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Much of physics involves the construction and interpretation of equations. Research on physics students’
understanding and application of mathematics has employed Sherin’s symbolic forms or Fauconnier and
Turner’s conceptual blending as analytical frameworks. However, previous symbolic forms analyses have
commonly treated students’ in-context understanding as their conceptual schema, which was designed to
represent the acontextual, mathematical justification of the symbol template (structure of the expression).
Furthermore, most conceptual blending analyses in this area have not included a generic space to specify
the underlying structure of a math-physics blend. We describe a conceptual blending model for equation
construction and interpretation, which we call symbolic blending, that incorporates the components of
symbolic forms with the conceptual schema as the generic space that structures the blend of a symbol
template space with a contextual input space. This combination complements symbolic forms analysis with
contextual meaning and provides an underlying structure for the analysis of student understanding of
equations as a conceptual blend. We present this model in the context of student construction of non-
Cartesian differential length vectors. We illustrate the affordances of such a model within this context and
expand this approach to other contexts within our research. The model further allows us to reinterpret and
extend literature that has used either symbolic forms or conceptual blending.

DOI: 10.1103/PhysRevPhysEducRes.19.020149

I. INTRODUCTION

One of the fundamental drives of physics education
research is to interpret the way students understand, reason
with, and use mathematics in physics. Mathematical
models form the underlying foundation for the representa-
tion of physics content. Physicists apply mathematics to
construct expressions that allow us to relay information
efficiently, manipulate expressions to further advance our
understanding, and interpret derivations to gain new insight
into physical systems. From kinematics equations like
vf ¼ vo þ aΔt, to the divergence of an electric field in
electricity and magnetism, to Dirac notation and linear
algebra in quantum mechanics, mathematics provides a
fundamental language for physics.
Researchers in physics education have previously

described mathematics as the language of physics [1],
and researchers in physics and science education have
developed broad theoretical models to frame the ways in

which mathematics and physics interact in problem solving
[1–4]. A common feature of these models and others is a
step labeled “mathematization,” in which a physical system
is abstracted into a mathematical representation, or the
“real model” of a system is abstracted into a “mathematical
model” [4].
The symbolic forms framework was developed by Sherin

[5] specifically to address how students construct and
understand the mathematical structure of equations.
Building from a knowledge-in-pieces approach [6], sym-
bolic forms account for students writing an equation from a
“sense of what they wanted to express” [5]. The purpose of
identifying the underlying mathematical-based structures
through which students understand equations speaks to the
larger goal of how mathematics is used by students and ties
to their understanding of mathematization in physics. At
their inception, symbolic forms were designed as acontex-
tual constructs with explicit focus on the mathematical
justifications for equations and were not intended to
address students’ understanding of the associated physics
concepts. As a theoretical perspective, it has been taken up
to address student understanding and construction of
integrals [7,8], construction of differential length vectors
in electricity and magnetism, [9] and understanding of
boundary conditions in electricity and magnetism and
quantum mechanics [10].
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In order to analyze the interactions between mathemat-
ics and physics, other researchers have incorporated
conceptual blending [11], a theoretical framework from
linguistics that describes the connection and combination
of elements from separate domains of knowledge (referred
to as mental spaces) into a blended domain. Conceptual
blending has served as a means to describe the ways in
which mathematics and physics are woven together, both
at the introductory level [12,13] and upper division
[14,15]. Notably, most previous adaptations of conceptual
blending to discuss the interaction of mathematics and
physics have not included a generic space, which was
presented by Fauconnier and Turner as the underlying
space that connects the two input spaces and determines
which elements are “compressed” or blended. Previous
research has instead focused on dividing concepts into
“mathematics” and “physics” spaces.
Drawing on the depth of the theoretical work presented

here and the various applications in physics and math-
ematics education literature, an equation emerges as a
statement in a physical-mathematical language where
meaning is embedded in the way variables and procedures
are expressed in specific forms. Much in the way that the
rules of writing a sentence govern structure, punctuation,
and clauses, and inevitably convey a certain meaning, the
way an equation is written conveys relationships between
physical quantities. Because of these rules and structures in
place, we are able to derive meaning from an equation and
also write information into an equation.
We present a model for analysis of students’ construction

and interpretation of equations by connecting students’ use
of symbolic forms [5] with their physics conceptual under-
standing through the use of formal conceptual blending
theory [11]. In this model, which we call symbolic blend-
ing, aspects of symbolic forms serve as the underlying
structure for the blending of mathematics and physics,
while the incorporation of conceptual blending brings
contextual understanding to an acontextual symbolic forms
analysis. This model makes use of the generic space to
detail the mechanism of equation construction and the
blending of mathematics and physics. To fully explore this
theoretical model, we use data from our research in upper-
division electricity and magnetism, which deals with
students’ construction of a differential length vector for
an unconventional spherical coordinate system [9].
However, this model can be extended to analyze students’
connection of structural/mathematical understanding to any
physics context.
We first review the development of previous models for

mathematization in physics to situate our work within the
realm of physics education research on student under-
standing of mathematics. As a continuation of a review of
relevant literature, we include detailed overviews of the
symbolic forms and conceptual blending frameworks and
discuss each of the instantiations of these frameworks in

physics and mathematics education research. We then
introduce and review previous work seeking to connect
symbolic forms and conceptual blending [16].
In Sec. III, we present the proposed symbolic blending

model for students’ construction of equations. We argue
that the aforementioned frameworks are complementary in
that aspects of each framework fill analytical gaps in the
other. Extending this, we present the affordances of the
symbolic blending model by further connecting various
analytical pieces of each framework as a means to show the
scope and reach of the model. Finally, we summarize the
symbolic blending model and discuss future work, in line
with Sherin’s suggestions for extending symbolic forms
literature to account for further physics contexts and other
types of mathematical representation.

II. THEORETICAL PERSPECTIVES AT THE
MATHEMATICS-PHYSICS INTERFACE

The following section presents an overview of the relevant
theoretical lenses for interpreting students’ use and under-
standing of mathematics in physics as background for the
development of the theoretical model described in Sec. III.
The first subsection describes the large-scale models that
have been developed to describe student work at the
mathematics-physics interface. Section II B introduces the
specific perspective of the symbolic forms framework [5] as
it has been used to describe students’ construction of
equations as mathematical objects. Section II C. introduces
the conceptual blending framework [11] as an additional
means to describe the interaction between physics and
mathematics. Finally, in Sec. II D, we draw attention to
previousworkwithin the literature that has used a conceptual
blending framework to describe students’ use of symbolic
forms in physics.

A. Review of models for students’
mathematization within physics

The incorporation of mathematics in physics goes
beyond calculation, as mathematics plays a role in reason-
ing about relationships between physical quantities and in
conveying these relationships with graphs or equations.
Several physics education researchers have sought to
describe and represent the way students incorporate math-
ematical concepts throughout physics. These models
involve a number of common elements, suggesting key
areas of mathematics understanding necessary for physics.
One instantiation separated the mathematics and physics
domains into two distinct spaces that students cycled
between the physical system and mathematical representa-
tion [1]. This cycle involves four processes, starting with
the act of modeling which moves from the physical system
into a mathematical representation space (e.g., setting up
an integral). This representation is then processed within
the mathematical domain (e.g., integrating and possibly
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computing the final result). Interpretation of this new
representation is a move from the mathematical domain
back into the physics domain, where the result can then be
evaluated in comparison to the initial physical conditions.
Uhden et al. developed a different framing for these

processes based on additional literature that includes the
idea of a blended space of mathematics and physics, with
vertical levels portraying degrees of mathematical model-
ing, referred to as mathematization [2]. The closer to the
bottom of the vertical axis the current representation is, the
more grounded it is in the real, physical world. As students
model the physical system by defining proportionalities,
writing equations to connect variables, or using various
laws, theorems, or physics relationships, the level of
mathematization increases. Interpretation of these results
corresponds to a lesser degree of mathematization and
moving down the vertical axis. The third aspect of this
framing includes technical mathematical operations (e.g.,
computing an integral or algebraic manipulation), where
the student steps out of the blended mathematics-physics
space to “pure mathematics” for the purposes of carrying
out the calculation. Following calculation, the student then
returns to the same level of mathematization.
A third model of students’ use of mathematics resulted

from work in upper-division electricity and magnetism [3].
The ACER framework places greater emphasis on the
actions of the previous two diagrams, turning them into the
steps by which problem solving occurs. This framework
designates spaces for the “activation of a tool” (e.g., the
choice of an equation), “construction of the [mathematical]
model,” “execution of mathematics,” and “reflection on the
results.”
One model of a modeling cycle from the mathematics

education community is from Blum and Leiß [4]. They
label specific points in the cycle as well as processes and
distinguish between the world of mathematics and the rest
of the world. The former includes the mathematical model
and the mathematical results, with the process between
them being labeled “working mathematically.” The latter
includes the “real situation,” “situation model,” “real
model,” and “real results,” with the distinction between
“real” and “situation” being what is abstracted and assumed
by the modeler. The process that takes the modeler from the
real world to the mathematical world is mathematization.
Recent work in undergraduate mathematics education has
used this model to frame the actions of engineering students
in a differential equations course [17].
While each of the above models represents students’

reasoning with and use of mathematics in a different way,
they all include features to account for modeling, calcu-
lation, and interpretation. These three areas have been the
focus of research looking at the connections between
mathematics and physics [17–28]. The plethora of models
suggests that identifying students’ interaction with mathe-
matics in physics is nontrivial. However, the presence of

common features (mathematizing, processing, interpreta-
tion) suggests these are key aspects of student under-
standing and use of mathematics in physics. The work
presented here focuses primarily on mathematization as a
means of creating mathematical representations, specifi-
cally during the process of equation construction. We
further use the analysis from the construction of equations
to describe students’ interpretation of equations as they
read information out from these abstracted representations.

B. Development and use of symbolic forms to
address students’ understanding of physics

equations in terms of mathematical structures

Analysis using symbolic forms [5] provides a means to
address student understanding of the mathematical repre-
sentation used in equations. In this section, we provide an
overview of symbolic forms and describe its use in the
literature. Finally, an overview of the use of symbolic forms
within our work is provided to lay the groundwork for the
presentation of the model.

1. Overview of symbolic forms

In an effort to explore the mathematical structures
students use to construct and interpret equations, Sherin
[5] asked junior physics majors to solve several conceptual
physics problems relating to introductory topics. Sherin
found that rather than trying to derive an expression or
manipulating known equations, students attempted to build
equations from a sense of what they wanted to express.
Students could additionally read information out of an
equation based on the equation’s structure. Motivated by
this analysis, Sherin developed the idea of symbolic forms
as a lens for the investigation of students’ construction
and sensemaking of equations in terms of mathematical
understanding.
A symbolic form, in line with a knowledge-in-pieces

model [6], is an element of a mathematical expression
defined as a pairing of two parts. The main element of a
symbolic form is the symbol template, the externalized
structure of the equation. For example, □þ□þ□ would
be a template in which the students would place terms,
numbers, or variables in order to add them. The particular
associations underlying or motivating the template are what
Sherin refers to as the conceptual schema. For□þ□þ□,
one associated schema identified by Sherin is “amounts of a
generic substance contributing to a whole.” Together, this
template and schema are referred to as parts of a whole.
Sherin argues that students learn to associate meanings

with structures in equations. Thus, the conceptual schemata
are acontextual, meaning that they do not rely on a
particular physics context, but on an underlying mathe-
matical understanding of how the equation is written. Parts
of a whole can be seen in a student’s writing of an
expression for the total energy of a system in terms of
kinetic and potential energy, 1

2
mv2 þmgh, or in an attempt
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to express the total surface area for a cylinder of radius, r,
and length, l, as a sum of the end caps and shell,
2πr2 þ 2πrl. While these equations contain drastically
different variables and physical meanings, they share the
symbolic structure of parts of a whole. Sherin illustrates
parts of a whole through the construction of an equation by
two students, Mark and Karl, around an (incorrect) idea of
the coefficient of friction. The students write the expression
as “μ ¼ μ1 þ C μ2

m.” Karl explains the structure of the
expression:

Karl: …the frictional force as having two components.
One that is constant and one that varies inversely
with weight. ([5], p. 489)

Parts of a whole is illustrated by the addition of the two
terms on the right side of the equation.
Sherin notes that symbolic forms can be used correctly

by an appropriate pairing of a template and mathematical
justification, even when students do not invoke normative
physics ideas [5]. In the example above, the students invoke
parts of a whole because it is consistent with their under-
lying idea that two quantities need to be added to produce a
complete quantity.
Sherin labeled a closely related addition form, base plus

change. Parts of a whole and base plus change both
describe an identical mathematical operation: addition.
While parts of a whole describes the addition of indepen-
dent quantities, base plus change,□þ Δ, is a specific case
where the first term is a fixed quantity augmented by a
variable second term. While this may seem to be cued
primarily by a physics understanding, as seen in kinematics
equations, it is also the form for the equation of a line
(y ¼ mxþ b) and thus can be recognized in many other
physics equations and connected explicitly to graphical
representations.
Mark and Karl constructed an additional incorrect

expression of a kinematics equation, “vf ¼ vo þ 1
2
at2,”

after accounting for acceleration as a change in velocity.

Mark: ‘Cause we have initial velocity [circles vo] plus if
you have an acceleration over a certain time
[circles 1

2
at2]. Yeah I think that is right [5] (p. 515).

As before, a student’s conceptual schema is illustrated
during the construction and connected explicitly to the
associated structures in the base plus change template: one
term represents the initial or “base” quantity and the other
term represents some amount of change in that quantity.
Returning to Sherin’s coefficient of friction example, the

conceptual schema for the parts of a whole template is
described as “seen behind Karl’s statement that the coef-
ficient of friction consists of two components” [5] (p. 491).
This further supports the idea that despite an incorrect
physics understanding, students can show the correct use of

a symbolic form and that symbolic forms are divorced from
physics understanding. For Sherin, the conceptual sche-
mata are simple acontextual structures similar to diSessa’s
phenomenological primitives (p-prims), which are intuitive
knowledge elements that are not learned but intrinsically
held by individuals, such as “more means more,” a notion
that can map onto specific contexts (e.g., larger objects are
heavier) [6]. While addition is certainly a learned mathe-
matical skill, the idea is built up by years and years of
association so that students arguably develop an intrinsic
sense of what it means to express two quantities contri-
buting to a whole. In this sense, the conceptual schemata of
symbolic forms can be thought of as the intuitive knowl-
edge elements through which students intrinsically under-
stand the written structures in an equation.
Beyond this, it is important to note that equation

construction or interpretation involves the invocation of
several symbolic forms, which when used together carry
the associated meaning of the symbols. Students’ con-
struction of an expression to describe the coefficient of
friction invoked the inverse proportionality, (prop−, …

…□…),
coefficient (□…), and no dependence ([…]) symbolic
forms [5] to express the full mathematical meaning students
attached to the variables in the equation. Symbolic forms
can thus be nested within each other in whatever manner is
deemed necessary to convey the full meaning of the
equation. In order to interpret or convey this meaning
beyond reading the mathematical structures, we must tie
symbolic forms to understanding of the context or the
relevant extramathematical concepts, which is the aim of
Sec. III.

2. Previous application of symbolic
forms in related literature

Given the nature of symbolic forms to describe student
construction and understanding of equations, it has been
adopted in physics education research, as well as education
research in chemistry and mathematics. Working in an
electrostatics context, Meredith and Marrongelle [8]
adapted the conceptual schemata of symbolic forms to
account for the features of electrostatics problems that cued
integration among introductory physics students. They
found students invoking the conceptual schema of the
dependence form, a symbolic form that establishes the need
for a particular variable that an expression “depends on.”
Students invoked this conceptual schema when eliciting the
reliance of an integral on a particular variable. Students
invoked the parts of a whole idea when acknowledging the
need to sum up multiple small charges along a charged rod.
While Meredith and Marrongelle did not identify the
invocation of the accompanying symbol templates for these
schemata, the underlying ideas of parts of a whole and
dependence were revealed as aspects driving students’
choices to integrate.
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Ryan and Schermerhorn incorporated symbolic forms
analysis to address student understanding of the structure of
boundary conditions in the contexts of a potential step in
quantum mechanics and an electromagnetic wave at the
boundary between two media [29]. Researchers discovered
students invoked similar symbolic forms, starting with the
same amount (□ ¼ □) symbolic form [5]. Subsequently,
students would invoke other symbolic forms to further
describe other nested aspects of the equations. The flow of
students’ invocation of symbolic forms as well as the added
conceptual complexity to equation construction in upper-
division physics is in line with our prior findings [9].
Using symbolic forms in an effort to develop theory

around mathematical sensemaking, Dreyfus et al. address
student reasoning in quantum mechanics with the eigen-
value equation for the Hamiltonian and suggest two new
symbolic forms derived from an expert perspective [30].
The authors hypothesize the transformation symbolic form,
with a template of b□j□i and a schema of “reshaping,” and
the eigenvalue-eigenvector symbolic form, with a template
of b□j□i ¼ C j□i, and a schema of “transformation that
reproduces the original,” as a means to aid interpretation of
student understanding of eigenvalue-eigenvector equations.
The transformation symbolic form accounts for an operator
acting on a specific state. The eigenvalue-eigenvector
symbolic form is made up of the transformation symbolic
form as well as a coefficient symbolic form to incorporate
the processes of the quantum mechanical operation. In both
cases, student understanding of these structures in terms
of connecting mathematical sensemaking and physics
concepts is an important part of upper-division quantum
mechanics.
Within the mathematics community, the ideas of sym-

bolic forms were used to analyze calculus students’ ideas
when making sense of integral expressions [7]. Jones
identified variations in students’ conceptual understanding
when interpreting the various structures associated with
(mostly definite) integrals given as part of the tasks. This
led to the creation of several distinct symbolic forms,
some of which possessed the same template to dis-
tinguish between Riemann sum, area and perimeter, and
function-matching interpretations. Some of these forms

were duplicated to account for an integral expression
without limits on the integrand, while others had more
varied templates to account for different types of integra-
tion, the area between two functions or integration over a
physical shape. Students’ exposed conceptual understand-
ings often led to graphical representations of the given
functions and the use of these graphs to explain the
integration. An additional study by Dorko and Speer [31]
investigated student difficultieswith units in area and volume
computations, noting that students associate a measurement
with such a computation. They identified a “measurement”
symbolic form with a template that included a box for an
amount and a box for the unit, with a variant template
including a box for an exponent; the conceptual schema
would be “measurements have magnitude and units.”White
Brahmia [32] then modified this form to include a box for
sign in front of the magnitude box.
Beyond mathematics and physics education research, the

symbolic forms framework has been used for the analysis
of physical chemistry students’ use of partial derivatives in
a thermodynamics context [33]. This work illustrated the
ways in which students understood and applied symbolic
forms of reasoning when working with common mathe-
matical expressions in physical chemistry. In several cases,
students recalled specific processes, such as that of taking
the total derivative, or invoked rules or conditions, such as
dx ¼ 0 when x is constant. This showed the specific role of
recall in mediating student construction of and reasoning
about expressions when working with upper-division
content, consistent with findings of analyses of student
construction of differential vector elements.

3. Symbolic forms analysis of differential
length vector construction

As part of a broader study of student understanding of
mathematics and mathematical methods in upper-division
physics, we identified symbolic forms appearing in stu-
dents’ construction of differential length vectors for an
unconventional spherical coordinate system we called
“schmerical coordinates” [9]. The functional difference
in the coordinate systems was the change in placement

FIG. 1. (a) Conventional spherical coordinate system; (b) the “schmerical coordinate” system, an unconventional spherical coordinate
system with radial componentM and angles α and β, that was presented to students in the task discussed. The correct differential length
vectors for each system are shown in (c) and (d), respectively. Image from Ref. [9].
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of the angle measured from the z axis; we changed the
angle as being measured up from the xy plane consistent
with latitude measurements on a globe (Fig. 1). This change
necessitates the use of cosine rather than sine when
constructing the arc length associated with motion in the
azimuthal direction. In this section, we provide a brief
overview of the original data analysis before specifically
expanding on this work to develop our theoretical model
later in the paper.
Differential length and area elements appear in vector

and scalar integration involving electric and magnetic
fields. Due to the symmetry of physical situations such
as the electric field due to a point charge or the magnetic
field due to a line of current, much of vector calculus in
physics uses non-Cartesian (spherical and cylindrical)
coordinate systems. The development of schmerical coor-
dinates allowed us to assess students’ underlying under-
standing in terms of arc lengths and differential changes
without relying exclusively on explicit recall of the differ-
ential quantities in spherical coordinates.
Pair interviews were conducted at two universities,

facilitating more student-driven interaction with less input
or influence from the interviewer. Interviews were video-
taped and later transcribed for analysis. After providing the
coordinate system, the pair of students were asked to
construct a differential length vector in schmerical coor-
dinates. Preliminary analysis identified students’ concept
images [34] associated with the differential length vector as
a means to identify the specific ideas or properties that
students associated with such elements. A concept image
perspective was first used in mathematics education
research and is similar in many aspects to resources [35]
or knowledge in pieces [6]. Where a concept image is a set
of related, resourcelike ideas, the evoked concept image
would be the resources activated in a given context. While
students focused on several key aspects, such as a need for
appropriate dimensions or multiple components, other
aspects relevant to coordinate system geometry were not
employed by all students. With a further desire to under-
stand the construction process and the terms with which
students wrote their expressions, the secondary analysis
involved the identification of symbolic forms by attending
to the structures students expressed in equations and their
understanding of that structure. Symbolic forms provided a
lens to investigate students’ structural understanding of
differential length vectors as they constructed a generic
differential length vector for a non-Cartesian coordinate
system [9].
Our analysis identified several symbolic forms from the

original literature (parts of a whole, coefficient, no depend-
ence), as well as new symbolic forms that emerged due to
the increased sophistication of mathematics in upper-
division physics (differential, magnitude-direction) [9].
With the concept of image analysis in mind, we noticed

that the inclusion of specific structures in student expres-
sions sometimes resulted from an alternate understanding
of a specific term; symbolic forms analysis did not account
for this differing understanding. For example, Carol and
Dan often motivated the inclusion of a differential as a
change in a particular quantity, without reference to size.

Carol: …you have a change in your M̂ is going to be your
dM, it’s your change in your M.

Elliot and Frank, however, emphasized the infinitesimal
aspect of the differential, with Elliot saying “I think it’s M
times Δβ, a small beta, because it is like you take r times a
small θ.” Elliot’s initial mention of Δβ is accompanied by a
discussion of differentials as “small” quantities.
Despite different perspectives on the meaning of a

differential, both pairs arrived at the same symbolic
structure. Varying representations of a differential make
sense, given that literature has identified several ways in
which students use and understand differential quantities
[23,26,36–38], but our interpretation of symbolic forms is
that of acontextual constructs. Symbolic forms were
designed to account for student recognition of the need
for specific mathematical structures but do not explicitly
account for the contextual motivation for that structure; the
context of the problem drives the choice of conceptual
schema and associated symbol template. If, indeed, sym-
bolic forms accounted for contextual analysis, they would
have to be described in a way that distinguishes the
structural components between different physics contexts
(e.g., adding constituent energies in a conservation of
energy context would require a different form than that
for adding constituent vector components in a net force
context). This distinction would inevitably confound analy-
sis and obscure the understanding of the underlying
mathematical reasoning for symbol arrangement and rep-
resentation for which symbolic forms were designed.
A simpler depiction of how varying contexts can

motivate the same symbolic structure can be seen when
looking at students’ reasoning about the inclusion of the
scaling factors. Given the curvature of non-Cartesian
coordinate systems, the differential length components in
the angular directions are arc lengths. For spherical
coordinates, this yields rdθ for the component in the θ̂
direction and r sin θdϕ for the ϕ̂ component. As students
constructed differential length vectors, one pair recognized
the nature of the component as an arc length using
geometrical reasoning, while others often only reasoned
about the inclusion of the radius terms as necessary to give
the appropriate dimensions.

Adam: This doesn’t have any units of length, so it needs to
have some M term.
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Here, Adam recognizes that the differential angle compo-
nent does not have the units of length and thus fills the
blank space in front of dα with an M (Fig. 2).
Others engaged in a third line of reasoning recognized

that the coefficient box needed to be filled; but as the
groups did not draw on the requisite knowledge to derive
the terms, these students used a process of recall to a more
familiar spherical coordinate system and mapped quantities
to schmerical coordinates.

Bart: so now we have just to compare so we have r it is
M, θ is α, ϕ is β.

Students in each of these groups recognized that an extra
term was needed in their expressions. We identify their
treatment of this space before the differential angle terms as
an invocation of Sherin’s coefficient form (□…). The
associated conceptual schema describes the coefficient
form as a factor or constant multiplied on the left of an
expression that attenuates the value of the quantities. In the
case of Sherin’s coefficient of friction task, the constant, C,
was added “almost as an afterthought” [5]. In our case,
students reasoning geometrically can easily see how
increasing the radius would attenuate the value of the
arc length, while those using dimensionality express the
inclusion ofM as just a factor that contributes needed units
to the term without explicitly accessing the underlying idea
of arc length. Students using recall display little underlying
conceptual reasoning, only arguing that some term needs to
fill the spot because it needs to bear resemblance to an
earlier problem. While each of these cases invokes the
coefficient symbolic form, the reasoning for the invocation
is distinct and not addressed with attention to the under-
lying mathematical schema.
Recall presents a uniquely interesting mechanism for the

invocation of symbolic forms, as it sidesteps attention to the
underlying conceptual schema. Yet recall of specific ideas
is relevant to equation construction at the upper level [33].
Utilizing a conceptual blending framework [11], we later
address the role of recall as it is connected to the students’
construction of expressions or equations.

C. Connection of mathematics and physics through
conceptual blending analyses

As a means to address the integration and networking of
contextual ideas with students’ understanding of the

symbolic structures in an equation, we draw on the theory
of conceptual blending [11].

1. Overview of conceptual blending

Conceptual blending originated from the study of lin-
guistics as a way to discuss the interaction of form and
meaning in the development of language and human
understanding. At its most basic, it explains the origin
and understanding of metaphor and analogy as they are
conceived in human interaction. A conceptual blend
describes the combination, or compression, of ideas from
two distinct mental spaces, which often contain informa-
tion connected to one’s previous experiences. The result of
the combination is referred to as a blended space where
new meaning emerges.
One of the more accessible examples of blending from

the original literature involves two rival CEOs in a business
competition:

We say that one CEO landed a blow but the other
recovered, one of them tripped and the other took
advantage, one of them knocked the other out
cold [11] (p. 126).

This example represents a compression of two input spaces:
the business space, which contains the CEOs and market
strategies; and the boxing space, which contains two
competitors engaging in fisticuffs. Each input space rep-
resents a collection of individual ideas that do not inher-
ently belong to one narrative. It is not until we connect a
CEO to a boxer or a blow to an effective business strategy
within the blended space that we can make sense of “one
knocked the other out cold,” as the CEOs are not engaged in
actual physical combat or being rendered unconscious by
shifts in the market.
The typical figure presented to illustrate blending shows

the compression of individual input spaces into the blended
space, as well as a generic space (Fig. 3). The generic space
provides the underlying structure to the two input spaces,
identifying the commonalities within each space. Starting
with an element of one input space, the generic space is
selected for the connection to another element in a second
input space. Once the appropriate connections are estab-
lished, there is an active compression of elements (solid
line) into the emergent blended space. Using this repre-
sentation, we can develop a conceptual blending diagram

FIG. 2. Adam added “M” in his second term to include units of length when constructing the differential length vector. We identify this
as the use of the coefficient symbolic form.
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for the boxers or CEO blend (Fig. 3) with the generic space
identifying which elements in the input spaces are com-
bined. Here we see the connections laid out as the
conception of boxing CEOs emerges as an amalgamation
of the two different spaces.
The boxing CEOs example represents a specific type of

blending network identified as a single-scope blend. In
such a blend, the frame of one space (boxing) provides the
organization of the blend, bringing the two CEOs into
spatial and temporal proximity. The boxing input space is
mapped entirely onto the business frame to provide a lens
of physical combat onto the business competition. As such,
single-scope blending provides the prototypical network
for most conventional metaphors [11].
The other commonly cited type of network is identified

as a double-scope blend, in which the organizing frame of
the blended space is integrated from both spaces. Drawing
on conceptual blending literature, when one describes
foolish investments as “digging your own grave,” there
is a conceptual blend of grave digging and foolish actions
[11]. While the grave digging provides most of the framing,
presenting “you” as the gravedigger and “your actions” as
the shovel sinking into the earth, the causality is projected
from the foolish action space since the completion of one’s
grave plot does not immediately imply death within the
space of grave digging. Yet the implication is emergent in
the blended space, as the causality of “foolish action leads
to failure” is brought into the blend. Whereas in a single-
scope blend, one input space contributes the entirety of the
organizing frame, in a double-scope blend, the other input
space provides aspects of the structure as well, such as
causation, and time and space compressions [11].
In some cases, with either conceptual blending network,

backward projection can occur, in which the blended space
provides guiding information back to an initial input space.

For example, the blending of mathematics and physics
ideas may provide insight into the meaning of a particular
mathematics operation or physics concept [14]. In a study
of student understanding of vector calculus operations in
electricity and magnetism, while reasoning about the curl
of a given field a student had difficulty connecting the
symbolic interpretation of Maxwell-Ampère’s law to the
graphical representation of the field. Bollen et al. [14]
describe how a fluent calculation allowed the student to
reinterpret the curl of the field at a given location without
needing further intervention.

This makes sense, if the changing electric field
vanishes, the curl of the magnetic field should
vanish as well. However, the magnetic field itself
is nonzero. […] the drawing confused me at first,
but now I can see that a paddle wheel would not
spin here [14] (p. 7).

In this case, the students’ calculation and subsequent
interpretation of the equation led them to reevaluate the
nature of the physical system and arrive at the correct
expression. The student then recognizes the curl is 0, by
invoking the paddle wheel heuristic (a common visual
heuristic used for quickly determining the existence and
direction of the curl at a point). The backward projection is
the use of the blended mathematics-physics space to make
sense of the physics input space.

2. Previous application of conceptual
blending in related literature

Given the focus of conceptual blending on providing a
lens for understanding how ideas are connected and
combined in the learning process, conceptual blending

FIG. 3. Basic diagrams depicting conceptual blending. (a) Generic model of a conceptual blend. Image reproduced from Ref. [11].
(b) Model for the boxing CEO blend. Adapted from Ref. [11].

SCHERMERHORN and THOMPSON PHYS. REV. PHYS. EDUC. RES. 19, 020149 (2023)

020149-8



has been specifically brought into physics education research
to explain how students connect mathematics and physics
[13–16,39]. Researchers have additionally used conceptual
blending to explore the use of mathematics in chemistry
courses [40]. Blending has been used more generically in
physics to explain the interplay of various physics principles
in terms of wave mechanics [41] and energy [42].
At the introductory level, Bing and Redish [13] adapted

the language of conceptual blending to discuss the ways in
which students combine mathematical and physics knowl-
edge using two examples of air drag and kinematics. In these
examples, the two input spaces are defined as “mathematical
machinery” and “physicsworld.”Anexample of a blend here
takes “positive and negative quantities” as mathematical
machinery and maps it with “up and down directions” to
arrive at a typically defined one-dimensional coordinate
system, with “þ” meaning up. In the single-scope example,
the studentmappedamathematical template for equating two
fractions onto the numeric values of a given velocity and
distance, without regard to the physical meaning or units of
the quantities. Since the student focused on themathematical
processwithout attention to units, Bing andRedish identified
this as a single-scope blend. Furthermore, the researchers
distinguish this from double-scope blending, in which a
student used the signs as algebraic rules that encoded the
physical direction of the forces.
Other researchers have adapted conceptual blending to

upper-division physics in order to explain how students
connected physics concepts in electricity and magnetism to
the mathematical concepts of integration [15] and vector
differential operators [14]. The blending structure used here
separates out three spaces as “math notation space,” “sym-
bolic space,” and “physics space.” Across the students’
conceptual blends, the physics space and symbolic space
remain uniform lists of quantities (electric field, charge
density, etc., for the physics space) or equations (e.g.,
∇ · E ¼ ρ=ϵo in the symbolic space) [14]. The only variation
in the blends comes from the mathematics notation space,
which accounts for theways in which students understand or
express mathematical concepts of integration, differentials,
or divergence of a vector field. By separating out various
realms that function together to establish a student’s con-
ceptual understanding, these results demonstrate several
cases where a student’s conceptual understanding of an
equation or mathematical idea leads to an incorrect response.
Blending has been further incorporated into the study of

chemistry students’ connection of a mathematics space
and a chemistry space in the context of chemical kinetics
at both the introductory and upper divisions [40].
Chemical kinetics involves mathematical ideas such as
graphs, algebraic expressions, rates, and exponentials to
describe various reaction orders of chemical reactions.
The researchers categorized students into groups based on
how often, or whether, the students blended mathematics
and chemistry. Students were labeled as high-frequency

blenders, low-frequency blenders, or nonblenders. High-
frequency blenders were able to succinctly express the
relationship between algebraic expressions and graphs,
while nonblenders were unable to connect the relevant
mathematics to the associated chemistry. Additionally,
researchers found that students receiving a mathematics
prompt prior to the prompt within a chemistry context
were more likely to engage in the blending of mathematics
in chemistry when compared to students who were given a
chemistry context first.
Wittmann adapted conceptual blending to explain the

origin and intricacy of introductory students’ emergent
conceptualizations ofwave pulseswith intuitive ideas related
to throwing a ball [41]. Depending on the aspect of the
physical system that students attended to, he identified a
“wave-ball blend,” where a faster flick corresponds to faster
movement in theway a harder throwmeans a faster ball, anda
“beaded-string blend,” where the nearest-neighbor inter-
actions are responsible for pulse speed. The blends here
are depicted with concise, one-to-one compressions by
connecting elements directly between input spaces and then
subsequently to an element representing the blend (e.g.,
“wrist flick” from the “observedwave input” and throw from
the “ball input” to a “wave-toss”). This representation is
similar to that in work depicting the integration of location
and substancemetaphors for energy into a coherent picture of
“absorbing energy makes things go up” [42].
None of the examples presented here make use of the

generic space described in the conceptual blending liter-
ature. For the latter two examples, the generic space is
arguably tacit and redundant (as in the boxing example):
the compressions of the two input spaces are concise in that
elements that share analogous aspects in other input spaces
are explicitly connected by a dotted line (representing a
compression in the original blending literature [11]). In the
examples connecting mathematics realms to physics
realms, the input spaces represent three distinct areas from
which students draw knowledge without structure or con-
nection among the input spaces. Without the generic space
identifying connecting elements, the active nature of a
student’s blending process is obfuscated. We argue that
the generic space, or depiction of compression, is necessary
to the invocation of blending, especially in cases where the
blending is not clear and students’ combination of ideas is
unclear from a conceptual standpoint in order to highlight
underlying ideas that drive the compression of two elements.

D. Previous representations of symbolic forms as
elements of a conceptual blend

Recognizing the role of symbolic forms in the con-
struction of equations within physics, Kuo et al. framed
symbolic forms as a conceptual blend of the symbol
template and conceptual schema [16]. They addressed
students’ qualitative reasoning or “processing” of equations
by presenting two contrasting case studies in which
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students interpreted the kinematics equation v ¼ vo þ at.
While one student reasons formulaically, the other is said to
engage in a blended process of mathematics and physics as
they interpret the mathematical structure of the equation in
terms of the physical situation.
The authors then discussed students’ reading out or

failure to read out a base plus change symbol template,
□þ Δ, from the given equation and connected this to
students’ responses to the second prompt. One of the
students, “Pat,” explained their reasoning as follows:

Pat: Because I mean, if you look at it from the unit side,
it’s clear that acceleration times time is a velocity,
but it might be easier if you think about, you start
from an initial velocity and then the acceleration
for a certain period of time increases or decreases
that velocity. [16]

Pat’s attention to the “at” term as changing the velocity is
the key aspect of the reasoning that evokes the base plus
change formalism.
The authors identify this as conceptual blending of the

symbol template and conceptual schema of the base plus
change symbolic form, labeling the change in velocity as
the underlying conceptual schema. According to the
original use of symbolic forms, though, they are acontex-
tual: the conceptual schema of base plus change only
accounts for the summation of terms in which “one is the
base value; the other is a change to that base” [5]. Ideas of
velocity and acceleration are not included in the definition
of base plus change. It is only through an understanding of
the physics principles in the task that we recognize that the
context for the base and change is velocity and acceleration.
Depending on how the relationship is presented, this in turn
shares the same underlying conceptual schema as the Δ in
the □þ Δ template. With introductory physics concepts, a
symbolic form’s conceptual schema and physics conceptual
understanding can often be closely related; however, the
conceptual schema is not the content idea itself, but the
underlying mathematical expression of the idea.
Likewise, the parts of a whole template appear in

equations when there is a need to add components of a
larger quantity together. As an argument in semantics, this
does not stipulate why such quantities need to be added. In
another example of blending, Kuo et al. present the
conceptual schemata of parts of a whole with an example
of how guests at a wedding belong to multiple groups: close
relatives, close friends, business contacts, and others [16].
The idea that wedding guests can be split into various
groups that can be summed to give the guest list is a
property of the wedding in the same way vectors can be
represented as a sum of components. In both cases, the
conceptual schema appears buried within the property of
the target quantity but is defined by neither. The schema,
“substances contributing to a whole,” is acontextual so that

it may be applied across multiple physical laws. The
representation of vector quantities using equations is
related to the mental integration of the properties of vector
quantities with the appropriate mathematical template,
while guest lists for weddings are (typically) devoid of
mathematical symbols—but parts of a whole is applicable
as a conceptual schema for both situations. This distinction
between context and underlying schema is the essence of
what drives the theoretical work in this paper.
Kuo et al. suggest symbolic forms as an act of conceptual

blending to illuminate the way students work at the
mathematics-physics boundary but provide little attention
to the actual blending process or the associated formalism
since this is not the focus of their work. As a result, an
underlying structure to the blend is not addressed. In the
model that Kuo et al. present, blending is adopted as a
broader process. This leaves room for deeper interpretation
and further efforts to connect students’ conceptual under-
standing to symbolic forms in general.
In the next section, we present an argument as to why a

symbolic form is not a full blend in and of itself. We
address the missing analytical aspects in previous literature,
such as the underlying generic space, and provide theo-
retical structure for how blending occurs when constructing
equations. In particular, we present students’ interpretations
of equations, such as in the task presented by Kuo et al., as
an act of backward projection rather than of forward
blending.

III. SYMBOLIC BLENDING: STRUCTURING
THE ROLE OF SYMBOLIC FORMS

IN A CONCEPTUAL BLEND

In the same way conceptual blending was used to attach
meaning to form in the development of language, our goal
for the analysis of differential length vector construction
was to connect contextual meaning (understanding) to
symbolic forms as students develop equations. Writing
an equation in physics is a blend of mathematical repre-
sentation and measurable or quantifiable entities. There is a
need to understand both the physical system or variables
and the mathematical representations. In the analysis of
student work, these mathematical relationships appear as
symbolic forms.
The literature utilizing symbolic forms often bypasses

the contextual reasons for invocation by equating the
student’s mathematical understanding of the expression
with the understanding of the physics content, such as the
ideas of velocity and acceleration describing the base plus
change symbolic form in the previous section. While a
strict symbolic forms analysis reveals students’ structural
understanding and associations related to the mathematics
context, it only tacitly, if at all, attends to the students’
understanding within the context that dictates the need for
the specific form. That is, the content basis for choices
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made as to the symbolic arrangement of expressions is
neglected within the formal theory.
In this section, we present the symbolic blending model

for equation construction that situates the two aspects of
symbolic forms as two spaces within a conceptual blend.
We present supporting examples of this model in the
context of earlier work investigating students’ construction
of differential vector elements in upper-division electricity
and magnetism [9]. Upper-division physics provides sev-
eral affordances in regard to parsing students’ conceptual
understanding and expression of equations. By the time a
physics student has entered the upper division, they have
encountered and used symbols for addition, notation for
vectors, and calculated numerous integrals and derivatives
in both mathematics and physics courses. Therefore, we
expect that the symbol templates used during the con-
struction of a differential vector equation are fairly
ingrained in what we could call a student’s conceptual
toolbox. We can then think of the construction process as a
blending of these templates with physics understanding
rather than a spontaneous creative process.
We show the affordances of symbolic blending in terms

of other analyses, both from our own work and in previous
literature. We further elucidate the importance of the
generic space in conceptual blending in terms of account-
ing for variation in conceptual understanding. We also
show how such a model can account for variations in
structural representation for the same conceptual informa-
tion. Next, as symbolic forms can also be used to describe
students’ “reading out” of equations, we focus discussion
on the role of recall and backward projection in symbolic
blending and show how this can also contribute to equation
construction. Finally, we elaborate on the utility of this
particular model in interpreting when students are strug-
gling with constructing equations by isolating difficulty to
either structural or conceptual understanding.

A. Proposed model of symbolic blending

Possessing some level of conceptual understanding,
students can express their understanding of a physical
situation as an equation, choosing from various symbolic
representations. With symbolic forms to account for math-
ematical structure, two large input spaces appear. One of
these spaces includes a selection of mathematical repre-
sentations, which we identify as the symbol template piece
of Sherin’s symbolic forms. The remaining input space
contains the sum of students’ content understanding
regarding a specific topic, including associated variable
representations. For simplicity, we consider the use of a
variable to be identical to the content idea it represents to
allow for a smoother depiction of physics ideas and
equation construction. We believe that most upper-division
students are more like expert physicists and have more
familiarity with treating a physics concept and the variable
used to represent it as one and the same. As students

combine aspects of these input spaces, the equation is
constructed. The equation is then a sentence in a physics-
mathematics language given form by the understanding of
mathematical relationships and meaning because of the
physics conceptual understanding. This leads to a final
representation or emergence of an equation within the
blended space.
In the symbolic blending model, given how the con-

ceptual schema was designed to describe the justification
for the mathematical structures of an equation in symbolic
forms, we identify it as the underlying generic space in a
conceptual blending framing of students’ construction of
equations. The conceptual schema is preserved as the
underlying mathematical schema of a template but now
also appears as the generic essence of students’ ideas. For
example, the underlying idea behind some total energy as
being a sum of both kinetic and potential energies is the
addition of two parts to make a whole. When the under-
lying meaning of the idea that the student wants to express
aligns with the conceptual schema of the symbol template,
the elements from the physics space and the template space
are blended together in an equation. The conceptual
schema, as the generic mental space, provides the structure
for connecting the template to the context—the quantities
being mathematized.
As in our prior example, we could also write an equation

for the surface area of a cylinder. This second example is
also fundamentally a sum of multiple parts to equal a
whole. Defining the generic space as the conceptual
schema allows us to account for students representing
identical structures in equations that represent different
contextual information. We discuss the deeper role of the
generic space in the next section.
The mapping of symbolic forms and contextually rel-

evant knowledge onto conceptual blending creates the
format for a blending diagram that can later be used to
parse students’ construction of equations. Figure 4 shows
the model of symbolic blending; Table I provides abbre-
viated descriptions of each space. Blending of this sort,
involving the connection of physics and mathematics, can
take either a single- or double-scope form. The distinctions
are discussed by Bing and Redish [13], who present two
cases discussed in Sec. II. C. 2., one in which the math-
ematics structures the physics and another where math-
ematical and physical statements provide structure to one
another (e.g., þ=− signs behave as algebraic rules but also
convey physical meaning). Interpreting this model into
work with symbolic forms means in some cases the
conceptual understanding may entirely drive the construc-
tion of an equation (single-scope). In other cases, the
symbol template may also serve to guide students’ incor-
poration of physics ideas into an equation (double scope).
The final equation is the product of the blend. Similar to

the statement “the CEO knocked out his competition,”
which only makes sense in a space where business and
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boxing are blended, a contextually relevant equation only
has interpretable meaning when there are symbolic and
contextual spaces from which to draw information.
This combination gives a focus on content knowledge to

extend symbolic forms, in a way that students’ varied
conceptual understanding can be tied to explicit represen-
tations in their equations. This allows us to look at the
physics context as the justification for the representation of
terms, which is independent of the structural focus of a
symbolic forms approach.
As noted earlier, the generic space, which further

structures the blending of elements within the input spaces,
has typically been absent in previous analyses of students’

blending of mathematics and physics. The incorporation of
symbolic forms establishes this underlying structure for the
blending of mathematics and physics in terms of construct-
ing and interpreting equations.

B. Supporting examples

To illustrate the symbolic blending model, we turn to
earlier work discussed in Sec. II B 3, where we applied
symbolic forms in upper-division electricity and magnetism
[9]. The addition of an input space to address contextual
knowledge allows us to deepen our analysis by looking at
how the aspects of the context motivate the creation of the
equation and specifically, the selection of different symbol
templates used by students when constructing differential
length vectors. As an example of how students blend
contextually relevant information with symbolic represen-
tation, consider a pair of students, Elliot and Frank, as they
started their construction of a differential length vector for
schmerical coordinates.

Frank: Yeah, so like there, dl, there are three different
dl‘s. There is dl with respect toM, dl with respect
to α, and dl with respect to [β].[construct each
component individually]

Elliot: You sum them, so it is those added together.

Elliot and Frank focused on the component nature of a
vector; specifically, on the idea that a differential length
vector has three components for each of the three coor-
dinate directions. They further recognize that these com-
ponents (or parts) need to be summed to completely
represent the full vector. Likewise, students associated
each component with a given variable direction, which is
expressed in the final magnitude-direction pairing of a
vector. Elliot and Frank articulated the “with respect to”
later as they specifically stated things like “now you’re
going to have a length component in the beta-hat direction.”
With a symbolic forms perspective, observations of stu-
dents’ written work and discussion of the expression reveal
two main structures: parts of a whole to account for

FIG. 4. Symbolic blending model for student equation con-
struction and interpretation that incorporates symbolic forms
elements. The contextual knowledge to be expressed as an
equation forms one input space. The symbol template is a second
input space, while the conceptual schema is the underlying
generic space. The resulting blended space is the represented
equation.

TABLE I. Description of each space in a conceptual blending [11] framework as it is used in our symbolic blending model. The two
components of a symbolic forms [5] framework, the conceptual schema and symbol template, take the role of the generic space and an
input space, respectively. The additional input space contains the relevant contextual knowledge that a student brings to the construction
of an equation.

Conceptual blending
space Role of space within the model

Generic space Conceptual schema from symbolic forms [5]: underlying mathematical justification of the symbol template.
Provides framing for which elements in the associated input spaces are connected.

Input space 1 Symbol template from symbolic forms [5]; includes students’ externalized structural representation of equations.
Input space 2 Contextual knowledge to be expressed. Geometric, physical, etc. meaning used to provide context for the

mathematical structure. Informs which schema and template to use in other input spaces.
Blended space Final expression or equation; carries condensed conceptual information from the combination of input spaces.

Individual elements are compressed to form new meaning in the blended space.
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students’ addition of the multiple components and magni-
tude-direction to account for the specific instantiation of
the vector notation [5].
We argue that these specific combinations of conceptual

knowledge and symbolic representation can be treated as a
conceptual blend of the two domains since they result in the
construction of complete or partial expressions, which only
have meaning when understood through both of the initial
input spaces. Figure 5 shows the blend for this student pair.
The generic space corresponds with the conceptual schema
of symbolic forms. In the symbolic forms literature, the
conceptual schema of “amounts of a substance contribute to
a whole” is seen as behind the use of the template
[□þ□þ□]. As before, the conceptual schemata of
symbolic forms are the underlying mathematical under-
standings of those external structures. In the contextual
knowledge input space, we see that “amounts being added
to make a whole” is also associated with the understanding
of the vector component property of a differential length
vector. This understanding of three-dimensional vectors is
connected to the symbol template through the generic space
and the two are then compressed in a conceptual blend
resulting in an equation that depicts the summation of
individual components of the differential length vector. Put
another way, combining the knowledge that a vector in
three dimensions can be represented as three magnitude-
direction pairings pursuant to the coordinate system (α̂, β̂,
and M̂ in schmerical coordinates), with the understanding
of the template for the addition of substances that contribute
to a whole, results in a final equation that is the sum of
vector components.
While the previous example depicts Elliot and Frank’s

broader characterizations of the differential length vector,
this model for conceptual blending can be mapped onto
students’ processes of construction, connecting the pieces

of the template to the physical reasoning and discussion as
the template is filled out.
In a second example, Carol and Dan begin their inter-

view by calling forth the need to have three unit vectors to
account for each component and leave space between each
to fill in the magnitudes.

Carol: So, we’re going to have, um, we’re going to have
[α̂], [β̂], and some M̂. That’s whatwe usually do and
then they each need to be a length (boxes each
componentwith hands). You need a length vector…
This is, there is going to be a plus here.

Dan: (writes M with the M̂)
Carol: Okay, yup, so some M in the M̂. Isn’t this dM?
Dan: Yeah, because it is dl, yup.
Carol: Right. So, you have a change in your M̂ is going to

be your dM, it’s your change in your M.

Following the structuring of their differential length vector,
Carol articulated that each component needed to be a length
and then curvedher hands into a parenthetical shape to isolate
each magnitude and unit vector pair. This cued Dan to write
anM in the space before the M̂. In terms of symbolic forms,
they attended to the magnitude-direction template nestled in
the parts of awhole structure and identified that each needs to
contain an element of length (Fig. 6). Carol emphasized the
existence of structure of this template at this moment by
articulating “yup, some M in the M̂.” Once again, we see
where the contextual need for expressing multiple compo-
nents is blended with a symbol template for parts of a whole.
For Carol and Dan, this results in written expression that
holds space for future variables.
While Carol and Dan did not elaborate on the specific

underlying reasoning as they hybridized the parts of a

FIG. 5. Symbolic blend for Elliot and Frank. They first
constructed the individual components using magnitude-direc-
tion, then added each component together, since the differential
length vector included multiple terms for each dimension.

FIG. 6. Symbolic blending diagram for Carol and Dan as they
began construction of the differential length vector. They started
with a combined parts of a whole and magnitude-direction
template. Next, they used the idea of length to fill in the
magnitude term before they represented it as a differential.
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whole and magnitude-direction symbolic forms, the state-
ment “that’s what we usually do” suggests a level of recall
moderating the construction. This is an idea consistent with
previous blending literature, which argues that invoking
forms together, rather than each independently, is not
unexpected for upper-division students [15]. Using this
perspective, it also makes sense that Carol’s and Dan’s dual
invocation was accompanied by a level of recall. The
students had become familiar with these quantities and
representations to a specific extent and they believed they
recognized how the differential length vector needed to be
structured. Here, Carol and Dan were correct with the
structures that they had carved out from memory. While
recall has been shown to mediate students’ construction of
equations and use of symbolic forms [33], here recall
played a role in the students’ contextual input space
(Fig. 6). Students accessed the underlying mathematical
understanding of vectors needing multiple components
through this recall and blended the requisite elements of
the coordinate system with the symbol template. Had the
students been asked to elaborate on why they had written
the expression this way, we can imagine that they would
say something similar to what Elliot and Frank said above.
The further role of recall in symbolic blending will be
discussed later.
The next step for Carol and Dan was to add an M before

the M̂ terms to account for terms of length. At this point,
Carol and Dan are attending the magnitude portions of the
magnitude-direction symbolic form and including an M in
the magnitude portion of the template (Fig. 6). Emphasis on
dimensionality in other places in the interview appeared as
an invocation of the coefficient symbolic form [9]: pairs of
students were building angular components and recognized
that a differential angle did not carry the needed units of
length, as Adam identifies below.

Adam: …This doesn’t have any units of length, so it needs
to have some M term.

These represent manifestations of the coefficient because
students explicitly argued that something else needed to be
included just to account for the units of length. With the
coefficient form representing a constant or static factor that
“defines the circumstances under which physics is occur-
ring,” [5] we can see the placement and treatment of M
within this light. In a blending diagram, this would show up
in the contextual input space. In the case of the angular
components,M is a constant radius at which the differential
length would be traced out in an angular direction.
When considering motions in the M̂-direction, the

variable M is no longer static but needs to account for
variation in the length of the coordinate vector. Carol and
Dan invoked a new symbolic form of representation upon
recognizing this. They represented this as a dM, as the
differential length vector component in the M̂ direction

needs to account for the change inM. This is represented in
the blend with the invocation of the symbol template d□
for the variable M (Fig. 6). The differential concept image
aspect and differential symbolic form identified in previous
work [9] go hand in hand.
The conceptual blending template now allows the con-

nection of these two ideas from different theoretical lenses
and dually allows us to model variations in students’ ideas
related to the differential. For example, Elliot and Frank
invoked the differential symbolic form but did so by
attending to the infinitesimal nature of the differential.
Rather than a contextual space that focused on a change in a
variable, the context driving the use of the differential
template was the need for a small quantity (Fig. 7):

Elliot: So, it’sM times some Δ. I think it’sM times Δβ, a
small β.

The pairs CD and EF invoked the differential with
“change in quantity” and “small quantity,” respectively.
While both interpretations are appropriate in the given
context, we consider these distinct evoked concept images,
consistent with the varied treatment of the differential
between disciplines and the different meanings that stu-
dents attribute to a differential quantity [7,23,24,36]. Given
the variation, we identify the conceptual schema or essence
as “differential as mathematical quantity.” The connection
of multiple contextual concepts to the same symbol
template highlights the importance of including the generic
space, which is discussed in greater detail later as an
affordance of our model.

FIG. 7. Symbolic blending diagram for Elliot for the differ-
ential template with varied conceptual understanding. Here Elliot
used the differential as a small quantity rather than a change in a
quantity.
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The last of the symbolic forms identified in this study was
the no dependence form, which accounts for the absence of a
variable or quantity in an expression after a student explicitly
dictates that the expression is independent of said quantity.
This appeared in two sets of interviews, where students
attended to components in the angular directions. When
constructing the α̂ component, Adam and Bart correctly
decided that the term should not include any aspect of the
other angle. This no-dependence form appeared because of a
comparison to the β̂ component, which scaled with the
placement of the azimuthal angle.

Adam: (sweeps arm vertically) For [motion in] α, it
doesn’t have any dependence on this other angle.

As with the other symbolic forms, we can now elaborate
upon students’ use of the no dependence form and connect
it explicitly to student reasoning about the geometric
motions using conceptual blending (Fig. 8). Again,
Sherin’s conceptual schema “a whole does not depend
on a quantity associated with an individual symbol” takes
the role of the generic space. The whole is the α component
nested inside of the summation of components. Then
Adam’s explicit exclusion of a β term in the α component
can be compressed with the symbol template that shows the
absence, because of the connection through the underlying
schema in the generic space.
Importing a conceptual blending framework allows for a

sense of the contextual mechanism through which symbolic
forms are activated as students make sense of the math-
ematics used in physics. A depiction of a deeper under-
standing of physics and mathematics concepts, as well as
the relationship between them, emerges, which is essential
for students in upper-division physics.

The introductory kinematics context described earlier
involved connecting acceleration to changing velocity,
which could be interpreted as an incomplete understanding
of the definition of acceleration. As such, it is difficult to
distinguish between the conceptual schema of “change in
base quantity” and the contextual understanding of “accel-
eration as a change in an object’s initial velocity.” By
distinguishing these two quantities as different within our
model, we recharacterize the work of Kuo et al. [16], which
treated blending as between the two components of symbolic
forms (conceptual schema and symbol template), as instead
exploring students’ blends of contextual understanding and
symbolic expression. In this section, we have clarified and
fully articulated such amodel by representing the conceptual
schema as the generic space in a blend of contextual
understanding and symbol template input spaces.
In physics, the expression of an equation often involves a

substantial understanding of physics concepts; in upper-
division physics, both the mathematics and the physics are
generally more sophisticated and/or abstract. Expressions
of vector calculus connect to various coordinate systems,
vector fields, and charge or current distributions, which are
built into students’ expressing of equations and in turn can
be interpreted from the expressions. As shown above,
variations in students’ conceptual understanding of quan-
tities, such as the differential, are now present. The
symbolic blending model presented here accounts for such
variation by separating the conceptual schema and con-
textual conceptual understanding in the analysis of stu-
dents’ in-the-moment construction of equations, which
becomes increasingly important to develop an understand-
ing of students’ work as they move beyond algebraic
contexts to those that require scalar and/or vector calculus.
Dreyfus et al. conjecture that there are “new” symbolic

forms that are “a step farther removed from physical
interpretations” [30] (p. 9) than Sherin’s original symbolic
forms and are necessary for mathematical sensemaking
with advanced physics content such as quantummechanics.
Our work supports, and even formalizes, this notion of
symbolic forms being removed from physical interpreta-
tions, especially at the upper division; however, we dis-
agree with their characterization of Sherin’s original forms
and maintain that these forms, even at the introductory
level, had a similarly separated relationship with the
physical world that was underappreciated by subsequent
literature. We hope to demonstrate this throughout the
remainder of this work.

C. Affordances of the symbolic blending model

We identify some key benefits of the symbolic blending
model throughout the following section. This model
acknowledges that contextual meaning is not part of the
symbolic form, but a part of a blend of mathematics and
physics, consistent with literature on the blending of
mathematics and physics [12,43]. The affordances outlined

FIG. 8. Symbolic blending diagram for Adam and Bart includ-
ing the no dependence symbolic form, with which they acknowl-
edged the alpha component does not include a beta term.
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in this section provide additional insights and consider-
ations for future researchers looking to explore the blending
of mathematical representation and science contexts.
First, the inclusion of the generic space allows us to

disentangle the justification for the template from the
contextual knowledge. We review prior research using
symbolic forms through the lens of symbolic blending to
illustrate the role and constancy of the generic space as the
applied contextual knowledge changes. This aspect of the
model allows future researchers to incorporate symbolic
forms analysis in complex contexts where multiple mean-
ings are associated with a single representation. Second, we
show how the symbolic blending model provides a mecha-
nism for rote knowledge recall. Rather than recall being a
piece of what happens, the symbolic blending model
documents how recall influences equation construction.
Finally, symbolic blending provides a way to explore errors
in equations when the contextual understanding is techni-
cally correct. Rather than errors being delegated to context
or template, symbolic blending can be used to illuminate
errors within the generic space that connects the context
and template.

1. The role of the generic space

The underlying connections outlined by the generic
space drive the compression of the input ideas and the
emergence of the blend. To analyze how students engage in
the construction of equations, the conceptual schema of
symbolic forms becomes the generic space. Just as before,
it is important to note that Sherin’s conceptual schema is
not a stand-in for physics conceptual understanding. This is
even more true in the upper division, where students’
conceptual understanding pertains to more sophisticated
mathematical and physical ideas.
In order for a conceptual schema that underlies a symbol

template to occupy the generic space in a conceptual blend,
it must also be consistent with the student’s contextual
knowledge or understanding. In line with Sherin’s depic-
tion of the underlying conceptual schema as consistent with
phenomenological primitives [6], we see the conceptual
schema as the fundamental “behind-the-scenes”[5] under-
standing of the conceptual input of the blend. We elaborate
upon this by returning to the discussion of varying concepts
being attached to the representation of a differential
element d□. By the time students make it to upper-division
physics, the differential has become a fundamental quantity
involved in everyday calculation, but the meaning of the
quantity can vary: as Carol and Dan worked on construct-
ing their differential length vector, they only referenced the
differential as a change in a quantity, while Elliot and Frank
were mostly focused on the size of the quantity, invoking
the differential as part of a need for a small bit of a variable.
Other research has identified other ways in which

students treat or conceptualize the differential in electricity
and magnetism: as a small amount, a dimensionless point, a

cue to integrate, and an identification of what to integrate
with respect to [23,38,44]. Investigations of calculus stu-
dents’ interpretations of integrals revealed interpretations of
the differential related to the width of a Riemann rectangle,
shape in space, and “way to obtain the original function” [7].
Small quantities or changes are often the more prevalent
understanding of the quantity for students usingmathematics
in physics problem solving [21,23,36,45] but that does not
prevent the other ideas from appearing in physics students’
problem solving. From a concept image perspective [34],
students can have multiple ideas about a certain topic that
may vary from the formal concept definition. Then depend-
ing on the context, studentsmay evoke some of the aspects of
the concept image over others.
In the sense of a symbolic form, the box of the template for

the differential is not large enough to encapsulate the entirety
of those ideas. Instead, we put forth that there is some
underlying conceptual schema, a fundamental essence of a
differential, that exists beneath these ideas. This idea is
consistent with Sherin’s association of the conceptual
schema with p-prims. However, this essence becomes
difficult to define, given the difference in conventions and
pedagogical emphases between disciplines. For the sake of
this work, we describe the conceptual schema as “differential
as a mathematical quantity” so that it may be extended to
multiple conceptualizations for the given context. This
schema is broad because the context specifies the meaning
of the differential.
Isolating Sherin’s conceptual schema in such a way now

allows a reengagement with prior literature utilizing sym-
bolic forms without detracting from the value of that work.
Meredith and Marrongelle [8] originally identified the
conceptual schema of parts of a whole and dependence
as cues for integration. Our conceptual blending model of
equation construction and interpretation identifies these
cues as the underlying mathematical understanding of the
generic space connected to students’ contextual conceptual
understanding, not necessarily the conceptual schema of an
invoked template, since students would likely use a differ-
ent template when constructing integrals.
Separating the contextual and symbolic input spaces

using conceptual blending also suggests a different defi-
nition of what Jones identified as integration symbolic
forms [7]. Jones presents several of these forms, most of
which are built from the same symbol template,

R
□

□
□d□.

We argue that what Jones actually defined were not
different symbolic forms using the same template, but
different conceptual blends for the same generic (definite)
integral symbolic form. In addition, we believe one or more
of these templates for integrals (e.g.,

R
□

□
½□ −□�d□) are

rather a nesting of smaller units of symbolic forms, in the
way that students often combine multiple templates to
express more complex physical relationships among
numerous quantities. The way that Jones distinguishes
what he referred to as symbolic forms is via the contextual,
conceptual meaning of the integral elements—typically but
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not exclusively involving graphical representations—rather
than their generic meaning.
We argue that the conceptual schema, as defined in the

context of symbolic forms, for the definite integral symbol
template is the same for all of Jones’s “forms” and serves as
the generic space for the blend (see the examples in Fig. 9).
In this case, rather than there being multiple symbolic
forms tied to the same symbol template, each of Jones’s
“forms” is described here as the manifestation of a single
symbolic form (definite integral) blended with distinct
contextual meaning. The role of each box in the symbol
template is the same in all these blends, e.g., the box at the
top of the integral sign is always the upper limit, represent-
ing the highest value involved in the integral. Much like the
ideas associated with the differential, the ideas of adding up
pieces, adding up the integrand, perimeter and area, and
function matching—which all utilize the same definite
integral template—are now multiple departures from a
more representational understanding of what the arrange-
ment of symbols within the integration means.
In Jones’s study [7], Devon employed an “adding up

pieces” model, treating the integral symbol as a cue to

accumulate small pieces from one end of the function to the
other [Fig. 9(a)]. Devon stated the following as he wrote out
his integral:

Devon: I would imagine it as, you slice it [draws thin
rectangle], like very small pieces and each of them
is dx. And this part here [puts finger along the
height of the thin rectangle] is the, is this part right
here, [points to f1 − f2 inside] [7] (p. 126).

Within the same study, Chris is described as having the
“area and perimeter” model as he discussed an integral that
was given to him.

Chris: So if youwant to draw a graph [draws axes], um,we
have f of x [draws squiggly graph above the x axis]
and then sincewe’re saying over the domainD….so
we can assume D is from some point x1 to some
point x2….And then we’d take the integral from x1
to x2 [said as he shades the area] [7] (p. 128).

Despite starting with an integral that used D to represent a
domain, Jones used a symbolic form with limits as Chris
isolated specific positions x1 and x2 for his diagram
[Fig. 9(b)]. For the purposes of drawing comparison, we
can imagine that the integral did indeed include x1 and x2 as
the limits of the integrand.
Analyzing Jones’s data with the goal of incorporating

symbolic forms into a conceptual blending model means
that, for Devon, the upper and lower limits of the integral
template correspond to the starting and ending points of his
summing of “small pieces” (Fig. 9(a)]. For Chris, Jones
argued the limits are the left and right sides of the area that
he created [7]. The empty box before the differential is the
height of a small piece for Devon and thus the difference
between the two functions but is described as the “top of
this fixed region” for Chris. Symbolically the integrals
carry the same components, which have underlying math-
ematical definitions. Yet, depending upon which concept
image a student attaches to integration, the meaning of the
components of the expression change.
The analysis of Jones’s work within the new model raises

further points of interest for our model. In one case, Devon
constructed the integral representation from a graph they
drew, while in the other, Chris was interpreting a written
integral and constructing a graph. This raises questions
about the role of graphs as students construct integrals by
connecting their understanding to graphical representa-
tions. Just as with equations, graphs represent another
means to relay conceptual information. Since the informa-
tion is encoded by certain structural features of the graph
and associated functions (i.e., axes, slopes, heights, con-
cavity) and that those features relay specific conceptual
information (i.e., how physical quantities relate), we argue
that graphs are also elements of the blended space and
result from the combination of conceptual understanding

FIG. 9. Interpreting symbolic forms for integration using
conceptual blending, based on Ref. [7]. Depending on the
conceptualization of integration by the student pair as either
(a) adding up pieces or (b) area and perimeter, students attached
different meaning to each part of the integral template.

MAKING CONTEXT EXPLICIT IN EQUATION … PHYS. REV. PHYS. EDUC. RES. 19, 020149 (2023)

020149-17



and symbolic, graphical representation. Devon read out the
inherent meaning of the physical height of the graph and
then connected the functional representation to the integral
template to form a new blend in the form of an equation.
Chris, likewise, interpreted the structures of the function to
gain a conceptual understanding of the equation and then
blended it with graphical structures as he drew his
representation. The discussion of graphical representations
here is a simplistic overview of the work conducted here;
there is room for future work to identify these graphical
features and how they would tie into this model. Rodriguez
et al. began this work by expanding the symbolic forms
literature to include graphical forms [46]. Analyzing
undergraduate chemistry students as they make sense of
equations and graphs related to chemical kinetics, the
researchers identified students’ attention to different fea-
tures of the graphs (e.g., steepness of slopes, curves) as the
students interpreted the nature of chemical reactions. Our
model of blending would provide the structure for analyz-
ing how these graphical representations are tied specifically
to the provided chemistry contexts.
The symbolic blending model acknowledges that con-

textual meaning is not part of the symbolic form, but part of
a blend of mathematics and physics. By utilizing the
generic space as the underlying conceptual schema, distinct
from a contextual knowledge input space, we can separate
students’ conceptual ideas from the more fundamental
template understanding, the latter being the focus of the
original symbolic forms literature [5]. Symbolic forms
represent specific mathematical structures, where variations
in contextual knowledge can be connected to the same
underlying mathematical representation, there are not
multiple symbolic forms. Future research applying sym-
bolic forms can make use of the symbolic blending model
to disentangle the representation with the contextual knowl-
edge that students are bringing into the representation.

2. Recall, backward projection, and reading out

Being able to read out information from an equation is
identified by Sherin as a demonstration of an implicit
understanding of symbolic forms. In this section, we return
to the context of constructing differential vector elements to
connect reading out to a process in conceptual blending
referred to as backward projection [11]. The idea of reading
out information from equations and graphs is just as
common as the construction of equations. Kuo et al. [16]
analyzed students’ interpretations of a kinematics equation
to assess student understanding of the physics involved.
Similarly, Jones [7] described how studentsChris andDevon
moved between graphical and symbolic representations.
Within the context of our study [9], students were able to

produce the appropriate structural representations from
repeated use and classroom exposure. Students across
several interviews experienced difficulty in generating or
applying the correct ideas as they constructed the β̂

component. In order to fill in the template, students recall
the similar spherical coordinates in order to make sense of
the unfamiliar system. Consider this example from Adam
and Bart:

Bart: You can, you can check from [spherical dl]
Adam: For α it doesn’t have any dependence on this other

angle over here, but when you’re talking about
β, um/

Bart: So this is dl (g. to spherical dl
!

he wrote), okay, drr
[adds ^ to r], rdθθ [adds ^ to θ], ¼… ¼ r sin θdϕϕ
[adds^to ϕ], so now we have just to compare so we
have r it isM, θ is α…ϕ is β. Go ahead [Adam].…

Adam: Yeah, I can see now, this α here is independent of
whatever β is, yeah, so M sin αdβ.

Here we see Adam working within the coordinate system to
construct the differential length vector. In contrast, Bart
immediately begins to map onto spherical coordinates,
drawing on the spherical differential length vector to finish
the construction. After an attempt to redraw the coordinate
system, and some confusion between the mathematics
and physics representations of spherical coordinates,
Adam finally settled on the mapping of sin α into the
β̂-component. For Adam and Bart, the recall of a spherical
differential length vector took the place of conceptual
understanding and neither student drew on the knowledge
that went into the construction of the spherical differential
length element (Fig. 10). Our conceptual blending analysis
inserts the recalled element into the conceptual input space,
regardless of its correctness.
In contrast, other interview groups attempted to use

recall as a sensemaking tool. Carol and Dan recalled the
spherical volume element as well as the Cartesian coor-
dinate transformations to, as Carol states, “make sense of
the new coordinate system.” However, the pair struggled to
find anything to dissuade them from a direct mapping of
variables and thus settled on the sin α term as part of the
beta component. In contrast, Elliot and Frank acknowl-
edged the differences between the two coordinate systems.
Frank correctly initially dictated the comparable spherical
component as r sin θdϕ, but Elliot, unable to discover a
conceptual basis for the inclusion of a trigonometric
function, was hesitant to use recall as a justification.

Elliot: Yeah, because if it were spherical coordinates,
you’d have a sin θ somewhere in there, you
know…which it’s very similar, I agree, but I feel
like we should just work only by what we see here
and try not to fog our mind with preconceived
notions of how this should work.

At this point the group settled on Mdβ, invoking their
conceptual understanding of arc length but still missing the
necessary projection aspect that motivates the
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trigonometric function. Later, the group returned to this
idea, as Frank felt the need to have their differential length
resemble the one in spherical coordinates without including
the reasoning around the projection.

Frank: I mean, uh, spherical coordinates don’t look like
that. They have sines in there and I agree but if I
can’t find a reason to put it in there, you know, and
there must be something wrong with the way I’m
thinking. If that’s true but I just don’t, I don’t see it
yet, so why do you have r sin θ?

This statement of “I can’t find a reason” is a marker in the
blending literature of backward projection: The use of the
blended space to interpret or look back at one of the input
spaces [11]. We identify the use of the spherical differential
elements by the other groups as an attempt to use spherical
coordinates to draw out the associated conceptual under-
standing attached to the angular components. Neither group
recognized the need for a cosα in the β̂ term but each took
different paths: Carol and Dan directly mapped the ele-
ments into the schmerical coordinate elements, while Elliot
and Frank stuck to the elements constructed within the
realm of what they understand. In each case, our blending
model accounts for students’ difficulty with contextual
knowledge despite having the correct structural under-
standing of the template.
Students “reading out” from structures to ascertain the

relevant conceptual information from a previously con-
structed equation further connects conceptual blending to
symbolic forms. Sherin identified symbolic forms not only
as a way to analyze students’ abilities to construct equa-
tions but also as a means to address their abilities to “extract
implications from a derived expression,” i.e., students’
abilities to read out information from an equation based

on the given structures [5]. While we see this to some
degree in attempts to isolate the coefficient template of a
spherical differential term, we suggest that this reading out
more explicitly draws on the backward projection. Drawing
again on parts of a whole, a student seeing an equation in
which multiple things were being added together could
recognize the parts of a whole template and then infer the
nature of the relationship between the added quantities. In
essence, the equation then carries this information, which is
then projected into the larger conceptual space. This is seen
in the earlier example from Bollen et al. [14] in which the
interpretation of a calculation led a student to understand
correct features of the physical system.
Within the symbolic blending model, rote knowledge

recall is not only a reproduction of content but also a
process or mechanism that can be mapped from the recalled
information to the newly produced information. Recall is
accounted for through reading outor backward projection.
In the case where this illuminates contextual knowledge,
that contextual knowledge can be mapped into the new
construction. In the case where the contextual information
is unknown, as with Adam and Bart, the recalled informa-
tion takes the place of the contextual knowledge. With the
symbolic blending model, we can identify recall as a
process and determine which of the above forms it takes.

3. Interpreting template errors in equation construction

One of the benefits of applying conceptual blending in
any context is the ability to isolate particular realms of
ideas. In research on the use of mathematics in upper-
division physics, this has manifested as the ability to isolate
particular errors to difficulties with mathematics or physics
ideas [14,15]. While symbolic blending has given us a
means to assess errors in a final expression that can

FIG. 10. An example of symbolic blending from Adam and Bart involving recall and backward projection during their pair interview.
In place of conceptual understanding (right), Adam and Bart connected the coordinate system to spherical coordinates and attempted to
deconstruct the spherical differential length vector (left) but did not know why the sine function was included. Without the underlying
understanding, they pulled the sine function into their schmerical construction because of how the differential length is written in
spherical coordinates (right).
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be attributed to missing or unaccessed conceptual under-
standing, the benefits of this model extend to analyzing
students’ errors with mathematical representations based on
a symbolic forms analysis within the blending structure.
In a different study [47], we conducted individual inter-

views to investigate students’ understanding and construc-
tion of differential area elements within common electricity
and magnetism contexts. One task in particular required
students to construct a scalar differential area to solve for the
electric field above a circular sheet with constant charge
density (Fig. 11). In response, a student seemingly displayed
the correct conceptual information but invoked the incorrect
symbol template. After first attempting to ascertain the
differential area by taking the derivative of the expression
πr2 with respect to r, Jake then recognized he could build a
differential area from differential length components.

Jake: Actually no, it will be drdθ because it’s a surface
area so I’ll need two dimensions… my dθ is
probably going to come in from my dq. Because I
should have a differential area shouldn’t I, and a
differential area should be drdθ…

At this point, Jake wrote drþ rdθ. At no point in his
description did Jake say “dr plus dθ” or reference addition
at all. Instead, his language using paired differentials,
“drdθ,” implied a product but was written as a sum,
implying a template error. Jake made this error on an
earlier task as well, despite having an otherwise appropriate
concept image of a differential area as a small portion of
area [47].
Within our proposed model for equation construction,

Jake’s conceptual understanding of input space for differ-
ential area contains a correct idea, yet it is blended with an
inappropriate parts of a whole template (Fig. 12). From
symbolic forms, we can hypothesize that Jake’s underlying

conceptual schema was skewed to that of parts of a whole.
He could be seen approaching the idea of area as being
made up of two lengths and thus used the incorrect template
during the compression of ideas, combining the terms as a
sum rather than a product. Much later in the interview, Jake
was able to correct his differential area by reasoning about
dimensionality, which shifted the representational form to
the correct multiplication of lengths.
Likewise, Sherin noted instances of students accessing

the requisite conceptual information but applying the
incorrect template [5]. Within our work analyzing stu-
dents’ differential length elements, we noted that students
had a general understanding of the symbol template in
terms of the structural representation of the differential
length vector but had more specific difficulty with under-
standing the geometry of the coordinate system and
expressing it appropriately.
In another of our prior studies [48], students constructed

differential length vectors during a calculation of change in
electric potential around a curved path. During these
interviews, we noted an incorrect encoding of vector
notation, which was also seen commonly in students’ work
from course observations. The correct expression involves
a differential length with two components to represent each
polar direction of motion, as Molly demonstrates.

Molly: So first I travel in the r-direction so I go dr in the r̂
and then I travel in the θ̂-direction and the arc
length of a circle is the radius times the angle that
you move so that is rdθ, here in the θ̂.

Figure 13 shows Molly’s blending diagram for this task.
Here, we see her emphasis on the unit vectors and
associated components, which she deftly represented using
the magnitude-direction template.

FIG. 11. Figure provided for the charged sheet task [47] in
which students were asked to determine the electric field at a
distance x from the center of a uniformly charged sheet. The task
required students to construct a differential area to describe the
surface. FIG. 12. Symbolic blending for charged sheet task where Jake

added differential length terms instead of multiplying the terms.
We classify this as Jake invoking the incorrect template.
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In contrast, Lenny only constructed a component in the θ̂
direction. Despite similar conceptual understanding, Lenny
expressed his differential component as “rdθ⃗.”When asked
to describe why he wrote the term in such a way, his
response was absent of magnitude-direction reasoning.

Interviewer: What do you mean by dθ⃗ there?
Lenny: So I guess, any differential shift in θ…

because that’s just the direction of the
change in θ.

Mathematically speaking, the use of “dθ⃗” makes the
expression incorrect. While dx⃗ would make sense for a
differential shift in the x direction, polar unit vectors are not
static quantities and vary based on position in space. In our
analysis (Fig. 13), Lenny’s idea of representing a vector
within this space is reduced to a representation of “the
direction of change in theta.” His emphasis on direction-
ality without a separation of magnitude and unit vector
leads to his encoding of this expression with a vector arrow

template, □
!
, rather than the magnitude-direction template,

and thus makes sense within the presented model of
conceptual blending and equation construction.

IV. SUMMARY AND CONCLUSIONS

In this paper, we presented the symbolic blending model
by inserting the components of the symbolic forms frame-
work [5] into a conceptual blending structure [11] in order
to analyze students’ mathematical sensemaking when
constructing equations in upper-division physics. This
builds on previous analysis [9] of students’ construction
of differential length elements in an unfamiliar spherical
coordinate system using two different frameworks: concept

image [34] and symbolic forms [5]. In that work, the concept
image framework analysis identified specific properties
students associated with a differential length vector in a
non-Cartesian coordinate system, while students’ structural
understanding during equation construction was interpreted
using symbolic forms. Because symbolic forms were
designed to assess the mathematical understanding of the
structureswithin an expressionwithout explicitly accounting
for the physics conceptual understanding, these frameworks
afford complementary perspectives on both physical and
mathematical aspects of the expression but still remain
independent analyses. The lack of connection between these
aspects in the individual frameworks runs counter to the
perspective that, in a physics equation, mathematics and
physics are inextricably coupled–blended [12,43]. By incor-
porating the two frameworks inside a conceptual blending
lens [11] originally designed to describe the connection of
meaning to form in the use of language, the symbolic
blending model has the means to analyze students’ con-
struction of equations as an expression of a mathematical-
physical language. The blend of contextual knowledge and
structural expression creates emergent meaning in the final
equation, making the result greater than the sum of its parts.
This approach to equation construction analysis uses the

aspects of one theoretical framework to complement the
missing analytical aspects of the other. Conceptual blend-
ing adds a component of conceptual understanding to a
symbolic forms analysis, which becomes increasingly
important within upper-division physics, in which the
physics concepts connected to equations become more
challenging. Likewise, incorporating symbolic forms into a
conceptual blend provides structure to the blend of physics
and mathematics centered on student reasoning with
equations in physics contexts. To represent the union of
these frameworks and illustrate the model, we designed a

FIG. 13. Comparison of symbolic blending diagrams for Molly (a) and Lenny (b) for the student’s invocation of different differential
length elements. Molly correctly invoked themagnitude-direction form while Lenny focused on θ having a direction and used the vector
symbol which is nested within the differential symbolic form d□.
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symbolic blending diagram in which the conceptual
schema of symbolic forms [5] serves as the generic space
in a blend; this model depicts the compression of con-
ceptual and representational understanding into the final
construction of an equation, structured by the mathematical
justification in the conceptual schema. For example, the
need to express three components for a differential length
vector is fundamentally a sum of parts, which leads to the
parts of a whole symbol template and eventually the final
representation of a sum of three components. The symbolic
blending model teases out the details of equation con-
struction while preserving the components of both the
symbolic forms and conceptual blending frameworks. The
blending of conceptual information with mathematical
structure leads to an equation that has meaning emerging
from the blending process. Even though the conceptual
schema of the symbolic forms is acontextual, the task
context cues schema, thus providing the structure as a
generic space in the blend.
A number of examples were given in which the symbolic

blending model is employed within the context of the
differential length vector study, as well as several other
instances in our own work, which serve to illustrate the
model as well as to show the utility of bringing conceptual
blending to the construction of equations and symbolic
forms. We have also provided discussion as to how this
model is consistent with and reinterprets the use of
symbolic forms within the current literature base where
the conceptual schema of symbolic forms has become
associated with the conceptual understanding of the con-
textual content [7,8,16] as well as with more theoretical
work proposing “new” symbolic forms that are more
“indirect” with respect to physical interpretation [30].
Similarly, we showed how the use of the generic space,
which is generally absent from conceptual blending analy-
ses of mathematics in physics [13–15], can provide deeper
explanation of students’ conceptual and representational
choices when constructing equations.
Finally, several benefits of a symbolic blending model,

as well as the full scope of its explanatory power, were
outlined. The incorporation of the generic space as the
underlying mathematical structure has provided the ability
to connect varying contextual meanings to the same
template. Symbolic templates as designed are very broad
and can be used in many situations (e.g., parts of a whole
can apply to energy, surface area, wedding guests, etc.); the
symbolic blending model provides a means to connect
symbolic forms to the context (which justifies addition).
Further, the separate spaces of the model allow for the
identification of a student’s difficulty as either template
error or incorrect/incomplete conceptual understanding.
Finally, symbolic blending provides a mechanism for rote
knowledge recall and explicitly demonstrates how back-
ward projection, a feature of the conceptual blending
model, connects to the reading of information out of an
equation to gain conceptual understanding. The backward

projection was useful in describing errors in recall in which
students use previous ideas to make sense of new contexts.
The presented model provides the opportunity for

obtaining a deeper and more complete understanding of
students’ construction of equations in situations that draw
on sophisticated mathematical and/or physical under-
standing. The connection of analytical aspects across
these theoretical frameworks allows for analysis on the
level of both conceptual understanding and structural
representation.
Given the role of physical context in driving the mathe-

matical conceptual schema and thus the structure of the final
expression, symbolic blending recognizes and makes con-
crete the need for coherence between mathematical forma-
lism, mathematical concepts, and physical phenomena. This
is consistent with, and a central tenet of, broader models of
mathematical modeling and mathematization [2–4], the
blending of mathematics and physics [12,49], and mathe-
matical sensemaking in physics [50,51].

V. FUTURE WORK

With the understanding of the affordances of symbolic
blending to the analysis of student construction of
equations in terms of conceptual and representational
understanding, we envision further applications of the
model. Just as Sherin suggests the symbolic forms
framework could be extended into other domains of
physics, we believe that our model presents as a key
analytical tool to the study of mathematics used in physics
problem solving, especially in an upper-division context
where, throughout the course of their academic track,
students connect physics to concepts of vector calculus,
partial derivatives, and linear algebra. In line with the goal
of theoretical development of mathematical sensemaking
in upper-division quantum mechanics [30], this model
would prove useful in connecting the multiple conceptual
steps to the construction or interpretation of equations and
representations in quantum mechanics. Van den Eynde
et al. [52] have extended the symbolic blending model to
explore the dynamics and depict the line of reasoning for
students’ blending of mathematics and physics when
looking at boundary conditions for the heat equation.
Sherin also suggests that “stretching farther still,”

symbolic forms could be generalized to discuss other
representational forms that contain sets of meaningful
structures. We hypothesize that the incorporation of
conceptual blending takes a step in that direction by
providing the generic space as a means to connect ideas by
their underlying similarities. As such, we can extend the
template space to a representational space and connect
students’ understanding of linear relationships and graph-
ing knowledge to graphical representations, and addition-
ally with concepts of wave vectors, wave functions, or
probability density graphs. Researchers have recently
begun to address students’ understanding of the various
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representations of Dirac notation, wave function notation,
and matrix notation [53]. Other researchers have explored
students’ metarepresentational understanding of these
notations, finding when students make judgments about
which notation is easier or better suited to a task [54].
More broadly, a model of conceptual blending as we have
presented could be extended to analyze student work as
they translate between various representations that effec-
tively convey the same conceptual understanding.
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