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Recent critiques of physics education research (PER) studies have revoiced the critical issues when
drawing causal inferences from observational data where no intervention is present. In response to a call for
a “causal reasoning primer” in PER, this paper discusses some of the fundamental issues in statistical causal
inference. In reviewing these issues, we discuss well-established causal inference methods commonly
applied in other fields and discuss their application to PER. Using simulated data sets, we illustrate (i) why
analysis for causal inference should control for confounders but not control for mediators and colliders and
(ii) that multiple proposed causal models can fit a highly correlated dataset. Finally, we discuss how these
causal inference methods can be used to represent and explain existing issues in quantitative PER.
Throughout, we discuss a central issue in observational studies: A good quantitative model fit for a
proposed causal model is not sufficient to support that proposed model over alternative models. To address
this issue, we propose an explicit role for observational studies in PER that draw statistical causal
inferences: Proposing future intervention studies and predicting their outcomes. Mirroring the way that
theory can motivate experiments in physics, observational studies in PER can predict the causal effects of
interventions, and future intervention studies can test those predictions directly.
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I. INTRODUCTION

Recent critiques of physics education research (PER)
studies [1,2] have revoiced the critical issues when drawing
causal inferences from observational data where no inter-
vention is present. In response to a call for a “causal
reasoning primer” in PER [1], this paper discusses some of
the fundamental issues underlying statistical causal infer-
ence. In reviewing these issues, we discuss well-established
causal inference methods commonly employed in other
fields [3–13] and discuss their application to PER. We
suspect that many physics education researchers who
engage in quantitative analysis will be familiar with these
methods. At the same time, we propose that more wide-
spread knowledge of these causal inference methods can
help establish greater consensus in the PER community on
how to establish causal relationships from quantitative data.
The causal inference methods we present provide a power-
ful set of conceptual and mathematical tools for analysis
and make clear the potential causal misinterpretations and
biases that can be introduced during analysis. For readers
interested in a more in-depth discussion of the causal

methods discussed here, there are both more popular [14]
and technical references [15–22] available.

II. CAUSAL VS PREDICTIVE MODELING

In this paper, to discuss causal modeling, we will
consider the special case of path analysis using multiple
linear regression on standardized variables. We chose linear
regression because it is a standard method that we expect
many readers to be familiar with. Although many of the
quantitative details of our discussion will be particular to
multiple linear regression, the causal issues we illustrate
extend to other analytic methods as well (e.g., structural
equation modeling).
Consider the case where three standardized variables, X,

Y, and Z, are measured and multiple regression is per-
formed with Z as the dependent variable and X and Y as
independent variables (an analysis denoted as Z ∼ X þ Y).
This best-fit linear model produced by this analysis is Z ¼
βXZX þ βYZY (note: there will be a nonzero constant term
β0 if the variables are not all standardized). Conceptually,
this analysis is commonly interpreted as finding the
variance explained by one independent variable while
controlling for another (i.e., finding the regression coef-
ficient of X on Z, βXZ, when controlling for Y). For this
regression analysis, βXZ is

βXZ ¼ rXZ − rXYrYZ
1 − r2XY

; ð1Þ
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where rAB is the bivariate linear correlation between A and
B. A conceptually important limiting case is that when
rXY ¼ 0, βXZ ¼ rXZ. This indicates that controlling for the
independent variable Y has no effect on the association
between independent variable X and dependent variable Z
if the two independent variables are not correlated.
The interpretation and appropriateness of the analysis

Z ∼ X þ Y will depend on whether the goal of this
regression model is predictive or causal [23]. For a
predictive model [24], the goal would be to explain the
most variance in Z with other measured variables—that is,
to reduce the error in predicting Z. An example from the
field of education would be using early pre- and in-
semester measures X and Y to predict students’ final
physics course grade Z [25–27]. Establishing this predic-
tive model using data from previous semesters may allow
instructors and researchers to identify which students are at
risk of failing a course early enough to provide additional
support. In a predictive model, it is sensible to include as
many variables as available to improve the R2 of the model.
The βs indicate which variables explain the most variance
in Z that is not explained by other variables in the model—
the variance explained by one independent variable con-
trolling for all others. In a predictive model, it does not
matter if X and Y are causes of, effects of, or noncausally
associated with Z; so long as X and Y are associated with Z,
they can be used as predictors.
By contrast, if the goal of the analysis Z ∼ X þ Y were

causal modeling [14], this analysis would aim to estimate the
causal impact of how intervening onX andY should affectZ.
That is, βXZ would indicate the “direct effect” ofX onZ: how
Z would change if X were increased by one standard
deviation and Y were held constant. However, the accuracy
of βXZ as a causal estimate depends critically on whether the
analysis Z ∼ X þ Y reflects the actual causal relations
between X, Y, Z, and other unmeasured variables. The
analysis Z ∼ X þ Y is aligned with a causal model where
X and Y are causal factors that act on the effect Z. The key
conceptual prerequisite for causal inference is to specify the
causal model. This must be done from a conceptual under-
standing of causal mechanisms and cannot be determined
solely by the quantitative fits of different models onto
observational data. If the causal model is incorrect, then the
causal implications of the regression coefficients determined
by this analysis will be misinterpreted by the researcher.
To illustrate how the predictive and causal inference

goals of statistical modeling can be misaligned, consider
the case where X is a student’s midsemester score in their
calculus course. In this case, although midsemester calculus
grades may help predict final physics course grade,
interventions to improve midsemester calculus grades
may not improve final course grade. For instance, an
intervention that increases time spent on calculus study
might actually reduce the time available for studying
physics, causing no improvement or even decreasing

students’ physics final grade. In reality, midsemester
calculus grades may serve as a proxy indicator of the
causal role of students’ more general math preparation or
general study practices on their physics course grade.
Although a predictive model does not necessarily care
why X explains variance in Z, the causal details of why X
explains variance in Z are critical for making accurate
causal estimates and effectively intervening on student
outcomes.
The rest of this paper elaborates on causal inference

techniques for determining the appropriate analysis for
estimating the causal impacts of one variable on another
whenmany variables are correlated together. Central to these
methods are diagrams that embody a theoretical model of the
cause-effect relationships between variables. After describ-
ing three fundamental causal structures, we will use simu-
lated datasets to illustrate two issues related to causal
inference. First, the proposed causal structure between
variables determines whether or not it is appropriate to
control for other variables in causal inference. Second,
multiple proposed causal structures can quantitatively fit
the same dataset, and quantitative indices of statistical model
fit or nonzero path coefficients cannot validate one proposed
causal structure over another.Ultimately, the statistical causal
inferences made are only as valid as the proposed conceptual
causal structure between variables.

III. THREE FUNDAMENTAL CAUSAL
STRUCTURES: CHAIN, FORK, COLLIDER

Relations between quantitative variables can be repre-
sented through directed acyclic graphs (DAGs) [19,28,29],
which represent the variables as nodes connected by
directed arrows. DAG-like diagrams are commonly used
to represent the results of path analysis or structural
equation modeling. When the DAG is constructed to reflect
a proposed causal model, the arrows indicate the direction
of causality between variables, and coefficients associated
with each arrow reflect the direct causal impact of changing
one variable on another.
For instance, X → Y is a causal model where X has a

causal impact on Y—that is, intervening to change X will
produce a change in Y, and that intervening to change Y
directly (i.e., through a method besides changing X) will
not change X. The analysis Y ∼ X would produce the
coefficient of the linear equation Y ¼ βXYX, and the
coefficient βXY would be associated with the path connect-
ing X to Y. This equation (and diagram) also represents a
quantitative causal prediction: that changing X by ΔX will
change Y by βXYΔX.
There are three fundamental causal structures—chain,

fork, and collider [14]—through which more complicated
causal models can be constructed. These three structures
illustrate the ways in which correlation may or may not
reflect causation and also the different rules for whether to
control for other variables in statistical causal inference.
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A. Chain

A causal chain is represented as X → Y → Z [Fig. 1(a)].
This chain represents a causal mediation where X causes Z
through the mediator Y: X causes Y and Y causes Z, so
therefore, X causes Z. An everyday example of a causal
chain is Fire → Smoke → Alarm. Here, smoke is the
mediator caused by fire and causes the smoke alarm to
sound. In principle, any single causal link can be modeled
as a chain by explicitly breaking down the causal mecha-
nism into mediators. In practice, mediators are commonly
omitted from causal diagrams if they are not measured
and/or are not of theoretical interest.
The path coefficients of the chain X → Y → Z are

associated with two linear regressions, Y ¼ βXYX (asso-
ciated with X → Y) and Z ¼ βYZY (associated with
Y → Z). Because X, Y, and Z are standardized variables
and the regressions only have a single-independent vari-
able, βXY ¼ rXY and βYZ ¼ rYZ. There are two ways to
determine the (indirect) causal impact of X on Z. The first is
the chain rule: changes in X cause changes in Y, and these
changes in Y cause changes in Z, so the total effect of X on
Z is rXYrYZ. The second is the analysis Z ∼ X. In this
analysis, the coefficient for X will equal the total effect
rXYrYZ, and, given that there exist no other pathways
associating X with Z except mediation through Y, this value
is equivalent to rXZ.
In the idealized chain X → Y → Z, controlling for Y will

block the causal relationship between X and Z. Analyzing
the relationship of X on Z while controlling for Y can be
accomplished through the analysis Z ∼ X þ Y which would
yield a coefficient for Y of rYZ and a coefficient for X of
zero. This can be intuitively understood through the fire
alarm example: controlling for the mediator “smoke”
blocks the relationship between fire and alarm. We could
physically control smoke by very efficiently removing
smoke from a room with a fume hood. In this case, there
will be no smoke in the room, whether or not a fire is
present, and the alarm will not sound. We could also hold

smoke constant by filling the room with smoke using a fog
machine. In this case, the alarm will sound whether or not
fire is present. By holding the presence or absence of smoke
constant, the causal link between fire and the alarm
sounding is broken. Therefore, controlling for the mediator
Y will screen off information about the actual, indirect
causal relationship of X on Z. To determine the causal
impact of X on Z, one should not control for the mediator Y.
Note that, even in this relatively simple case, the correct

causal interpretation depends critically on having the
correct causal diagram. If the causal chain were actually
X ← Y ← Z, then the causal coefficient rXYrYZ would
actually represent how changing Z would impact X, not
how changing X would change Z. Though it is often
theoretically clear which factor is the cause and which is the
effect, there are systems where determining causes and
effects is nontrivial.

B. Fork

A fork is represented as X ← Y → Z [Fig. 1(b)]. Here, Y
is a common cause of both X and Z. Therefore, X and Z
are correlated because changes in Y will lead to changes in
both X and Z, but this correlation does not reflect a causal
relationship between X and Z. An everyday example
of a causal fork is Shoe Size ← Age of Child →
Reading Ability [10]. Children with larger shoes tend
to read at a higher level because they are older, but the
relationship is not one of cause and effect. Giving a child
larger shoes will not cause their reading ability to increase
nor will improving a child’s reading ability cause their shoe
size to increase.
Here, the causal diagram indicates that the causal impact of

Y on X is represented through the equation X ¼ βYXY ¼
rYXY, and the causal impact of Y onZ is represented through
Z ¼ βYZY ¼ rYZY. The analysis Z ∼ X will produce a
coefficient for X of rXYrYZ, but this indicates a noncausal
association between X and Z. rXYrYZ reflects how X and Z
are correlated through Y, but directly changing X (through a
method that does not change Y) will produce no effect on Z.
To determine the correct causal coefficients, one should

control for Y, which is a common cause of X and Z. Here,
we can control for Y through analysis by only analyzing
subsets of the data with the same value for Y. For our
everyday example, when analyzing subsets of same-aged
children, the remaining variations in shoe size and reading
ability should be uncorrelated, reflecting that there is no
association after the common cause is controlled for. For
the fork X ← Y → Z, controlling for Y through the analysis
Z ∼ X þ Y will produce a coefficient for Y of rYZ and a
coefficient for X of zero. These coefficients reflect the
causal impact of Y and X, respectively, on Z. In causal
analysis, a common cause of two variables is called a
confounder since, if uncontrolled, it confounds our ability
to estimate the causal relationship between those two
variables by contributing a noncausal association. In the

FIG. 1. Fundamental causal structures: (a) chain—where Y acts
as a mediator, (b) fork—where Y acts as a confounder, and
(c) collider—where Y acts as a collider.
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causal diagram representation, noncausal pathways, such as
the one from X to Z through the fork X ← Y → Z, are
called backdoor paths and controlling for confounders
closes these backdoor paths.
Note that the interpretation of which regression analysis

yields an accurate estimate of causal impacts depends on
the proposed causal structure. For both the chain and
the fork discussed, Z ∼ X will yield Z ¼ ðrXYrYZÞX, and
Z ∼ X þ Y will yield Z ¼ ð0ÞX þ ðrYZÞY. Which coeffici-
ent is the causal coefficient describing how intervening di-
rectly on X can change Z: rXYrYZ or zero? For the chain, the
correct causal coefficient is rXYrYZ. The appropriate cau-
sal analysis does not control for the mediator Y since this
will mask the actual causal relationship between X and Z.
For the fork, the correct causal coefficient is zero. The
appropriate causal analysis does control for the confounder
Y since this will block the backdoor path that contributes a
noncausal association between X and Z. This highlights the
critical importance of constructing the correct causal
diagram when estimating the causal impacts of one variable
on another.

C. Collider

A collider is represented as X → Y ← Z [Fig. 1(c)].
Here, Y is a common effect of both X and Z. In the
idealized case depicted, X and Z are uncorrelated
(rXZ ¼ 0), because there are no direct or backdoor paths
connecting them.
Here, the causal diagram indicates that the causal impact

of X on Y and Z on Y is represented through the equation
Y ¼ ðβXYÞX þ ðβZYÞZ. Because X and Z are uncorrelated
in this idealized diagram, βXY ¼ rXY and βZY ¼ rZY [if X
and Z were correlated, the βs could be computed with
Eq. (1)]. These βs are the correct causal coefficients and
indicate how changing X and Z will affect Y. X and Z do
not become correlated through a collider, so the analyses
Z ∼ X and X ∼ Z would both yield coefficients equal to
zero, which correctly indicates the lack of causal associ-
ation between them.
Here, controlling for Y will produce a unique noncausal

association: the analysisZ ∼ X þ Y will produce a noncausal

coefficient forX of
−rXYrZY
1 − r2XY

. That is, in the case thatX andZ

have positive causal impacts on Y, controlling for Y will
produce a negative noncausal association between X and Z.
To see why this would be the case, consider an
example of Academic GPA → College Scholarship ←
Athletic Talent (Fig. 2). This causal diagram reflects that

students can receive college scholarships based on either
academic achievement or athletic talent (which, for the
purposes of this example, we are imagining is uncorrelated
with academic achievement). When we consider the subset
of students who have been awarded a college scholarship
(controlling for the collider), academic GPA will be anti-
correlatedwith athletic talent. For example, if a studentwith a
lower GPA receives a scholarship, it is more likely that they
received a scholarship for playing sports, so they are more
likely to have more athletic talent. Similarly, students with
less athletic talent who received a scholarship aremore likely
to have a higher academic GPA. Here, controlling for the
outcome opens a backdoor path through the collider,
revealing an association between causes that is present when
considering a same-outcome subgroup but is not present
when considering the entire population. Therefore, one
should not control for a collider in causal modeling since
doing so can open noncausal associations.

IV. ANALYZING A SIMULATED DATASET I:
WHEN YOU SHOULD AND SHOULD NOT

CONTROL FOR VARIABLES IN
CAUSAL INFERENCE

Although one may be tempted to “control for every-
thing” in quantitative analyses involving multiple measured
variables, this approach does not necessarily produce the
correct causal coefficients. To summarize the conclusions
from the previous section: when seeking to produce
accurate causal estimates, one should control for confound-
ers but not mediators or colliders.
Though simply stated, the application of these rules for

confounders, mediators, and colliders can become more
complex as the causal diagrams become more complex. To
demonstrate these applications, we created a simulated
dataset based on the causal diagram shown in Fig. 3. The
simulations were conducted using RStudio [30]. First,
N ¼ 10; 000; 000 counts of variable X were generated
randomly using X ¼ rnormðN; 0; 1Þ, where the function
rnorm generates a standardized normal variable with mean 0
and standard deviation 1. Then,N counts for a newvariableZ
were computed using Z¼ð0.20Þ�XþrnormðN;0;0.9800Þ,
where rnormðN; 0; 0.9800Þ is the random error determined

FIG. 2. Causal diagram illustrating the relationship between
academic GPA, college scholarship, and athletic talent.

FIG. 3. Causal diagram depicting the relationships among
variables X, Y, and Z, where X causes Z, and X and Z jointly
cause Y with corresponding causal coefficients indicated on the
arrows.
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to make Z a standardized variable with standard
deviation ¼ 1. Finally,N counts for Y were computed using
Y¼ð0.35Þ�Xþð0.65Þ�ZþrnormðN;0;0.6035Þ, where the
random error term added was determined to make Y a
standardized variable. This stepwise simulation procedure
followed the causal pathways in Fig. 3: X determines Z, and
thenX andZ together determineY. Simulating thedata in this
way created a dataset X, Y, Z, where the correct causal
diagram and the causal coefficients associated with each
directed arrow are known (Fig. 3).
In situations where the data are not simulated (and the

path coefficients are not known), the path coefficients in
Fig. 3 can be determined by basing the analyses on the
causal diagram. In general, the analytic rule is that any node
in the causal diagram with incoming arrows is a dependent
variable in a regression analysis where the independent
variables are the nodes that are the sources of those
incoming arrows. The causal diagram in Fig. 3 illustrates
two regressions needed to determine all path coefficients,
Y ∼ X þ Z and Z ∼ X. To illustrate this analysis, we
conducted these regressions and present the results in
Tables I and II. The regression coefficients match the
associated path coefficients in Fig. 3, verifying the accuracy
of the simulation procedure.
The standard errors of these regression coefficients are

not reported because they are both irrelevant to and a
distraction from the larger purpose of the simulation: to
illustrate how different regression models produce different
regression coefficients. The magnitudes of the errors
depend mainly on our chosen value of N. We deliberately
chose a very large value for N in the data simulation to
shrink the standard errors close to zero. On the computed
regression coefficients that follow, all standard errors are
less than 0.003.

Next, we demonstrate correct (and incorrect) analyses for
determining the magnitude of causal effects between
variables depending on the causal structure. We show
how the results determined from analyzing the simulated
data relate to the path coefficients depicted in Fig. 3. This
will also illustrate how the path coefficients in Fig. 3 can be
used to determine the magnitudes of various causal and
noncausal associations.

A. Rule: Do not control for mediators

Consider an analysis aiming to determine the causal
impact of X on Y. Figure 3 shows that this total causal effect
is the sum of the direct path X → Y and the indirect path
X → Z → Y. Therefore, the total causal effect is 0.48: The
sum of the direct effect 0.35 and the indirect effect
ð0.2Þð0.65Þ ¼ 0.13. This indicates that changing X by
þ1 SD would produce a change in Y of þ0.48 SD.
Conceptually, the relationship between total, direct, and

indirect causal effects can be understood as analogous to
how total and partial derivatives are connected through the
chain rule. Consider the function y ¼ f(x; zðxÞ), where
x; y; z∈R. This function is analogous to the causal diagram
in Fig. 3 since y depends on x and z, while z itself also
depends on x. The total derivative dy

dx can be written as

dy
dx

¼ ∂y
∂x

þ ∂y
∂z

∂z
∂x

. ð2Þ

Analogously, dy
dx represents the total effect of x on y, ∂y

∂x
represents the direct effect of y on x when keeping z
constant, and ∂y

∂z
∂z
∂x represents the indirect effect of y on x

that is mediated through changes in z.
The correct analysis for determining the total causal effect

is Y ∼ X. Because Z is a mediator in the indirect causal path,
it should not be controlled for, as doing so will block this
causal path. The linear regression analysis Y ∼ X on the
simulated data results in the following regression coefficient:

Y ¼ ð0.48Þ � X; ð3Þ

where the intercept jβ0j < 0.001 is omitted. In this case, the
coefficient for X is the total causal effect of X on Y. If one
were to (incorrectly) control forZ by performing the analysis
Y ∼ X þ Z, the regression coefficients would be

Y ¼ ð0.35Þ � X þ ð0.65Þ � Z. ð4Þ

Controlling for the mediator blocks the indirect causal
effect, leaving only the direct causal effect, 0.35, as the
coefficient for X.

B. Rule: Control for confounders

How would one determine the causal impact of Z on Y?
Now, X is a confounder (common cause) of Z and Y, so it

TABLE I. Standardized coefficients for the model Y ∼ X þ Z in
the regression analysis of dependent variable Y with other
variables as shown in Fig. 3.

Regression model: Y ¼ β0 þ βXYX þ βZYZ

Variable β

Intercept −0.0003
X 0.35
Z 0.65

TABLE II. Standardized coefficients for the model Z ∼ X in the
regression analysis of dependent variable Z as shown in Fig. 3.

Regression model: Z ¼ β0 þ βXZX

Variable β

Intercept −0.0003
X 0.20
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should be controlled in the analysis. The total causal effect of
Z on Y is only a direct effect, 0.65. However, the confounder
creates a noncausal association of ð0.2Þð0.35Þ ¼ 0.07
through the backdoor path Z ← X → Y.
The correct analysis for determining the total causal

effect of Z on Y is Y ∼ Z þ X. When applied to the
simulated data, this analysis yields

Y ¼ ð0.65Þ � Z þ ð0.35Þ � X. ð5Þ
Here, controlling for X in the analysis means that the

coefficient for Z will be the causal coefficient, representing
the total causal effect of 0.65. However, if one does not
control for X by performing the analysis Y ∼ Z, this yields
an incorrect causal coefficient:

Y ¼ ð0.72Þ � Z. ð6Þ
Note that for linear regression with one standardized

independent variable Z and one standardized dependent
variable Y, the regression coefficient equals rYZ ¼ 0.72.
Because X was not controlled for, the backdoor path added
the noncausal association 0.07 to the causal effect 0.65 to
produce the regression coefficient 0.72. This example
illustrates the problem with unmeasured confounders.
Because the confounders must be controlled for to produce
the correct causal coefficients, the existence of unmeasured
confounders makes accurate causal analysis impossible.
This is why observational study design should seek to
measure all confounders so that they can be controlled for
to block the noncausal associations from backdoor paths.

C. Rule: Do not control for colliders

For X and Z, Y is a collider. Because colliders should not
be controlled in causal analysis, the analysis for determin-
ing the causal impact of X on Z should not control for Y.
Controlling for variable Y opens a backdoor path contrib-
uting a negative, noncausal association between X and Z.
This noncausal association means the coefficient on X will
deviate from the correct total causal effect of X on Z. These
deviated coefficients are commonly called “biased” coef-
ficients, and a bias arising by controlling for collider Y is
commonly called “collider stratification bias.” Therefore, to
find the causal coefficient of X on Z, one should not control
for Y. To demonstrate this, first, we perform the regression
analysis without controlling for Y, Z ∼ X, which yields

Z ¼ ð0.20Þ � X. ð7Þ
This analysis gives the correct causal coefficient for X,

0.2. On the other hand, controlling for the collider Y
through the analysis Z ∼ X þ Y yields

Z ¼ ð−0.19Þ � X þ ð0.81Þ � Y. ð8Þ

The coefficient for X becomes negative, reflecting the
fact that controlling for Y in this analysis has opened an

additional negative, noncausal association between X and
Z. This extreme example shows how controlling for a
collider can even flip the sign of a regression coefficient,
and naive interpretation of these analyses could produce
different qualitative conclusions about the causal impact of
X on Z.

D. Omitted variable bias

Omitted variable bias [31–34] is one term commonly used
to describe a change in regression coefficients when the
analysis does not control for other variables (i.e., omits the
variables from the statistical model) [35]. The general con-
ditions for omitted variable bias are that (i) the omitted variable
has a nonzero regression coefficient when predicting the
dependent variable and (ii) the omitted variable is correlated
with other independent variables used in the regression
analysis. This effect was demonstrated by showing how
omitting or including mediators, confounders, and colliders
from regression models can impact regression coefficients.
Although mathematically accurate, labeling this effect a

“bias” may imply that no measured variables should be
omitted in analyses where causal inference is the goal. This
is incorrect. While mediators, confounders, and colliders all
satisfy the two general conditions for omitted variable bias,
only confounders should be controlled for in causal
inference; mediators and colliders should be omitted in
analysis. Controlling for mediators and colliders in analysis
biases coefficients away from total causal effects.

V. THE IMPORTANCE OF RANDOMIZATION IN
CAUSAL INFERENCE

One benefit of using DAGs to create causal diagrams is
that the diagrams can concretely represent familiar issues in
causal inference. For example, causal diagrams can illustrate
why randomized controlled trials (RCTs) [14,36–38], where
research participants are randomly assigned to a control or
intervention group, are considered a “gold standard” for
accurately determining the causal impact of one factor on
another. Consider the case in Fig. 4(a), where X has a direct
causal impact on Y, X → Y, and multiple confoundsC1, C2,
and C3—common causes of X and Y—exist.
If we observe these variables in situ, the regression

analysis that will produce the correct causal coefficient of
X on Y, d, is Y ∼ X þ C1 þ C2 þ C3. The regression
analysis Y ∼ X will produce a coefficient for X that is the
sumof the direct causal effect ofX → Y,d, and the noncausal
associations due to the three backdoor paths X ← C1 → Y,
X ← C2 → Y, andX ← C3 → Y. Using the path coefficients
in Fig. 4(a), this coefficient for X will be dþ a1b1þ
a2b2 þ a3b3. This is another example of why controlling
for confounders in causal analysis matters.
What could cause such confounds? One example is a

selection effect. For instance, consider a scenario where
students self-select into an optional physics study program
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based on their preexisting interest in the subject. In this case,
the observed outcomes of the program on their later physics
course performance might be influenced not only by the
study program but also by their initial interest. In terms of the
causal diagram, their prior interest (C1) impacts both their
participation in the program (X) and their ultimate perfor-
mance (Y). To accurately determine the program’s effective-
ness, the analysis must control for prior interest (the
confounder).
Although controlling for confounders is effective, it is

important to acknowledge that one may not always be
aware of or be able to measure all potential confounders.
Randomization is another way to deal with confounders
without explicit measurement and control. If experimenters
can randomly assign participants to X, this will break the
causal dependence on all confounders—known or unknown,
measured or unmeasured—since the presence of X will no
longer depend on C1, C2, or C3 (in our example, randomly
assigning students to participate in the optional physics study
program means that participation in the optional program
would no longer be associated with students’ preexisting
interest in the topic). In this new diagram [Fig. 4(b)], both the
analysis Y ∼ X and Y ∼ X þ C1 þ C2 þ C3 produce the
same coefficient for X, d. Therefore, randomization theo-
retically removes the need to control for confounders to
determine correct causal estimates.

VI. ANALYZING A SIMULATED DATASET II:
HOW MULTIPLE CAUSAL MODELS CAN FIT

THE SAME DATASET

In Sec. IV, because we were privy to the exact causal
process through which the data were simulated, we were

certain of how the variables were causally related.
However, this is rarely, if ever, the case. Although there
may be contexts where the causal model is clear, there are
also instances where the exact causal model is uncertain or
multiple causal models may be theoretically plausible. An
important point is that quantitative statistics of model fit,
though good at quantifying the predictive value of a
statistical model, cannot be used to determine the correct
causal model. That is because the model fit indicates a
model’s quantitative ability to explain the variance, but it
does not specify whether that explained variance indicates a
causal association, a noncausal association, or a combina-
tion of both.
As a clear example of why model fit does not equal

causal validity, consider the simulated dataset represented
by Fig. 3. As explained previously, in determining the
causal impact of X on Y, Z should not be controlled
because Z is a mediator of this causal impact. Therefore, the
correct causal analysis is Y ∼ X. However, if we choose
whether or not to control for Z based on which regression
model produces the highest R2 fit, we will make the wrong
decision. The correct causal analysis Y ∼ X has an
R2 ¼ 0.23, and the incorrect causal analysis Y ∼ X þ Z
has an R2 ¼ 0.63. The reason is that including the mediator
Z in the prediction of Y explains additional variance
compared to when only X is used to predict Y, even
though controlling for that mediator obscures the causal
coefficient of X on Y. Although including mediators and
colliders in regression models can provide a greater
predictive fit by explaining a greater proportion of variance
in the dependent variable, it will also bias regression
coefficients away from estimates of the total causal effect.
Likewise, the existence of nonzero coefficients associ-

ated with an arrow in a causal diagram does not prove the
validity of that causal model. To illustrate this, we simu-
lated a dataset of standardized variables A, B, C that
followed the correlations in Table III. Specifically, the data
were simulated in RStudio [30] with the function mvrnorm,
included in the MASS package [39]. We input the 3 × 3
covariance matrix shown in Table III that defines the three
bivariate correlations between A, B, and C, set the mean
value of each variable as zero, and set the sample size to
N ¼ 10; 000; 000. With these inputs, mvrnorm output a
multivariate, normally distributed sample where values of
A, B, and C were generated for N ¼ 10; 000; 000 counts.
Unlike the previous simulated dataset, this method of
simulating data matches observational conditions, where
correlations are explicitly measured, but the underlying
causal structure is unknown.
To illustrate how multiple causal models can produce

different, quantitatively reasonable path coefficients for the
same dataset, we analyzed the simulated data using six
different causal diagrams (Fig. 5). These six models are all
the ones allowed when considering models where all
pairwise direct links exist and omitting the cyclic models

FIG. 4. (a) Causal diagram illustrating the relationship between
X and Y, where X causes Y.C1, C2, and C3 are common causes of
both X and Y. The labels on the edges represent the causal
coefficients. (b) A randomized experiment (or intervention) on X
breaks the causal dependence of confounders on X.
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that are disallowed (such as the one with the links A → B,
B → C, andC → A). As a reminder, each diagram indicates
the analyses required to find the path coefficients. For
instance, inmodel 1,B has one arrow pointing into it coming
from A, so the path coefficient for A → B can be determined
through the analysis B ∼ A, which will yield the regression
equation B ¼ ð0.5Þ � A. C has direct arrows pointing into it
from both A and B, so these path coefficients are determined
by the analysis C ∼ Aþ B, which will yield the regression
line C ¼ ð−0.27Þ � Aþ ð0.93Þ � B. Because A has no
incoming arrows, it is not the dependent variable in any
analysis.
Although all models find nonzero path coefficients, they

make different predictions about how changing one vari-
able will change another. For example, consider the
question, “how will intervening on A affect C?” Model
1 indicates a direct effect A → C of −0.27, an indirect effect
A → B → C of ð0.50Þð0.93Þ ¼ 0.47, and a total causal
effect of ð−0.27Þ þ ð0.47Þ ¼ 0.20. Model 2 indicates a
total effect of −0.27, which is solely attributed to a direct
effect. Model 3 indicates a total effect of 0.20, which is
solely attributed to a direct effect. Models 4–6 give an effect
of zero since C is the cause and A is the effect, and
changing A directly will not change C.
Although models 1 and 3 give the same total causal

effect of A on C, this degeneracy is broken when consid-
ering how breaking the link A → B will change this total
effect. This break could be accomplished by identifying a
mediator M such that A → M → B and controlling for M.

In model 1, breaking the link A → B will block the indirect
effect of A on C, changing the total effect to −0.27. In
model 3, breaking the link A → B will not affect the causal
relationship between A andC, so the total effect will remain
0.20. This is an example of how interventions on the causal
system can break the degeneracy between different models.
Another issue is how the different models have different

causal implications, even if the path coefficients are numeri-
cally identical. For example, consider models 1 and 2, which
have the same numerical path coefficients and differ only in
how the link betweenA andB is modeled: either asA → B or
A ← B. Bothmodels give a direct effect forA → C of−0.27.
In model 1, the path through B is causal. B is a partial
mediator through the path A → B → C, which represents an
indirect, causal effect of ð0.50Þð0.93Þ ¼ 0.47. In model 2,
the path through B is noncausal. B is a confounder, so the
path A ← B → C represents a noncausal association of
magnitude ð0.50Þð0.93Þ ¼ 0.47. Therefore, although the
choice of A → B or A ← B has no impact on the path
coefficients computed, it does have an impact on the causal
implications of the model.
This simulated example shows how critical choosing the

causal model is. Researchers have the freedom to choose
any causal model and apply it to the data, and the choice of
model changes the conclusions that will be reached. The
choice of model can even change the sign of a causal effect,
as demonstrated when comparing the total effect of A on C
in models 1 and 2. Just like an ansatz, the causal model is a
guess—however theoretically or empirically justified—
about the causal relationships among a system of variables.
However, finding a model that fits the data is not proof that
the ansatz was correct in this case. In fact, neither statistical
goodness-of-fit nor nonzero path coefficients offer evi-
dence supporting the causal validity of one model over
another. The results are only as valid as the researchers’
original causal assumptions, which are embodied in the
proposed causal diagram. As the number of relevant and

TABLE III. Covariance matrix for variables A, B, and C.

A B C

A 1.00 0.50 0.20
B 0.50 1.00 0.80
C 0.20 0.80 1.00

FIG. 5. Six acyclic causal models that fit the same set of correlations between the variables in Table III.
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collected variables grows, the number of possible causal
models also grows, increasing the possibility that research-
ers have chosen the wrong model and reached the wrong
causal conclusions.
Since the results of causal analysis under a proposed

model cannot support the likelihood of that proposed model
over others, how can observational research proceed in
fields like PER? One way forward is to bridge observa-
tional and intervention studies, just as bridging theory and
experiment has advanced knowledge in physics. Just as
theoretical models in physics can make predictions to be
tested experimentally, fitting observational data with can-
didate causal models can make causal predictions of how
changing one factor will affect another, and these causal
predictions can be tested through future intervention
studies. Like experiments in physics, intervention studies
that directly manipulate causes and measure changes to
effects can provide empirical data about which associations
are causal and which are not, to help support or falsify
proposed causal models. In addition, perhaps more impor-
tant than the theoretical validation of causal models,
intervention studies also leverage observational research
to design new approaches to improving physics education.
Next, we will apply these causal inference methods to

interpret prior work in PER. In doing so, we will provide an
example of how observational studies can establish quan-
titative causal models that can be investigated through
future intervention studies.

VII. APPLYING CAUSAL INFERENCE
PRINCIPLES TO PRIOR PER STUDIES

Although PER often uses quantitative analysis to draw
conclusions about causal impacts, the causal diagrams,
assumptions, and analytic techniques discussed in this
paper are rarely explicitly employed to justify and structure
the analysis. Here, we apply these causal inference methods
to make sense of prior work in PER, demonstrating how
these methods can provide a unified language for under-
standing various issues in quantitative PER.

A. Example: Omitted variable bias in PER

Walsh et al. [35] explored the effects of omitted variable
bias through data from a quasiexperimental study. The
study investigated students’ attitudes toward experimental
physics using Pre and Post E-CLASS survey measure-
ments. Sampled physics students experienced either “trans-
formed” or “highly traditional” physics laboratory
instruction and were coded as either intending to major
in physics or intending to major in another science or
engineering field. Additionally, students’ underrepresented
minority (URM) status was collected. The focus of their
analysis was the magnitude of the omitted variable bias
from omitting instruction type from the analysis. They
create three regression models using different combinations

of pre E-CLASS score, major (physics ¼ 1), instruction
(transformed ¼ 1), and URM status (URM ¼ 1) to predict
post E-CLASS score. Using the correlation and regression
results given in the paper, we propose a causal diagram for
these variables (Fig. 6).
When the inclusion of one variable changes the regres-

sion coefficient for another variable, then those two
variables must be correlated. Comparing regression models
1 and 2 in Ref. [35], adding instruction to the model
changes the coefficient for major. Therefore, it is clear that
major and instruction are correlated, and this correlation
value (0.574) is reported in the paper. In our diagram, we
represent this connection as a noncausal association:
Major ↔ Instruction.1 It is conceptually equivalent to
the notation: Major ← U → Instruction, where U is an
unmeasured common cause of major and instruction. For
instance, different types of instruction may be randomly
assigned to different lab sections, and students may be blind
to which sections are associated with each type of instruc-
tion. In this case, the association would be purely noncausal
since there would be no causal mechanism for students’
major to influence which lab instruction they receive.
Alternatively, a plausible causal relationship is that stu-
dents’ major may influence the type of lab instruction they
receive: Major → Instruction. For instance, the trans-
formed lab instruction may be officially associated with lab
sections for majors such that students are officially advised
to enroll in different lab sections by major. The transformed
lab may also be messaged as “more advanced” or “for
physics majors” in other ways that preferentially attract
physics majors. The causal interpretation of this alternative
model will be explored later. Because Pre E-CLASS and
Major are both included in all three regression analyses, it is
unknown whether or not they are correlated and if omitting
one of them will change the regression coefficient of the
other. We indicate this ambiguity with a “?” on
PreE-CLASS ↔ Major. Table I in Ref. [35] describes
the results from three different regression models using
Post E-CLASS as the dependent variable. Next, we show
how our proposed diagram in Fig. 6 provides a single
model that can determine the coefficients in these three

FIG. 6. A proposed causal diagram representing the causal
structure of how Pre E-CLASS scores, major, instruction, and
URM status predict the Post E-CLASS scores.

1Models inwhich single-headed anddouble-headed arrowsoccur
are referred to as ADMGs (acylic directed mixed graphs) [40].
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different regression analyses. In all three models, the
standardized coefficient of PRE E-CLASS is 0.55–0.56,
which is indicated by the path coefficient ∼0.56 for
PreE-CLASS → PostE-CLASS in the diagram.
Model 1 performs the analysis Post E-CLASS ∼

Majorþ PreE-CLASS. Using our diagram, we can see
that controlling for Pre E-CLASS blocks the potential back-
door path Major ↔ Pre E-CLASS → Post E-CLASS,
but because this analysis does not control for instruction,
the backdoor path from Major ↔ Instruction → PostE-
CLASS is open. Using this diagram, we can determine that
the regression coefficient for major will not be the correct
causal coefficient. This regression coefficient, 0.405, will be
the sum of the causal direct effect, 0.115, and the noncausal
backdoor association Major ↔ Instruction → Post E-
CLASS, ð0.574Þð0.505Þ ¼ 0.290. This is approximately
equal to the regression coefficient for Major computed in
Ref. [35], given for Model 1 in Table I.
Model 2 is the regression analysis Post E-CLASS ∼

Majorþ Instructionþ Pre E-CLASS. This analysis
controls for Instruction, blocking the previously open
noncausal backdoor path Major ↔ Instruction →
Post E-CLASS. Now, the regression coefficients in this
analysis will match the direct, causal effects in Fig. 6: 0.115
for Major, 0.505 for Instruction, and 0.56 for Pre E-
CLASS. These values match those given in Table I of
Ref. [35] (though not exactly for Pre E-CLASS since we
made the approximation that there is no correlation
between Pre E-CLASS and Instruction that is unexplained
by Major).
Model 3 inTable I ofRef. [35] describes the regression ana-

lysis Post E-CLASS ∼ Majorþ URM statusþ Pr e E-
CLASS. With the backdoor path between Major and
Instruction open again, the coefficient for Major will become
similar to that in Model 1. Because the Pre E-CLASS and
Major coefficients remain similar to the model 1 values,
model 3 shows that URM status has a very small correlation
with Pre E-CLASS or Major, which we approximate as zero
by drawing no direct links fromURM status to Pre E-CLASS
or from URM status to Major.
This illustrates how causal diagrams can provide a single

model that explains the results of different regression
analyses while also encoding the causal assumptions of
the researchers. What causal inferences can we make from
the causal diagram in Fig. 6? Under the theoretical
assumption that there is no causal association between
major and instruction (Major ↔ Instruction), the type of
instruction that students receive should not affect or be
affected by their intended major. Therefore, one causal
inference represented by this causal model is that experi-
encing the transformed lab instruction would increase
students’ average Post E-CLASS by an amount corre-
sponding to a standardized coefficient of 0.505 over the
traditional lab instruction. Here, Major is a confounder, so
it must be controlled for to close a noncausal path-

way between Instruction and Post E-CLASS. If Major
was not controlled for, such as in the regression ana-
lysis PostE-CLASS ∼ Instructionþ PreE-CLASS, the
Instruction coefficient would be 0.571 ¼ 0.505þ
ð0.574Þð0.115Þ, overestimating the causal coefficient by
ð0.574Þð0.115Þ ¼ 0.066 through the noncausal backdoor
path Instruction ↔ Major → Post E -CLASS.
What causal inference can be drawn about Major?

Intended major is a proxy measure for factors that attract
students to physics over engineering and other sciences,
including academic preparation, interest, etc. These factors
are hidden in the diagram as the common causes of Pre E-
CLASS and Major, represented by PreE-CLASS ↔
Major, since they may impact students’ beliefs about
experimental science as well as their choice of major. These
unmeasured factors U could be more explicitly represented
by PreE-CLASS ← U → Major. For students with the
same Pre E-CLASS score and experiencing the same lab
instruction, intending to major in physics will increase
students’ average Post E-CLASS score by an amount
corresponding to a standardized coefficient of 0.115 over
those intending to major in other science or engineering
fields.
However, when considering potential interventions, it is

important to keep in mind which variables are causes and
which are proxies for causes. For example, a causally
ridiculous conclusion to draw from the link Major →
Post E-CLASS would be that universities should change
all physics students’ intended majors to physics in the
university registration system to improve their experimental
physics attitudes. Because students’ major is a proxy for
other unmeasured factors that impact their beliefs and
learning, intervening on the proxy will not have a causal
effect on Post E-CLASS. If the university were to mandate
that all students become physics majors, this would not
change those unmeasured factors, such as prior interests or
experiences. Instead, it would break the association between
major and unmeasured factorsU,Majorwould no longer be a
proxy measure for U, and, consequently, the coefficient for
Major → PostE-CLASS would go to zero.
In contrast to this interpretation of Major, we now

consider the alternative causal model where instruction
partially mediates the causal effect of major: Major →
Instruction → PostE-CLASS. If being a physics major
increases the chances that one is enrolled in the transformed
lab instruction course (such as if a physics majors-centric
lab course uses the transformed instruction, while the
nonmajors lab course uses the traditional instruction), then
instruction should be considered part of the causal mecha-
nism through which intended Major affects Post E-CLASS
scores. In this case, the total causal effect of intending to
major in physics would be 0.40, which includes the direct
effect of Major of 0.115, associated with the unmeasured
student factors related to major choice (like academic
preparation, interest, etc.) and the indirect effect of physics
majors being preferentially guided into the transformed lab
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instruction and this lab instruction impacting students’
experimental physics attitudes.
Although Walsh et al. [35] do not explicitly propose a

causal interpretation of the 0.574 correlation between
Major and Instruction, the causal diagram and associated
rules for causal inference make it clear why this specifi-
cation is important. While a general focus on omitted
variable bias highlights how including or omitting variables
from the analysis can affect regression coefficients, these
causal techniques highlight additional issues around how
those coefficients should be interpreted for accurate causal
inference.

B. Example: Collider stratification
bias through sampling in PER

The issue of noncausal coefficients arising from con-
trolling for colliders—commonly called collider stratifica-
tion bias—has been explicitly discussed in many contexts
[41–55]. Weissman [56] explicitly discusses this issue in
the context of education research, explaining how collider
stratification bias can arise when controlling for educational
outcomes in analysis. Here, we discuss another way that
collider stratification bias can arise: through sampling.
A study in the 1960s investigating the mortality of babies

born with a low birth weight counterintuitively found that
babies whose mothers were smokers had better survival
rates than babies of nonsmoking mothers [57]. Collider
stratification bias was eventually used to explain why
mothers should not be recommended to take up smoking
while pregnant. In this example, low birth weight is a
collider with multiple alternative causes. Smoking is one,
but others also exist (such as birth defects). Since the study
only investigated low birth weight babies, the sampling was
conditioned on the collider. The result is that smoking and
alternative low birth weight causes have a noncausal
association in the collected dataset since low birthweight
babies are likely to experience at least one of the causes, a
smoking mother or an alternative low birthweight cause.
Low birth weight babies who do not have a smoking
mother are more likely to have alternative low birth weight
causes, which may have even greater mortality rates than
smoking.
Figure 7 shows a causal model of these variables.

Restricting sampling to only low birth weight babies
controls for a collider between smoking and alternative
low birth weight causes. Therefore, the coefficient for
smoking determined from the analysis Mortality ∼
Smoking will be the sum of the effects of the causal direct
path Smoking → Mortality and the noncausal backdoor
path Smoking → LowBirth Weight ← Alternative Low
BirthWeightCauses → Mortality opened by controlling
for the collider Low Birth Weight. If the noncausal back-
door path has a negative contribution greater in magnitude
than the direct path, then the overall regression coefficient

will be negative. This explains how having a smoking
mother could predict a lower mortality rate than having a
nonsmoking mother because nonsmoking becomes asso-
ciated with other alternative causes of low birth weight with
a higher mortality rate.
One way to address this collider stratification bias

would be to expand sampling to capture a representative
distribution of birth weights. This would change the
dataset to not condition on the collider, closing this
noncausal backdoor path through Low Birth Weight.
In this case, the analysis Mortality ∼ Smoking will
produce a regression coefficient that represents the total
causal effect (the direct effect of Smoking → Mortality
plus the indirect effect of Smoking → LowBirth
Weight → Mortality). Another way to address the col-
lider stratification would be to measure and control for
alternative causes of low birth weight, like birth defects.
Although restricted sampling would still open the back-
door path through the collider (Low Birth Weight),
controlling for birth defects and other alternative causes
(which are common causes of low birth weight and
mortality) will close (or reduce, in the case that not all
alternative causes of low birth weight also directly
affecting mortality can be controlled for) the noncausal
confounding paths Smoking → LowBirth Weight ←
Alternative LowBirthWeight Causes → Mortality. In
this case, the analysis Mortality ∼ Smoking þ
Alternative LowBirthWeight Causes, when condition-
ing on low birth weight through restricted sampling,
will produce coefficients that estimate the direct causal
effects of Smoking → Mortality and Alternative
LowBirthWeight Causes → Mortality. Although this
removes contributions of noncausal backdoor associations
from the regression coefficients, it also does not estimate
the total causal impacts on mortality. This is because low
birth weight is a partial mediator of the effects of smoking
and alternative causes of low birth weight on mortality,
and controlling for low birth weight closes these media-
tion pathways. Another weakness of this second approach
is the challenge of precisely assessing the extent to which

FIG. 7. Causal diagram illustrating the relationships between
smoking, low birth weight, alternative low birth weight causes,
and mortality as seen in the study [57].
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confounding is addressed by controlling for a set of cova-
riates. The only statistical way to guarantee that all con-
founding is removed in this case will be if the measured
variables completely account for the variance in low birth
weight (R2 ¼ 1 when predicting low birth weight).
In PER, one data collection procedure where sampling

creates collider bias is the completion of low-stakes,
research-based surveys. Completion of these surveys, such
as concept inventories or attitude surveys, during a physics
course is associated with final course grade: specifically,
students with higher grades are more likely to complete these
surveys [58]. For this reason, complete-case analysis, which
removes participants with missing data from the analysis,
will partially control for final course grade. Consider the
proposed causal model where a concept inventory (CI) and
an attitude survey (AS) each serve as proxies for the
qualitative physics understanding and learning attitudes that
improve physics learning and performance as measured by
final course grade (G) (Fig. 8). The partial control for the final
grade partially opens the noncausal backdoor path through
the collider CI → G ← AS. Since we expect all causal
coefficients to be positive, this backdoor path adds a non-
causal negative contribution to the correlation between CI
and AS. The expected impact is that measured correlations
between CI and AS that do not address this collider
stratification bias underestimate the strength of this correla-
tion. Biases associated with missing data have led to
increased attention on data imputation techniques, like
multiple imputation, for estimating the contributions of
missing data in PER [59]. Yet, just as with these causal
inference methods, the accuracy of these methods depends
critically on often unverifiable assumptions, in this case,
about the nature of the missingness of the data and whether
observed variables can adequately model the missing data.

C. Dealing with the bidirectional nature
of motivation and beliefs with linear models

Although DAGs are easily applied to model unidirec-
tional relationships between causes and effects, cases can
exist where causality is bidirectional between two factors,
such as in a feedback loop. One example from education
where the causal directions are plausibly bidirectional is the
relation between academic performance and motivation or
beliefs.
To illustrate this, consider research on self-efficacy and

academic performance. Self-efficacy and academic perfor-
mance are correlated with each other, but which is the cause
and which is the effect? Although many researchers focus
on one causal pathway over another (SE → performance
or performance → SE), from its conception, self-efficacy
has been theorized to affect and be affected by behavior and
performance [60–69]. Self-efficacy influences behaviors,
such as whether or not people engage and persist in
challenging tasks, which creates opportunities to increase
learning and performance. Reciprocally, experiencing mas-
tery and success in performance is a strong predictor of
future self-efficacy [70–74]. A sensible causal model
between self-efficacy and academic performance would
be cyclic [75,76], representing the bidirectional relationship
between the two factors. However, these cyclic causal
diagrams are disallowed by the formalism because the
graphs must be acyclic. In our own work on the relations
between self-efficacy and performance, we have grappled
with how to causally understand the quantitative relations
between self-efficacy and physics performance in the
absence of causal diagram methods [77].
One way to conceptualize such reciprocal relationships is

through longitudinal measurement and cross-lagged panel
analysis. As an example, Talsma et al. (2017) [78] con-
ducted a meta-analysis of longitudinal self-efficacy studies
with a cross-lagged model where self-efficacy and perfor-
mance, correlated with each other at time 1, are both
allowed to affect self-efficacy and performance at time 2
(Fig. 9). The longitudinal repeated measurements of per-
formance and self-efficacy open up alternatives to cyclic
diagrams. The cross-lagged panel model also disentangles
the effects of prior self-efficacy and prior performance,
which are themselves correlated. This causal diagram also
clarifies the risks of simply associating self-efficacy at time
1 with academic performance at time 2. Talsma et al. [78]
report that this correlation is rSE1-P2 ¼ 0.248. However, the
analysis associated with this diagram shows that the causal
effect SE1 → P2 is only 0.071 and that the rest of this
correlation reflects a noncausal backdoor association
SE1 ↔ P1 → P2 of ð0.316Þð0.560Þ ¼ 0.177. That is,
the majority of this correlation reflects the fact that self-
efficacy and performance at time 1 are correlated with each
other and that the direct effect of P1 → P2 is relatively
large. Neglecting this backdoor association in analysis
overestimates the causal impact of self-efficacy on

FIG. 8. A proposed causal diagram illustrating the causal
structure of how concept inventory (CI) and attitude survey
(AS) predict final course grade (G).
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performance. The cross-lagged diagram also clarifies that
the correlation between self-efficacy and performance is
mostly explained by the mechanism of their coevolution
over time. Although rSE2-P2 ¼ 0.312, the direct noncausal
association SE2 ↔ P2 only has a coefficient of 0.037. This
indicates that an association of 0.275 is explained through
the backdoor paths including SE1 and P1. That is, most of
the correlation between self-efficacy and performance is
due to the fact that they both codevelop out of prior self-
efficacy and performance.
This example of self-efficacy shows how these causal

methods can potentially clarify the muddy, reciprocal
relations commonly theorized when considering relation-
ships between academic performance and behavior with
motivation, self-concept, and attitudes. Although this cross-
lagged panel analysis illustrates the conceptual issues
regarding reciprocal influences between variables, this is,
in some sense, a toy model. More modern methods have
since been suggested that capture the same conceptual
issues while relaxing some of the underlying assumptions
required to produce accurate causal estimates [79–81].

D. Proposing an explicit role for causal modeling of
observational data in PER: Motivating

future intervention studies

The validity of the causal inferences drawn from quan-
titative analysis depends critically on the validity of the
underlying causal model guiding analysis and interpreta-
tion. This causal model, which can be represented explicitly
with a DAG, is based on researchers’ (explicit and/or
implicit) theoretical understanding of the causal system.
The critical issue is that a researcher’s underlying causal
model cannot be “verified” by the quantitative results of
fitting observational data to that model. Intuitively, it may
be appealing to interpret nonzero regression coefficients or
extremizing quantitative metrics of model fit as evidence
that a proposed causal model is correct. However, this is not
a valid inference. Even a noncausally correlated set of

variables can produce nonzero regression coefficients and
provide a good model fit for predicting outcomes.
In this journal, Weissman has called for explicit consid-

eration of multiple plausible causal models for observa-
tional studies drawing causal inferences [1], which is
especially relevant in cases with a large number of variables
and plausible causal relationships between them. We agree
with Weissman that this is a sensible call for considering
alternative explanations in quantitative research. As dem-
onstrated previously, changing one’s assumptions about
whether a variable is a mediator, confounder, or collider can
change quantitative causal estimates, as well as how the
quantitative causal analysis should be conducted and
interpreted. Therefore, different causal models can produce
different theoretical interpretations of the quantitative data.
Although there may be theoretical reasons to favor one

model over another, a strong empirical test of a proposed
model is to design experimental interventions based on that
proposed model. Therefore, in addition to the consideration
of alternative causal models, we propose an explicit goal for
observational studies drawing causal inferences: proposing
future intervention studies and predicting their outcomes.
Just as physics theories motivate future experiments, any
proposed causal model of observational data embodies a set
of causal explanations for observed correlations, and the
causal estimates produced by applying those theoretical
models to observational data are predictions of the effects
of future interventions. Framing causal inferences from
observational studies as theory clarifies that these infer-
ences are one possible set of proposed theoretical explan-
ations of the data. A secondary benefit of this explicit
framing of “causal inference from observational data as
theory” is that it highlights and promotes the scientific
value of experimental intervention. When interventions act
on causes, they can break associations with confounders,
eliminating noncausal backdoor paths and providing strong
tests of proposed causal models.
To propose a concrete example of using observational data

to predict the results of future interventions, we consider a
recent example from Li and Singh [82], who used observa-
tional data to investigate the relations between gender and
fourmotivational constructs: self-efficacy, interest, perceived
recognition, and identity. This paper provides a good case
study of these issues for the following reasons: It analyzes
correlated motivational factors in a nonintervention setting;
the motivational variables are highly correlated (r > 0.6 for
all six pairwise correlations between the four motivational
factors); and it deals with motivational variables which can
plausibly be modeled as reciprocally co-evolving (i.e., there
can be theoretical debate about which factors are directly
linked andabout the directions of these links). This paper also
does the rare work of explicitly comparing alternative
models, considering four models where self-efficacy, inter-
est, and perceived recognition mediate the relationship
between gender and identity. Although they do not explicitly

FIG. 9. This is a reproduction of Fig. 2 of Ref. [78]. Causal
diagram of the cross-lagged path model between self-efficacy and
academic performance at time 1 and time 2.
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state that their goal is causal modeling, Li and Singh end
up drawing causal conclusions from the model about how
intervening on one factor should change another. Therefore,
we consider their four models as causal models.
Model 1 [Fig. 10(a)] considers no causal associa-

tion between self-efficacy, interest, and perceived recog-
nition. Models 2–4 [Figs. 10(b) to 10(d)] make one
of these mediators a cause of the other two mediators.
For instance, model 4 describes the total effect of perceived
recognition on identity as the sum of a direct effect
PerceivedRecognition → Identity and indirect effects
mediated through interest and self-efficacy. Because of the
highly connected nature of these motivational constructs,
all of these models could be viewed as theoretically
reasonable to some degree. For example, because it is
reasonable for people to be more interested in topics they
believe they can successfully learn, SE → Interest is
plausible. However, because interest also likely increases
engagement and learning in an area, Interest → SE is also
plausible. Similarly, although identity is an effect caused
by the three other factors, identity may also be a cause
that can impact one’s self-efficacy, interest, or perceived
recognition. Although this paper uses structural equation
modeling rather than path analysis with linear regression to

find the path coefficients, the conceptual issues underlying
the causal modeling remain the same.
The quantitative analysis of these four models does not

prove or disprove any one model over the others. Li and
Singh [82] recognize this and provide alternative reasons to
favor model 4 over the others. First, the authors argue that a
model making perceived recognition of the parent cause of
self-efficacy, interest, and identity provides the best moti-
vation for instructor change. They explain that self-efficacy,
interest, and identity may be seen as student properties
outside of an instructor’s locus of control, whereas per-
ceived recognition is something that a teacher is more likely
to believe they can intervene upon. Whether or not this is
true, this argument does not support the causal validity of
model 4 over the others. Having desirable implications for
action does not make a model more causally accurate than
other models. The second reason provided to favor model 4
over the others is that interviewed students self-report
perceived recognition as the causal antecedent of their
later self-efficacy, interest, and identity. Although this is
one piece of evidence supporting model 4, it is also true
that a person’s retrospective self-reported perceptions of a
phenomenon, even one regarding their own motivation and
beliefs, may not accurately reflect the causal mechanisms

FIG. 10. Models, as shown in Ref. [82], represent theorized relationships between gender and physics identity mediated through three
motivational variables: self-efficacy (SE), interest (INT), and perceived recognition (PR). (a) In model 1, the three mediating variables
are noncausally associated with one another. (b–d) In models 2–4, there are causal associations between the three motivational variables:
one of the three motivational variables is a common cause of the others, and another variable is a common effect of the others.
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of that phenomenon. Therefore, there is still value in
differentiating the proposed models through experimental
intervention.
We propose that the best method to differentiate between

these models is to compare how well they predict future
interventions. For instance, consider an intervention that
aims to increase students’ perceived recognition. Models
1–3 predict that a þ1 SD increase in perceived recognition
should produce aþ0.59 SD increase in identity and that SE
and interest should not change because they are not
causally associated with perceived recognition (model 1)
or they are causes of perceived recognition that should not
be affected when perceived recognition is directly inter-
vened upon (models 2 and 3). However, model 4 predicts
that a þ1 SD change to perceived recognition should cause
a total effect of ð0.59Þ þ ð0.47Þð0.23Þ þ ð0.67Þ½0.13þ
ð0.26 × 0.23Þ� ¼ þ0.83 SD on identity, a þ0.67 SD
change on SE, and a ð0.47Þ þ ð0.67Þð0.26Þ ¼ þ0.64 SD
change on interest. Therefore, collecting data on the effects
of intervening on perceived recognition and comparing the
results against the predictions made by each theoretical
model can potentially support or downweight model 4.
Incorrect causal models conflate causal effects with non-
causal associations and can misestimate how interventions
on one factor will cascade through the causal system.
In addition, the intervention should have upstream

consequences as well. Intervening on perceived recognition
should also weaken or break associations with its causes
since direct intervention will change perceived recognition
so that it is less tied to its original causes. Importantly, these
models suggest that perceived recognition is a mediator of
this effect of gender on identity, so weakening the direct
and indirect paths between gender and perceived recog-
nition should weaken the total causal effect of gender on
identity (the ultimate educational goal of this modeling
exercise). However, the intervention could have no impact
on the total effect of gender on identity, which could
indicate that the proposed causal model is incorrect and that
perceived recognition, interest, and/or self-efficacy do not
mediate the causal impact of gender on identity. In this way,
the DAGs provide an explicit, quantitative model for
making quantitative predictions about the cascading effects
of hypothesized interventions.
This use of observational results to motivate and predict

the results of intervention studies is aligned with the
ultimate goal of improving educational experiences and
outcomes for students. Debates about which theoretical
model correctly describes the underlying causal relation-
ships are only useful as far as they inspire and inform the
design of future interventions. Proposing (and conducting)
future intervention studies motivated by these theories
moves us closer to the goal of designing, testing, and
disseminating instructional improvements.

VIII. SUMMARY

“Correlation does not imply causation” is a commonly
stated aphorism that reminds researchers to err on the side
of caution. However, it is equally true that “correlations
sometimes indicate causation” and that “correlations can
contain information about causation.” Causal diagrams
and associated rules for statistical causal inference provide
a framework for extracting causal information from
correlational data when appropriate (and for cautioning
researchers from doing so when it is not appropriate).
While we expect that many physics education researchers
engaged in making statistical causal inferences will be
familiar with these methods, we hope that this paper helps
knowledge of these techniques become more widespread
in PER. This paper describes some of the well-known
fundamental principles of statistical causal inference,
illustrates some connections to existing PER studies,
and proposes a new explicit epistemological role for
observational studies as theoretical proposals for future
intervention studies. We hope that this paper provides a
starting point for researchers to learn more about the
causal inference methods and analysis techniques well
established outside of PER.
We close by summarizing four main takeaway points

from our discussion of causal inference methods:
(1) Researchers should be explicit and consistent about

whether their goal is causal modeling or (noncausal)
predictive modeling. Causal and predictive models
have different goals and different criteria for evalu-
ation. Unclear and inconsistent language around
whether or not a model is meant to be causal
muddles decisions about how these models should
be constructed, evaluated, and interpreted.

(2) A primary rule of causal inference is that analysis
should control for confounders and not control for
mediators and colliders. Making a researcher’s
causal assumptions about a system explicit through
a DAG provides a diagrammatic method for differ-
entiating confounders, mediators, and colliders.
These causal inference techniques are especially
important in observational studies, where observed
correlations can represent both causal and noncausal
associations. The benefit of intervention studies is
that direct intervention on causal factors can break or
weaken the noncausal backdoor associations opened
by confounders.

(3) The biggest weakness of these causal inference
techniques is that the validity of the causal infer-
ences depends entirely on the accuracy of the
proposed causal diagram. Quantitative metrics, such
as path coefficient values or goodness-of-fit statis-
tics, cannot support the causal validity of one
proposed model over another. Therefore, even
seemingly reasonable regression coefficients pro-
duced by quantitative analysis can be causally
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incorrect. This highlights the importance of avoiding
(explicit and implicit) claims that a satisfactory
quantitative fit of a causal model onto observational
data “proves,” “shows,” or “demonstrates” evidence
for any causal claim. The most plausible alternative
causal models should be explicitly considered. This
is especially true in fields like education, where
cause-and-effect stories are often complex, and there
can be many plausible causal models that explain a
highly correlated dataset.

(4) We propose an explicit role for studies applying path
analysis, structural equation modeling, or other
analyses commonly used to draw causal inferences
from observational data: motivating future interven-
tion studies. This role embraces the strengths of
observational studies while making explicit the
theoretical nature of the causal inferences drawn.
It also promotes greater coordination between ob-
servation and intervention studies to forward the
science of effective instructional interventions.
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