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The increasing and diversifying student enrollments in introductory physics courses make reliable, valid,
and usable instruments for measuring student skills and gains ever more important. In introductory physics,
in addition to teaching facts about mechanics, we also seek to teach our students the skills of “thinking like
a physicist,” or expertise in and intuition for physical problem solving. How and when these expert,
intuitive problem-solving skills emerge during a STEM education, or what the most effective teaching
methods might be, are not certain. A facile survey to measure students’ “physics-thinking” skills in a pretest
and post-test format is therefore desirable to measure and evaluate different pedagogical approaches. Prior
investigators codified these skills as “epistemic games” (e.g., order-of-magnitude estimation, evaluating
extreme cases) and developed and validated the math epistemic games survey (MEGS) to measure
students’ ability to employ these techniques. The original survey instrument is reliable and valid but has
drawbacks in its length and in students’ ability to recall questions between administrations. We employed
factor analysis to split the MEGS into two mutually exclusive subtests and measured them to be
equivalently reliable and valid as the full-length MEGS as originally formulated. The “split MEGS” is well
suited for use as a pretest and post-test instrument to measure gains in expertise in problem solving in
introductory physics courses.
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I. INTRODUCTION

A. Epistemic games

Perhaps the most widely used physics education instru-
ment is the Force Concept Inventory (FCI), which seeks to
“help teachers probe and assess the commonsense beliefs of
their students” [1] by asking a series of questions about
various topics in Newtonian mechanics. Concepts within
the FCI comprise six aspects of the Newtonian under-
standing of force, each of which is probed by a variety of
questions. The FCI measures students’ ability to recognize
physics “facts” such as the third law and the definition of
acceleration. Any physics teacher is all too aware that there

is a durable disconnect between students’ ability to under-
stand and recall physics facts (e.g., “acceleration is the rate
of change in velocity with respect to time”) and to solve
physics problems (e.g., “find the time to collision of two
trains of known velocity if one slams on the brakes to
accelerate at −1 ms−2). While the FCI and similar instru-
ments are crucial for measuring conceptual gains in
teaching and learning, there are comparatively few instru-
ments that measure and quantify gains in physics problem-
solving ability.
Previous research into student physics learning suggests

that a critical element of gaining facility in problem solving
is learning to effectively use a particular suite of analytical
strategies and skills [2,3]. The language around these
strategies varies between authors, as does the method by
which they are established. Tuminaro and Redish docu-
mented the problem-solving strategies used by life science
students in introductory physics courses and categorized
their approaches into six “epistemic games.” These games
are (a) mapping meaning to mathematics, (b) mapping
mathematics to meaning, (c) physical mechanism game,
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(d) pictorial analysis, (e) recursive plug-and-chug, and
(f) transliteration to mathematics [2]. Similarly, Black
and Wittmann observed two intermediate mechanics stu-
dents solving problems involving applying boundary con-
ditions to find the solutions of differential equations and
identified two different epistemic games that utilize similar
underlying mathematical resources: finding a family of
functions and fitting the physical situation [4]. Other
research has described different epistemic games such as
analytical derivation [5], answer making [6], and sense-
making [7]. Hu et al. examined the use of math in a
professional physics lab and an industrial workplace and
identified six professionally useful epistemic games: con-
ceptual math modeling, analytical-numerical math model-
ing, design-oriented math modeling, fabrication, improving
processes, and making meaning out of data games [8]. Not
all research into problem-solving approaches in math and
physics makes use of the phrase “epistemic games.”
Boudreaux et al. examined expert reasoning around ratio
and proportion, identifying six “subskills”: identify ratio as
a useful measure where appropriate, interpret a ratio
verbally, construct a ratio from measured values to char-
acterize a physical process or system, apply a ratio to
determine an unknown amount, translate between different
ways of representing a proportional relationship, and scale
a proportional relationship to analyze a physical process or
system [3]. Brahmia et al. also used a combination of
existing literature and data from introductory physics
courses to identify three “facets” of student reasoning
around the use and representation of mathematics in
introductory physics courses: proportional reasoning, rea-
soning about signs, and covariational reasoning. They used
these facets to design an instrument to measure quantitative
literacy in introductory physics classes, the Physics
Inventory of Quantitative Literacy (PIQL) [9].
The line of research on the process of inquiry has

introduced the separate concepts of epistemic games
(strategies used in building understanding) as well as
epistemic forms (target structures that guide the inquiry
process) [10], also using the related terms of subskills and
facets [3,9] for similar but distinct concepts. In this work,
we will use the term epistemic games to refer to strategies
that one might use to solve a problem, and epistemic forms
to refer to structures that organize information that must be
either interpreted or completed to solve a problem. It is also
important to note that the method of identifying particular
games and strategies meaningfully impacts the strategies
that were ultimately identified (as one might expect). It is
not surprising that the epistemic games identified by
Tuminaro and Redish that were observed in life sciences
students taking introductory physics [2] differ from those
identified by Hu et al. when studying the photonics
industry [8]. The set of epistemic games one considers
must be informed by the relevant population and the
research question.

The set of four epistemic games that we consider here are
those identified by Eichenlaub to be common games played
by expert physicists in solving problems. These games are
(a) considering extreme cases of a given problem, (b) dimen-
sional or scaling analysis, (c) estimation of real-life quan-
tities, and (d) mapping of variables in equations to physical
concepts [11]. These games were employed in an instrument
that measures students’ use of sensemaking strategies, the
math epistemic games survey (MEGS). In this work, we
report on the results of MEGS administration from a large
student population outside the original University of
Maryland (UMD) context and also evaluate a strategy to
use the originalMEGSas a shorter,more tractable pretest and
post-test instrument.

B. Development of the math epistemic games survey

Researchers in the Physics Education Research Group
at the University of Maryland observed that students
often struggle not with knowledge of appropriate concepts
or details, but with identifying an appropriate strategy
and identifying information pertinent to that strategy [11].
In short, students understood physics “facts” and could
perform epistemic games, but in a more general context
didn’t know how to choose an epistemic game to solve a
given problem. To the extent that these epistemic games are
definable and quantifiable and that the ability to use them
ad hoc is indicative of a student’s overall progression
toward expert-level physics problem solving [2], they
represent a promising route for developing a survey instru-
ment to quantify gains in problem-solving ability through-
out a physics education. The four games considered by the
MEGS were chosen because they are important parts of the
analytical toolkit of an expert physicist but are rarely
explicitly taught in introductory-level courses [11]. The
MEGS is “a 30-question, multiple-choice concept inven-
tory of mathematical questions set in the context of sen-
semaking, especially for physics for the life sciences” [11].
Life sciences students were chosen as the target sample due
to the large size of introductory physics for life sciences
students (both at UMD and many other institutions). In
particular, the questions focused more on whether students
could, upon encountering a problem, identify which epi-
stemic game would be useful in arriving at a solution and
correctly implement it. Therefore, questions did not prompt
students to use a particular approach. For example, one
question simply asks students “Approximately how many
breaths does an average person take in their lifetime?”
(measuring if students can estimate real-life quantities).
Another asks students to consider how the number of nuclei
in a slime mold scales with its radius (assessing dimen-
sional or scaling analysis). The researchers administered
theMEGS as a pretest and post-test to over 1500 students in
introductory physics courses at three different institutions.
See Fig. 1 for further examples of MEGS questions corre-
sponding to each of the four epistemic games of interest.
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It is worth noting that the epistemic games tested in the
MEGS are not the same set identified in previous research
on a similar population by Tuminaro and Redish [2].
The earlier set of games was identified by interviewing
students about their approach to solving physics homework

problems. The students in this study were enrolled in an
algebra-based introductory physics course, 50% of whom
were biological science majors [2]. Critically, the students
making ad hoc use of the games in this earlier study were
not expert physicists, so the selection of games that they

Estimation of Real-Life Quantities:

Q19. Which of these is closest to how fast the 
average person’s hair grows?

a. cm/s
b. cm/s
c. cm/s
d. cm/s
e. cm/s

Dimensional/Scaling Analysis:

Q4. Which expression could represent the 
surface area of a solid object? Variables 
A , B, and C represent lengths, such as the
length of the side of an object or the 
diameter of a circular object.

a.
b.

c.

d.

e. None of these could be a surface 
area

Considering Extreme Cases:

Q20. Which of these is the formula for the area 
of the ellipse?

a.
b.
c.
d.

e.

Mapping Variables to Physical 
Concepts:

Q22. You buy 0.26 pints of olive oil for 
two dollars at the farmer’s market. You 
plan next week to buy P pints of olive oil. 
Which expression gives how much this 
will cost?

a. $ (2 * P) / 0.26
b.
c.
d. $ (P
e.

$ P / 0.26
$ (2 * 0.26) / P

* 0.26) / 2
$ 0.26 / (2 * P)

FIG. 1. Sample questions from the math epistemic games survey, representative of the four epistemic games of interest.
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used does not represent expert-level problem solving.
The MEGS explicitly seeks to assess students’ use of
specific epistemic games that are central to “thinking like a
physicist,” and these games are not typically employed
by novice nonmajors. The MEGS is designed to assess
student gains in problem-solving expertise obtained during
introductory physics courses, therefore it is sensible that it
considers games played by expert physicists.
While the epistemic games considered by the MEGS

were intended to capture expert physics problem solving,
the difficulty and framing of the individual questions
were designed with UMD’s introductory physics for life
sciences course in mind. This course contains predomi-
nantly third-year students (though included some second
and fourth years as well), all of whom had taken at least one
semester of chemistry and two semesters of biology, but no
previous college physics [11]. The MEGS intentionally
uses a biological frame for its questions to increase student
familiarity and reduce the unhelpful complexity of addi-
tional background information. If the MEGS approach for
assessing gains in problem solving by life-sciences majors
is successful, similar instruments could be designed to
measure the use of the same four important games in
different student populations (upper-level physics majors,
chemistry majors, engineering majors, etc.).

C. Initial trials of the MEGS

Initial trials of the MEGS found that, in general, students
score relatively poorly and do not, on average, improve
after a semester of physics [11]. Similar to the FCI [1], there
is a mismatch between instructors’ sense of the difficulty of
MEGS questions (instructors expect that their students will
perform well) and student performance (students generally
do not know how to approach the questions productively).
Average scores are around 60%, before and after a year of
physics. Given that the MEGS assesses strategies important
to experts, this disconnect is perhaps unsurprising.
Researchers also identified challenges with administering

the MEGS as a pretest and post-test. The full-length MEGS
is too long (>30 min of active test-taking time) to allow
ready use during synchronous class time. Its utility as a post-
test is limited by students’ ability to recall questions from a
prior administration [11]. The MEGS is also a relatively
difficult diagnostic instrument, and our data suggest that
fatigue may decrease scores on the full-length test. During
MEGS development, the idea of developing a shorter form
was discussed to address some of these challenges [11].

D. Splitting the MEGS

In this work, we explore the division of the MEGS into
two nonoverlapping subtests. We thereby halve the time
needed to administer the exam (thus reducing student
fatigue and class time cost) and eliminate the possibility
of pretest question recollection on the post-test. This same
approach has been applied to the FCI, with promising

results [12]. Our goals are to make the MEGS more
tractable to administer and more conducive to generating
reliable data about students’ degree and acquisition of
physics problem-solving expertise.
Diagnostic tools require assessments of reliability (are

measurements internally consistent and stable across tri-
als?) and validity (does the tool measure what it purports to
measure?) [13]. So, dividing any instrument into halves
requires that both resulting tests correctly assess the same
metrics as the original test and that they do so with
equivalent reliability to each other. There are a variety of
standard ways to measure an instrument’s performance,
many of which were part of the original design of the
MEGS, which included statistical analysis of initial student
data to evaluate question difficulty, degree of discrimination,
and internal consistency between survey questions [11].
Importantly, it is not critical that the original instrument and
the resultant subtests be perfectly co-reliable. Indeed, we
expect that student effort and motivation (both of which may
impact the reliability of an instrument) are influenced by the
length of the survey. What is important is whether the two
subtests are co-reliable with respect to each other, which is
essential for an instrument to effectively act as a pretest and
post-test. We find that our proposed division of theMEGS is
reliable and ameliorates student fatigue and pretest vs post-
test recall, making the “split MEGS” an improved metric
relative to the original formulation.

II. METHODS

A. Administration

We formulated the MEGS as a Qualtrics project, with the
question order and wording exactly matching the most
recently published version [11]. The test was formatted
with one question per page (except in the case of multipart
questions, for which all parts were on the same page) to
allow recording of the time spent on each question.
With the lead instructor’s permission, the full MEGS

v1.1 was administered as published to students in a subset
of introductory physics sections (PHYS101 and PHYS150)
at the University of Pennsylvania. PHYS101 is predomi-
nantly taken by prehealth students who have extensive
biology background and little or no college physics or
calculus experience. PHYS150 is predominantly taken by
engineering majors with more experience applying math-
ematics compared to PHYS101. Both courses cover
approximately the same traditional Newtonian mechanics
content and differ in the mathematical sophistication of the
lectures and assignments. One might suspect that different
levels of introductory physics would perform noticeably
differently on the MEGS and that an optimal division of
questions would vary between different courses. To devise
two subtests that could be generally applicable to any
introductory physics course, the data from both courses
were aggregated. Administration took place in person,
usually during the normal class period for the course,
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and students had 45 min to complete the test. Depending on
the instructor, 10% of students had the incentive of a
dropped homework grade to complete the test, and 90% of
students had no incentive. No identifying information about
the participants was recorded or stored, and results from
each section were aggregated separately.
In the subsequent semester, the two subtests that resulted

from our analysis of the full-test results were administered
in a similar manner to all students enrolled in introductory
physics laboratory sections at the University of
Pennsylvania (PHYS101, PHYS 102, PHYS 150, PHYS
151, and PHYS171). PHYS102 and PHYS152 are tradi-
tional electromagnetism courses that follow PHYS101 and
PHYS151, respectively. PHYS171 is taken predominantly
by physics majors and covers calculus-based Newtonian
mechanics, emphasizing calculus to prepare students for
upper-level physics courses. An equal number of students
received test A as a pretest and test B as a post-test and the
reverse. The pretest was taken by students ∼3 weeks into
the semester, minimizing the participation of students who
did not complete the course, and the post-test was taken one
week before the last day of classes. Students could choose
to opt out of this study, and all identifying information was
removed before subsequent analyses.

B. Factor analysis

The data from all sections were aggregated. This was
done so that the eventual subtests would be broadly relevant
to many different levels of introductory physics, rather than
being specific to a particular population. These aggregate
data were transformed into a binary array of incorrect or
correct responses to each question for each student. Any
question with greater than 95% or less than 5% accuracy
across all students was discarded. We also filtered out any
individual test that answered the decoy question incor-
rectly, which selected “I don’t know” for more than 40% of
questions, and/or that left more than 40% of questions
blank. The number of responses for all administrations
before and after filtering is shown in Table I. Two tests were
performed to judge the data’s fitness for factor analysis.
First, Bartlett’s test of sphericity compared the correlation
matrix to the identity matrix, computing a measure of how
related or unrelated the data are [14]. Second, a Kaiser-
Meyer-Olkin measure of sampling adequacy was com-
puted, evaluating what proportion of the data’s variance

could be due to underlying factors [15]. Both measures
supported the suitability of our dataset for factor analysis.
An exploratory factor analysis was then performed using

the Python FactorAnalyzer package [16], using a promax
rotation and principal factor extraction. MEGS questions
were sorted by the factor that corresponded to their highest
loading, considering only those factors with an eigenvalue
greater than 1.0 [17]. This had the effect of groupingMEGS
questions into distinct categories in which student perfor-
mance on questions within the same category was well
correlated. We used these categories identified in factor
analysis to create two mutually exclusive subtests by
dividing the questions sorted into a given factor as evenly
as possible between the two subtests. The aim was to create
two mutually exclusive tests on which a given student
would score similarly. Investigator oversight was needed in
the case of factors that contained an odd number of
questions or in the case of multipart questions that were
sorted into the same factor. To avoid any potential loss of
validity, multipart questions from the original MEGS were
kept together and placed on the same subtest. Finally, a few
questions were sorted to maintain equivalence of subtest
length, mean score, score variance, and time to complete
between the two subtests. The decoy question was included
in both subtests to maintain an indicator of student
attention. Finally, question ordering was preserved between
the original MEGS and the two subtests (i.e., if question A
preceded question B on the full MEGS and both questions
ended up on the same subtest, question A would precede
question B on the subtest as well). The factor analysis of the
full-MEGS data suggests that after this optimization
procedure, the resulting subtests will assess a near-equiv-
alent set of cognitive skills.
The data from the full-MEGS administration were then

re-analyzed with respect to the two optimized subtests. This
procedure resulted in seven sets of student data for
reliability analysis: full MEGS (Full), test A questions
from the full MEGS (Full-A), test B questions from the full
MEGS (Full-B), test A used as a pretest (G1A), test B used
as a pretest (G2B), test A used as a post-test (G2A), and test
B used as a post-test (G2B). Aggregate statistics and
reported metadata (self-reported effort, self-assessed accu-
racy, timing, etc.) were compared between the seven sets.
Cronbach’s alpha, a measure of an instrument’s internal

consistency that is often used to assess reliability, was also

TABLE I. Test administration participation and response.

Fall 2019 full
administration

Spring 2020 subtest A
as pretest

Spring 2020 subtest B
as pretest

Spring 2020 subtest A
as post-test

Spring 2020 subtest B
as post-test

Before filtering 182 286 286 293 293
After filtering 177 261 260 260 272

Percent usable 97.3% 91.3% 90.9% 88.7% 92.8%
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calculated for each of the seven datasets [18]. Kolmogorov-
Smirnov goodness-of-fit tests (KS tests) were also per-
formed between all six subtest datasets. KS tests are used to
compare two different sets of values and determine how
likely they were to have been sampled from the same
underlying probability distribution [19]. Though it can be
used to compare a measured dataset to a known distribu-
tion, we used KS tests exclusively to determine whether
two subtest datasets were sampled from the same distri-
bution as each other, rather than to determine the nature of
the underlying distribution. KS tests have four relevant
parameters: a significance level (α), a critical value (Dcrit), a
KS statistic (D), and a p value (p). KS statistics correspond
to the chosen significance level (i.e., if the datasets are
likely sampled from the same distribution, the KS statistic
will be lower than the critical value). The expression for the
critical value is

Dcrit ¼ CðαÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NA þ NB

NANB

s

; ð1Þ

where CðαÞ ¼ 1.36 for the significance level of α ¼ 0.05.
The p value for the KS test is the likelihood that the two
datasets are sampled from the same distribution. If the KS
statistic is greater than the critical value or if the p value is
less than the significance level, the datasets are likely
sampled from different distributions.

III. RESULTS

The full administration of the MEGS produced 177
usable responses from 182 test submissions. The data were
well suited for factor analysis: Barlett’s test for the full
MEGS administration yielded a p value of 6 × 10−25 and a
KMO score of 0.699. The filtering for questions of
excessively high or low accuracy removed question no.
16 (accuracy ¼ 3.39%), and question no. 25, which was
the decoy question. After this filtering, the factor analysis

revealed 10 factors with an eigenvalue greater than 1.0
(Fig. 2). These 10 factors accounted for 61.5% of the
variance in the data. The 10 factors are shown in Table II,
along with the question lists for the final two subtests.

FIG. 2. Scree plot for the full MEGS administration. The red
line indicates the chosen eigenvalue cutoff of 1.0.

TABLE II. Results of exploratory factor analysis and the final
division of subtests A and B. Question numbers refer to the
original full MEGS and the arrows indicate which subtest received
which questions. The left and right columns show the two subtests
in chronological order.

Subtest A Subtest B

Q2a Factor 1
⇐ Q17 Q1

Q20b ⇒
⇐ Q23c

⇐ Q24c

Q3a Factor 2 Q8
⇐ Q4

Q4 Q12 ⇒ Q9
⇐ Q27

Q28 ⇒

Q5 Factor 3 Q11
Q13d ⇒

Q6 Q15d ⇒ Q12

Factor 4
Q7 ⇐ Q7 Q13d

Q9 ⇒
Q10 Q14d ⇒ Q14d

⇐ Q29

Factor 5
Q17 Q1 ⇒ Q15d

Factor 6
Q22 ⇐ Q6

Q19 ⇒ Q18
⇐ Q26

Q23c Factor 7 Q19
⇐ Q2a

Q24c ⇐ Q5 Q20b

Q8 ⇒
Q25e Q18 ⇒ Q21b

Factor 8
Q26 ⇐ Q10

Q30 ⇒ Q25e

Factor 9
Q27 ⇐ Q3a Q28

⇐ Q22

Q29 Factor 10
Q11 ⇒ Q30
Q21b ⇒

aMultipart question about dye diffusion.
bMultipart question about an ellipse.
cMultipart question about student-professor ratios.
dMultipart question about precursor concentration.
eDecoy question.
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Table III shows how the questions corresponding to each of
the four epistemic games of interest were divided between
the two subtests.
Examination of these factors showed that, in general,

questions sorted into the same factor required the same
problem-solving approach. For example, factor 6 in
Table II contains the question “Estimate the thickness
of a page in a typical textbook.”, “Which of these is
closest to how fast an average person’s hair grows?”, and
“[Given a chart of some items and their monetary value
per kilogram] Where would US $100 bills fit on this
chart?”. All three of those questions require a student to
approximate, to the nearest order of magnitude, some
initially unknown quantity of something they have
experienced. This skill (estimation of real-life quantities)
was one of the four epistemic games that the MEGS was
initially designed to assess. However, the fact that more
than four factors were identified as significant suggests
the existence of other aspects of student responses that
are distinct from the four epistemic games incorporated in
the design of the MEGS.
Take for example factor 2, which contains the follow-

ing questions: “[Given a list of expressions in terms of
lengths A and B] Which expression could represent the
surface area of a solid object?”; “[Given an expression
for the surface area of a cylinder] Which of these
[provided expressions] would be the best approximation
to the surface area of a long thin cylinder?”; “[Given a
list of expressions in terms of your running speed and a
moving sidewalk’s speed] How fast would an observer
standing on the ground next to the sidewalk see you
moving?”; and “[Given the expression for the reduced
mass of a two-body system, μ] If m1 represents the mass
of the earth and m2 represents the mass of a small
satellite, which of these [provided expressions] would be
the best approximation for μ?”. The last three questions
can all be solved by considering the extreme cases of the
system (one of the epistemic games around which the
MEGS was designed). The first question is solved by unit
analysis (only one of the possible answer choices has
units of area), which closely aligns with the dimensional
or scaling analysis epistemic game. However, all four of
these questions involve some degree of correctly analyz-
ing and simplifying abstract mathematical expressions,
suggesting that perhaps the mathematical literacy needed
to perform that task is significant in understanding
student performance on the MEGS. We will discuss

additional possible explanations for the formation of
these additional factors in the following section of
this paper.
The four tests from the split administration produced

on average a 90% usable response rate (261=286 of G1A,
260=293 of G2A, 260=286 of G1B, and 272=293 of G2B
were usable). Of data taken from the full administration,
questions from subtest A had a mean score of 57.4%, and
questions from subtest B had a mean score of 56.5%,
both approximately six percentage points lower than the
scores from the same questions answered during the split
administration counterparts. Both groups taking subtests
showed score gains of 1.3 percentage points between the
pretest and post-test: G1A had a mean score of 62.5% as
compared to G1B’s mean score of 63.8% and G2B had a
mean score of 62.9% as compared to G2A’s mean score
of 64.2%.
To compare the two subtests, student responses from

the full administration were split corresponding to ques-
tions on each subtest. Their distributions, as well as the
score distribution for the full MEGS, are shown in Fig. 3.
The distributions for each subtest were also compared

via the Kolmogorov-Smirnov test (KS-test) to evaluate
whether student performance on each subtest was
sampled from the same overall distribution. The critical

TABLE III. Division of questions corresponding to four epistemic games between subtest A and subtest B.

Subtest A Subtest B

Extreme cases Q5 Q12, Q18, Q20, Q28, Q30
Dimensional or scaling analysis Q4, Q7 Q1, Q8, Q9, Q29
Estimation of real-life quantities Q6, Q26 Q11, Q19
Mapping variables to physical concepts Q2, Q3, Q10, Q17, Q22, Q23, Q24, Q27 Q13, Q14, Q15, Q21

FIG. 3. Score distribution for the full MEGS administration
and for the subtest questions coming from the same full
administration.
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value for this test was 0.145, the KS statistic was 0.096,
and the p value was 0.389, all of which indicate that the
distributions of scores on the two subtests were likely
sampled from the same overall distribution.
The four tests from the split administration were ana-

lyzed the same way, with their distributions shown in Fig. 4
and the results of their KS tests shown in Table IV. In all
cases, the KS statistic is less than the critical value and the
p value is greater than the significance level.
Data for the corresponding subsets of the full admin-

istration and the pre- and post-subtests from the split
administration were also compared via KS test, shown in
Table V. Unlike our findings in Table IV, we found that
the responses to subtest A from the full-test administra-
tion were not sampled from the same distribution as the
responses from either subtest A administration in the split
administrations. The same was true for subtest B. For all
cases, the KS statistic exceeded the critical value and the
p value was less than the significance level.
We also measured test completion time. In general,

subtest A takes students slightly longer than subtest B,

and pretests take longer than post-tests. During the full
administration, subtest A had a median completion time
(MCT) of 12 min and 7 s, and subtest B had an MCT of
10 min and 18 s. From the split administration, pretest A
(G1A) had an MCT of 13 min and 9 s and pretest B (G2B)
had a median completion time of 10 min and 24 s, post-test
A (G2A) had a median completion time of 12 min and 32 s,
while post-test B (G1B) had a median completion time of
9 min and 33 s.
We also characterized Cronbach’s alpha, a measure of

the internal consistency or reliability of our tests; a
parameter value greater than 0.7 generally indicates that
a measurement is internally consistent (Table VI). The
full administration and all four split-administration tests
had Cronbach’s alpha greater than 0.7, but the value was
somewhat less than 0.7 (0.661 and 0.541) when compar-
ing the subtests within the full administration.

FIG. 4. Score distributions for the four tests administered during the split administration. The left plot compares student performance
on test A between the pretest for group 1 and the post-test for group 2. The right plot compares student performance on test B between
the pretest for group 2 and the post-test for group 1).

TABLE IV. KS-test results for comparisons of split-adminis-
tration score distributions. The listed values are critical value, KS
statistic, and p value, respectively.

G1A (PreA) G2B (PreB)

G2A (PostA) Dcrit ¼ 0.119 0.118
D ¼ 0.072 0.053
p ¼ 0.471 0.826

G1B (PostB) 0.119 0.118
0.054 0.058
0.810 0.826

TABLE V. KS-test results for comparisons between the full-
administration subtests and the corresponding split-administra-
tion tests. Bolded KS statistic values indicate that they are above
the critical KS coefficient. Bolded p values indicate that they are
below the chosen significance threshold.

G1A (PreA) G2A (PostA)

Full TestA Dcrit ¼ 0.132 0.133
D ¼ 0.150 0.182
p ¼ 0.0150 0.0016

G1B (PostB) G2B (PreB)

Full TestB Dcrit ¼ 0.133 0.131
D ¼ 0.260 0.207

p ¼ 9.42 × 10−7 1.64 × 10−4
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IV. DISCUSSION

The scree plot in Fig. 2 suggests that there are around ten
underlying factors that capture the variance seen in student
performance on the full MEGS. This may be somewhat
surprising, as the MEGS was designed to test four
epistemic games. Indeed, we performed an exploratory
factor analysis (rather than a confirmatory one) to allow for
the possibility that student performance on MEGS ques-
tions is measurably influenced by more than just the
particular epistemic game being queried. Work on other
similar instruments has also found more factors influencing
student performance than just the skill being directly
assessed. For example, the PIQL was designed to measure
three facets of quantitative literacy. However, exploratory
factor analysis similarly revealed a clear and important
substructure to student performance apart from the three
factors being examined [9]. In the PIQL case, the research-
ers selected one question from each of the identified factors
and discarded the others to produce a more efficient
instrument [9]. This study similarly improves the efficiency
of the MEGS, but instead of selecting a single question
from each underlying factor, we split each factor in two.
To make sense of the additional factors identified by our

analysis, consider the other skills needed to correctly respond
to a particular question. Prior research suggests that the
process of inquiry involves not only the playing of some
epistemic game but also the navigation of some epistemic
form [10], a “structure that guides the inquiry process” [20].
In the case of MEGS questions, the storage or encoding of
information into tables, graphs, equations, and case studies
asks students to navigate a variety of different epistemic
forms in order to arrive at correct answers. We speculate that
the students in our original sample, many of whom come
from other STEM fields, would have had different degrees of
the facility with these different epistemic forms, and this
difference in the facility with epistemic forms created addi-
tional factors in our analysis.
This explanation is consistent with our data for factor 3

(Table II). This factor includes two parts from a three-part
question that requires comprehension of cellular processes,
comprehension of a case study, interpretation of algebraic
expressions, and consideration of scaling and proportionality

within these expressions. While other questions on the
MEGS required the same epistemic game as these three,
no other question additionally required the navigation of
these epistemic forms. By using the factors identified froman
exploratory analysis, we can capture a great deal more of the
variance in the initial dataset. To allow only four contributing
factors in our analysis is to assume the four games that the
MEGS was designed to test are each mastered orthogonally
by students. Our results suggest that mastery of each of the
epistemic games in question is necessary but not sufficient
for a high score on the MEGS. There are other important
influences on student performance, such as the ability to
simultaneously navigate epistemic forms. Given that the
MEGS ideally captures something about real-world prob-
lem-solving skills, including realistic epistemic forms is an
important aspect of the test. However, it would be an
unhelpful oversimplification to ignore the interaction of
mastery of epistemic games with familiarity with epistemic
forms.
Our approach to creating two MEGS subtests resulted in

an asymmetric split of questions representing each of the
four epistemic games tested (Table III). As there has yet
been no research that shows meaningful gains on the
MEGS, we do not know for certain if proficiency with
one epistemic game precedes proficiency with another.
However, the data we do have about the factors that
describe student performance actually suggest the opposite.
Our results show that mastery of the four games is
correlated with each other and also with mastery of
epistemic forms. It is irrelevant if a student who expertly
examines the extreme cases of a problem but maps
variables to physical concepts at a novice level would
perform disproportionately well on subtest B and poorly on
subtest A because such a student has never been observed.
Our analysis begs the question of whether the epistemic

forms framing the MEGS questions should be eliminated
so that the results better correlate with the ability to perform
a particular epistemic game. Indeed, prior research into
student error-checking suggests that, if provided with a
framework prompting the use of specific strategies, stu-
dents do gain proficiency with and increase utilization of
those strategies. However, such direct prompting had the
consequence of students assuming a “script-like” approach
to error-checking “in contrast to more fluid application that
we might expect of expert physicists, and hope to develop
in our students” [21]. In developing the MEGS, the choice
was made to include these contextualizing frames specifi-
cally so that the instrument would test students’ ability to
identify a productive epistemic game to play, as well as
their ability to successfully play it [11]. Ultimately, the
most reliable way to determine how successfully students
will answer a given question is to administer the test and
analyze the responses, as we have done in this project.
Expert understanding and instructor intention around the
epistemic games, forms, and frames needed to correctly
solve a problem are inevitably idealizations that miss the

TABLE VI. Cronbach’s alpha values for all MEGS adminis-
trations. Italicized values are below the threshold of 0.7.

Cronbach’s α

Full MEGS 0.754
Full TestA 0.661
Full TestB 0.541
G1A (preA) 0.750
G2A (postA) 0.705
G1B (postB) 0.764
G2B (preB) 0.721
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nuances of student cognition that influence performance.
They should therefore be thought of as a coarse-grained
framework to guide discussions of physics mastery, rather
than an inviolable designation for how to understand and
predict student performance on any given question.
These many confounding influences (facility with a

particular game, familiarity with a particular frame, and
comfort with a particular form) make it extremely chal-
lenging to assess whether two instruments are co-reliable
through expert examination of the questions. We therefore
employ statistical metrics to compare student performance
on various versions of the MEGS. A KS test showed that
student scores on each subtest and the full MEGS were
likely drawn from the same distribution, suggesting the
subtests are well suited for use as a pretest and post-test.
Each subtest required a roughly equal amount of time to
complete, another positive feature of a split administration.
So, by the metrics of average score and completion time,
factor analysis was successful in dividing the full MEGS
into two equivalent halves.
Cronbach’s alpha indicated an adequate degree of inter-

nal consistency for the full administration and both subtests
when administered individually. Results were less inter-
nally consistent when subsets of the full-administration
data were considered. Given that these scores were also
marginally lower, we predict that the lower internal con-
sistency within the full test is due to student fatigue during
the full administration. For this reason, the shorter subtests
we developed here may be a better measure of student skill
than the full-length test. On the other hand, Cronbach’s
alpha has been shown to sometimes be very large for
multiscale instruments (like the MEGS, which is based on
four distinct approaches) [22].
When considering the split administration tests, it is

important to consider the existing context of MEGS scores
and gains across a semester. Eichenlaub found that, across a
variety of courses and administrations, “the mean score on
the MEGS is 17.7” (equating to 59% accuracy), and gains
in MEGS performance between a pretest and a post-test
were “often negative, and usually small” [11]. In our
sample, student performance on the pretest administration
has a very similar score distribution to that of the post-test
(Fig. 4). The KS-test results (Table IV) similarly show that
all four split test administrations are likely sampled from
the same distribution. While this implies that students had
negligible gains in skills measured by the MEGS after a
semester, it also indicates that the proposed division and
administration have produced tests that are co-reliable.
While we did not specifically measure test-retest reliability
or split-halves reliability, our data suggest that our proposed
division of the full MEGS does form two tests on which
students reliably score similarly, independent of which test
they are given first and independent of when during a single
semester the test is administered. These are all traits that are
desired from a pretest-post-test administration of a diag-
nostic instrument.

Though grade distributions look similar by eye between
the full- and split-test administrations, the KS-test results
show that, compared to both pretests and post-tests, student
performance on the full administration obeyed a different
distribution, with lower average scores on the full-test
administration. During the original development of the
MEGS, Eichenlaub observed that in interviews, almost all
students were able to solve almost all problems in a one-on-
one setting with little substantive input (beyond so-called
“metacognitive prompts”) from the instructor [11]. This
suggests that student performance on the MEGS is less
about knowledge of physics facts (though that is obviously
essential) and more about students’ ability to employ
metacognitive skills while solving problems. The self-
similarity of all other comparisons of test administrations
is therefore further evidence that the lower scores on the full
administration are due to fatigue and not any difference in
student ability. Therefore, the higher average score on the
split administrations suggests that the split format mean-
ingfully increases student engagement and test validity
while decreasing both student time and class time needed to
apply the instrument.
Our study speaks most directly to the reliability of the

split administration of the MEGS. The other major aspect
of instrument quality is validity or how well the instrument
measures what it seeks to measure. Given that student
performance improves on the split test relative to the full
administration, likely due to lessened fatigue during the
shorter instrument, we expect that this split administration
is at least as valid as the full MEGS for measuring students’
ability to use epistemic games.
The number of students involved in the full administra-

tion was relatively small, such that random fluctuations in
student performance could have had a bigger impact on
aggregate results. The relative numbers of students from
different levels of introductory physics were also not
consistent between the two semesters (PHYS150 students
in the course primarily for pre-engineers vs PHYS101 for
premeds, were overrepresented in the full-administration
data), complicating some comparisons between the admin-
istrations. Future work is needed to examine how sensitive
our method for subtest generation is to small changes in the
composition of the initial population used to perform the
factor analysis.
Potentially, the most significant differences between the

two administrations were the differences in the testing
environment between the full administration and the subtest
administrations. For the full administration, participation was
entirely voluntary, with no incentive offered to 90% of
students and a small extra credit given to the remaining
10%, and all testing took place in a synchronous classroom.
By contrast, the split administration was treated as part of a
course, where completion of each test was mandatory, the
tests were completed remotely with no time limit, and
communication between students and investigators took
place largely over official coursewebsites. In order to separate
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the influence of those factors on student performance, more
controlled administration approaches would be necessary.
However, all comparisons between subtests here are reason-
ably free of confounding factors of administration andwe can
therefore evaluate their mutual reliability and validity.
Our results suggest that splitting the full MEGS test into

the proposed subtests results in two mutually exclusive
tests that can be administered at different points across the
semester and be mutually reliable. Performance on the split
tests is similar to performance on the full MEGS, and some
of our data suggest that the shorter test may improve
reliability and validity by reducing fatigue. Since the tests’
questions are mutually exclusive, our split MEGS facili-
tates use as a pretest and post-test without student recall of
prior questions, a previously identified weakness of the
MEGS.We believe we have developed an instrument that is
well suited for use as a pretest-post-test diagnostic of

students’ ability to use effectively epistemic games. The
originally published MEGS instrument and the two sub-
tests developed in this work can be found in the
Supplemental Material [23].
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