
file, the LaTeX source code would be lost; thus inline
expressions were requested. Workarounds like these would
not be necessary when accessing GPT directly through
an API.
GPT has been successfully used for educational data

augmentation in other physics-related contexts [70]; using a
completely synthetic dataset is arguably less representative.
Certainly, the solutions are more verbose than what
students typically write [62], and they are adopting the
Royal “We” of instructors and textbooks (from where the
text corpus of GPT was likely gathered). However, to
explore the feasibility of the workflow in Fig. 1, the most
important issue will be agreement on the grading of
solutions between AI and humans. To that end, the dataset
spans the gamut from solutions 1 and 12, which are almost
perfect, to solutions 9 and 19, which are completely
missing the mark, and it includes the expected unnecessary
calculations and transfer of numerical values from one
formula to the next.

C. Grading of solutions

The solutions were scored by AI and humans on a scale
of 0 (worst) to 4 (best) on a rubric of correctness of
approach, correctness of symbolic derivations, correctness
of the numerical result, and straightforwardness. While a
more specific rubric, for example, addressing particular
steps along the solution path, would likely have led to more
consistent grading results, the rubric items were intention-
ally left general to explore the affordances of pretrained
systems that do not need to be tuned toward particular
problems.
In addition, for each solution, a one-sentence feedback

was requested. The rubric scores were combined to a total
score with a stronger weight on the final, numerical result.
Finally, the system was prompted to generate a correlation
table between the solutions based on similarity-of-approach;
Fig. 8 shows an example of the associated prompt.
Since GPT is probabilistic, it will not arrive at one

deterministic score combination for each solution. Similar
to having more than one human grader look at the same
solution, each solution was scored several times. Due to the
limitations of GPT’s token limit, not all 25 solutions could
be fed into the system at the same time. They were thus
processed in 75 dialogues of randomly compiled batches
of 5 solutions, leading to an average of 15 grading rounds
for each solution. Unfortunately, more often than not,
ChatGPT did not provide the tables in the requested
CSV format, which necessitated some subsequent manual
reformatting of the responses in a text editor and Excel. The
narrative one-sentence feedback messages from on average
15 “graders” were summarized using GPT-4 into one
longer statement reflecting the majority, using the prompt
shown in Fig. 9.
The same solutions were independently graded by the

author and two of his colleagues on the same rubric.
Human grading decisions are hopefully not probabilistic,
but they are somewhat arbitrary, so the results of the human
graders were averaged in the same way as the AI-generated
grades. An alternative to this averaging approach would
have been for the graders to first grade individually, but
then come together, discuss possible discrepancies, and
come to a consensus; however, for the purposes of this
study, it was decided to use the same approach for the AI
and human grades. The reader can form his or her own
judgment for each one of the solutions, which can be found
in Figs. 2–7.
Several measures of similarity between solutions

were considered as a basis for clustering: similarity
between the solution scores on the rubric for both human
and AI grades, as well as the similarity-of-approach
provided in the response of the AI tool; due to the token
limit, only five solutions could be graded at a time, the
overall 25 × 25-matrix was compiled by averaging the
5 × 5 matrices. Clustering was accomplished using
the gplots package [71] within R [72].

FIG. 2. Prompt and solution 1 for this study.
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FIG. 3. Solutions 2 through 5 to the prompt in Fig. 2.
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IV. RESULTS

A. Optical character recognition

The left panels of Figs. 10 and 11 show handwritten
copies of the solutions in Figs. 2 and 3. There were several
small scanning errors made by MathPix, such as translating
“…” into “000”. Using the prompt

The following LaTeX text was OCR-scanned.
Correct any errors that may have occurred during
scanning, no other errors:

in GPT-4 resulted in the corrected documents shown in the
right panels of Figs. 10 and 11; indicated in red is the
original text, and indicated in green the corrected version.

FIG. 4. Solutions 6 through 10 to the prompt in Fig. 2.
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The procedure fixed all scanning errors but introduced one
new error: milli-Farad was erroneously changed to micro-
Farad in the first solution. Overall, though, the output of
this step seems appropriate for grading purposes, and the
feasibility of this step has been demonstrated.

B. Grading results

Tables II–IV show the rubric-grading results by GPT-4,
based on an average of 15 rounds of grading within
different batches of five problems each.
Striking are the scores that have more than one point of

standard deviations to their averages, which are
• The correctness of the argument in solutions 10, 15,
21, 23, 24, and 25: All of these solutions in the end

arrive at the wrong numerical answer. Solutions 10
and 15 also needlessly calculate a numerical value
for the initial current while solutions 21, 23, and 25
take a slight detour via the capacitative current
IðtÞ ¼ C · dV=dt. Solution 24 starts with the expres-
sion for charging instead of a discharging capacitor,
which would still have arrived at the same answer had
it not been for numerical errors.

• The correctness of the symbolic calculations in
solutions 15 and 23: Solution 15 is plug-and-chug,
i.e., it plugs numbers into the first available formula
and then transfers the numerical result to the next
formula. Thus, the score for symbolic correctness of
solution 15 should have been consistently low for all
grading rounds. Solution 23 makes an error in the very

FIG. 5. Solutions 11 through 14 to the prompt in Fig. 2.
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first line of the symbolic calculations by not elimi-
nating the capacitance C.

• The correctness of the numerical results, in particular
for solutions 2, 3, 4, 6, 7, etc.—18 out of the 25
problems altogether: 8 of these solutions actually have

the correct numerical answer, 4 are wrong by one or
more orders of magnitude, and 6 of the problems have
a completely different numerical answers due to
various reasons. The large list may be the result of
GPT 4 still falling short on numerical calculations.

FIG. 6. Solutions 15 through 20 to the prompt in Fig. 2.
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• The straightforwardness of solutions 15, 21, 23, and
25: All of these solutions already appeared in other
lists of ambiguous scores.

Overall, there does not appear to be a discernible pattern as
to why these solutions are leading to widely spread scores.
The one-sentence feedback given by GPT-4 also does not
provide helpful hints for determining which features of
these solutions the algorithm may have latched on to.
The summaries of the one-sentence feedback message

sound very plausible, but many of them include incorrect
or at least misleading statements. Examples of incorrect
statements include:

• “The majority opinion indicates that there is an error
in the calculation of the time constant, leading to
an incorrect numerical result for t2” for solution 2,
when in fact the numerical result is correct.

• “The majority of graders agree that solution 24 uses
the correct approach, equations, and symbolic repre-
sentation,” when in fact the equation for a charging
capacitor is used.

Examples of misleading statements are
• “One grader notes that the final answer should be in
milliseconds, not seconds” for solution 1; while it is
true that microseconds would have been more elegant,
this is not required.

• “Solution 17 demonstrates the correct approach,”
when in fact it includes unnecessary calculations.

Often this includes remarks about numerical inaccuracies,
even if the result is correct. However, particularly for the
solution attempts that were completely incorrect, the feed-
back can be useful, for example, “Solution 9 demonstrates
an incorrect understanding of the initial current, mistakenly
assuming it to be zero.”

C. Agreement with manual grading

The scatterplot in Fig. 12 shows the correlation between
the rubric scores resulting from manual and AI grading.
Each symbol marks the average of the AI versus the
average of the human grades for one particular rubric item

FIG. 7. Solutions 21 through 25 to the prompt in Fig. 2.
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for one of the solutions, while the lines are linear inter-
polations for each rubric item.
The scores are clearly positively correlated, with a

particularly high R2 for the correctness of the argument
(R2 ≈ 0.81) and the correctness of the numerical answer
(R2 ≈ 0.76). This finding is surprising since one would
surmise that the correctness of the argument is more
subjective than, for example, the correctness of the sym-
bolic operations; however, it turns out that symbolic
correctness has the lowest R2 (R2 ≈ 0.54).
The positive offsets show that the AI grade is generally

higher than the human-assigned grade; also here, symbolic
correctness turns out to have the largest deviation from
human grading, as the AI assigns on average almost 1.5
more grade points than humans. There are few exceptions
from this AI-induced grade inflation; most notably, all AI
“graders” assigned zero points for the numerical correct-
ness of solution 9, while one human grader gave credit

arguing that having no numerical result is the correct result
as a follow-up error to the wrong approach.
Not indicated in the plot are the standard deviations

of the rubric grades. While for AI, the average of the
numerical scores has the largest average standard
deviations (σ̄AI;num ≈ 1.1), for the human graders, it is
symbolic correctness that shows the largest deviations
(σ̄human;symb ≈ 1.1).
Figure 13 shows the total scores on the problem, where

the rubric items argument correctness, symbolic correct-
ness, and straightforwardness are weighted 20%, and the
correct final numerical answer 40%, respectively. In addi-
tion, the correspondingly combined standard deviations for
the AI and human gradings are given by error bars, and the
data points are labeled by solution number.
The overall agreement of R2 ¼ 0.84 is remarkably high,

and the slope of the linear interpolation is close to unity.
However, the AI generally scores a quarter of a grade point
higher than human graders. Also, agreement between AI
and human graders is better at the high end of the spectrum.
The average standard deviations from the 15 AI “graders”
are similar to those from the three human graders, σ̄ ≈ 0.8.
While AI and human graders overall disagreed with each
other to the same degree, they did not disagree on the same
solutions; for example, all AI-“graders” agreed that sol-
ution 12 is perfect (σAI ¼ 0), but human graders applied
different penalties to the unnecessary calculation of the
initial current (σhuman ≈ 0.43).

D. Clustering

Figure 14 shows dendrograms and heat maps of the
similarities between the rubric grades obtained from
manual grading and AI grading, as well as the AI
similarity-of-approach measure, respectively. The rows
and columns of this reordered similarity matrix corre-
spond to the solution numbers indicated on the right;
the dark red cells indicate high similarity, while blue
fields indicate low similarity. The dendrograms on the
left indicate the result of a hierarchical clustering algo-
rithm [71], where from left to right, each branching point
indicates a cut in the data. Clusters are visible as areas of
high similarity along the main diagonal.
Based on these, three clusters emerge for the manual

and the AI-based rubric grading. For the AI-similarity-of-
approach measure (determined by GPT in response to the
prompt in Fig. 8), either two clusters could be identified or
the dendrogram could be cut at a deeper level (indicated by
dashed lines in Fig. 14), resulting in four clusters. However,
the fourth cluster only contains solution 23, so a decision to
not treat it separately could be justified.
These identified clusters, indicated by the purple lines in

Fig. 14, are shown in Table V; it turns out that they roughly
align with the total points in Fig. 13, with the low, medium,
and highly scored solutions forming the clusters.

FIG. 8. Example of a grading prompt.

FIG. 9. Example of a prompt to summarize the grading feedback.
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FIG. 10. Illustration of a possible future implementation of the first two steps in Fig. 1. A handwritten solution was scanned into PDF
(left panel), translated into LaTeX using Mathpix [9], and corrected using GPT-4 (right panel).

FIG. 11. Illustration of a possible future implementation of the first two steps in Fig. 1. A handwritten solution was scanned into PDF
(left panel), translated into LaTeX using Mathpix [9], and corrected using GPT-4 (right panel).
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TABLE II. AI-grading of solutions 1–10.

Sol. Arg. Symb. Num. Str.forw. Feedback

1 4.0� 0.0 4.0� 0.0 3.9� 0.3 4.0� 0.0 The majority of graders agree that solution 1 is correct, straightforward, and well
structured. The solution uses the correct formula for the current in an RC circuit,
derives the expression for the time t2, and solves for the required time when half
the initial current flows through the resistor. One grader notes that the final
answer should be in milliseconds, not seconds. Overall, the solution is clear,
concise, and logically explained.

2 3.6� 0.9 3.7� 0.6 2.8� 1.6 3.8� 0.4 The majority of graders agree that the solution to problem 2 has a correct and clear
approach, using the appropriate RC circuit equations and argumentation. However,
there seems to be some disagreement on the numerical calculation for t2. The
majority opinion indicates that there is an error in the calculation of the time
constant, leading to an incorrect numerical result for t2. Overall, the solution is well
organized and logically explained, but the numerical value should be revised.

3 3.7� 0.5 3.7� 0.5 2.2� 1.6 3.7� 0.5 The majority of graders agree that solution 3 has a correct and straightforward
approach, with correct argumentation and symbolic representation. However,
there is a common issue with the numerical calculation for t2, with some graders
indicating the result is off by a factor of 1000 or in the wrong unit (milliseconds
instead of seconds). Despite these errors, the solution is generally well explained
and follows a logical approach.

4 3.7� 0.5 3.8� 0.4 3.3� 1.2 3.8� 0.4 Solution 4 demonstrates a correct and straightforward approach to solving problem
4 using appropriate RC circuit equations and accurately deriving the time t2.
However, the majority of the graders point out a minor numerical error in the final
answer, possibly due to rounding or unit conversion. Despite this, the solution is
clear, well argued, and symbolically correct.

5 3.9� 0.4 3.9� 0.4 3.9� 0.4 3.9� 0.4 Solution 5 is generally correct and straightforward, successfully applying the
exponential decay equation for the RC circuit to derive the result for t2. Themajority
of the graders appreciate the clear argumentation, symbolic correctness, and
numerical accuracy. However, there is a minor numerical error due to rounding, and
some graders suggest that the clarity and straightforwardness of the argument could
be improved. Overall, the solution demonstrates a good understanding of Ohm’s
law, the time constant, and the current equation for an RC circuit.

6 3.8� 0.4 3.8� 0.4 3.3� 1.1 3.8� 0.4 The majority of the graders agree that the solution to problem 6 is correct, well
argued, and straightforward in its approach, with accurate symbolic
representation and explanation. However, some graders noted an incorrect
numerical value in the final result or a mistake in calculating t2.

7 3.1� 0.9 3.6� 0.6 3.1� 1.1 3.1� 0.9 The majority of the graders found solution 7 to be correct with accurate
argumentation, symbolic representation, and numerical values. However, some
graders mentioned issues such as incorrect current direction, voltage calculation,
and final result, as well as an incorrect manipulation of the equation. Despite
these discrepancies, most graders agreed that the solution was straightforward
and used the correct approach.

8 3.8� 0.4 3.8� 0.4 3.4� 1.1 3.8� 0.4 The majority of graders agree that solution 8 has correct argumentation, symbolic
representation, and a straightforward explanation. The solution correctly derives the
formula for the time at which half the initial current flows and uses the appropriate
approach.However, there is disagreement on the numerical value,with somegraders
noting that it is incorrect or off by a factor due to not considering units. Overall, the
solution is mostly correct, but the final numerical answer may need to be revised.

9 0.2� 0.4 1.0� 0.9 0.0� 0.0 0.8� 0.7 Solution 9 demonstrates an incorrect understanding of the initial current,
mistakenly assuming it to be zero. This leads to incorrect calculations,
argumentation, and the false conclusion that half the initial current never flows
through the resistor. The overall approach and reasoning are flawed, resulting in
an incorrect solution.

10 2.8� 1.1 3.1� 0.8 1.3� 1.3 2.9� 0.9 The majority of the graders agree that the solution to problem 10 has correct
argumentation and symbolic representation, with a clear and straightforward
approach. However, there are errors in the numerical calculations, including the
time constant and natural logarithm term, leading to an incorrect final result.
Some graders also mentioned unnecessary complexity and incorrect derivations.
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All similarity measures identify the almost entirely wrong
solutions 9, 19, and 21 as members of the “low” cluster. The
manual grading has solution 23 in the middle cluster, as the
only mistake is CV0

−RC ¼ V0

RC, that is, an error in the calculation
rather than a fundamental error; this solution was singled out
in the clusteringaccording to similarity-of-approach. Solution

25 not once but twice includes the same kind of error in
calculating fractions. Solution 11, which arrived at the correct
solution, made it into the highest cluster for manual grading
but is not found in the corresponding cluster for AI grading.
Overall, clustering the solutions based on the similarity

of the scores within the grading rubric provided similar

TABLE III. AI-grading of solutions 11–20.

Sol. Arg. Symb. Num. Str.forw. Feedback

11 3.5� 0.8 3.5� 0.7 2.8� 1.4 3.5� 0.8 The majority of the graders agree that solution 11 has a correct approach by using the
exponential decay equation for the RC circuit and deriving the equation for iðtÞ.
However, there seems to be a consensus that there are errors in the calculations,
leading to an incorrect numerical result for t2. The argumentation, symbolic
correctness, and straightforwardness could be improved. Despite these errors, some
graders still consider the solution to be well structured and clear.

12 4.0� 0.0 4.0� 0.0 4.0� 0.0 4.0� 0.0 Solution 12 is a correct, well-structured, and straightforward approach to
the problem. The majority of graders praised the clear argumentation,
appropriate use of symbols and equations, and accurate numerical
results. The solution effectively uses the RC circuit formula and provides
a concise explanation.

13 3.9� 0.3 3.9� 0.3 3.5� 1.0 3.9� 0.3 The majority of the graders agree that solution 13 is correct, clear, and
straightforward. The solution uses the appropriate RC circuit equations, symbols,
and approach to find the time when half the initial current flows through the
resistor. While there is mention of a sign error and incorrect final result by a couple
of graders, the overall consensus supports the solution’s correctness and
organization.

14 3.2� 0.9 3.4� 0.8 2.3� 1.4 3.2� 0.9 The majority of graders agree that solution 14 has a correct approach and
argumentation, with symbolic correctness and straightforwardness. However, there
are inconsistencies in the numerical results, likely due to errors in calculations or
sign errors.

15 2.4� 1.4 2.4� 1.4 1.9� 1.6 2.3� 1.5 The majority of graders agree that the solution to problem 15 is mostly accurate in
terms of approach and equations used, but there are some minor mistakes in
argumentation, symbolic correctness, and numerical calculations. The solution is
considered to be somewhat straightforward and well explained but with a few errors
in derivation and numerical results.

16 3.3� 0.8 3.6� 0.5 1.9� 1.5 3.6� 0.5 The majority of the graders agree that solution 16 has a correct approach and
demonstrates accurate symbolic representation, argumentation, and use of
formulas. However, a calculation mistake in determining the initial current and
subsequent errors in numerical calculations lead to an incorrect numerical answer
for t2. Despite these numerical issues, the solution is well organized and clear.

17 3.3� 1.0 3.8� 0.6 2.2� 1.4 3.6� 0.6 Solution 17 demonstrates the correct approach, argumentation, and symbolic
representation but makes an error in the numerical calculation, specifically a sign
error in the time constant, which leads to an incorrect final result. Despite this, the
solution is considered straightforward and directly addresses the problem.

18 3.1� 0.8 3.4� 0.6 2.6� 1.2 3.2� 0.7 Solution 18 has the correct approach and argumentation, but the majority of graders
point out an incorrect time constant calculation, which leads to an incorrect final
numerical result. Despite this, the solution is well-structured and uses proper
symbols and numerical values.

19 0.3� 0.6 0.9� 0.9 0.2� 0.4 0.5� 0.7 The majority of the graders agree that solution 19 contains multiple errors, including
incorrect initial current and voltage calculations, as well as an incorrect approach
for finding the time t2 when half of the initial current flows through the resistor.
These errors lead to an incorrect final result. The solution also has issues with
argumentation, symbolic representation, and straightforwardness.

20 3.1� 0.7 3.5� 0.5 2.0� 1.3 3.3� 0.6 Solution 20 generally employs the correct approach and uses the exponential decay
equation for solving the problem, but there are errors in the numerical calculations,
specifically in the time constant and initial current. These inaccuracies lead to an
incorrect final result. While some graders appreciate the clear and straightforward
steps, the majority point out the numerical errors affecting the outcome.
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information for manual and AI grading, while clustering
based on the similarity of approach is less informative. The
automatically formed clusters based on AI could be used as
a triage mechanism in preparation for human grading.

V. DISCUSSION

A. Potential for assisting in grading

GPTandMathPix show great promise as a tool for grading
handwritten solutions to physics problems, as evidenced by
the scanning results in Figs. 10 and 11, the solid correlation
results in Fig. 13 and the clusters in Fig. 14. The system
performs best at the high end of the grading spectrum: clearly,
correct solutions are generally reliably recognized, but over-
all, the system currently falls short of the stringency required
for standalone, unsupervised exam grading. Also, the system
generally assigns more points than the author and his
colleagues would. This could possibly be mitigated by a
more detailed grading prompt than the one in Fig. 8, however,
it is unclear how to generate that prompt, and sometimes,
rubrics evolve as grading proceeds, when the same unantici-
pated mistake occurs in multiple solutions.
While there are proposals to mitigate these shortcomings

by providing “high transparency” assessments with multiple

TABLE IV. AI grading of solutions 20–25.

Sol. Arg. Symb. Num. Str.forw. Feedback

21 1.6� 1.1 1.9� 1.0 0.7� 0.8 1.8� 1.1 The majority of the graders agree that solution 21 has an incorrect approach,
incorrect or incomplete argumentation, and incorrect numerical calculations. The
relationship between iðtÞ and dv=dt is also incorrect, leading to a wrong
calculation for t2. Some graders acknowledge clear explanation, symbolism, or
straightforwardness in parts of the solution, but overall, the solution is deemed
incorrect and weak.

22 3.7� 0.6 3.9� 0.4 3.4� 1.2 3.7� 0.6 The majority of graders agree that solution 22 is correct and straightforward in its
approach to finding the time when half the initial current flows through the
resistor. The solution uses the time constant and the voltage across the capacitor
as a function of time. However, a few graders noted some minor issues with the
numerical calculation and representation of the time constant. Overall, the
solution is well explained and clear, with accurate derivation and symbolic
correctness.

23 2.1� 1.5 2.6� 1.1 1.0� 1.6 2.1� 1.4 The majority of the graders find solution 23 to have a correct approach and clear
step-by-step argumentation. However, there are concerns about the incorrect final
numerical result and potential errors in the calculations involving the exponential
term and natural logarithm. Some graders also mention an incorrect use of the
time constant, incorrect equation, and wrong numerical value.

24 2.9� 1.2 3.5� 0.7 1.7� 1.4 3.0� 0.9 The majority of graders agree that solution 24 uses the correct approach, equations,
and symbolic representation to find the time at which half the initial current flows
through the resistor. However, there are numerical errors in the calculation,
particularly regarding the time constant and the voltage across the capacitor.
Additionally, some graders noted unnecessary complexity in the solution.
Overall, the solution is partially correct but suffers from incorrect numerical
values and minor inconsistencies.

25 1.7� 1.3 2.7� 0.8 0.7� 1.1 2.1� 1.1 The majority of the graders agree that solution 25 has an incorrect numerical result
for t2 due to inconsistencies, errors, and incorrect values in the derivation and
equation. The approach is mostly correct and some steps are symbolically
accurate, but there are sign errors and the method is not straightforward.

FIG. 12. Correlation between manual and AI-grading rubric
scores.
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attempts and regrade requests [55], students will likely only
invoke these for false negatives, i.e., scores that are lower
than what they expected. This could lead to grade inflation.
Instead of waiting for student complaints, instructional staff
will need to verify the scores before the exam is returned.
As typical for the tool, feedback sounds plausible, but

might be misleading. In grading problems, GPT-4 still
exhibits some of the same weaknesses with symbolic and
numerical calculations that its predecessor GPT-3 did in
solving problems [6]. Some of these shortcomings may be
addressed by the Wolfram Alpha [73] plugin, which is
available in ChatGPT in connection with GPT-4; at the time
of writing (August 2023), preliminary experiments by the
author suggest that GPT-4 is making callouts to Wolfram
Alpha at appropriate times along mathematical derivations
to evaluate particular expressions. Unfortunately, this
plugin had not yet been available when this study was
conducted in April 2023.

B. Potential for assisting in learning

Especially in connection with smartphone-based scan-
ning, GPT or similar tools could be used to assist students

in learning. This is a far more classic domain for AI in
physics education [45,74].
In that context, it is important if the system could

pinpoint particular errors. At the moment, though, this is
still somewhat doubtful. For example, when prompted to
find the mistake in solution 14, the system responds:1

FIG. 13. Correlation between manual and AI-grading total
scores. For each data point, the solution number and the standard
deviations of the AI grading (vertical error bars) and human
grading (horizontal error bars) are indicated.

FIG. 14. Dendrograms and heat maps of similarities between
the rubric grades obtained from manual grading (top panel) and
AI grading (middle panel), as well as the AI similarity-of-
approach measure (bottom panel). The cluster cuts are indicated
by purple lines; the dashed line indicates possible cuts.

1The GPT output is reproduced as provided by the system,
including confusing commas before physical units and unnec-
essary multiplication signs.
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The mistake in the solution is in the definition of
the time constant. The correct definition is
RC ¼ R · C. The rest of the solution is correct.
We need to correct the time constant and then find
the correct value of t2.
The time constant is defined as RC ¼ R · C.
In this case, R ¼ 10;Ohms and C ¼ 100; mF ¼
100·10−3; F, so the time constant is:

RC ¼ R · C ¼ 10;Ohms · 100 · 10−3; F ¼ 1; s.

Now we can substitute the corrected time con-
stant into the equation for t2:

t2 ¼ −RC ln
1

2
¼ −1 ; s ln

1

2
≈ 0.693; s.

So the correct time t2 at which half the initial
current flows through the resistor is approxi-
mately 0.693 s.

The error is not really in the “definition” of the time
constant but simply in the calculation of the powers of ten.
When prompted to pinpoint the error in solution 23, the

response is

The mistake in the solution is in the derivation of
the equation iðt2Þ ¼ 1

2
ið0Þ. The correct equation

should be

iðt2Þ ¼
1

2
ið0Þ ¼ 1

2

V0

R
.

However, the solution incorrectly equates this
expression to the equation for iðtÞ:

−
V0

2RC
e−

t2
RC.

The correct equation for iðtÞ should be

iðtÞ ¼ V0

R
e−

t
RC.

Now, we can set up the correct equation for iðt2Þ:

1

2
ið0Þ ¼ 1

2

V0

R
¼ V0

R
e−

t2
RC.

Now, we solve for t2:

e−
t2
RC ¼ 1

2
;

−
t2
RC

¼ ln

�
1

2

�
;

t2 ¼ RC ln 2 ¼ 10 s ln 2 ≈ 6.93 s.

So the time t2 at which half the initial current
flows through the resistor is approximately 6.93 s.

The system correctly found that the Cwas not canceled but
then actually proceeded to wrongly calculate the answer.
The feedback given by the system can be helpful, but needs
to be evaluated critically by the learner—which in itself is
an increasingly valuable competency, as AI will almost
invariably become ubiquitous in everyday life.
In any case, the system should not attempt to give away

the solution; unfortunately, using the prompt “Act as a
Socratic teacher and assist a learner with this solution
attempt” made the reply more personable and supportive
(“You’re on the right track, but there is a small
mistake …”), but did not stop the system from providing
a solution, either.

VI. LIMITATIONS

This study is limited to one particular tool, GPT-4, at one
particular point in time, mid-April 2023. Due to the rapid
development of AI tools, it can thus provide nothing more
than a snapshot of what is minimally possible.
The usage of a synthetic dataset may not fully represent

the spectrum of solution approaches that students in
introductory physics courses might take, and the solutions
are also more verbose than typical student answers.
The validity of the results is thus limited to a comparison
between AI and human grades on a dataset that is not fully
representative of the target scenario.
The author had to make choices when providing

prompts to GPT. While some experimentation went into
formulating the prompts, due to the probabilistic nature of
the responses, some decisions were made based on anec-
dotal evidence, and better prompts framing the solutions
could well have resulted in more reliable results.
GPT is only one of the rapidly evolving tools becoming

broadly available. There are competing solutions by

TABLE V. Clustering based on the dendrograms and heat maps in Fig. 14.

Low Medium High

Manual 9 19 21 7 10 14 15 16 17 18 20 23 24 25 1 2 3 4 5 6 8 11 12 13 22
AI grading 9 19 21 23 25 7 10 11 14 15 16 17 18 20 24 1 2 3 4 5 6 8 12 13 22
AI similarity 9 19 21 (23) 10 14 15 18 25 1 2 3 4 5 6 7 8 11 12 13 16 17 20 22 24
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Google [75], NVIDIA [76], Microsoft [77], and Meta [78],
which may perform better or worse but could not be
evaluated here.

VII. OUTLOOK

The next step to this feasibility study would be the usage
of actual student work, once hurdles of human-subject
research and cloud-security assessments have been cleared.
These concerns need to be addressed, particularly when
dealing with mandatory assignments [79]. As a welcome
side effect, earlier steps in Fig. 1 could provide better
workflow management even for human graders, as less
paper would be shuffled around and grades could more
easily be adjusted.
In addition to character and formula recognition, diagrams

play an important role in problem solving [80]. A translation
of sketches to vector graphics would expand the boundaries
of what can be automatically preassessed; GPT-4 is
capable of “making sense” out of vector graphics [81].
A possible second scenario for the first step in Fig. 1

could be using pen computing, where learners are directly
drawing on a screen. Some modern tablets and laptops
mimic the paper feel with the appropriate friction, and
students appear to be comfortable with this technology,
seeing how many of them are using this for lecture notes.
A third scenario for the first step would be to photograph or
scan the solutions with a smartphone and upload them to an
online system. These latter two scenarios are less fit for
exam settings, as being online means having access to all
kinds of resources, communication channels, and online

tools (including AI tools!). These additional affordances of
being online would either need to be incorporated into the
tasks themselves (possibly making them more demanding)
or attempted to be blocked by lock-down technologies [82].

VIII. CONCLUSION

In this feasibility study, using sample handwriting and a
synthetic dataset of problem solutions, GPT has shown
considerable potential for grading freeform student work in
physics. While AI-assigned grades have a strong correla-
tion to manually assigned grades (R2 ¼ 0.84), they are
currently not reliable enough for summative assessments,
such as high-stake exams.
The system, however, is reliable enough to assist human

graders by presorting or clustering solutions and by providing
preliminary scores. GPT still remains hampered by its limited
capabilities and inconsistencies in carrying out symbolic and
numerical calculations, so currently, several independent
grading rounds are needed. The narrative feedback provided
by the system seems plausible but currently still frequently
falls short of being reliable. The system can be helpful in
formative assessment, but also in that scenario, learners need
to critically evaluate its responses.
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D. Harter, Intelligent tutoring systems with conversational
dialogue, AI Magazine 22, 39 (2001).

[75] Google, Google Bard, https://bard.google.com/ [accessed
April 2023].

[76] NVIDIA, NVIDIA AI, https://www.nvidia.com/en-us/
ai-data-science/ [accessed April 2023].

[77] Microsoft, Microsoft Copilot, https://www.microsoft.com/
en-us/ai [accessed April 2023].

[78] Meta, Llama 2, https://ai.meta.com/llama/.
[79] A. Alharthi, F. Yahya, R. J. Walters, and G. B. Wills, An

overview of cloud services adoption challenges in higher
education institutions, in Workshop on Emerging Software
as a Service and Analytics, Vol. 2 (SCITEPress, Setúbal,
Portugal, 2015), pp. 102–109, https://dx.doi.org/10.5220/
0005529701020109

[80] D. E. Meltzer, Relation between students’ problem-solving
performance and representational format, Am. J. Phys. 73,
463 (2005).

[81] G. Kortemeyer, Using artificial-intelligence tools to make
LaTeX content accessible to blind readers, arXiv:2306
.02480.

[82] SEB Alliance, ETH Zurich, Save exam browser, https://
www.safeexambrowser.org/ [accessed April 2023].

GERD KORTEMEYER PHYS. REV. PHYS. EDUC. RES. 19, 020163 (2023)

020163-20

https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gplots
https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://www.r-project.org
https://www.wolframalpha.com
https://www.wolframalpha.com
https://www.wolframalpha.com
https://doi.org/10.1609/aimag.v22i4.1591
https://bard.google.com/
https://bard.google.com/
https://bard.google.com/
https://www.nvidia.com/en-us/ai-data-science/
https://www.nvidia.com/en-us/ai-data-science/
https://www.nvidia.com/en-us/ai-data-science/
https://www.nvidia.com/en-us/ai-data-science/
https://www.microsoft.com/en-us/ai
https://www.microsoft.com/en-us/ai
https://www.microsoft.com/en-us/ai
https://www.microsoft.com/en-us/ai
https://ai.meta.com/llama/
https://ai.meta.com/llama/
https://ai.meta.com/llama/
https://dx.doi.org/10.5220/0005529701020109
https://dx.doi.org/10.5220/0005529701020109
https://dx.doi.org/10.5220/0005529701020109
https://dx.doi.org/10.5220/0005529701020109
https://dx.doi.org/10.5220/0005529701020109
https://doi.org/10.1119/1.1862636
https://doi.org/10.1119/1.1862636
https://arXiv.org/abs/2306.02480
https://arXiv.org/abs/2306.02480
https://www.safeexambrowser.org/
https://www.safeexambrowser.org/
https://www.safeexambrowser.org/
https://www.safeexambrowser.org/

