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Generative Al technologies such as large language models show novel potential to enhance educational
research. For example, generative large language models were shown to be capable of solving quantitative
reasoning tasks in physics and concept tests such as the Force Concept Inventory (FCI). Given the
importance of such concept inventories for physics education research, and the challenges in developing
them such as field testing with representative populations, this study seeks to examine to what extent a
generative large language model could be utilized to generate a synthetic dataset for the FCI that exhibits
content-related variability in responses. We use the recently introduced ChatGPT based on the GPT 4
generative large language model and investigate to what extent ChatGPT could solve the FCI accurately
(RQ1) and could be prompted to solve the FCI as if it were a student belonging to a different cohort (RQ?2).
Furthermore, we study, to what extent ChatGPT could be prompted to solve the FCI as if it were a student
having a different force- and mechanics-related preconception (RQ3). In alignment with other research, we
found that ChatGPT could accurately solve the FCI. We furthermore found that prompting ChatGPT to
respond to the inventory as if it belonged to a different cohort yielded no variance in responses, however,
responding as if it had a certain preconception introduced much variance in responses that approximate real

human responses on the FCI in some regards.
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I. INTRODUCTION

Conducting empirical educational research is at the center
of learning and instruction sciences, for instance, for evalu-
ating the effectiveness of instructional materials, proving
theoretical frameworks, or designing test instruments. The
design of effective learning materials or test instruments
often requires a large amount of human effort to perform the
studies and several iterations within the empirical validation
process for the optimization of the materials. Additionally,
conducting empirical studies requires financial investments,
such as providing incentives for participation.

Furthermore, in the past decade, learning systems based
on artificial intelligence (Al), such as Al-based intelligent
tutoring systems or automated feedback systems, have
received growing attention, and several efforts have tar-
geted the implementation of Al tools in learning environ-
ments. For a good performance, such Al tools require
training and fine-tuning with a large amount of empirical
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data. Although there are a growing number of pretrained
Al-based models that provide good results for cases similar
to the training data, it is often necessary to fine-tune them
for desired performance in specific applications.

Recent advances in large language models (LLM) could
have several opportunities for education. Kasneci et al.
suggest the number of opportunities for learning and
teaching, such as support in writing tasks, develop-
ment of critical thinking, individual learning opportunities,
semiautomated grading of students’ works, and lesson
planning [1]. For educational research, LLM may also
help with summarizing and categorization tasks. For
instance, van de Shoot et al. developed a tool for automated
title and abstract screening for systematic literature reviews
[2], which was shown to save a significant amount of time.
Particularly, the release of ChatGPT (based on GPT 3.5)
has stimulated several research efforts to explore oppor-
tunities for education. For instance, ChatGPT can be used
to summarize texts, zero-shot text classification tasks, and
programming tasks [3,4].

It was also found that ChatGPT is able to solve a variety
of problems with zero-shot learning, it performs reasonably
well on university exams in medicine and can support in
solving higher-order problems in pathology [5]. These
results offer the opportunity to test developed assessments
before administering it to students and subsequently
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optimizing them based on the answers of ChatGPT. This is
an important benefit, as it can save time and effort in the
assessment development process and yield insights into the
psychometric properties of the instruments. Additionally, in
science education research, concept tests, such as concept
inventories, play an important role in diagnosing students’
conceptual understanding and informing teachers about
prevailing students’ difficulties.

In physics education research, the most used concept
inventory (CI) is the Force Concept Inventory (FCI)
developed by Hestenes et al. [6]. As a common concept
test, it consists of several multiple-choice questions that
target specific preconceptions related to Newtonian
mechanics, in particular the force concept. Therefore, the
answer alternatives are specifically designed to reflect these
preconceptions. To use Al-based methods such as LLM to
test features of concept tests, e.g., if they capture students’
difficulties, it is necessary that LLM are aware of these
difficulties and know how students would answer as if they
experienced one or more of these difficulties. Furthermore,
if an LLM would be able to answer concept questions from
the perspective of a student who experiences difficulties,
the created synthetic data could be used to train and fine-
tune smaller Al tools for education that support learners or
better inform teachers. Therefore, it would be a great
benefit if LLM were able to create a synthetic dataset that
closely resembles a realistic student dataset, as it would
save a significant amount of time and effort in the develop-
ment of assessments and concept tests.

For this purpose, we explore in this work the opportunity
of creating synthetic empirical data with LLM. First, we
provide an overview of relevant previous works and then
specify research questions that target certain aspects of the
suitability to generate a synthetic dataset in physics
education research.

II. THEORETICAL BACKGROUND

A. Concept inventories in science subjects

Physics in particular and science subjects more generally
are characterized by a structured knowledge base that is
centered on key concepts [7,8]. Hence, the conceptual
understanding of key concepts in scientific disciplines such
as evolution or force is important and key to scientific
literacy. To measure high-level conceptual understanding
and evaluate pedagogical practices, science education
researchers devised so-called concept inventories [9,10].
Concept inventories have been developed and widely
employed to assess the understanding of key concepts
such as biological evolution [11], climate change [12], or
Newtonian force [13]. These concept inventories typically
involve multiple-choice questions, where designing dis-
tractors that capture common preconceptions is of crucial
importance. Concept inventories have helped science edu-
cation researchers empirically show to what extent a basic

level of conceptual understanding is reached in school and
university education. Oftentimes, it is found that a full
understanding of key concepts such as in Newtonian
mechanics, the force concept is typically reached only
by a few students even after (traditional) instruction.
Moreover, concept inventories helped researchers to glean
evidence supporting the effectiveness of interactive engage-
ment instructional formats, which yielded higher learning
gains [13]. The concept inventories thus helped to sub-
stantially improve instruction, e.g., of mechanics in intro-
ductory physics, across universities [14].

B. Development of CIs

Designing concept inventories was described by Adams
and Wieman as a process consisting of consecutive phases
[15], namely (i) delineation of the purpose and scope of the
construct to be measured, (ii) development and evaluation
of test specifications, (iii) field testing, evaluation, and
selection of items, and (iv) assembly and evaluation of the
test. Phase 1 includes information about expert thinking on
the construct and requirements for the concept inventory to
be implemented, such as no required training and ease of
use. In phase 2, decisions on psychometric properties are
considered, as well as the target population for which the
concept inventory is designed. Phases 3 and 4 comprise the
bulk of the work needed to design the concept inventory.
Six iterative steps are distinguished that include (a) estab-
lishing topics of interest, (b) interviews and observations to
identify student thinking, (c) create open-ended survey to
probe student thinking, (d) create forced answer test, (e) carry
out validation interviews, and (f) administer to classes and
run statistical tests. Establishing the topics of interests
typically requires a resource-intense Delphi process [10].
Often, 15 to 20 experts need to be recruited to discuss and
refine topics or constructs in concept inventories. [10,15].
Developing a concept inventory is thus an extensive and
time-consuming task that involves substantial resources,
where Al technologies might be useful in almost any phase
and step. Once qualitative, open-ended analyses are com-
pleted, suitable forced-choice (e.g., multiple-choice) items
have to be field-tested where students’ responses are sampled
in order to determine the underlying structure of the con-
cept inventory in terms of psychometric properties [14,15].
In the field tests, class sizes of a “few hundred or more
[students] are desirable” [15] (p. 1303). In line with general-
izability theory, administering parallel tests to two equivalent
populations is desired [15]. However, these requirements are
difficult to meet and place restrictions on small institutions
that might not be able to develop concept inventories in the
first place. It might also be difficult to sample representative
student populations, because of various reasons such as
restricted access, ecological considerations, or conceptual
problems such as defining the target population. Concept
inventories would also have to be field tested to different age
groups to determine potential differences [14].
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Given this resource-intensive process of field testing
concept inventories, it would be desirable for the PER
community to enhance existing strategies to field test CI. A
recently evolved strategy might be the use of generative Al
technologies such as LLM that were found to excel at
various language generation tasks that even involved
knowledge application. LLMs have been found to be
capable of generating synthetic data and solving problems
without being explicitly instructed to do so; therefore, they
are valuable candidates for outsourcing some of the field
testing in concept inventory development—and test instru-
ment development more generally.

C. Large language models (LLM)

Al technologies have enabled tremendous progress in
fields such as computer vision and natural language process-
ing (NLP). The first breakthrough moment for machine
learning (inductive problem solving by computers) was
probably when deep neural networks could be utilized to
accurately classify pictures. Even more so, since its inception
[16], and especially since 2017 so-called LLM have had a
profound impact on solving all sorts of language-related
problems as diverse as question answering, translation, or
summarizing text [17-19]. There is a vast variety of LLM
architectures that accomplish specific tasks. For example,
sequence-to-sequence models were used to translate an input
to an output, or encoder architectures were used to classify an
input into predefined categories. Most often, some form of
deep neural networks underlie the architecture of LLM. A
general feature of these LLM was that they are sensitive to the
number of parameters of the artificial neural network, train
set size, or amount of compute time, where increases in all of
these features generally improve the performance of the
LLM [20].

Many LLM are trained in two steps. The first step
consists of semisupervised learning in which a masked
language model objective is pursued. In masked language
modeling context, words are masked out and have to be
predicted by the algorithm, given a related sequence of
words [21,22]. Early LLM was trained based on large text
corpora such as the Common Crawl (i.e., dump of the
Internet, 60% [23]), WebText2 (22%), or Wikipedia (3%)
with the training objective to predict next words in a
sequence (a sort of cloze test, [18]) and classify if a sub-
sequent sentence actually follows a given sentence [18]. To
the surprise of many experts, such a simple training
objective enabled large enough models to gain capabilities
to perform entirely novel tasks that were not seen in the
training process [24]. Some resemblance of masked lan-
guage modeling to human language processing and cog-
nition, namely predictive coding where future words are
sought to be predicted given the current words were
recognized [25]. The second step consists of a supervised
learning task in which the pretrained model (also called the
foundational model, [26]) is trained or fine-tuned on a

specific task on a labeled dataset. In this part, the LLM
predicts classes based on textual information.

Among the first LLM that utilized a transformer archi-
tecture and solved a wide range of unseen tasks was the
Generative Pretrained Transformer 3 (GPT 3) by OpenAl
This model was tested on a wide range of tasks such as
common-sense reasoning. It was found that it achieved
substantial accuracy [24]. A novel paradigm emerged,
namely prompting LLM, i.e., providing it context with
the input that it uses to generate a response. One prompting
strategy was to provide the LLM examples of similar task
solutions that could improve accuracy [24]. Some research-
ers contended that LLLM with their tremendous size (GPT 3
has 175B parameters) overfit the training data and are
essentially “stochastic parrots” [27] that regurgitate the
training data. However, analyses of data contamination
(i.e., evaluation examples being present in the training data)
revealed that the LLM could solve tasks that were not
contained in the training dataset [24].

While word analogy problems and other fairly simple
problems have been solved by LLM rather early, quanti-
tative reasoning as in disciplines such as biology, chem-
istry, or physics was a more difficult task to solve. Al
researchers introduced more advanced training tasks that
enabled LLM to solve quantitative reasoning problems as
well to some extent [28]. In particular, chain-of-thought
prompting was found to be particularly effective [29]. For
once, researchers used science-related content to specifi-
cally further fine-tune (i.e., adapt the weights) the LLM in a
learning paradigm called transfer learning. It was later
found that generative LLM such as GPT required task-
specific fine-tuning. However, Al researchers showed that
scaling up LLM also enabled them to solve tasks they have
not been specifically fine-tuned for, so-called few-shot or
even zero-shot learning [24]. These LLM achieved trans-
lation, question-answering, and cloze tasks with only
seeing few or zero examples, and even accomplished
reasoning-related capabilities [24,30]. With increases in
model size (GPT 3 had 175B parameters), LLM became
increasingly capable of performing unseen tasks, such as
two- or three-digit arithmetic. Interestingly, some capabil-
ities only emerge with sufficient model size (number of
parameters), compute steps during training (e.g., training
epochs), and training data size [31]. Nowadays, LLM are as
flexible as to pass exams in medicine, law, or business
without specific fine-tuning [32]. Also for concept inven-
tories in physics, GPT-based LLM such as ChatGPT were
found to achieve almost 100% accuracy [33,34]. Given
these findings, it is the next step to find out whether and
how to utilize LLM-based tools such as ChatGPT for pilot-
testing purposes for Cls.

D. Data augmentation techniques

The widespread use of artificial neural networks is
mainly attributed to their exceptional performance in
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certain classification and pattern recognition tasks. To
achieve such high performance, the training of neural
networks requires a large amount of data. However, in
some cases, it is difficult to collect a large amount of data,
such as empirical data in education or time-series data [35].
This is critical because a smaller number of training data
usually leads to a reduced generalization ability and a lower
overall performance of the model. One solution to increase
the generalization ability of trained models by reducing the
chance of overfitting is the generation of synthetic data, the
so-called data augmentation [36].

In the field of image recognition, data augmentation
is a common practice in which, for example, the original
image is cropped, mirrored, or its colors are changed to
enhance the number of images in the training set [37]. In
time-series data, a recent literature review provides an
overview of magnitude, time domain, and frequency
domain transformation techniques [35]. In an additional
empirical evaluation of various data augmentation methods
for time-series data, the authors report both enhanced and
decreased generalization accuracy. For example, a permu-
tation method in which the observations and time of the
observations are changed, leads to detrimental effects, as it
breaks the time dependence of the series.

In our case, the educational data to be enhanced are
the solutions on a standardized concept inventory, the FCI.
The analysis of data augmentation of educational data is
important for test instrument development and validation as
well as for adaptive learning systems that provide a person-
alized response to a learner’s input or behavior. In concept
tests, the items are related to the concepts, but there is no
inherent sequence dependence. Often the items are even
administered in a random order to avoid potential effects of
the item sequence. Therefore, typical data augmentation
techniques in the range of time-domain transformations are
not suitable for educational data. In addition, students’
responses to concept test items are not three dimensional
as images (x coordinate, y coordinate, color). Therefore,
common techniques of image augmentation are not a
promising augmentation method for educational data.

One technique that was used across different fields of
data augmentation is jittering, in which a small offset is
given to the original data. However, educational data such
as students’ responses to concept test items are discrete and
not continuous, and small variations in the responses or the
item, in which a certain response was given, would lead to
randomly incorrect responses. Consequently, this technique
would have a similar effect as permutation techniques and it
is not likely to perform well.

Therefore, it is important not to translate these existing
methods for educational data augmentation but to be
sensitive to the inherent structure of the data and study
options that consider the structure of concepts in the test
items. In contrast to the data types mentioned above,
educational data often exhibit a hierarchical structure,
e.g., a student is in a specific class with a certain teacher

and the class is part of a specific school. To account for this,
it is important that a suitable augmentation technique for
educational data would consider different levels of prior
knowledge. As mentioned earlier, large language models
have made a tremendous advance in the past years and they
have shown to be able to respond reasonably well to
physics concept test items. Therefore, they are a promising
method to augment educational data, but it is an open
question to what extent and how systematically a large
language model can reflect different levels of prior knowl-
edge and students’ difficulties.

To assess the suitability for generating a valuable
synthetic dataset in the field of education and to account
for varying levels of prior knowledge, this study explores
the following research questions:

RQ1: What is the conceptual understanding of the force

concept of ChatGPT?

RQ2: To what extent is ChatGPT able to simulate

conceptual understanding of different cohorts?

RQ3: Is ChatGPT able to simulate specific preconcep-

tions of students?

III. METHODS

A. Participants

We compared the responses to the FCI given by
ChatGPT with real students in the first semester at the
RPTU Kaiserslautern-Landau, Germany. The engineering
students attended a lecture of experimental physics cover-
ing the topic of mechanics, among others. The FCI was
administered at the beginning of the semester, so at the
moment of answering the test items, the students had only
covered these concepts in high school but not yet during the
lecture. In total, there were 121 engineering students (12
female, 105 male, and 4 made no statement) with an
average age of 20.6 years.

B. The Force Concept Inventory

To examine to what extent ChatGPT can be used
fruitfully in educational contexts for tasks such as solving
standardized test instruments and generating data, we
evaluated performance in the domain of mechanics as it
is coherently structured with regard to knowledge. Physics
education researchers devised standardized test instruments
that are widely employed across universities throughout the
world. Among the most well-known instruments are con-
cept inventories that probe learners’ deep understanding of
a particular concept. Physics educators established that
learners come with intuitive conceptions of certain physics-
related concepts, also referred to as common-sense knowl-
edge [38]. These might not coincide with more normative
ideas about physics, such as Newtonian physics and are
typically context-dependent [38]. Most learners developed
over his or her upbringing an intuition of forces as acting
agents [6,39], both by experiencing and interacting with the

020150-4



EDUCATIONAL DATA AUGMENTATION IN ...

PHYS. REV. PHYS. EDUC. RES. 19, 020150 (2023)

world and hearing language such as “gravity pulls.” These
intuitive conceptions are largely incompatible with the
rich physics conceptions of forces, such as in Newtonian
mechanics where Newton’s laws lay out a consistent
conceptualization of forces. The first law states that an
object at constant velocity is remaining in this state of
constant velocity unless a force is acting upon it. The
second law states that the acceleration of the object is
dependent upon the force and mass of the object. Finally,
the third law states that every force has an opposite equal
force (actio equals reactio).

To probe students’ understanding of Newtonian mechan-
ics, the FCI was developed [6], originally in 1992, and
revised in 1995, containing 30 multiple-choice items. The
FClI, as is typical for physics problems, combines image
and text data. However, as ChatGPT based on GPT 4 only
accepts text data as input, we transcribed the pictures in the
FCI, similar to the procedure employed by West [34]. For
example, a typical FCI item would include a picture of the
following scenario:

A heavy ball is attached to a thread and moved
horizontally around in a circle. At one point, the
thread suddenly breaks. The whole process is
viewed from above. Which trajectory best de-
scribes the path of the ball after the thread breaks?
1. a trajectory curve that nearly follows the path of
the circle 2. a straight-line trajectory curve that
points tangentially along the circle at the break
point 3. a straight-line trajectory curve that points
straight away from the circular path at an angle of
45° from the tangent at the break point 4. a
trajectory curve that initially goes outward from
the center, but then takes a trajectory curve in the
direction of the original motion 5. a trajectory curve
that points straight outward from the center [40].

West [34] verified that besides the transcriptions,
ChatGPT is still capable of solving the FCI. The tran-
scription of all items that contained a figure can be found in
the Appendix.

C. RQ1: Probing conceptual understanding
of ChatGPT in physics

Probing the accuracy of ChatGPT on physics contents
and the FCI was performed by multiple researchers
[33,34,41]. Some studies examined qualitative physics-
related dialogues with ChatGPT and short-form physics
essays [42,43]. Gregorcic and Pendrill [42] found for a
simple prompt (“A teddy bear is thrown into the air. What is
its acceleration in the highest point?”) that ChatGPT’s
responses (based on GPT version 3.5) were full of contra-
dictions and concluded that ChatGPT is not good enough as
a cheating tool in physics. Yeadon et al. [43] used ChatGPT
(based on version 3.5) to generate responses (300-word
essays) to questions and found that it performed on par with

the students. Plagiarism detection software was largely
incapable of distinguishing it from human writing.
Kortemeyer [33] then used ChatGPT (version 3.5) on
the FCI and found that it scored correctly 18 out of 30
questions (60%). This would equal approximately the
performance of a beginning learner. To ensure that
ChatGPT was not simply trained on the FCI (or at least
could generalize beyond mere textual matching),
Kortemeyer changed surface-level information in an item
and found that ChatGPT was not distracted by these
changes and still performed correctly. It was also found
that ChatGPT made several errors that related to the
impetus (I) preconception. Moreover, other errors related
to the confusion of individual forces versus net force on an
object, unstable concepts, and logical errors [33]. West [34]
could replicate these findings for ChatGPT based on GPT
version 3.5 and found that a substantial improvement to
expert-level performance (22 correct out of 23) could be
observed when using ChatGPT based on GPT version 4. In
RQ1, we will generate a larger sample of response sets for
ChatGPT (based on GPT version 4) and calculate the
accuracy and standard deviation of the responses against
the correct answers. This will enable us to estimate the
degree to which ChatGPT is certain of its answers. Similar
to West [34], we will then compare ChatGPT’s distribution
of the number of correct answers to the distribution of a
student cohort.

D. RQ2: Simulating conceptual understanding
of different cohorts

An important capability of LLM for education is to
simulate (synthesize) data, given specific prompting strat-
egies. In general, pretrained LLM generate output based on
the context provided in the input. The provided input
context determines the output, given that a different
sequence of tokens is to be predicted. It is then possible
to adjust the response behavior of ChatGPT for the FCI
questions. For example, one could request that ChatGPT
always answers randomly for each question. A more
informative prompt would be to ask ChatGPT to answer
from the perspective of a different student group, which
could be related to background variables, such as experi-
ence. In RQ2, we chose the experience-related variable and
prompted ChatGPT to generate responses from the per-
spective of (a) school students (N = 8) and (b) engineering
students (N = 18). We chose these groups to potentially
generate variance and see to what extent differences emerge
in ChatGPT’s responses. We then generate for each cohort a
number of response sets in order to analyze the distribution
of correct answers, comparing the cohorts with the real
students and the plain ChatGPT response sets. As a robust
(nonparametric) test statistic, suited for multiple groups, we
utilized the Kruskal-Wallis rank test [44]. This test does not
assume the normality of residuals, though it assumes
identically shaped and scaled distributions for all groups,
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and ordinal dependent variables. Effect size (proportion
of variance predicted from the independent variable) was
calculated as (H—k+1)/(N—k), where H is the
Kruskal-Wallis test statistic, k£ is the number of groups
(here 3), and N is the total number of observations. This
effect size is called 7%, where > = 0.01 is a small effect
size, 7> = 0.06 is a medium effect size, and > = 0.14 is a
large effect size [45].

E. RQ3: Simulating students’ preconceptions
with ChatGPT

Similar to simulating different student cohorts, it is
equally possible to simulate students with different pre-
conceptions. The FCI is a considerately designed instru-
ment, based on an assessment of students’ beliefs about
force against a normative theory, namely Newtonian
physics. It is recognized that overcoming preconceptions
is among the crucial tasks in physics and science education,
and it is a hard problem. The FCI can help instructors to
align their instruction and assess students’ understanding.
The FCI addresses different preconceptions that students
can hold. The authors identify general categories of
preconception, namely kinematics (K), impetus (I), active
force (AF), action-reaction pairs (AR), concatenation of
influences (CI), and other influences on motion (OI).
Category K indicates if learners have a physics notion of
motion description. Category I refers to learner’s notion
that force is some kind of intrinsic quantity to objects that
keeps them moving, once it has been supplied to them. AF
then refers to the conception that motion implies an active
force. AR refers to the learner’s conception of interactions
as a struggle where the stronger or more forceful party
exerts a greater force (most typically exemplified in the
crash of a truck and a car). CI aggregates several pre-
conceptions, such as the dominance principle in the
composition of two unequal forces on a single object.
Finally, also OI subsumes several preconceptions such as
the reasoning with centrifugal force and considering it as a
real force.

Given the well-established theory on preconceptions
related to the Newtonian mechanics and forces in particular,
we can utilize this information to prompt ChatGPT to
generate (simulate) responses as if it were a learner with
this preconceptions. To do so, we deliberately engineered
the prompts given to ChatGPT. We first checked if
ChatGPT knew about (could elaborate on) the respective
preconception (K, I, AF, AR, CI, OI). In fact, ChatGPT
knew about all preconceptions and could elaborate on what
they were. Afterward, we engineered a prompt where the
items were preceded with the following phrase: “Respond
to the following questions from the perspective of a person
who has the preconception that ...”. We then described the
preconception in brief or simply inserted “the impetus
preconception” for agreed-upon preconception [33]. For
each preconception, at least seven different response sets

(more responses were generated for preconceptions with
higher observed variability in the responses) were gener-
ated. We then analyze the distribution of correct answers.
Furthermore, we prompted ChatGPT for important items to
provide reasoning for their responses, given that it simu-
lated a student with a different preconception. We validated
if the reasoning was in alignment with the preconception.

IV. FINDINGS

A. RQ1: Probing conceptual understanding
of ChatGPT in physics

Regarding RQI1, we first transformed the response
matrix into a binary coded matrix where correct responses
were coded with 1 and incorrect responses were coded with
0. Based on this binary matrix, we calculated the average
correct answers (of overall N = 14 responses) and the
standard deviation. We found that M = 0.83 (SD = 0.22),
i.e., ChatGPT scored on average 83% in the FCI (with some
transcribed items). In Table I, the distributional statistics
for all items with a mean score below 1.0 is displayed. It
can be verified that for many items, ChatGPT perfectly
solved them. With other items (e.g., A8), there is quite
some variance, and solution probability is almost equal to
random guessing. Item A20 was never solved correctly by
ChatGPT. The engineering students (N = 121) performed
on average M = 0.14 (SD = 0.20).

B. RQ2: Simulating conceptual understanding
of different cohorts

Next, we prompted ChatGPT to answer the FCI as if it
were (a) a 10th-grade student in school or (b) an engineer-
ing student. In Table II, the means and standard deviations
for the distributions of the groups are depicted. In a
reasonable approximation, we can verify that the scales
(i.e., standard deviations) are similar for the groups, so we
meet the assumptions for the Kruskal-Wallis test. This can
also be visually inspected in Fig. 1, where the distributions
of correct responses for the different cohorts are depicted.

TABLE 1. Item statistics (generated with the assistance of
ChatGPT). Only items with a mean score below 1.00 are included.

Item  Mean Median SD Variance 5% 95%

A8 0.14 0.00 0.36 0.13 0.00 1.00
Al3 0.93 1.00 0.27 0.07 0.65 1.00
Al4 0.79 1.00 0.43 0.18 0.00 1.00
Al6 0.50 0.50 0.52 0.27 0.00 1.00
Al7 0.71 1.00 0.47 0.22 0.00 1.00
Al8 0.64 1.00 0.50 0.25 0.00 1.00
A19 0.36 0.00 0.50 0.25 0.00 1.00
A20 0.00 0.00 0.00 0.00 0.00  0.00
A21 0.57 1.00 0.51 0.26 0.00 1.00
A29 0.57 1.00 0.51 0.26 0.00 1.00
A30 0.71 1.00 0.47 0.22 0.00 1.00
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TABLE II. Descriptive statistics for groups.

Group Mean Median SD  Variance 5% 95%
Engineers 24.28 25.0 1.02 1.04 22.0 25.0
Unspecified 24.93 25.0 1.27 1.61 23.0 27.0
Students 24.25 245 1.58 2.50 22.0 26.0

The Kruskal-Wallis test yields a value for potential
group differences of H = 1.79, p = 0.409, 5> = —0.01.
Essentially, no differences were found between the aggre-
gated correct response distributions for the three cohorts.

C. RQ3: Simulating students’ preconceptions
with ChatGPT

Figures 2 and 3 show the distributions for the simulated
students with different preconceptions. It can be seen that
they are widely spread and depending on the specific
preconceptions more or less accuracy can be observed in
the response sets. Interestingly, students with the AR
preconception almost systematically fail at all items, whereas
simulated students with CF solve the FCI as accurately as
without preconceptions 3). Certainly, a much greater vari-
ability as in randomly generated responses can be observed.

Finally, we qualitatively validated two preconceptions
with regard to the provided reasoning by ChatGPT. As for
their intricate and prevalent nature, we chose centrifugal
force (CF) and impetus (I). The centrifugal force is not a
real force as for example gravity, but rather a pseudoforce
that results from the chosen frame of reference. In the
inertial frame of reference, only the centripetal force acts on
the object attached to the string that keeps it on the circular
track. Once the string is cut, no force (except for gravity
and normal force) is acting on the moving object, which,
according to Newton’s first law keeps on moving with

— Chat-GPT without specification
= SuS imitated by Chat-GPT
051 — Engineers imitated by Chat-GPT
0.4
z
2 0.3 1
(1)
a
0.2 A
0.1 A \
0.0 T T T T T T T
0 5 10 15 20 25 30
Number of correctly solved items
FIG. 1. Distribution of correct responses for different cohorts as

prompted and generated by ChatGPT.

- CF
0.5 4 — AR
— AF
— CI1
0.4 - CI2
CI3
> — Ob
=
2 0.3 K
[
a
0.2 1
¥
0.1 /\ /

"1 BN -\

0 5 10 15 20 25 30
Number of correctly solved items

FIG. 2. Distribution of correct responses for different precon-
ceptions as prompted and generated by ChatGPT.

constant velocity (assuming frictionless movement). The
centrifugal force during a circular motion in a stationary
frame of reference (also termed reactive centrifugal force,
e.g., in a car) feels very real for students as they experience
this force [46]. Centrifugal force is assumed in a center of
mass frame of reference that moves alongside the object in
the circular track. No net force should act on the object, as
in this frame of reference, it is at rest. Students with this
preconception would choose answer 4, i.e., after the string
is plugged, the outward force (centrifugal force) will drive
the object outwards. ChatGPT reasons this case convinc-
ingly and correctly. It is noteworthy that no mention of the
frame of reference problem is made.

Prompt, (see Sec. III):

Responses by ChatGPT (translated by
ChatGPT): First response: From the perspective
of a person who incorrectly believes that a

—— Real engineering students
- Engineers imitated by Chat-GPT
051 — Preconceptions generated by Chat-GPT
—— Randomly generated response behavior
0.4
z
2 0.3
[
a
0.2
0.14
0.0 = T T T T T
0 5 10 15 20 25 30
Number of correctly solved items
FIG. 3. Distribution of correct responses for different cohorts as

prompted and generated by ChatGPT.
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centrifugal force exists, they may choose Answer
4: “A trajectory that initially goes from the center
outwards, but then takes a trajectory in the
direction of the original movement.”

The misconception of centrifugal force is based
on the feeling that a force is acting during circular
motion that pushes the body outwards. In reality,
it is the centripetal force (a force directed in-
wards) that keeps the body on its circular path.
This misconception could lead a person to believe
that when the string breaks, the ball is initially
driven outwards from the center (by the supposed
centrifugal force) before then moving in the
direction of the original motion because there
is no longer any centrifugal force to push it
outwards.

The correct answer would, however, be Answer
2: “A linear trajectory that shows tangential along
the circle at the breaking point.” Because when
the string breaks, there is no longer a centripetal
force that forces the ball into a circular path, and
the ball continues its motion in a straight line,
which is tangential to the original circular path,
due to inertia. This motion corresponds to New-
ton’s first law, which states that a body remains at
rest or moves with constant velocity in a straight
line unless a force acts on it.

As for the impetus concept, students typically believe
(much in agreement with their lived experiences in a
friction-based world) that when an object is thrown,
something is transferred to the object that it can use to
fly a certain time, constantly using up the impetus. Once it
is used up, the objects come to rest. We would expect
students to choose answer 1 for this item. After all, a
circular impetus is given to the object (e.g., by the string).
Once the string is plugged, this circular impetus will cause
the object to continue on the circular path. Again, ChatGPT
correctly reasoned about this preconception and chose the
correct answer, responding as if it were a student with the
impetus preconception.

Prompt, (see Sec. III):

Responses by ChatGPT (translated by
ChatGPT): Second response: The theory of
impetus is a medieval physical theory that was
proposed before Newton’s laws of motion. This
theory suggests that a moving object possesses an
“impetus” that drives it further in the direction
of the original motion, even when no external
force acts on it anymore. It is believed that the
impetus gradually decreases, and the object
eventually stops.

With this misconception, a person might choose
Answer 1: “A trajectory that closely follows the
course of the circular path.” This person might

believe that after the string breaks, the ball
continues to fly in the original circular motion
because the impetus drives it in that direction. The
ball would then gradually deviate from the
circular path and finally stop when the impetus
has completely diminished.

However, the correct answer according to modern
laws of physics would be answer 2: “A straight-
line trajectory that is tangential to the circle at the
breaking point.” According to Newton’s first law
of motion, in the absence of an external force
(which was removed by the breaking string), the
ball would continue its motion in a straight line,
which is tangential to the circular path it was
originally on.

V. DISCUSSION

The recent advances in Al research, in particular gen-
erative Al, provide novel potentials for physics education
researchers to enhance research and teaching, however,
they also introduce novel challenges. To better understand
the potentials and challenges, it is crucial to engage with
advanced technologies, such as LLM, to evaluate their
performance for physics education-specific problems (as
argued by Wang in Ref. [47], who called for “more careful
and controlled studies” on this matter, particularly with
ChatGPT). In this study, we evaluated the capabilities of an
LLM, namely ChatGPT, to generate synthetic data for the
FCI and thus potentially enhance concept inventory devel-
opment. We chose the FCI as a use case as this is a well
validated and most widely used concept inventory in
physics. Prior studies established that ChatGPT is well
versed in solving the FCI. In our study, we advanced this
research to compare performance with real students (RQ1)
and generate synthetic data for it with regard to different
cohorts (RQ2) and varying preconceptions (RQ3).

In RQI1, we found that ChatGPT (based on GPT 4)
solved the FCI (with transcribed images) accurately. In fact,
it solved the FCI much more accurately compared to real
engineering students in a German university. This resonates
with prior studies that established that ChatGPT can
accurately solve the FCI [33,34]. Compared to the prior
work by West, where ChatGPT (based on GPT-4) solved 22
out of 23 items correctly, here ChatGPT (based on GPT-4)
only correctly solves about 26 out of 30 items on average.
There were 11 items that had not been solved correctly in
each run (see Table I). Of these 11 items, 6 contained a
figure that was translated into text. In comparison, four
items that contained text translated from a figure were
solved correctly in each run. Consequently, the translation
from figures to text may cause difficulties for ChatGPT to
interpret. Previously, some of these items were also taken
out from consideration [34]. As a note of interest, ChatGPT
can be easily prompted to output the responses in varying
formats (e.g., comma-separated list), and it solves it much
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more quickly than real students. We particularly generated
more response sets in order to retrieve information on the
variance displayed in responding to the FCI. For most
items, no variance was found, because they were solved
with 100% accuracy. For other items, however, a mere
random performance was observed.

In RQ2, we sought to utilize ChatGPT (via specific
prompting) to simulate answers from students in different
cohorts (10th-grade students and engineering students).
To our surprise, we found no differences between these
cohorts and the unprompted (with regard to cohort)
responses. Either the mean accuracy was similar or the
standard deviation was similar. This struck us as unexpected,
given that it is established that prompting can in fact be used
to modify the responses of ChatGPT and other generative Al-
based LLM [48]. However, maybe the provided prompts
were not specific enough to affect the responses in ChatGPT.

Therefore, in RQ3, we specifically prompted ChatGPT
to respond to the FCI as if it were a student with a cer-
tain preconception related to Newtonian force concept and
mechanics more generally. Here, we found large differences
in the response behavior of ChatGPT. ChatGPT knew about
all preconceptions. The accuracy, given that ChatGPT
responses as if it were a student with almost any precon-
ception, dropped considerably, sometimes even below ran-
dom guessing performance. Interestingly, prompting
ChatGPT with preconceptions resulted in distributions that
were equally spread as real students’ distributions. For two
preconceptions, we verified that ChatGPT also correctly
reasoned if it was prompted to respond to the items as if it had
a certain preconception, which it did.

These data augmentation techniques could be of interest
to physics education researchers and educational research-
ers more generally if they want to pilot test their instrument,
e.g., in the domain of mechanics. Even practitioners
designing classroom exams and policy agents designing
statewide exams could benefit from these capabilities of
generative Al (here: LLM) to ensure the validity of their
instruments. One caveat would be that users currently will
have to outsource their instruments to a private company.
On the other hand, it can be tiresome for students to
function as “lab animals” and be subjected to pilot testing
of research instruments (let alone ethical concerns).
Moreover, the precious time of the students is consumed
which could be used in more learning-relevant activities.

VI. LIMITATIONS

While LLM such as GPT 4 provide novel capabilities for
research such as data augmentation, they also introduce novel
challenges that researchers have to engage with. Brown et al.
[24] list three: misuse, bias, and energy consumption as
important points of concern. For once, LLM such as GPT 4
can be used to generate human-sounding text and therefore
be used to spread certain narratives. With regard to physics
education research, students might fabricate their essays with

ChatGPT, which cannot be easily detected by human
instructors or researchers [43]. In the future, the selection
of teaching materials should be carefully tailored to ensure
that tools like ChatGPT are not undesirably misused as aids.
For example, we can observe a similar context where
students increasingly resort to aids such as YouTube videos
when the provided materials exhibit deficiencies [49].
Equally concerning is the problem of hallucination in
LLM such as GPT 4. For example, ChatGPT provides
well-sounding output with sometimes flawed physics [42].
This becomes a problem when considering that students
accept the outputs of Chat-GPT without critical reflection
(copy and paste it) [50]. Instructors need to find means to
prevent tasks where simple copy paste is sufficient. We also
found that important steps in the problem-solving process
such as explicating underlying assumptions and idealizations
are oftentimes omitted [51]. This makes it difficult for
students to truly learn the underlying physics. Kortemeyer
[33] prompted ChatGPT on its ability to understand physics
and received the following response:

“as a language model, I have been trained on a
large dataset of text, including physics texts. This
allows me to understand and generate text related
to physics concepts, but it does not mean that |
have the ability to solve physics problems or pass
a physics course. I can provide explanations and
answer questions about physics to the best of my
knowledge, but I am not a substitute for a human
physics expert or a physics education.”

As such, human expert judgments will remain crucially
important to verify responses given by ChatGPT. As a matter
of fact, we found the theory-based, specific prompting with
regard to established preconceptions yielded the most
variance which could be important for data augmentation.
As such, established theory is crucial to guide prompt
engineering and generate meaningful synthetic data. It
was furthermore established that LLM such as GPT 3 and
others incorporate humanlike biases, e.g., with regard to
gender [24,52]. Given the fact that they are trained on the
Common Crawl] of the Internet and similar unclean data, this
is probably not surprising. However, approaches to mitigate
this problem are still not fully developed, and thus employing
ChatGPT and other LLM in educational settings should
probably be postponed, especially in contexts of high-stakes
testing. Finally, the energy consumption of training these
LLM and even requesting a single output are ecologically
challenging [53]. It will likely be not sustainable for every
research group to run their own models. Shared infrastruc-
tures will be required to make these applications sustainable.

VII. IMPLICATIONS

Our study showed that with adequate prompting strat-
egies, ChatGPT can be utilized to generate synthetic data
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related to a concept inventory with meaningful variability
in the dataset. We submit that similar conclusions will
likely be true for other concept inventories as well, such as
climate change, electricity, and biological evolution.
Further research is needed to test these predictions. This
offers researchers a valuable tool to simulate field testing
their concept inventories and evaluate psychometric proper-
ties, given sufficient sample sizes. We could show that
similar distributions as with real students emerge, and
further research could investigate if convolutions of
preconceptions will enable a reconstruction of the true
students’ distribution. We cannot, however, exclude the
possibility that real students also show other response
patterns, i.e., have different conceptions that are not
included in our theoretically derived set of preconceptions.
Further research should investigate also the possibility to
even generate a concept inventory in the first place with the
help of LLM such as GPT 4 [54] and assist in other phases
and steps of the development process for a concept
inventory [15].

The code for analysis (and further analyses) can be
accessed here at Ref. [55].

The synthetic data can be accessed upon reasonable
request to the authors.

This research was supported by LMUexcellent, funded by
the Federal Ministry of Education and Research (BMBF)
and the Free State of Bavaria under the Excellence Strategy
of the Federal Government and the Linder.

APPENDIX: TRANSLATION
OF FIGURES IN FCI ITEMS

In this section, we show the translation of figures in FCI
items into text so that ChatGPT is able to interpret it. We
did not include the original figures due to copyright
restrictions, but the item numbering is identical to the
original work [6].

Item 5

Which of the following forces act(s) on the ball when it is
exactly halfway through a semicircular channel?

A) A downward force of gravity.

B) A force exerted by the channel that is directed from
the point where the ball is currently located to the
center of the channel.

C) A force in the direction of motion.

D) A force directed from the center point to the point in
the channel where the ball is currently located.

force A only.
forces A and B.
forces A and C.
forces A, B, and C.
forces A, C, and D.

MR

Item 6

Which path would a ball most closely follow after it exits
the channel at the end and moves across the frictionless
table top?

1. A path that would correspond to the arc of the gutter
if it formed a closed circle.

2. A straight-line trajectory curve that points tangen-
tially along the circle at the exit point.

3. A trajectory curve that describes an arc of a circle
outwards.

4. A path curve which describes a parabola to the
outside.

5. A trajectory in which the ball is immediately
deflected outward in a straight line.

Item 7

A steel ball is attached to a string and is swung in a
circular path in a horizontal plane. At one point, the string
suddenly breaks near the ball. If these events are observed
from directly above, which path would the ball most closely
follow after the string breaks?

1. A trajectory that almost corresponds to the course of
the circular path.

2. A straight-line trajectory that points tangentially
along the circle at the tear-off point.

3. A straight-line trajectory that points away from the
circular path at an angle of 45° from the tangent line
at the break-off point.

4. A trajectory that initially goes outward from the
center but then takes a trajectory in the direction of
the original motion.

5. A trajectory that points outward in a straight line
from the center.

Item 8

Imagine a hockey puck is sliding with constant speed
Vo in a straight line from point “P” to point “Q” on a
frictionless horizontal surface. Forces exerted by the air are
negligible. You are looking down on the puck. When the
puck reaches point “Q,” it receives a swift horizontal kick
perpendicular to the previous direction of motion. Had the
puck been at rest at point “Q,” then the kick would have set
the puck in horizontal motion with a speed v}, in the direction
of the kick.

Which paths would the puck most closely follow after
receiving the kick?

1. A straight line in the direction of the collision.

2. A straight line pointing at a sharp angle to the
previous trajectory.

3. A path in the same direction as the original direction
of motion but offset in parallel in the direction of the
impact.

4. A curved path that slopes in the direction of the shock.

5. A curved path inclined in the direction of the original
direction of motion.
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Item 12

A ball is fired by a cannon from the top of a cliff in the
horizontal direction. Which paths would the cannon ball
most closely follow?

1. A path that runs in a straight line down to the point of
impact.

2. A path that is curved toward the point of impact.

3. A path that is curved toward the point of impact, but
which is horizontal for a short distance after launch.

4. A path that is curved toward the point of impact, but
which is horizontal for a certain distance after launch
and vertical before impact.

5. A path that runs horizontally until almost vertically
above the point of impact and then runs vertically
until the point of impact.

Item 14

A bowling ball accidentally falls out of the cargo bay of
an airliner as it flies along in a horizontal direction. As
observed by a person standing on the ground and viewing
the plane from the side, which path would the bowling ball
most closely follow after leaving the airplane?

1. A curved path that runs backward.

2. A path that runs vertically downward.

3. A path that runs forward in a straight line.

4. A curved path that runs forward.

5. A path that extends forward horizontally to above
the point of impact and then vertically downward.

Items 15, 16 and 17
The figures have not been described as they only carry

redundant information that is also contained in the text.
Item 18 A child swings on a rope tied to a branch (point
0O). His movement starts above a point P and then continues
downward through the point P. Consider the following
distinct forces:
1. A downward force of gravity.
2. A force exerted by the rope pointing from A to O.
3. A force in the direction of the boy’s motion.
4. A force pointing from O to A.
Which of the above forces is (are) acting on the boy when
he is at position A?
(A) 1 only.
(B) 1 and 2.
(C) 1 and 3.
(D) 1, 2, and 3.
(E) 1, 3, and 4.
Item 19
Two blocks move to the right. The following table shows
the distance covered by the blocks at intervals of 0.2 s in
length units (LU). Identical numbers indicate identical
points in time.
Blocka: 1: 2 LU, 2: 4 LU, 3: 7LU, 4: 11 LU, 5: 16 LU,
6: 22 LU, 7: 29 LU
Blockb: 1: 0LU,2:4LU,3:8LU,4: 12LU, 5: 16 LU,
6: 20 LU, 7:24 LU, 8: 28 LU
Do the blocks ever have the same speed?

No.
Yes, at instant 2.
Yes, at instant 5.
Yes, at instants 2 and 5.
Yes, at some time during the interval 3 to 4.
Item 20
Two blocks move to the right. The following table shows
the distance covered by the blocks at intervals of 0.2 s in
length units (LU). Identical numbers indicate identical
points in time.
Blocka: 1: 2LU,2:6 LU, 3: 10LU,4: 14 LU, 5: 18 LU,
6: 22 LU, 7 26 LU
Block b: 1: 0 LU, 2: 6 LU, 3: 12 LU, 4: 18 LU, 5:
24 LU
The accelerations of the blocks are related as follows:
(A) The acceleration of “a” is greater than the accel-
eration of “b”.
(B) The acceleration of “a” equals the acceleration of
“b.” Both accelerations are greater than zero.
(C) The acceleration of “b” is greater than the accel-
eration of “a.”
(D) The acceleration of “a” equals the acceleration of
“b.” Both accelerations are zero.
(E) Not enough information is given to answer the
question.
Item 21
A rocket drifts sideways in outer space from point “a” to

A

point “b”” as shown below. The rocket is subject to no outside
forces. Starting at position *“b,” the rocket’s engine is turned
on and produces a constant thrust (force on the rocket) at
right angles to the line “ab.” The constant thrust is main-

[TPX2]

tained until the rocket reaches a point “c” in space.
Which path below best represents the path of the rocket
between points “b” and “c”?

1. Point “c” lies to the right above point “b.” The path
from “b” to ’c” is concave.

2. Point “c” is right above point “b.” The path from “b”
to “c” is straight and perpendicular to the line
connecting “b” to “a.”

3. Point “c” lies to the right above point “b.” The path
from “b” to “c” is straight.

4. Point “c” lies above and to the right of point “b.” The
path curve from “b” to “c” runs horizontally to the
right at the beginning and is convex from then on.

5. Point “c” lies above and to the right of point “b.” The
path curve from “b” to “c” is convex.

Item 23

At point “c,” the rocket’s engine is turned off and the
thrust immediately drops to zero.

Which of the paths below will the rocket follow beyond
point “c”?

1. The path curve runs in a straight line horizontally to
the right.

2. The path curve runs in a straight line diagonally
upwards to the right.
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