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In this study, a conceptual framework of measurement uncertainty was developed and used to guide the
development of a multiple-choice concept test for the assessment of students” knowledge integration in
learning measurement uncertainty. Based on assessment data and interview results, students were identified
into three levels of knowledge integration including novice, intermediate, and expertlike. The reasoning
pathways of students at different levels revealed a progression of reasoning from a rudimentary
surface level to a deep understanding that can be mapped in the conceptual framework. This work
demonstrates the possibility of identifying a quantitative categorization scheme to model knowledge
integration as well as its utility in teaching and learning. Overall, the assessments and interviews revealed
common and persistent difficulties in students’ understanding of measurement uncertainty. In addition,
students at different levels of knowledge integration demonstrate unique types of knowledge states that can
be represented in the conceptual framework, making it a useful tool for analyzing different reasoning

pathways and knowledge structures.
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I. INTRODUCTION

A fundamental goal of physics education is for students
to develop a deep understanding of essential scientific ideas
[1,2]. Over the past few decades, investigating and improv-
ing students’ conceptual understanding has become a
fundamental goal in physics education [3—7]. However,
many students lack a deep understanding of physics
concepts after traditional instruction, leading to difficulty
in applying their knowledge to solve novel problems.
Traditional instruction often lends itself to rote memoriza-
tion and its applications [8]. As such, students’ obstacles
can be difficult to overcome through traditional instruction,
which does not change the ideas they developed from their
everyday experiences and preconceived notions, and which
are often incompatible with normative scientific ideas
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[9,10]. As a result, students may perform well on textbook
problems with familiar contexts which they can solve using
lower-level skills such as pattern matching of solutions and
memorizing equations. However, they often fail to solve
novel problems with unfamiliar contexts, which require
students to have an integrated knowledge structure and
deeper conceptual understanding [1,11-13]. The student
learning behaviors exhibit the known characteristics from
novice to expert knowledge structures, which can be
modeled in terms of how their knowledge structures are
constructed, activated, and linked [13-15].

The knowledge integration model typically distinguishes
students into several developmental levels including nov-
ice, intermediate, and expert (or expertlike) [16-21].
Novice students often develop fragmented and disorgan-
ized knowledge structures, where knowledge is locally
clustered with links connecting familiar contexts from
personal experience and classroom learning. While solving
problems, novices often match the surface features of
problems with memorized processes and solutions. As a
result, novices’ applications of a concept are constrained to
contexts similar to those encountered in classes or text-
books, leaving them unable to transfer their understanding
to new situations [22-24]. Intermediate-level students have

Published by the American Physical Society


https://orcid.org/0000-0003-1392-4088
https://orcid.org/0000-0002-5815-979X
https://orcid.org/0009-0002-9578-5316
https://orcid.org/0000-0003-3348-4198
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.19.020145&domain=pdf&date_stamp=2023-10-16
https://doi.org/10.1103/PhysRevPhysEducRes.19.020145
https://doi.org/10.1103/PhysRevPhysEducRes.19.020145
https://doi.org/10.1103/PhysRevPhysEducRes.19.020145
https://doi.org/10.1103/PhysRevPhysEducRes.19.020145
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CHUTING LU et al.

PHYS. REV. PHYS. EDUC. RES. 19, 020145 (2023)

developed more connections in their knowledge structures
but often fail to link the different knowledge components
to the core principles (the central idea) of the concept
and still partially rely on memorization at times. When
solving problems, these students can demonstrate better
understanding than the novices; however, the lack of
understanding of the central idea limits their capability
of transferring partial connections to novel scenarios.
Therefore, they often fail to solve problems in unfamiliar
contexts [16,25,26]. At the expertlike level, students’
knowledge structures appear as integrated and hierarchi-
cally arranged networks with well-established links around
a few core principles (the central idea). These students can
achieve a deep understanding of the concept and use well-
connected knowledge structures to solve problems in a
wide range of settings [13,23].

To explicitly model students’ knowledge structures and
measure the levels of knowledge integration, the conceptual
framework model was developed in previous studies
[17-21]. A conceptual framework model usually consists
of a central idea to serve as an anchor point and a range of
related knowledge components such as contextual features
and intermediate reasoning and processes. Contextual
features in the conceptual framework can activate students’
ideas and links. Each unique pathway connecting different
contexts and conceptual elements of the framework can
illustrate and model student learning, which helps research-
ers and teachers visualize how students structure certain
concepts. Meanwhile, the differences in knowledge struc-
tures between novices and experts can be illustrated by
the usage of central ideas and the connections among
different knowledge components. The experts use the
central idea as an anchor point to link related knowledge
components, which extends to an integrated and hierarchi-
cal knowledge structure. The expert approach links a wide
variety of contexts to the central idea, which can mean-
ingfully and efficiently solve problems in different situa-
tions. Alternatively, the novices often bypass the central
idea and directly link equations or algorithms to the surface
features. Thus, novices can solve problems with familiar
contexts but often fail in novel situations.

As shown from the previous studies [17-21], the con-
ceptual framework model can be used as an operational
guide to develop assessment instruments, which can probe
different pathways within students’ knowledge structures to
reveal their levels of knowledge integration. The assess-
ment results can then help transform classroom instruction
to emphasize specific connections so that students can gain
a deeper understanding and build integrated knowledge
structures. The conceptual framework model has been
developed and applied to several physical topics, such as
light interference [17], force and motion [18], momentum
[19], Newton’s third law [20], and mechanical wave pro-
pagation [21]. In this research, the conceptual framework
model is developed to examine students’ understanding of

measurement uncertainty in lab experiments, which is a
fundamental learning goal in physics lab courses [27].

Physics is an experimental-based discipline, and physics
knowledge taught to students has a strong experimental
basis, which requires a good understanding of the uncer-
tainties in measurements. The American Association of
Physics Teachers [28] has prominently described one of the
goals of physics teaching as understanding the nature of
scientific measurement and uncertainty. However, a large
number of students only display a rudimentary under-
standing of measurement uncertainty even after the
completion of traditional laboratory courses [29-32].
Traditional laboratory courses often provide students with
a laboratory manual to verify various laws, measure
specific variables, or learn to use and become familiar
with an experimental apparatus with the help of instructors.
However, these practices of measurement and the intended
learning of the concept of uncertainty are often difficult for
students to grasp [33]. As a result, the routine training tasks
in traditional laboratory courses reinforce the students’
belief in the existence of a true value; the uncertainties in
measurements are seen as errors but not as the intrinsic
property of all measurements [34]. In other words, students
commonly believe that, in principle, a perfect measurement
without any uncertainty can be made [35]. In addition,
students typically have no understanding of the need to
make repeated measurements and often hold a general
notion that repeated measurements bring about a better
result, without understanding what the “better result”
actually means [36]. In operation, students always treat
the arithmetic mean as the final result of a dataset, which is
all that matters when comparing two datasets [35]. These
misunderstandings often make students unable to distin-
guish between uncertainties of random and systematic
origins and fail to identify different sources of uncertainty
in a measurement [33,36,37]. All these difficulties suggest
that it is a challenge for students to achieve deep under-
standing and develop an integrated knowledge structure in
learning measurement uncertainty.

Although several studies have focused on students’ under-
standing of measurement uncertainty [30,33,37-43], very
few researchers have measured students’ conceptual under-
standing based on knowledge integration. In this research,
a conceptual framework of experimental uncertainty is
developed and applied to design an instrument for assessing
students’ understanding of measurement uncertainty.
This leads to two areas of research that are conducted in
this study:

(1) Develop a conceptual framework model of meas-
urement uncertainty and use the conceptual frame-
work to analyze student difficulties through the
perspective of knowledge integration.

(2) Apply the conceptual framework to develop a
multiple-choice assessment involving typical and
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atypical contexts to evaluate students’ levels of
knowledge integration and deep understanding.

II. METHOD AND DESIGN

A. Student difficulties in learning
measurement uncertainty

Over the last several decades, many researchers in
physics education have documented rich information on
students’ common difficulties with measurement uncer-
tainty [29-33,37-43] and evaluated the effectiveness of
new instruction [44-46]. These studies reveal that students
have a very limited understanding about the nature of
uncertainty, which leads to different views on how uncer-
tainty occurs and may be dealt with.

As shown by numerous studies, many students construct
naive views of measurement uncertainty [33,37,40,43—
45,47]. Some students will make arbitrary judgments about
the measurement results and ignore the estimation of
uncertainty [33]. These students lack the basic under-
standing of the need and process to determine measurement
uncertainty. If students obtain different measurement out-
comes, they often attribute the differences to human error,
rather than something inherent in the measurement itself.
Thus, most students believe that making a perfect meas-
urement is possible when more advanced instruments are
available and used by experts [33,34,40,48]. These naive
views lead students to rarely conduct repeated measure-
ments spontaneously unless there is something wrong with
the first measurement or they get a value significantly
different from their expectation [48]. A small number of
these students would carry out multiple trials per their
instructors’ requirements. These students take repeated
measurements as an operational routine [47] or believe
that practice will make measurement perfect [49].
Therefore, these students tend to regard the value of a
properly conducted first measurement as the final result
value, where they believe that a single measurement can be
perfect; or they can choose a recurring value being the final
result, where they believe that getting the same value twice
or more indicates well-conducted measurements [49]. In
addition, students often compare datasets using a value-
by-value comparison based on the closeness of each value,
without attending to the uncertainties of the measured
values [47]. These naive understandings indicate the lack of
even a basic understanding of the origins of different types
of uncertainties, as well as how uncertainties may be
processed to yield meaningful measurement outcomes.

For more advanced students, they have developed a
better understanding of uncertainty by establishing more
connections among their knowledge components. For
example, these students are aware of the influence of
uncertainty on measurement results and understand some
basic processes to work with uncertainty. However, these
students still have difficulties in interpreting and analyzing

measurement outcomes with multiple sources of uncer-
tainties. That is these students do well in using equations or
rules to calculate the results, but they lack the under-
standing and reasoning to explain how uncertainties of
different origins contribute to measurement outcomes in
complex settings [33,41]. For example, many students
believe it is necessary to make repeated measurements
and should always use the arithmetic mean to obtain the
final result from a dataset [48]. However, they may
calculate the average of a dataset without considering
the process for rejection of anomalous values [40,41,49].
Besides, many students lack a basic understanding of
sample size and its impact on measurement uncertainty.
They typically believe that three is a default “good” number
for measurements even though some lab materials may
have stated that three measurements are insufficient. These
students tend to compare different datasets based on only
their mean values without considering standard deviations
or errors since they believe that the average is all that
matters [37,40,48]. In addition, these students often have
difficulty identifying the primary source of uncertainty and
distinguishing between random and systematic uncertain-
ties [33,37,40]. Meanwhile, these students also demonstrate
inconsistent understandings of uncertainty across different
physics contexts and with different types of uncertainties
[42,43], which suggests that the knowledge structures of
these students are fragmented with partially connected local
links such that different contexts may activate different
local links that can be inconsistent viewed from an expert.

From reviewing the literature and current curricula on
measurement uncertainty, it appears that traditional instruc-
tion often teaches measurement uncertainty in a narrow
domain of context with emphasis on random uncertainty
and mathematical calculations to address random uncer-
tainties. As a result, systematic uncertainty is often treated
as an unknown constant in the calculation, and students
often focus on analyzing data using the averaging method
with repeated measurements [44,45]. In addition, certain
rules of thumb and ad hoc prescriptions, such as always
making three measurements and taking an average, are
often introduced in instruction without developing a
good understanding of the underlying mechanisms, which
usually leads students to merely memorize the rules and
apply them in solving problems. In response to the
students’ learning difficulties and the limitations in the
existing curricula, it is important to develop an integrated
conceptual framework of measurement uncertainty, which
can be used as a tool to represent and analyze different
types of students’ understandings and aid assessment and
instruction.

B. The conceptual framework of
measurement uncertainty

It appears that the current textbooks often focus on data
processing to address measurement uncertainty [50] but
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FIG. 1.
line arrows represent novices’ reasoning.

have less emphasis on the conceptual understanding of the
mechanisms that lead to the different types of measurement
uncertainties. Meanwhile, very few studies have developed
assessment instruments that target student understanding of
the fundamental mechanisms of measurement uncertainty.
In the existing literature, students’ understandings of
uncertainty were analyzed and interpreted based on the
framework of data analysis and processing [37,39,41,48].
However, the empirical evidence from the existing liter-
ature has also demonstrated that students lack a basic
understanding of the nature of uncertainty, even though
they are able to solve computational questions defined in a
narrow domain of context [33,41]. To directly address the
root of students’ learning difficulties, the conceptual
framework model can be applied, which emphasizes the
fundamental mechanisms of a concept defined as the
central idea. In this section, a conceptual framework is
developed to present the central idea and mechanisms of
uncertainty, which is then used to model students’ diffi-
culties in terms of their understanding of the mechanistic
nature of measurement uncertainty.

The first step to develop the conceptual framework of a
concept is to identify the central idea based on experts’
normative views [17-21]. As for measurement uncertainty,
the normative views consider that measurement is an
interaction between instruments and the entities being
measured. A measurement setting involves humans, the
environment, and instruments, which would interact with
each other and lead to a range of measurement uncertainties
that can be categorized into two types: systematic uncer-
tainty and random uncertainty. The systematic uncertainty

Conceptual framework for the measurement uncertainty. Solid arrows represent experts’ conceptual pathways while dashed-

is a consistent shift from the presumed actual value in
measurement outcomes, while the random uncertainty
describes the random inconsistency in measurement out-
comes. The possible mechanism leading to systematic and
random uncertainties in a specific setting is context
dependent and needs to be analyzed case by case. In
general, both types of uncertainties are expressed in the
processes of making and using an instrument. However,
in most examples and practices, systematic uncertainty is
often associated with certain properties of an instrument.
Such instrumental properties are often fixed or slow
changing, and therefore, are more likely to create a
consistent shift in measurement outcomes than human
interactions, which often lead to random uncertainties.
Following the definition of uncertainty, the mechanistic
origin of measurement uncertainty is defined as the central
idea, which consists of system interference and random
processes. In the teaching and learning of measurement
uncertainty, the central idea is closely linked to the sources of
uncertainty and the methods of data analysis used to deal
with the different kinds of uncertainties arising from
measurements. Anchored with the central idea, a conceptual
framework of measurement uncertainty is developed and
shown in Fig. 1, which includes a range of additional
knowledge components including contextual features, inter-
mediate reasoning and operations, and different pathways of
student reasoning in learning measurement uncertainty.
As represented in the conceptual framework, the
knowledge elements (e.g., context features, intermediate
reasoning, and sources of uncertainty) are organized
hierarchically and link to the central idea. The top layer
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component is the central idea, which builds on the core
understanding of the mechanisms of uncertainty.

The second layer represents a concrete expression of the
central idea in terms of an extended network of possible
interactive relations in a measurement setting, which
consists of different sources of uncertainty (device, inter-
active measurement, and readout process) and the influence
factors (instrumental influences, environmental influences,
and human interactions). Experts are usually able to
identify the correct interactive pattern between sources
of uncertainty and influencing factors, which helps them
apply the central idea explicitly and intuitively to all related
problems. In contrast, novice students often have a very
limited understanding of this interactive relational network.

The third layer contains the intermediate reasoning
processes and operational procedures, including math-
ematical, logical, and manipulative processing. These
reasoning and mathematical manipulations provide opera-
tional rules and procedures to address measurement uncer-
tainty, which are expected to be linked to the understanding
of the origins of uncertainty. However, among novice
students, these rules and procedures are often disconnected
from deeper-level mechanistic understandings and applied
as memorized procedures in problem solving. The common
manipulations, such as making repeated measurements to
calculate a mean value, selecting an instrument, or con-
trolling the environment, are often explicitly taught in
classes and can be learned by students as local links
between contexts and operations based on memorization
or through some of the naive type of intermediate proc-
esses. Besides, students tend to develop simple one-on-one
rules for categorizing uncertainty, such as considering that
instruments have only systematic uncertainty and random
uncertainty is only with human observations.

The bottom layer consists of contextual features and
variables, which are usually design features of problems
and can be modified to create different questions and task
settings. This layer represents the most concrete elements
of the conceptual framework, which include surface
details of context features such as the specific objects
being measured and the measurement variables including
temperature, length, volume, or mass, and the instruments
involved, e.g., thermometer, ruler, measuring cylinder,
and balance scale.

The conceptual framework integrates these layers and
task goals to visually represent students’ understandings in
terms of reasoning pathways, which are shown as different
links connecting the knowledge components at different
layers (see the arrows shown in Fig. 1). Different contextual
features, operations, sources, and influence factors are
connected by arrows to represent the possible reasoning
pathways of students. Solid arrows represent experts’
reasoning pathways, while the dashed-line arrows represent
the conceptual pathways of novices. Novices’ reasoning is
often based on surface-level context features of problems.

They solve the problems by matching these features to
operations encountered through textbooks and classes,
without a deeper understanding of the central idea of
uncertainty. Therefore, these students often have difficul-
ties in answering questions with unfamiliar contexts or
ones that require the understanding of the central idea.
Experts, on the other hand, have developed an integrated
knowledge structure that connects contextual features,
operations, and the interactive pattern between sources
and influence factors to the central idea. This knowledge
structure enables them to reason from any given point of
contextual features to reach the central idea, which allows
them to develop problem-solving strategies with a range
of flexible and comprehensive networks of reasoning
pathways to successfully solve problems in both familiar
and novel contexts.

C. Levels of knowledge integration within
student knowledge structures

After developing the conceptual framework, students’
difficulties and misconceptions documented in the existing
literature can be interpreted and represented with different
reasoning pathways of specific learning states within the
framework to analyze students’ level of knowledge inte-
gration. According to previous studies [17-21], asking
students to solve problems with typical and atypical
contexts in the assessments can distinguish between stu-
dents at different levels of knowledge integration. Based on
the conceptual framework of measurement uncertainty,
students’ difficulties from existing studies are summarized
into three levels of knowledge integration as follows:

1. Novice level

Novice students’ knowledge structures are typically
fragmented, with links only connecting the surface fea-
tures of contextual variables (bottom layer components)
and the task goals without a meaningful understanding of
the underlying mechanisms. These students can only
correctly answer some typical questions based on memo-
rization of learned examples. In addition, due to a lack of a
basic understanding of the origin of random uncertainty,
novice students often believe that it is unnecessary to
make multiple trials unless there is something wrong with
a measurement [48]. Although some would make repeated
measurements in an experiment, they tend to use a
recurring value [49] for the result or simply do it as a
routine procedure [47]. The formality of repeated meas-
urement is easily memorized and can be directly applied to
similar problems. When working with atypical questions,
such as identifying the sources of uncertainty, novices
often ascribe all deviations in measurement results to
human errors. Additionally, novice knowledge structures
may not contain the mechanistic origins of different types
of uncertainties, which are rarely discussed explicitly in
traditional instruction.
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2. Intermediate level

Students at this level develop more connected knowledge
structures, allowing them to relate the contextual variables
and instruments to the layer of intermediate operations,
which connect to the task goals. However, these students’
knowledge structures are still fragmented without the
integrated understanding that links to the central idea.
Therefore, students at this level still solve problems by
relying on memorized procedures and examples without
clearly considering the central idea. They can perform well
on typical questions with familiar contexts but often fail on
atypical ones involving novel contexts. For example,
students at this level believe it is necessary to make
repeated measurements and know to use the arithmetic
mean to address uncertainty [33,49]. However, these
students have yet to develop a complete understanding
of the central idea, which hinders their capacity to dis-
tinguish between uncertainties of different origins such as
the random uncertainty caused by human operations and
the systematic uncertainty due to instrument biases.
Without a complete understanding of the central idea,
students often have difficulties in identifying the sources
and causes of different types of uncertainties, leading to
confusion about the need and calculation methods in
mathematical data processing. When solving typical text-
booklike problems, they sometimes can distinguish
between different uncertainties and figure out their sources
based on memorized examples. Nevertheless, these stu-
dents often fail to solve problems with atypical contexts
due to the lack of a complete understanding of the
central idea.

3. Expertlike level

Students with expertlike understanding can relate the
contextual features to the central idea, along with several
intermediate processes and related principles, to form a
well-connected knowledge structure. As for measurement
uncertainty, these students can clearly and explicitly
reason with the interactive relations between sources of
uncertainty and the influencing factors. The integrated
knowledge structure allows the students to recognize the
sources and causes of uncertainty in both typical and
atypical contexts. Furthermore, they can explicitly dis-
tinguish random and systematic uncertainties and under-
stand the data processing strategies to address the different
uncertainties. Therefore, these students perform well in
solving both typical and atypical problems by applying
the central idea, which is the hallmark of a well-connected
knowledge structure that diverges from the novices’
fragmented structures.

In summary, the conceptual framework can represent
students’ reasoning pathways and common student diffi-
culties in understanding aspects of measurement uncer-
tainty, which can be further used to categorize students into
different levels of knowledge integration. To obtain a

TABLE I. Designs of measurement settings targeting single vs
multiple observers, devices, and measurements.

Question designs Questions

Q2-4, Q7, Q9-10
Q5-6, Q8, Q11-15

Q2-3, Q5-6, Q12-13

Q4, Q7-8, Q9-11, Q1415
Q4-7, Q14-15

Q2-3, Q8-13

Single observer
Multiple observers
Single device

Multiple devices

Single measurement
Repeated measurements

quantitative assessment of students’ levels of knowledge
integration, the conceptual framework is applied to guide
the development of a multiple-choice instrument that
probes the features of students’ knowledge structures,
which are discussed next.

D. Development of the measurement uncertainty test

In this research, a concept test on measurement uncer-
tainty was developed based on the conceptual framework to
probe students’ levels of knowledge integration with an
emphasis on targeting the conceptual understanding of the
mechanisms underlying measurement uncertainty. The test
contains 15 multiple-choice questions designed with differ-
ent contexts to target different conceptual elements and the
central idea of uncertainty (see the Supplemental Material
for the test [51]). To probe different aspects of student
reasoning, the questions were designed with three con-
textual and content configurations including typical and
atypical contexts, types of reasoning, and measurement
settings to be discussed below.

1. Designs using typical and atypical contexts

For the topic of measurement uncertainty, contextual
features often involve different configurations of observers,
measurement devices, and measurements performed. The
most basic contextual design can involve different numbers
of observers, devices, and measurements, which are listed
in Table I.

Building off the basic contextual features, combinations
of multiple context elements can provide refined settings
with typical and atypical questions to probe students’ deep
conceptual understandings. As shown from previous stud-
ies, the question designs using typical and atypical contexts
were found to be effective in assessing students’ under-
standing of the central idea and their levels of knowledge
integration [17-21]. The definition of typical or atypical
questions is based on whether questions of similar contexts
have been used in instruction or not. It is also noted that the
questions categorized as typical or atypical are based on the
instruction received by students involved in this research,
which may vary in other education systems. In this study,
the participants include a group of college undergraduates
who have not taken the college-level laboratory course and
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TABLE II.

Designs of contextual combinations. Note that *Q1 is a filler question and is not included in data analysis; **Q12 and Q13

are both considered typical since participants in this study are familiar with the contexts.

Question contexts

Design Configurations on the observers, devices, and measurements Typical Atypical
Design 1 (D1) Single observer, single device, single measurement Qr*

Design 2 (D2) Single observer, single device, repeated measurement Q3 Q2
Design 3 (D3) Single observer, multiple devices, single measurement Q4 Q7
Design 4 (D4) Multiple observers, single device, single measurement Q6 Q5
Design 5 (D5) Single observer, multiple devices, repeated measurement Q10 Q9
Design 6 (D6) Multiple observers, single device, repeated measurement QI13, QI2%*

Design 7 (D7) Multiple observers, multiple devices, single measurement Ql5 Ql4
Design 8 (D8) Multiple observers, multiple devices, repeated measurement Q8 Q11

a group of high school students who have completed the
learning of measurement uncertainty in their high school
physics classes. Therefore, these students’ understanding of
uncertainty is largely based on their learning in high school.
In the high school physics instruction on measurement
uncertainty, students were explicitly asked to perform tasks
that require them to make repeated measurements using a
single instrument and computing the mean value. In other
words, taking multiple measurements to compute mean
value is a familiar, almost automatic procedure for these
students. Therefore, the design of typical questions often
involves the common task that asks students to “compute
the mean value (as the final result),” which is the typical
routine procedure taught in the Chinese high school physics
curricula to address uncertainty. This task often activates
students’ memories of similar problems, which can lead
them to match memorized solutions without meaningful
reasoning.

In contrast, atypical questions are designed with unfa-
miliar contexts that students rarely encounter in traditional
instruction, which often makes the memorization-based
strategies nonproductive. To successfully solve atypical
questions, students would need to develop a basic under-
standing of the mechanistic origins of different types of
measurement uncertainty. Therefore, the design of atypical
questions can directly probe students’ understanding of the
central idea, which is a signature of achieving an expertlike
level of knowledge integration.

The measurement uncertainty test includes eight designs
of contextual configurations, summarized in Table II. A
pair of typical and atypical questions were designed for
each contextual configuration except for D1 and D6. Here,
D1 gives a very simple contextual configuration, in which
an atypical question cannot be designed. The correspond-
ing Q1 is a simple question, familiar to most students, and
is used as a filler question, so it is omitted in data analysis.
Meanwhile, students involved in this study were also very
familiar with the contextual configuration of D6. It was
commonly used in instruction, in which students as a group

were explicitly asked to perform tasks that require
making repeated measurements using a single instrument.
Therefore, Q12 and Q13 are both considered typical
questions in this study. It is worth noting that the definition
of a typical or atypical question is dependent on instruction
and can be defined differently in studies involving different
instruction. Altogether, the test includes nine typical ques-
tions (Q1, Q3, Q4, Q6, Q8, Q10, Q12, Q13, and Q15) and
six atypical ones (Q2, Q5, Q7, Q9, Q11, Q14).

2. Designs targeting different types of reasoning

The reasoning for measurement uncertainty can be
categorized into three types of questions. A question can
ask students to identify a specific form of uncertainty based
on a given task, such as random or systematic, which forms
a “what” type of question. A question can also ask students
to perform a task, such as selecting a specific reading or
device, which forms a “how” type of question. Finally, a
question can ask students to find an explanation or a reason
for an observed uncertainty, which forms a “why” type of
question. These question designs target different thinking
pathways that can be useful in determining finer details of
students’ conceptual understanding.

For the measurement uncertainty test, the questions of
different reasoning types are summarized in Table III.
Specifically, the what questions ask students to identify
what kind of uncertainty can be reduced with the operations
mentioned in the question. The how questions ask students
to determine the operations that can reduce the uncertainty

TABLE III. Designs of question types.

Question

types Question contexts Questions

What Typical Q1, Q3, Q8, Q10, Q13, Q15
How Typical and atypical Q4, Q6, Q9, Q12, Q14
Why Atypical Q2, Q5, Q7, Q11
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of the reported outcome based on measurements given in
the question. The why questions probe if students can
recognize the mechanistic origins of different types of
uncertainties involved in the given measurements. Notably,
the what questions are considered typical since the oper-
ations involved focus on making repeated measurements
and calculating the mean value. Students had plenty of
exposure to this kind of operation in instruction and could
memorize the types of uncertainties associated with the
operation. Therefore, the what questions can usually be
solved using memorization-based strategies. The how
questions have mixed categories with some being consid-
ered typical, which involve simple calculations of mean
values similar to the what questions. On the other hand,
some how questions are considered atypical when they
involve contexts that require the use of the central idea. The
why questions are all considered atypical, since the
instructions rarely discussed the mechanistic origins of
different uncertainties, and successfully solving this type of
question requires a basic understanding of the central idea.

In addition to achieving the research goals of this study,
the exploration of question designs using different con-
textual features and reasoning types can also provide useful
information for general assessment and instruction in
teaching and learning. Knowing the appropriate types of
reasoning and contexts to use in assessment and learning
tasks in teaching can greatly aid instructors in effectively
teaching this important topic with an aim to help students
develop an integrated knowledge structure and deep con-
ceptual understanding.

E. Data collection

Assessment data were collected from a total of 406
students in China, among which there were 247 second-
year college students from a large-scale comprehensive
university and 159 senior high school students from a high-
ranking high school. All students had previously learned
the relevant content of measurement uncertainty in their
high school physics courses. Students were given 40 min to
complete the test.

Interviews were also conducted with 18 volunteers from
the same pool of undergraduate students after they com-
pleted the concept test. Each interview session lasted
approximately 30 min. The purpose of the interviews was
to identify the reasoning pathways that students used to
answer the questions and to figure out which links in the
conceptual framework were being used. During the inter-
views, students were asked to review the test and explain
their answers out loud. Additional follow-up questions were
also asked to specifically probe students’ understanding of
the origins of systematic and random uncertainties.

In data analysis, all scores are scaled to 0-1 for easy
comparisons. Students’ mean scores on question sets
designed with different contextual features and reasoning
types were compared using ¢ tests, analysis of variance

(ANOVA), and Cohen’s d effect size to determine the
significant influences on students’ performances from
varied contextual and reasoning designs. The results were
used to determine students’ knowledge integration levels
and to identify the differences and similarities in students’
conceptual understandings.

F. Evaluation of validity and reliability of the test

The validity of the measurement uncertainty test is
evaluated in two areas including content validity and
measurement validity. The content of the test was designed
by a team of experts in physics and physics education
including three faculty and three graduate students. The
design went through a rigorous cycle of development and
revision in multiple iterations of piloting and feedback by
additional faculty and graduate students in the research
institutions of the authors. The content of the final version
of the test has been agreed to be scientifically accurate and
valid for measurement by the team of designers and
evaluators.

For the measurement validity, 80 college students were
interviewed during the piloting-revision phase of the
development. The interviews were used primarily to check
if the students’ responses were aligned with the intended
constructs of measurement. An evaluation of the consis-
tency indicates a 94.3% agreement between students’
explained understanding of the questions and the intended
measurement designs. Additional measurement validity
can be further evaluated based on whether the quantitative
assessment outcomes are consistent with the expected
results of the design. As can be seen from the results
presented in the following sections, the quantitative assess-
ment outcomes agree well with the expected outcomes of
the design. Therefore, based on the interviews and assess-
ment results, the measurement validity of the test can be
sufficiently established.

The reliability of an assessment instrument is often
evaluated using the Cronbach’s a, which is calculated
based on the consistency between test items. This is a
valid method when the test is unidimensional but will not
produce the intended measure when the test has strong
multidimensionality. As discussed earlier, the measurement
uncertainty test is designed with multiple dimensions
of constructs including contexts, reasoning types, and
measurement settings. The multidimensionality is clearly
demonstrated by the scree plot included in Fig. 5 in the
Appendix, which shows a number of eigenvalues in a similar
range. Therefore, Cronbach’s a, which produces a small
value of 0.18 because of the strong multidimensionality of
the text, does not work well in this case.

The original definition of reliability is test-retest con-
sistency. Therefore, we can use the bootstrapping method to
simulate the test-retest scenario by resampling the total
dataset into multiple subgroups and comparing their means.
In this simulation, the total dataset is randomly split into
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TABLE IV. Typical and atypical scores and statistical signifi-
cance of differences.

Contexts  Mean SD t P Cohen’s d
Typical 0.68 0.18  20.07 < 0.001 1.36
Atypical 0.44 0.17

Total 0.58 0.13

two subgroups at half of the original size (N = 203). Then
a t test is conducted to compare the mean scores of the two
subgroups. This resampling and comparison are conducted
100 times, which produces an average p value = 0.51 and
an average Cohen’s d effect-size = 0.08. The simulation
results suggest that the test scores are not statistically
significant between test-retest runs with an average uncer-
tainty equivalent to 8% of the standard deviation, which
suggests that a satisfactory level of reliability is established.

III. RESULTS

A. Students’ performances on different question designs
1. Performances on typical and atypical questions

As shown from previous research, the use of typical and
atypical questions in assessment is effective in probing
students’ understanding of the central idea, which helps to
determine their levels of knowledge integration [17-21].
Students’ average scores on the typical and atypical
questions are given in Table IV, which shows a significant
difference between mean scores on the two types of
questions [7(406) = 20.07, p < 0.001, d = 1.36].

To investigate fine-grained performance details, stu-
dents’ mean scores on typical and atypical questions in
each contextual configuration (see Table II) are also
plotted in Fig. 2, which shows that the different designs
provide a variety of difficulties and discriminations
for assessment of students at a wide range of performance
levels. Overall, the designs of typical and atypical questions

used in the measurement uncertainty test provide
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FIG. 2. Students’ performance across different designs of
contextual configurations. The error bars represent standard
errors.

TABLE V. Students’ scores on what, how, and why questions.

Question type Question context Mean (N =406) SD

What Typical 0.66 0.21
How Typical and atypical 0.57 0.19
Why Atypical 0.51 0.23

appropriate discrimination and contextual variation to
probe students’ knowledge integration, which will be
discussed in later sections.

2. Performances on questions targeting
different reasoning types

Students’ scores on what, how, and why questions are
listed in Table V. The assessment outcomes show that
students have the highest scores on what questions and the
lowest scores on why questions. A one-way ANOVA
shows significant differences between the three question
types [F(2,1218) = 54.85, p < 0.001], which are more
clearly demonstrated with pairwise ¢ tests between differ-
ent question types [#(yhachow)(406) = 6.83, p < 0.001,
d = 0.47; tnow-wny)(406) = 4.10, p <0.001, d = 0.28;
!(what-why) (406) = 10.38, p < 0.001, d=0.70]. Since
many students would rely on memorization-based strat-
egies in problem solving, it is often expected that the
what questions are relatively easy for students, whereas
the memorization-based approaches can be productive.
Meanwhile, the how and why questions are more difficult
since they require an increasing level of understanding of
the central idea of the concept and cannot be solved with
factual memorization.

3. Performances on questions with varied numbers of
observers, devices, and measurements

In typical lab activities and assessments, the numbers
of observers, devices, and measurements are often varied
to create different experimental tasks and problems.
Therefore, results on the possible influences of these factors
on students’ performances can provide valuable informa-
tion for lab instruction and assessment (see Table VI). The
results suggest that students’ performances decreased when
multiple observers [#(406) = 12.33, p < 0.001, d = 0.82]
and measurement devices [7(406) =5.51, p < 0.001,
d = 0.39] were involved. However, changes in the number
of measurements did not lead to any significant perfor-
mance differences [#(406) = 1.06, p = 0.29)]. These
results can be expected since during lab instruction students
were frequently asked to conduct repeated measurements in
doing an experiment. Although most students do not
exactly understand the reason for repeated measurements
[33,37,40,41,44,47,48], they are familiar with the context
and can solve typical questions correctly using memori-
zation-based strategies. On the other hand, students were

020145-9



CHUTING LU et al.

PHYS. REV. PHYS. EDUC. RES. 19, 020145 (2023)

TABLE VI. Students’ mean scores on questions involving single or multiple observers, devices, and measurements.

Question designs Mean SD t P Cohen’s d
Single-observer 0.66 0.18 12.33 <0.001 0.82
Multiple-observers 0.51 0.18

Single-device 0.62 0.22 5.51 <0.001 0.39
Multiple-devices 0.54 0.17

Single measurement 0.58 0.19 1.06 0.29

Repeated measurements 0.57 0.18

much less familiar with contexts that contain multiple
observers or measurement devices. Therefore, increasing
the number of observers and/or devices often makes the
questions more difficult for students.

B. Quantitative study on students’ knowledge
structures of measurement uncertainty

To examine how students at different total performance
levels may respond to the typical and atypical questions,
score distributions of the two types of questions are plotted
in Fig. 3. A histogram of the frequency of students’ total
scores is displayed in the background to show the distri-
bution of students at different performance levels.

As shown in Fig. 3, scores on typical and atypical
questions are similarly low for all students with low total
scores (score<0.5 marked as 0.4), indicating a novice level
of understanding that leads to poor performance on
both typical and atypical questions. As the total score
increases (0.5 < score < 0.9), a performance gap between
typical and atypical questions is more pronounced, sug-
gesting that students in this range have started to perform
well on typical questions using memorization-based strat-
egies but have not yet developed a good understanding of
the central idea. As the total score further improves
(0.9 < score < 1.0), the performance on typical questions

200
1.0 —— Typical
---- Atypical

160
0.8

120
0.6

04 S mT 80

Context Type Scores

0.2 b 40

0 0
0-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Total Score

FIG. 3. Plot of typical and atypical questions across total scores
(with error bars denoting standard error) for all students in this
study. The frequency of total score distribution is shown as a bar
chart in the background. An absolute count of students falling
into each range is shown on the right axis.

reaches near mastery, and the performance on atypical
questions starts to show a noticeable improvement. At this
level, students would have developed partially integrated
knowledge structures with some understanding of the
central idea that allows them to successfully solve most
typical questions but still fail on many atypical ones.
Finally, students with the highest scores (1.0) display a
small difference between their scores on typical and
atypical questions, indicating that they have developed
a solid understanding of the central idea with a well-
integrated knowledge structure. Due to the constraints of
the population studied, the number of high-performing
students is very small, which also suggests that a good
understanding of the central idea is often difficult to achieve
in traditional instruction.

To investigate patterns of student reasoning when deal-
ing with measurement uncertainty, the score distributions
of questions in different reasoning types including the what,
how, and why questions (see Table III) are plotted in Fig. 4.
As shown in Fig. 4 and Table V and discussed earlier, the
what questions are relatively easy for students since they
can be solved with memorization-based strategies. On the
other hand, the why questions are much harder, as most
students have not yet developed a deeper understanding of
the central idea through traditional instruction. The how
questions reveal an interesting pattern, which starts to be

200
160
120

80

Question Type Scores

40

0 0
0-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0
Total Score

FIG. 4. Plot of what, how, and why questions across total scores
(with error bars denoting standard error) for all students in this
study. The frequency of total score distribution is shown as a bar
chart in the background. An absolute count of students falling
into each range is shown on the right axis.
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TABLE VII. Summary of total score, question contexts, and question type scores per knowledge integration level. Standard errors are
given in parentheses.

Knowledge

integration level Total score N Typical Atypical What How Why
Novice 0.0-0.5 48 0.40 (0.02) 0.29 (0.02) 0.37 (0.02) 0.37 (0.02) 0.34 (0.03)
Intermediate 0.5-0.9 350 0.71 (0.01) 0.45 (0.01) 0.69 (0.01) 0.59 (0.01) 0.52 (0.01)
Expertlike 0.9-1.0 8 0.94 (0.02) 0.79 (0.04) 0.94 (0.03) 0.80 (0.04) 0.88 (0.05)

similar to the what questions for students with low total
scores. However, for students with higher total scores, their
performance on the how question did not improve with the
what questions but, instead became similar to their perfor-
mance on why questions. A possible reason for this pattern
is that traditional instruction usually emphasizes repeated
measurements as a necessary procedure but rarely explains
why this is needed or how it is connected to measurement
uncertainty. Therefore, students often memorize the pro-
cedure and can perform well on some typical questions that
require repeated measurements, but the strategy will not
work on problems that cannot be solved by making
repeated measurements. These problems behave more like
the why questions which require a deeper understanding of
the central idea which was only developed among the very
top students.

The general trend of students’ score distributions is
consistent with their performances on typical and
atypical questions shown in Fig. 3. Students with low
total scores (score<(.5) performed similarly and poorly
among the three types of questions due to their novice
level of understanding. As the total score increases
(score = 0.5-0.9), the performance gap among the three
question types becomes more pronounced, suggesting that
students in this range have started to perform well on the
what questions using memorization without yet establish-
ing a basic understanding of the central idea which is
needed to solve the how and why questions. As the total
score further improves (score>0.9), the what question
performance is near mastery, and students’ performances
on the how and why questions start to show significant
improvement. Finally, students with a high score near 1.0
show a minor difference among different types of questions
which is an indicator that these students have achieved a
good understanding of the central idea with a well-
integrated knowledge structure.

Based on the gap between typical and atypical questions
shown in Fig. 3 and between the different reasoning type
questions shown in Fig. 4, a total of three knowledge
integration levels can be categorized as shown in Table VII.
The score division given in Table VII is identified as the
categorization scheme to match between total score and
knowledge integration levels. However, since the assess-
ment outcomes and interviews are population dependent,
this score division scheme reflects only a reasonable
approximation and should not be generally extended to

other contexts and populations. Nevertheless, this result
demonstrates the possibility of identifying a quantitative
categorization scheme to model knowledge integration as
well as its utility in teaching and learning. To further
validate the knowledge integration levels, interviews were
conducted and used as confirmative evidence to support the
categorization scheme defined in Table VII. The interview
outcomes are discussed next.

C. Qualitative study on students’ knowledge
structure of measurement uncertainty

In traditional physics instruction, the origins or mech-
anisms of measurement uncertainty are usually not dis-
cussed in detail. This limitation often leads to student
difficulties in understanding the causes and interactions
within and between systematic and random uncertainties.
Typically, students often use a memorization strategy to
simply match systematic uncertainty to instruments and
random uncertainty to human error.

Since students were unfamiliar with the mechanism of
uncertainty, they tended to solve the problems through
memorization instead of reasoning. When interviewed,
some undergraduate students either did not directly link,
or only weakly linked, the cause and solutions, responding
with comments such as, “well, there are two kinds of
uncertainties, the systematic and random uncertainties,
right? ...Oops, I forgot how to distinguish them, but I
think that making repeated measurements can reduce all
types of uncertainty because we do it in class nearly all the
time.” A few students with higher total scores recognized
the connections among the mechanisms and solutions to
different types of uncertainties in their responses:
“Generally, the observer will cause random uncertainty
when reading and recording, we should try to measure as
many times as possible and then the average value gets
closer to the true value. Meanwhile, systematic uncertainty
is usually related to instruments, and we can decrease it
only by modifying experimental instruments or perfecting
measurement principles.” Overall, it is clear that students
generally did not correctly or just simply link mechanisms
and solutions within their understanding of the different
types of uncertainty.

To gain insight into the actual reasoning pathways of
students at different performance levels, which are shown
in Table VII, interview results are analyzed and discussed
next along with the assessment outcomes.
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1. Novice level (total score < 0.5)

Students performed poorly on all types of problems.
When solving problems, these students relied heavily
on memorized rules or related real-world intuition.
Additionally, these students exhibited little understanding
of the central idea and instead directly related elements of
the surface features to their responses. Students who
exhibited this behavior had thoughts similar to the inter-
view excerpts shown below:

Student A:  (Q4) The student chose answer D and
explained “I subconsciously regard the
choice related to mean value as the best one,
because I think the temperature would be
high and low, and the average may ‘balance’
this. Uhh....actually I'm not sure what the
‘balance’ is and what can be balanced.”
(Q7) The student chose answer D and
explained “Although all thermometers are
placed in a constant temperature cage, I think
it cannot be sure that the temperature is the
same everywhere in this temperature cage.”
(Q4) The student chose answer C and
explained “I think the thermometers on the
shelf are manufactured along with uncer-
tainty and the uncertainty is different from
each other. If there are more thermometers
giving the same temperature, it indicates that
there is no problem in their manufacturing
process.”

(Q4) The student chose answer C and
explained “Thermometers on the same shelf
should not differ too much, so selecting
thermometers showing the same temperature
would be possible to be close to the exact
value... The true value cannot be measured
by any method.”

Student B:

Student C:

Student D:

As shown from the interviews, when thinking about the
solutions to decrease the uncertainty, students at this level
often relied on the idea of repetition of outcomes,
considering the recurring value as a better value, display-
ing memorization of the mean value method without
reasoning. These students did not understand systematic
uncertainty, so they usually solved problems by guessing.
Both students A and B mainly attributed the uncertainty to
the temperature fluctuation rather than the properties of
the measurement devices. Although student A selected
the correct answer, the student still misunderstood the
sources of uncertainty and was puzzled about the signifi-
cance of the mean value method. Student C appeared to
recognize that the instruments had manufacturing-based
systematic uncertainty, but the student did not seem to
understand that the manufacturing process can involve
random factors that need to be addressed using the mean

value method applied to outcomes measured with multi-
ple instruments. There were also novice students who
seemed to completely lack the understanding of system-
atic uncertainty. For example, Student D believed that the
instruments should produce identical measures and that
choosing ones showing similar outcomes would make the
best measurement.

Overall, the novice students performed weakly on most
questions. Their problem-solving approaches generally fell
into the category of memorization of problems’ solutions
and rules or guesswork. These poor performances could
link to students’ fragmented knowledge structures and
minimal understanding of the central idea.

2. Intermediate level (total score between 0.5 and 0.9)

The students at this level exhibited a range of behaviors,
but they all had significantly higher mean scores on typical
(Siypicat = 0.71) and atypical (Syypicar = 0.45) questions
when compared to novices (0.40 and 0.29, respectively)
[fypical (398) = 14.75, p < 0.001, d = 2.27; tyypical(398) =
6.74, p <0.001, d = 1.04]. Meanwhile, these students
also performed better on what (Syn, = 0.69), how
(Spow = 0.59), and why (S, = 0.52) questions than the
novices (0.37, 0.37, and 0.34, respectively) [fyn(398) =
11.60, p < 0.001, d = 1.79; t,,,,,(398) = 8.23, p < 0.001,
d = 1.27; t,,y(398) = 5.57, p < 0.001, d = 0.86].

These students also demonstrated a mixture of using
memorization-based strategies and having limited reason-
ing using the central idea. They often demonstrated
inconsistent reasoning depending on the contexts of the
questions. For example, student E was able to respond
that computing the average of different thermometers’
measurement outcomes could reduce their systematic
uncertainty in question Q4, but thought that using several
rulers to take repeated measurements and computing the
mean value could not decrease the systematic uncertainty
of rulers:

Student E:  (Q4) The student chose answer D and
explained “Selecting the thermometer that
shows the temperature near the mean value
may be better. The systematic uncertainty of
the thermometer would be reduced by taking
an average value. Well, we always compute
the mean value to reduce the uncertainty in
the lab course.”

(Q10) The student chose answer B and
explained “Oh, the systematic uncertainty of
each ruler is fixed, right? The division value
is the uncertainty of the ruler. Although you
used five rulers to measure the height six
times, only the random uncertainty of
reading can be reduced. The uncertainty of
the ruler still cannot be decreased.”
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(Q9) The student chose answer D and
explained “I hesitate because the division
value of the ruler is fixed, so I think the
systematic uncertainty of each ruler is
unchangeable? ... Then I thought about
whether it still needs to make repeated
measurements. It is difficult for me to choose
between A and D... The difference between
each ruler should be a fixed value, and there
is no need to measure it again, so it is enough
to make a single measurement and compare
the readings of each ruler. I am also afraid
that a single measurement will lead to the
effect of random readings, but the differences
between the rulers must be a fixed value...
so, there is no need to measure the

height again.”

From students’ descriptions, the question contexts
directly affected reasoning, with student E demonstrating
at least partial reasoning using the central idea on the
atypical question Q9 and typical question Q10 but relying
on matching the surface features with memorization on the
typical question Q4. Overall, the intermediate students’
reasoning on question Q4 was significantly improved when
compared to novices, with these students being able to fig
out the cause of the different values of the thermometers.

3. Expertlike level (total score > 0.9)

These students demonstrated near mastery in all typical
and atypical questions with the most notable improvement
over intermediate students on typical (Sypica = 0.94) and
atypical (Syypica = 0.79) questions, which are significantly
better than those at intermediate level (0.71 and 0.45,
respectively) [fypica(358) = 9.52, p <0.001, d = 3.41;
taypical(358) = 6.07, p < 0.001, d =2.17]. Meanwhile,
they also performed better on the what (Syp, = 0.94),
how (Sp,w = 0.80), and why (S, = 0.88) questions than
the intermediate students (0.69, 0.59, and 0.52, respectively)
[fwnat(358) = 3.72, p < 0.001, d=1.33; #,w(358) =
3.39, p = 0.001, d = 1.21; £,,y(358) = 4.60, p < 0.001,
d = 1.64]. The expertlike understanding establishes a well-
integrated knowledge structure such that students were able
to consistently answer typical and atypical questions using
the central idea, which is evident from the interview
excerpts shown below:

Student F:  (Q9) The student chose answer A and
explained “Making repeated measurements
and calculating the mean value can reduce
the random uncertainty for each ruler.
Besides, by comparing the mean values of
different rulers, we can identify whether

systematic uncertainty exists.

Student G:  (Q4) The student chose answer D and
explained “There are many thermometers,
so by computing the mean value, we can
reduce the systematic uncertainty from the
thermometer. It is consistent with the method
in our daily experiment.”

(Q7) The student chose answer C and
explained “Well, five thermometers,
although they are designed to have the same
range and division value, there should be
some differences among them...that will
cause the systematic uncertainty, so the
readings for these five thermometers are
different.”

(Q9) The student chose answer A and
explained “To identify whether the

rulers are manufactured with different
systematic uncertainty, so we need many
rulers, but the single measurement is not
enough...the best answer should be ‘using
several rulers to make repeated measure-
ments respectively’ (reading the question
again) Uhh... there have been five rulers,
so the answer is A. By making repeated
measurements for each ruler to compute the
mean value, we can reduce and eliminate
the impact of random uncertainty of read-
ing. If the mean values for each ruler are
different, the differences should be caused
by the ruler.”

(Q10) The student chose answer C and
explained “Similarly, there are six mea-
surements per ruler, and computing the
average will reduce the random uncertainty
of reading. Meanwhile, there are five rulers,
so averaging the mean value of each ruler
again can then decrease the ruler’s system-
atic uncertainty.”

From the interviews, students at this level were able to
recognize the mechanisms of different uncertainties and the
methods to address them. Both of these students focused
their reasoning on the central idea. Contextual factors, such
as the condition of the environment and the number of
observers and instruments, did not affect their application
of the central idea in their reasoning about the mechanism
of measurement uncertainty.

According to the interview results, 4 out of the 18
students were identified at the novice level. Their answers
were related to surface feature elements and exhibited a
high degree of dependence on guesswork. Meanwhile, the
majority of the interviewed students (12 out of 18) were
identified at the intermediate level. Most of these students
directly matched the questions with their memorized
procedures before answering the questions, with some
students demonstrating some reasoning using the central
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idea. These students often exhibited inconsistent reasoning
depending on the contexts of the questions, which dem-
onstrates still fragmented knowledge structures. Finally,
two students were identified at the expertlike level. They
applied the central idea consistently in different contexts to
explain the mechanisms of uncertainties and the methods to
address the uncertainties. Such problem-solving behaviors
demonstrate that these students had developed an integrated
knowledge structure, with global and strong links between
the central idea and other components of the conceptual
framework.

Overall, the assessments and interviews revealed
common and persistent difficulties in students’ understand-
ing of measurement uncertainty. According to the results
from the concept test and interviews, students at different
levels of knowledge integration demonstrate unique types of
reasoning pathways that can be mapped in the conceptual
framework, making it a useful tool for visualizing different
reasoning states and knowledge structures.

IV. DISCUSSION AND CONCLUSIONS

In this study, a conceptual framework of measurement
uncertainty was developed to guide the assessment of
students’ knowledge integration in learning. Based on
assessment data and interview results, students were
categorized into three levels of knowledge integration
including novice, intermediate, and expertlike. The reason-
ing pathways of students at different levels revealed a
progression of reasoning from a rudimentary surface level
to a deep understanding and can be mapped in the
conceptual framework.

Students at the novice level performed poorly on most
questions and demonstrated little understanding of the
mechanisms of different types of measurement uncertain-
ties. In problem-solving, these students often used memo-
rized procedures, which were directly linked to specific
contextual features. As a result, they focused more on the
impact of the environment (such as those in their responses
to Q4 and Q7). Most of them regarded making repeated
measurements to compute the average as an experimental
requirement without understanding the underlying mech-
anisms. Some also held the belief that the recurring value is
the correct result, which demonstrates their lack of under-
standing of systematic uncertainty which has also been
reported in previous studies [47-49]. Students at this level
were able to solve some simple typical questions using
memorized operations or rules but usually failed on more
complex typical questions and all atypical questions.

Students in the intermediate level demonstrated better
performance than novices on typical questions but had
similarly poor performance on atypical questions. They
were able to move beyond simple memorization of sol-
utions and demonstrated some basic understanding of the
central idea, which was applied in their reasoning on some
typical questions. However, these students still failed to

apply the central idea to atypical questions and reverted to
relying on memorized solutions and procedures.
Specifically, these students often applied simple pattern-
matching rules, such as considering that instruments have
only systematic uncertainty, which cannot be reduced in
any way while considering that human observations would
lead to random uncertainties that can be reduced by taking
an average of repeated measurements. As an important
improvement compared to novices, these students did not
recognize the causality of measurement uncertainty but
exhibited partial reasoning using the central idea of typical
questions. However, these students did not exhibit con-
sistent use of the central idea in their reasoning, and their
reasoning was often significantly influenced by the con-
textual features of the questions. The results indicate that
the students had fragmented knowledge structures that were
still largely memorization based and linked locally to
specific contextual features. As a result, these students
can answer the typical what questions and some how
questions but usually fail on the why questions.

Students at the expertlike level established a more
integrated knowledge structure that wraps around the
understanding of the mechanisms of measurement uncer-
tainties (the central idea), which allowed them to solve
problems successfully with explicit usage of the central
idea in different contexts. These students could correctly
identify the sources of different types of uncertainties
and knew corresponding methods to address them.
Furthermore, the central idea was strongly connected to
other components within their knowledge structures and
was applied consistently to all questions. Students at this
level were able to correctly answer all typical questions
and most atypical ones.

Results from this study suggest that the conceptual
framework of measurement uncertainty is valid in repre-
senting and modeling student knowledge structures and
assessing student knowledge integration. The assessment
outcomes also reveal that the traditional curriculum is not
effective in helping students develop an integrated, deep
conceptual understanding of measurement uncertainty. To
promote knowledge integration in teaching and learning, it
is suggested that instructors should emphasize and clearly
establish the central idea of measurement uncertainty and
develop connections between the central idea and other
knowledge components such that the knowledge structure
can be activated and trained as an integrated network. In
practice, instructors can demonstrate how to solve problems
with familiar and novel contexts using the central idea and
the connected network of knowledge. In addition, with an
established conceptual framework, instructors can know
more about the features of the knowledge structures and
thinking pathways of students at different knowledge
integration levels, which can help better target the missing
connections between the central idea and other knowledge
components to promote knowledge integration in teaching.
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Because of the limited scale of this study, there are a few
limitations, which should be further explored in future
research. First, the population studied in this research had
only a small number of sophomores, which limited the
scope of the analysis on students at higher intermediate and
expertlike levels. It would be beneficial to study a pop-
ulation with a large number of advanced students so that the
developmental progression of knowledge integration on
measurement uncertainty can be more thoroughly exam-
ined. Meanwhile, the intermediate-level students demon-
strated a wide range of reasoning pathways in their
interviews, such as identifying different sources of uncer-
tainties in the contexts where observers used different
instruments. Additional assessment questions should be
developed to target these fine-grained reasoning pathways.
It would also be valuable to further investigate students’
problem-solving behaviors on questions involving multiple
measurements using different instruments so that more
reasoning pathways can be examined.

Furthermore, discussions with colleagues also pointed
out that it is important to explicitly address two perspec-
tives on measurement uncertainty in a lab course. One is the
philosophical understanding that there are always unac-
counted factors contributing to an observed measurement
uncertainty. The other is the operational method of treating
the different possible factors. It is recommended that
instructors should discuss both perspectives clearly and
frequently in teaching. For example, the measurement
instruments described in the questions of the assessment
tool of this study may have additional factors contributing
to the observed measurement uncertainty, such as possible
nonlinearity in the scale marking of a single ruler or a
thermometer, or observable spatial temperature differences
across a few centimeters of separation in static air in a lab
room. Although these factors are fundamentally possible,
they are considered in this study to be small-chance events
that are often ignored in calculating measurement uncer-
tainty. Therefore, in a real-world lab setting, analysis of
observation-based measurement outcomes should always
be based on an operational method of decision making
through contrast of the probabilities of different contrib-
uting factors. In such analysis, the knowledge for distin-
guishing between small- and large-chance factors in a
real-world setting is in fact an essential component of lab
skills, which needs to be trained in a lab course. Students

need to develop this knowledge so that they can focus on
things that make major contributions to modeling meas-
urement uncertainty. The assessment developed in this
study can be a useful tool to identify students lacking this
knowledge and help deliver effective instruction such as
when used as clicker questions.
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APPENDIX: DIMENSIONAL ANALYSIS OF THE
MEASUREMENT UNCERTAINTY TEST

The scree plot shows the eigenvalues in descending order
of the correlation matrix of the test. If the test has a
unidimensional structure, the first eigenvalue will be much
larger than the second eigenvalue. If the test has a strong
multidimensional structure, the first eigenvalue will be
comparable to the second and additional eigenvalues.
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FIG.5. Scree plot of the eigenvalues of the correlation matrix of
the measurement uncertainty test.
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