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Instructors and researchers often use research-based assessments to identify the impact of instructional
activities. These investigations often focus on issues of diversity, equity, and inclusions by comparing
outcomes across social identity groups (e.g., gender, race, and class). Comparisons across groups assume
the assessments measure the same factors in the same way across social identity groups. Very few
research-based assessments, however, have validation evidence to support this assumption. Measurement
invariance testing provides validity evidence that an assessment measures latent factors (e.g., Newtonian
thinking or physics identity) equivalently across groups. We examined the measurement invariance of the
Eaton and Willoughby five (EW5) factor model on the Force Concept Inventory. We found evidence for
measurement invariance across the intersections of gender (men and women) and race or ethnicity
(Asian, Black, Hispanic, White, andWhite Hispanic). These results indicate that performance differences
across the five factors can further understanding of equity in physics courses. Without measurement
invariance, such work could produce misleading results that undermine efforts to support equity in
physics courses.
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I. INTRODUCTION

Research-based assessments (RBAs) have provided the
foundation for many physics course pedagogical and
curricular transformations [1,2]. The primary feature that
distinguishes a RBA from a typical assessment is its
validation arguments [3]. Researchers use RBAs to collect
data for investigations of diversity, equity, and inclusion,
e.g., [4–6]. Instrument developers, however, rarely examine
instrument validity across social identity groups, such as
gender and race [7,8]. Most physics RBAs lack validation
arguments for many groups, including Black, Hispanic,
Indigenous, and nonbinary students, limited validation
arguments for women, and no validation arguments across
the intersection of race and gender, e.g., for White Hispanic
Women. These limited validation arguments may hide
biases on the assessments that create misleading findings
about group outcomes.
Research on equity in physics tends to focus on the

overall assessment scores, see Refs. [4–6,8,9]. Using
overall scores, however, prevents studies from identifying
the role of more specific latent factors in promoting equity
of outcomes. Some studies, however, have investigated

equity using the latent factors that an RBA measures.
Latent factors are the underlying constructs in a student’s
mind (e.g., Newton’s third law, conservation of momentum,
or physics identity) that a RBA measures. Research on
gender and physics identity often uses one instrument to
look at factors for interest, performance, recognition, or
competence, for example [10,11]. These factors provide a
better understanding of inequities and systems or inter-
ventions that create or address those inequities. Research
on conceptual understanding also uses subsets of questions
from concept inventories to assess student learning, for
example, Refs. [12,13]. Equity research on conceptual
learning in physics, however, seldom uses the latent factors
measured by RBAs, such as the Force Concept Inventory
(FCI) [14].
Research on equity in physics sometimes considers the

intersection of race and gender (e.g., [15–19]). Many
physics equity research investigations, however, have
aggregated students across many social identity groups
[19] and have not examined the interactions between
multiple axes of social identities. For example, when
investigating inequities across race, many studies have
compared the aggregated outcomes of White or White
and Asian students against those of all other races
[9,20–23]. While these studies can provide important
insights, intersectionality theory [24,25] argues that these
aggregations can obscure inequities and injustices. For
example, Shafer et al. [26] found that the common
approach of comparing underrepresented (URM) and
non-URM groups hides the inequities that both Black

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 19, 020102 (2023)

2469-9896=23=19(2)=020102(17) 020102-1 Published by the American Physical Society

https://orcid.org/0000-0003-3507-4993
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.19.020102&domain=pdf&date_stamp=2023-07-06
https://doi.org/10.1103/PhysRevPhysEducRes.19.020102
https://doi.org/10.1103/PhysRevPhysEducRes.19.020102
https://doi.org/10.1103/PhysRevPhysEducRes.19.020102
https://doi.org/10.1103/PhysRevPhysEducRes.19.020102
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


and Asian students face in physics. Disaggregation across
multiple intersecting axes of students’ social identities (e.g.,
race and gender) and different power structures within
physics (e.g., the focus of research on calculus-based
physics courses and lack of research at two-year colleges)
can support targeting and assessing interventions to create
more equitable and just physics courses.
Identifying differences in factor outcomes across the

intersections of race and gender could provide researchers
and instructors with insights into ways to support students
from multiply marginalized groups. Take, for example, a
class where most of the students took a high school physics
course, but a minority of students did not take such a course
due to racism or class oppression through the underfunding
of their schools. If the instructor administers the FCI and
looks at the class average pretest score on Newton’s laws (a
topic covered extensively in high school physics courses),
they may conclude that they only need to briefly review the
topic before moving on to content that builds on the ideas.
This data-driven decision would optimize the course for the
“average” student but exacerbate inequities. If, instead, the
instructor disaggregated the findings across social identity
groups, theywould see that spendingmore time onNewton’s
laws would help create a more equitable classroom that
addresses the educational debts society owes to students [27].
Before instructors can do this, however, researchers must
conductmeasurement invariance testing and differential item
function analysis [8,28] to establish that the factors on an
instrument measure the same constructs across groups.
In this investigation, we use measurement invariance

testing and reliability analysis to examine the validity of the
FCI [14] across the intersections of race, gender, and
calculus and algebra-based physics courses. Test validity
covers a wide range of arguments [29]. We focus on two
validation arguments central to RBAs: internal structure
validity and reliability. Internal structure validity focuses on
the accuracy of a measurement; does an assessment
measure what researchers designed it to measure or is it
measuring something else or several things (multidimen-
sional). Reliability arguments focus on the precision of a
measurement, the signal-to-noise ratio [30]. Measurement
invariance analysis addresses the internal structure validity
by informing whether an instrument measures factors
consistently across groups or across time, e.g., pretest
and post-test. Reliability analysis quantifies the precision
of each factor [30]. Researchers often use Cronbach’s alpha
in their reliability analysis. Cronbach’s alpha is the ratio of
the total score variance explained by the factor divided by
the estimated variance of the observed total score. The
findings extend the internal structure validation arguments
for the Eaton and Willoughby five (EW5) factor model [31]
on the FCI across the intersection of race and gender while
identifying limitations in the precision of those factors
when groups have low mean test scores, such as for
pretests.

II. THEORETICAL FRAMEWORK

Intersectionality grew out of Black Feminist theory and
posits that understandingmarginalizedwomen’s experiences
requires viewing them through the lens of multiple systems
of oppression, among them racism, sexism, heteronorma-
tivity, and class oppression [24,25]. For example, an intersec-
tional analysis looks at the outcomes and experiences of
Black lesbians as distinct from Black students, women, and
LGBTQþ students [32]. Rocabado et al. [33] point to the
need for equity research to account for intersections of
multiple identities and power structures and to test for
measurement invariance of the quantitative tools used in
that research. We are, however, only aware of one measure-
ment invariance study that explicitly drew on intersection-
ality theory [34,35].
Collins [36] argues that intersectionality is a theory in

flux as it crosses disciplinary and methodological bounda-
ries. Collins also, however, provides a provisional list of
guiding assumptions that intersectionality studies embrace.
Drawing on that list, this work assumes that race, gender,
and class are best understood in relational terms, rather than
in isolation from one another and that these categories are
mutually constructed. Statistical power and minimum
sample sizes limit how many systems of oppression differ-
ent quantitative methods can investigate. Intersectionality’s
commitment to challenging the status quo of the inequal-
ities created by these interacting systems of power, how-
ever, motivated our work to be as intersectional as possible
within the constraints of our data and methods. In this goal,
we align with the framework for intersectionality research
laid out by Cho et al. [37] in that we are applying the
lessons of intersectionality to existing common practices
within physics education research: the use and validation of
research-based assessments.

III. DEFINITIONS

To support readers’ interpretation of our research, Table I
includes a selection of terms for statistical modeling and
equity research.

IV. RESEARCH QUESTIONS

To determine if the FCI can identify differences across
groups for both the pretest and post-test on the five latent
factors that it measures, we asked the following questions:

• To what extent is the EW5 factor model on the FCI
measurement invariant across the intersections of
gender and race?

• Towhat extent are the five latent factors reliable across
the intersections of gender and race?

If the results do not indicate measurement invariance and
reliability for the EW5 model on the FCI, then instructors
and researchers should not compare scores on the instru-
ment factors across groups. The lack of invariance does not
mean the entire instrument is problematic, though it does
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warrant further studies such as those by Traxler et al. [8] to
investigate the validity and reliability of the FCI.
Measurement invariance and reliability of the EW5 model
on the FCI would allow additional information from the
factors to inform issues of equity in physics courses.

V. THE FORCE CONCEPT INVENTORY

Hestenes et al. [14] developed the FCI to probe student
understanding of Newtonian forces to assess the effective-
ness of physics instruction. Researchers have applied many
different quantitative methods to data from the FCI, see
Ref. [43]. One strand of this quantitative research focuses
on the fairness of the FCI and its ability to give unbiased
data across different groups of students. Evidence indicates
that several items on the FCI function differently for men
[8] and White men in particular [28] than for other social
identity groups. Nonetheless, researchers have often used
the FCI to investigate the effectiveness of instructional
techniques [44–48] and equity in courses [4,49,50].
Hestenes et al. [14] proposed that theFCI covered six areas

of Newtonian forces. Findings from multiple studies, how-
ever, suggest that it examines five factors [31,43,51,52].
Eaton andWilloughby [31] found that their five-factormodel
(EW5) provided the best fit for the data. The original EW5
model, shown in Table II, omitted questions 1, 2, 3, and 29
due to very poor fit and little explanatory value as shown by a
number of studies [31,52]. Based on evidence from Xiao
et al. [45], Eaton [51] updated their model to include those
four questions and found factor validity was still acceptable

with these four items included. Eaton refers to this model as
the Eaton and Willoughby five factor modified (EW5M)
model.
Wang and Bao [53] applied a three-parameter item

response model to FCI pretests for introductory mechanics
students. The three parameters informed how difficult the
questions were, how well they discriminated between
different ability levels, and how frequently a question
was answered correctly due to guessing. Applying their
results to the EW5 model indicates that the questions on
factors 1 and 2 of the EW5 model tend to have easier
questions with lower discrimination and higher likelihood
of guessing the right answer than the questions on the other
three factors. Item difficulties from Planinic et al. [54] also
match this trend. These results indicate that the questions
on factors 1 and 2 may provide poor data for students with
lower scores. For example, Wang and Bao’s results indicate

TABLE I. Definitions of statistical and equity terms.

Term Definition

Measurement invariance Measurement invariance testing assesses the psychometric equivalence of a latent factor
across groups or time [38]. In this case, we assess whether an instrument
measures latent factors consistently across social identity groups.

Latent factor A variable that cannot be directly measured but can be inferred using a mathematical
model of observable variables (e.g., Newtonian thinking or science identity) [39].

Social identity group A group defined by physical, social, and mental characteristics of individuals.
For example, race or ethnicity, gender, social class or socioeconomic status,
sexual orientation, (dis)abilities, and religious beliefs.

Structural equation model (SEM) A set of statistical techniques that allow modeling and testing the relationships
between observable and theoretical variables [40].

Confirmatory factor analysis (CFA) A special case of SEM that examines the relationships between observed measures
(e.g., item scores) and latent factors [41].

Fit indices A quantitative measure of how well data fit a model. Examples from this paper
include CFI, TLI, and RMSEA.

Validity The extent to which evidence and theory support the interpretation of test scores
for the proposed uses of the test [42].

Reliability How precisely a combination of questions measures a latent factor for a population
that is quantified as a ratio of the signal (content knowledge) to noise
(error, e.g., guessing). [30,33].

Research-based assessment (RBA) An assessment that has undergone rigorous development and testing with reliability
and validity arguments [3].

TABLE II. Eaton and Willoughby [31] five-factor (EW5)
model.

Factor Description Items

F1 Newton’s first law
+ Kinematics

6, 7, 8, 10, 20, 23, 24

F2 Newton’s second law
+ Kinematics

9, 12, 14, 19, 21, 22, 27

F3 Newton’s third law 4, 15, 16, 28
F4 Identification of forces 5, 11, 13, 18, 30
F5 Superposition 17, 25, 26
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that 7 of the 14 items on factors 1 and 2 had guessing rates
of 20% or higher. If a group of students had an average
score of 40% on these items, then approximately half of
their correct answers likely came from guessing. The
guessing introduces noise and this noise consumes small
signals. This inference aligns with Planinic et al. [54]
finding that the FCI may function differently for popula-
tions of students with lower test scores.
The poor psychometrics of several items on the FCI and

many easier items with high guessing rates loading on two
of the factors indicate that the FCI has many limitations for
collecting data from students with a wide range of abilities.
The number of studies investigating the FCI, see Ref. [43],
and the frequency that it is used, however, indicates that
many instructors and researchers could use the additional
data from the factors on the FCI to support equity in
introductory physics courses. Measurement invariance on
the FCI, in addition to the extensive psychometric analysis
of the FCI, can also inform the design and development of
an RBA that addresses the limitations of the FCI.

VI. MATERIALS AND METHODS

A. Data

We collected the data from the Learning About STEM
Student Outcomes (LASSO) platform’s anonymous
research database [55,56]. LASSO is an online assessment
platform that administers low-stakes RBAs and provides
instructors with analyses of student performance. Our
analysis included student FCI scores from 133 algebra-
based and 194 calculus-based first-semester college physics
courses across 47 institutions. The institutions were dis-
tributed across the four census tracks in the Northeast (13),
South (10), Midwest (7), West (16), and outside the United
States (1). We used the Carnegie Classification of
Institutions of Higher Education (CCIHE) public 2021
database to characterize the 45 institutions in the database.
For the two institutions not in the CCIHE, one was outside
the United States and one was a branch campus. The dataset
included data from 19 high or very high research-intensive
institutions, 11 minority-serving institutions that were all
Hispanic-serving, and 5 primarily associate degree-grant-
ing institutions. Of the 47 institutions, 34 were public and
13 were private not-for-profit institutions with 3 of these
also being research intensive. The data included 25 large,
16 medium, and 6 small institutions.
LASSO also provided students’ self-identified social

identity information. Specifically, it included student
responses to gender, race, ethnicity, and first or continuing
generation college status questions. Students were allowed
to select multiple options for gender and race and could
write in their own answer for each question. As shown in
Table III, approximately one in three students who iden-
tified as Hispanic left the race question blank. This led us to
treat Hispanic similarly similar to the responses to the race

question; students could identify as only Hispanic. This
decision aligns with two-thirds of Hispanic adults consid-
ering Hispanic as part of their racial identity [57].

B. Data preparation

We removed scores for students who took less than 5 min
on that assessment and students who did not complete
either the pretest or post-test; the Appendix details the
proportions of removed scores. Given a recommended
minimum sample size of 200 participants [58], we were
able to evaluate measurement invariance across five races
(Asian, Black, Hispanic, White, and White Hispanic) and
two genders (women and men). Table III details the sample
sizes for the groups included in the analysis. We could not
include American Indian, Middle Eastern, Pacific Islander,
genderqueer, and nonbinary students nor could we differ-
entiate between transgender and cisgender men and
women. In measurement invariance testing, each student
has to belong to a distinct group. While we had enough data
from Hispanic, White Hispanic, and White students to
distinguish these three groups, we did not have enough data
to include other social identity groups, such as Black
Hispanic students.
The data also included student responses for first or

continuing-generation college status and if the physics
course was algebra or calculus based. If we disaggregated
groups further by first or continuing-generation status or
course type, the dataset only met our minimum sample size
for Asian and White men and women. Our preliminary
results from measurement invariance testing across course
types and first or continuing-generation status were similar
to those presented in the results. We excluded this analysis
from the manuscript for brevity.

C. Structural equation modeling
with ordered categorical data

We used a structural equation modeling (SEM) approach
to measurement invariance testing. For ordered categorical
data, such as the right or wrong coding of the FCI data we
used, or for Likert-scale data, SEM computes a polychoric

TABLE III. Sample sizes by race, gender, and course type.

Race Math Men Women

Asian Algebra 404 599
Calculus 500 300

Black Algebra 104 221
Calculus 177 144

Hispanic Algebra 111 142
Calculus 268 90

White Algebra 2949 3225
Calculus 3251 1102

White Hispanic Algebra 226 246
Calculus 453 177
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correlation between each pair of ordinal variables [59]. This
polychoric correlation assumes that a normally distributed,
latent continuous variable underlies the observed ordinal
data, as shown in Figs. 1 and 2. Figure 1 illustrates this
assumption where the rectangles represent the observed
ordered categorical responses and the ovals represent the
underlying continuous latent variables. The observed
responses and underlying latent variables are connected
by a bent arrow to represent the threshold parameters (τ).
Figure 2 illustrates these thresholds for both a binary item
and a 6-point Likert-scale item. The thresholds (τ) divide
the continuous latent variable into the response spaces. The
values on that latent continuous variable then manifest as
those ordered categories when they are measured. Standard
practice sets the mean at 0 and the variance at 1 for latent
continuous variables.

D. Measurement invariance

The structural equation modeling (SEM) approach to
measurement invariance testing included four steps and
three levels of invariance. Figure 3 provides examples of
steps 2–4. In the first step, we ran confirmatory factor

analysis (CFA) for each group to ensure the model fit the
data for each group. In the second step, we fixed the
configuration of which factors loaded on which items
across all of the groups. Satisfying this step indicated
the configural invariance of the model’s overall structure
across all of the groups. The third step fixed the value of the
factor loadings across all of the groups. Satisfying this step
established the metric invariance of the model’s structure
across groups. Because we modeled our data as categorical
using placeholder variables of 0 for the wrong answer and 1
for the right answer, our final step fixed the thresholds for
each item across all groups. This step established scalar
invariance and allows for making unbiased comparisons in
the factor scores across groups. When conducting similar
analyses on continuous data, the scalar invariance step
holds the item intercepts constant. Hirschfeld and Von
Brachel [60] and Svetina et al. [61] provide worked
examples for conducting measurement invariance for both
continuous and ordinal data. Measurement invariance test-
ing can include an additional fifth step that fixes the
residuals for each item across the groups to test for residual
invariance. We did not pursue this step because it is not
necessary for making comparisons across groups [62]. We
adapted Rocabado’s [33] code for the lavaan [63] package
to run our measurement invariance analyses.
Across each step in our analyses, we used three fit

indices to determine model fit: the root mean square error
of approximation (RMSEA), the comparative fit index
(CFI), and the Tucker-Lewis index (TLI). To interpret
the CFI and TLI, we used two cutoffs of >0.90 and >0.95,
with the >0.95 providing a more conservative cutoff. For

FIG. 2. Latent continuous-response variables for a binary item
and a six-point, Likert-scale item. The thresholds (τ) link the
observed ordered categorical responses to the latent continuous-
response variables. The variable with two categories has one
threshold and the variable with six response categories has five
thresholds.

FIG. 1. Path diagram for a one-factor model consisting of four
ordered categorical items. Path diagrams visualize the equations
in SEM. The rectangles represent observed data. The ovals
represent latent factors that were not directly measured. In
SEM for ordered categorical data, the observed data are analyzed
using continuous latent variables. The threshold parameters, τ,
link the observed data to the continuous latent variable. Figure 2
presents two examples of thresholds and continuous latent-
response variables. The straight arrows represent the factor
loadings linking the continuous latent response variables to the
target factor. The short diagonal arrow (e) pointing into the latent
response variable is the residual variance.
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RMSEA, we used a cutoff of <0.05 [38]. To establish
metric and scalar invariance, the changes in the fit indices
across the steps in our process needed to be Δ < 0.02 for
CFI and TLI and Δ < 0.015 for RMSEA [38]. In our first
step, we also evaluated the factor loadings for each item,

which indicate the amount of variance in that item
explained by the factor. We used a minimum factor loading
of 0.6 to inform which items or factors may have contrib-
uted to differences in the fit indices across the groups [64].
Researchers propose factor loadings of 0.5, explaining 25%

FIG. 3. An explanatory model of measurement invariance testing using path diagrams for two factors on the FCI, see Table II, using
simulated data. Measurement invariance testing checks that this structure is consistent across groups by constraining different values
across each step. Configural invariance testing constrains the paths of the factor loadings, metric invariance testing constrains the factor
loading values, and scalar invariance testing constrains the item thresholds. The bold outputs are the constraints held constant for all
groups for the respective level of invariance testing. The invariant models (A, C, and E) show models with constrained values. The
noninvariance models (B, D, and F) depict failure at each level of measurement invariance testing. The point of failure is denoted in red
and is always for item Q28. For configural noninvariance, an item loaded on a different factor than the constrained model. For metric
noninvariance, a factor loading differed from the constrained model. For scalar noninvariance, the item threshold differed. Figure
adapted from Putnick and Bornstein [38], Flora [30], and Bowen and Masa [59].
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of the variance in the item, as an absolute minimum and 0.7
as a preferred minimum, with 50% explained variance [64].
Researchers have three options if the model does not

pass the fit index cutoff criteria or delta cutoff criteria. First,
researchers can perform a partial invariance test by either
sequentially releasing or adding constraints for individual
items and retesting the model until the fit indices and delta
cutoff criteria are satisfied. Second, researchers can drop
items with noninvariant loadings and restart the measure-
ment invariance analysis. Finally, researchers can conclude
that the model is noninvariant across the groups.
In the Appendix, we discuss fit statistics, estimators,

cutoff criteria for measurement invariance testing, and the
role of the type of data in the methods we used in this study.

E. Reliability

Researchers frequently measure reliability using
Cronbach’s alpha or similar statistics [30] such as omega
which does not have the assumption of tau equivalence that
Cronbach’s alpha has. Tau equivalence is indicated in a CFA
model by equal factor loadings for all items in a factor. These
measures represent the signal-to-noise ratio as the ratio of the
total score variance explained by the factor divided by the
estimated variance of the observed total score. Flora [30]
provides a detailed tutorial on reliability analysis for con-
tinuous, categorical, and hierarchical factors.
We used the semTools [65] and lavaan [63] packages to

calculate omega. We could choose between calculating
omega based on the underlying CFA model or based on the
observed ordinal scale data. Because we suspected that
most subsequent work applying the EW5M model will use
the observed ordinal scale by taking the sum of correct
answers, such as is common for the FCI overall score, we
calculated reliability for the factors using the observed
ordinal scale. The semTools package documentation

provides guidance for calculating ω and details on how
it was calculated.

F. Factor models

Because two versions of the Eaton and Willoughby five-
factor model exist [43], we had to decide which model to
use. We conducted a CFA for the general best fit on the
EW5 and the EW5M models for the pretest and post-test
across all ten social identity groups. Because the EW5
model fits the data better, with higher TLI and CFI for 19 of
the 20 analyses than the EW5M model, we focus on the
findings from the EW5 model.

G. Descriptive statistics

We included descriptive statistics for the mean, standard
deviation, and sample size (N) with the fit indices in our
initial models (step 1). These descriptive statistics provided
insight into the relationship between the groups’ perfor-
mance on the FCI and the fit indices for the EW5 model.
We took this step in response to Planinic et al. [54] finding
that the FCI functioned differently for groups of students
with lower scores and the items on factors 1 and 2 tending
to be easier and have higher rates of guessing [53,54].

VII. FINDINGS

We begin by discussing the initial CFA results, step 1 in
the measurement invariance testing, for the pretest and
post-test across the ten social identity groups. The findings
then present the results for configural, metric, and scalar
invariance results, steps 2–4.

A. Step 1: Initial models

The CFA for each social identity group found that all
groups met the <0.05 cutoff for RMSEA and the less

TABLE IV. Model fit indices and descriptive statistics across race and gender for the pretests and post-tests. We used cutoffs for
acceptable fits of >0.95 for CFI and TLI and <0.05 for RMSEA. All fit indices are robust metrics.

White Black Asian Hispanic White Hispanic

Time Statistic M W M W M W M W M W

Pre CFIR 0.97 0.93 0.96 0.94 0.98 0.97 0.93 0.97 0.96 0.91
Pre TLIR 0.97 0.92 0.96 0.94 0.97 0.97 0.92 0.96 0.95 0.90
Pre RMSEAR 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.03
Pre Mean (%) 45.8 29.9 31.7 25.4 44.5 36.6 31.8 25.0 37.4 26.9
Pre S.D. (%) 21.9 17.6 19.4 17.7 24.3 23.7 16.7 16.3 19.3 16.6
Pre N 5228 3803 261 351 754 754 455 309 537 378
Post CFIR 0.98 0.98 0.97 0.97 0.99 0.98 0.97 0.98 0.98 0.98
Post TLIR 0.98 0.97 0.97 0.96 0.99 0.97 0.96 0.98 0.98 0.98
Post RMSEAR 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.03
Post Mean (%) 66.4 52.8 45.3 41.6 61.8 56.6 49.4 42.8 58.0 47.1
Post S.D. (%) 23.4 25.0 23.2 23.9 26.8 27.2 22.4 25.2 24.9 24.5
Post N 4479 3420 191 270 612 628 360 248 480 325
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conservative >0.90 cutoff for CFI and TLI, as shown in
Table IV. Of the 20 groups, 16 met the more conservative
cutoff of >0.95 for CFI and TLI. The four CFAs below the
conservative cutoff were on the pretest for Black women,
Hispanic men, White women, and White Hispanic women.
All groups met the more conservative >0.95 cutoff for CFI
and TLI on the post-test. As we discuss later, the higher CFI
and TLI on the post-test for every group likely resulted
from the learning that occurred during the course.
The standardized factor loading for each item, shown in

Fig. 4 and in the Appendix in Table VI, also provided
evidence that the EW5 model fit the data well. Some of the
factor loadings, however, were below 0.6. Far fewer items
had any factor loadings below 0.6 on the post-test (15 items
and 57 loadings across the 10 CFAs) than on the pretest (20
items and 118 loadings across the 10 CFAs). As shown in
Fig. 4, most items with factor loadings less than 0.6

occurred on factors 1 and 2 for Newton’s first and second
law, which had 14 items between the two factors, for both
the pretest (14 items) and the post-test (12 items).
Factor loadings less than 0.6 were distributed across race

and gender groups on the pretest and post-test. On the
pretest, the number of items with low factor loadings
ranged from 7 for Asian men to 15 for Hispanic men
and White Hispanic women. On the post-test, the number
of items with low factor loadings ranged from 3 for Asian
men to 10 for Hispanic men. On the post-test, items 6, 7, 8,
12, 15, and 27 had factor loadings less than 0.6 for five or
more groups with five of these six items loading on factor 1
or 2.
Because several of the pretests fell below our

conservative threshold and findings by Planinic et al.
[54] that the FCI may function differently for students
with low performance, we explored the relationships

FIG. 4. The factor loading for each item across the ten social identity groups organized by factor for the pretest and post-test. The black
horizontal line represents the 0.6 value we applied as a cutoff.

TABLE V. Measurement invariance test results for pretest and post-test scores. We used cutoffs for acceptable Δ
values of <0.02 for CFI and TLI and <0.015 for RMSEA. All fit indices are robust metrics.

Steps CFIR TLIR RMSEAR Δ calculation ΔCFIR ΔTLIR ΔRMSEAR

Pretest
S2 configural 0.954 0.949 0.031 � � � � � � � � � � � �
S3 metric 0.957 0.956 0.029 S2–S3 −0.004 −0.007 0.002
S4 scalar 0.958 0.955 0.031 S3–S4 −0.001 0.001 −0.002
Post-test
S2 configural 0.979 0.977 0.029 � � � � � � � � � � � �
S3 metric 0.980 0.979 0.027 S2–S3 −0.001 −0.003 0.002
S4 scalar 0.977 0.976 0.032 S3–S4 0.003 0.003 −0.005
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between performance and model fit. While a full inves-
tigation of these limitations is beyond the scope of this
paper, Table IV provides the mean, standard deviation, and
N for each group. The four analyses with CFI below the
0.95 cutoff had mean FCI scores ranging from 25% to 32%.
The 16 analyses with CFI greater than 0.95 had scores
ranging from 25% to 66%. These results tentatively
indicate that the EW5 model may consistently fit the
FCI data well for datasets with a mean score above
about 35%.

Because these initial models, particularly the post-test
models, showed adequate fit, we moved on to the sub-
sequent steps of testing measurement invariance.

B. Steps 2–4: Configural, metric, and scalar invariance

Table V and Figs. 5 and 6 show the fit indices for steps
2–4 of the measurement invariance analysis for both the
pretest and post-test. The model passed each of these steps
for both the pretest and post-test using the conservative
cutoffs for CFI (> 0.95), RMSEA (<0.05), and TLI except
for the 0.949 TLI on the pretest, see Fig. 5. Deltas from step
2 to 3 and step 3 to 4 were within cutoffs of <0.02 for CFI

FIG. 6. The absolute value of the delta from configural to metric
and from metric to scalar for each of the fit indices. CFI and TLI
were all below the 0.02 cutoff and RMSEA were all below the
0.015 cutoff.

FIG. 7. The reliability (ω) for each of the factors and the total scores on the pretest and post-test across all ten social identity groups.
The black horizontal line at 0.7 marks the commonly accepted minimum value for reliability. Reliabilities exceeded the 0.7 cutoff for 46
of the 50 pretest measures and for all of the post-test measures.

FIG. 5. The index values for configural, metric, and scalar
invariance. CFI and TLI were at or above the 0.95 cutoff (shown
as a black line) except for the pretest TLI for configural invariance
(0.949) and all RMSEA values were below the 0.05 cutoff.
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and TLI and <0.015 for RMSEA on both the pretest and
post-test, see Fig. 6. These results indicate measurement
invariance of the EW5 model for the FCI. Configural
invariance indicates that the same factor structure fits the
data well for all ten social identity groups [38]. Metric
invariance indicates that each item contributes to each
factor in similar ways across all groups [38]. Scalar
invariance indicates that mean differences in the latent
factor capture all mean differences in the shared variance of
the items on the FCI similarly across all ten social identity
groups [38].

C. Reliability

Figure 7 shows the reliability of each factor on the pretest
and post-test for each of the ten social identity groups. Of
the 100 reliability scores for the factors, 4 fell below the 0.7
cutoff indicated by the black line in Fig. 7; all 4 were on the
pretest. Factors 1 and 2 tended to have lower reliability on
the pretest than all of the other reliability statistics. This
lower reliability for factors 1 and 2 on the pretest was
consistent with the frequent poor factor loadings for items
included in these factors presented earlier in the results.

VIII. DISCUSSION

The measurement invariance and reliability indicate the
EW5 factor model for the FCI performs similarly across the
ten social identity groups. Intersectionality theory posits
that differences can exist across intersectional groups and
that research needs to account for this possibility lest it
hides and perpetuates inequities. Extensive prior research
[6,9,19,66–69], including research across the intersections
of gender and race [15], has identified large differences in
both pretest and post-test scores on the FCI and other
research-based assessments. Finding measurement invari-
ance and reliability indicates those results for the FCI
represent real differences in content knowledge and not
artifacts of how the test or items functioned for different
social identity groups. This contrasts the findings of Traxler
et al. [8] that some items on the FCI functioned differently
for men and women, which we discuss further below.
The post-test measures of invariance for all social

identity groups met the fit indices’ thresholds and indicate
the FCI measures the EW5 factors similarly across all
groups in the analysis as shown in Tables IV and V. The
pretest showed weaker performance than the post-test, but
all fit indices were acceptable. Meeting configural, metric,
and scalar invariance indicates that across all of the groups,
the same factor structure fits the data well. It also indicates
that each item contributes to each factor similarly across
groups and the latent factors were measured on the same
scale across groups. These results indicate that EW5 model
of the FCI collects comparable data across these ten social
identity groups. Instructors and researchers need not limit
their investigations of equity to overall scores as they can

compare group performance across each of the EW5
factors. This more specific analysis can indicate if
differences across groups disproportionately occur for a
specific topic that instruction can then address.
The factor loadings across the ten social identity groups

for the pretest and post-test also indicate that limitations of
the internal structure validity of the EW5model and FCI are
issues across all ten social identity groups and not unique to
any one group. The low factor loadings, < 0.6, tended to
occur on factors 1 and 2 on the pretest and to a lesser extent
on the post-test.
The factors on the EW5 model had acceptable reliability

in 96 of the 100 evaluations. Consistent with the lower
factor loadings for factors 1 and 2 on the pretest, the
reliability for these factors on the pretest tended to be worse
than for the other factors on the pretest and all five factors
on the post-test. The poorer reliability on the pretest follows
from fewer students knowing the right answer and a larger
proportion of correct answers resulting from guessing.
Since the factors are measuring conceptual knowledge,
the signal will be lower on the pretest than on the post-test
as the scores tended to increase by approximately one
standard deviation. The factors cannot explain the variance
created from correct answers due to guessing as it will be
very weakly correlated across the items. Thus, the reliabil-
ity will tend to be lower on pretests, particularly for items
with higher guessing rates.

A. Applying the EW5 model to prior research

While measurement invariance indicates instructors and
researchers can compare scores on the five factors of the
EW5 model, the results also indicate that factors 1 and
2 perform poorly, especially for groups with lower scores.
Lower scores occur more on a pretest than on a post-test.
Lower scores also occur for students exposed to systemic
racism, sexism, or class oppression, such as through the
underfunding of schools in poor or majority non-White
neighborhoods leading to fewer physics courses or less
prepared physics instructors. Thus, while the EW5 model
can parse additional data from the FCI, the low factor
loadings, many of the items for Newton’s first and second
laws and kinematics (factors 1 and 2) limit the ability of the
FCI to inform interventions or research directed at under-
standing or addressing inequities for students entering
college physics courses. While identifying the specific
problematic items or the causes of their limitations lies
beyond the analytical scope of this article, we can apply the
EW5model to prior studies of the FCI to further understand
these limitations.
As we discussed in the literature review, Sec. V, Wang

and Bao [53] used a three-parameter item response theory
model to investigate the performance of the items on the
FCI. Their results indicated that the items loading on
factors 1 and 2 for Newton’s first and second laws tended
to be easier than the other items and tended to have higher
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rates of guessing, where guessing is the likelihood that an
individual with very little Newtonian knowledge would get
an item correct. Of the 14 items on factors 1 and 2, 7 items
had guessing rates greater than 20%. Four of these items, 6,
7, 8, and 27, also had poor factor loadings on the pretest in
our results. Wang and colleagues’ findings are consistent
with our findings that when large proportions of students
have low scores on these factors noise due to correct
answers from guessing may obscure the signal from correct
answers representing understanding the concepts.
Traxler et al. [8] found that ten items on the FCI

functioned differently for men and women, which indicates
that these items may be biased in favor of men. Nine of
these ten items are also items that load on factors 1 and 2 for
Newton’s first and second law in the EW5 model. These
results align with our findings that the items on factors 1
and 2 provide poorer quality information (i.e., low signal to
noise ratios). Their results also contrast with our own
findings. While our results indicated the EW5 model of the
FCI functioned similarly across the intersections of race or
ethnicity and gender, Traxler et al. [8] found these items
were biased against women and exaggerated the gender
differences in conceptual understanding of Newtonian
physics. Additional work to determine if these items are
biased against women or if they function differently
because of different levels of knowledge across men and
women and to extend that work across the intersection of
race and gender can further inform the limitations and
usefulness of the FCI.

IX. CONCLUSIONS

By analyzing the FCI using the EW5 model, researchers
and instructors can extract additional information from the
FCI about inequities in a course and a course or pedagogy’s
impacts on equity across the intersections of race and
gender. The items covering Newton’s first and second law,
however, provide more limited information in settings
where most students have little formal knowledge of
Newtonian mechanics. Our results indicated that the
EW5 model consistently fit the FCI data well for datasets
with a mean score above about 35%, and we found
acceptable fits for scores as low as 25%. Studies seeking
to apply the EW5 model in contexts with scores below
approximately 35% will need to take additional steps to
ensure the factors are measuring student understanding
rather than correct answers due to guessing.
The FCI has supported the physics education community

in understanding physics learning and developing more
effective pedagogies. This study, however, shows the
limitations of the FCI in providing a finer-grained measure
of students’ Newtonian knowledge as a pretest or in
contexts where students tend to have lower scores. A next
generation of research-based assessment could provide
instructors with these finer-grained measures across a wider
range of knowledge levels to better guide instruction and

better inform the development of research-based instruc-
tional strategies.

X. LIMITATIONS

Our study had several limitations that we tried to
mitigate. While the institutions in our dataset were more
diverse than most physics education research publications
[70], the dataset was not fully representative of institutions
in the United States [48,71]. Our results indicate that
measurement invariance was met across our multi-
institutional sample, but it is possible that we would find
different results had we analyzed a more diverse sample.
The poorer performance of the FCI for students with low
Newtonian knowledge indicates it may not work well as a
pretest in a high school or college course where few
students have had prior physics instruction.
For confirmatory factor analysis using the WLSMV

estimator, research recommends a sample size of at least
200 persons. For this reason, we could not study scores for
individuals who were multiracial, had nonbinary genders,
or identified as part of a less-well-represented racial group.
Our study had enough power to analyze scores for five
racial groups across two genders. While we found evidence
of measurement invariance for the EW5 model on the
FCI, these findings may not generalize for all groups.
Nor do these results generalize to the translated versions of
the FCI.
While this study was grounded in a desire to support

intersectional research, it was not itself fully intersectional
[37]. The nature of measurement invariance testing only
allows for the inclusion of discrete groups with large
enough sample sizes. Measurement invariance testing
excludes individuals from smaller subgroups in the model
(e.g., Black, Hispanic, and transgender students). Our
analysis was limited in regard to power structures and
only included a limited investigation of students in algebra-
and calculus-based physics courses due to sample size
constraints.
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APPENDIX A: ABSOLUTE FIT INDICES

The chi-squared statistic (χ2) measures the difference
between the observed data and what we would expect if
there was no relationship between the data and the FCI’s
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factors. A significant χ2 will show a difference between the
observed and expected samples approaching zero [72,73].
While χ2 is the traditional measure of model fit and still

holds popularity as a fit statistic [72–75], it has significant
limitations. It relies on the data fitting a normal curve and is
sensitive to severe deviations from the curve [76]. χ2 is also
very sensitive to sample size. When datasets are large, χ2

almost always rejects the model, and when the sample is
small, it cannot distinguish between good-fitting models
and poor-fitting models [77]. We did not rely on chi-
squared results to determine model fit because our data are
binary and several of the groups we analyzed were near the
200-person minimum.
The standardized root mean square residual (SRMR) is

another fit statistic that describes the absolute fit of a model.
SRMR examines the average difference between the
observed and implied covariance matrices to contrast the
predicted and observed samples. This index reports a range
from 0 to 1. A good fit is less than 0.08, while a well-fitting
model is considered to be 0.05 or less [75,78,79].
While SRMR is considered a relatively stable fit mea-

sure, it will be artificially lower when there is a high
number of parameters in the model and for models with
large sample sizes [74]. It is also not considered to hold
much explanatory power because of the nature of averages.
For example, the same SRMR score can be achieved with a
few large differences from the implied model or with many
small differences. For this reason, we do not examine the
SRMR or report it.
The root mean squared error of approximation (RMSEA)

is the most widely used absolute fit index because it is
sensitive to the number of degrees of freedom (d.o.f.) in the
model, essentially rewarding models with larger d.o.f. It
favors parsimony by choosing a model with fewer param-
eters to fit the sample’s covariance matrix [78]. For
example, it can be calculated by

RMSEA ¼
ffiffiffiffiffiffiffiffi

F̃T

dfT

s

;

where the minimized fit function (F̃) and the degrees of
freedom are for the model being tested [80].
RMSEA cutoffs changed significantly since the early

1990s when a value in the 0.05–0.10 range was considered
fair, with values above 0.10 being poor [81]. More recently,
a cutoff of 0.06 or a strict upper limit of 0.07 is the
consensus [75]. However, instrument bias research tends to
cut off RMSEA at 0.05 [31,38]. For this reason, we employ
a cutoff of 0.05 for this work.

APPENDIX B: RELATIVE GOODNESS
OF FIT INDICES

Relative goodness of fit indices compare the minimized
fit function for the tested model with a baseline model,

which is the model with the worst fit where all covariances
are set to zero and the variances are freely estimated [31].
We employ two relative fit indices for this work, the
comparative fit index (CFI) and the Tucker-Lewis
index (TLI).
The CFI performs well even when the sample size is

small [82]. First introduced by Bentler [83], the CFI
assumes a baseline model where all latent variables are
uncorrelated and compares the sample’s covariance matrix
for the tested model with the baseline model. Values range
from 0.0 to 1.0, with values closer to 1.0 indicating a good
fit. CFI ≥ 0.90 has been a common cutoff criterion [74]. Hu
and Bentler [75] recommended a minimum CFI of 0.95 to
ensure that misspecified models are not accepted. An
example of CFI calculation is

CFI ¼ 1 −
F̃T

F̃B
;

where the ratios of the minimized fit functions of the tested
and baseline models determine the CFI.
The Tucker-Lewis Index (TLI) is a good indicator for

smaller datasets [84]. The TLI compares the baseline and
tested models while accounting for the degrees of freedom
in each model. A larger TLI value indicates a better fit with
a common cutoff criterion of 0.95 [75]. TLI can be
calculated as

TLI ¼ 1 −
F̃T

F̃B
� dfB
dfT

:

APPENDIX C: ESTIMATORS

Fit indices are based on a fit function specific to a given
estimation method. Which estimation method to use
depends on the structure of the data and the proposed
latent factors. Research on measurement invariance often
provides guidance for continuous data with large sample
sizes, comparing only two groups, or models with few
factors [33,38]. Using the default settings in SEM packages
such as lavaan can produce misleading results due to the
sensitivity of fit indices to estimator choice.
The lavaan package uses maximum likelihood (ML) as

the default estimator. ML assumes continuous data and is
sensitive to small sample sizes [80]. Applying ML to the
covariance matrix of noncontinuous data can lead to biased
parameter estimates, inaccurate standard errors, and a
misleading chi-squared statistic, [80] [p. 410]. While the
ML Robust (MLR) estimator can work well for binary data,
like correct or incorrect item scores, it is sensitive to sample
size. Also, lavaan is limited in its categorical ML estimation
capabilities [85].
Unweighted least squares (ULS) and diagonally weighted

least squares (DWLS) are appropriate for categorical data
and are available in the lavaan package. These estimators,
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however, are sensitive to sample size, model nesting, and the
number of factors in the model [80]. Xia and Yang [80] also
found that using common cutoffs for RMSEA, CFI, and TLI
with ULS and DWLS estimators can lead to accepting
modelswithmisfit. Xia andYang [80] advise that researchers
do not use these fit indices as go or no-go tests but instead use
them to inform an iterative approach to model evaluation.
To accommodate the EW5 models, small sample sizes,

and binary data, we employed the weighted least squares
mean and variance adjusted (WLSMV) estimator. WLSMV
is the “robust” version of the DWLS estimator [63],
meaning that it will account for outliers and reduce the
likelihood of accepting a misspecified model. Its recom-
mended threshold of 200 cases per group or sample is lower
than most other estimators [58,86], though it tends to over-
reject models at that sample size [87].

APPENDIX D: CHANGE IN FIT INDICES
ACROSS STEPS IN MEASUREMENT

INVARIANCE TESTING

For measurement invariance testing, researchers often
examine the size of the change in fit indices from one step
to another. Putnick and Bornstein [38] recommend any
change in the CFI larger than 0.02 to fail measurement
invariance testing. Eaton [51] uses a cutoff of 0.01 for the
CFI and 0.015 for RMSEA; Cheung and Rensvold [88]
recommend these cutoffs for large, relatively even sample
sizes. Rutkowski and Svetina [89] support changes of 0.02
for the CFI and 0.03 for RMSEA at the metric invariance
level and 0.01 for CFI and 0.01 for RMSEA is appropriate
for the scalar invariance step. Chen [90] recommends that
ΔCFI should be no more than 0.005 and ΔRMSEA should
be 0.010 or smaller based on unequal sample sizes and each
sample is less than 300.
Research has not yet reached a consensus about the best-

fit indices or cutoff values under all conditions. Finding
recommendations that met the unique circumstances of our
data was difficult due to the large difference in sample size

between our largest (White Men; n ¼ 6200) and smallest
group (Hispanic women; n ¼ 232). All of the studies
discussed above-examined groups of comparable size
except for Chen [90], which did not use binary data or
WLSMV. No single recommendation satisfied all of our
study’s characteristics. For this reason, we used the fit
indices and cutoffs as a guide and not as go or no-go tests.
We looked at both cutoffs of 0.90 and 0.95 for CFI and

we evaluated RMSEA for a cutoff of 0.05. We also
examined the change in CFI, TLI, and RMSEA from step
1 (configural) to step 2 (metric) and step 2 to step 3 (scalar).
Our analysis also treats the delta CFI and RMSEA scores
from one step of measurement invariance testing to another
with caution. We explored alternative models by evaluating
the factor loadings and using the modIndices function in
lavaan to identify the extent to which changing the factor
structure would improve the model fits.

APPENDIX E: DATA PREPARATION

We removed data for students who took less than 5 min
or did not complete all of the questions. Completing all of
the questions was required for the measurement invariance
testing. Of the students who answered any questions on the
pretest or post-test and consented to share their data, 81.1%
answered questions on the pretest and 68.7% answered
questions on the post-test. For the students who answered
any questions on the pretest, 94.4% of the data was retained
with 3.9% removed due to time, 1.4% removed due to
completeness, and 0.3% removed due to both. For the
students who answered any questions on the post-test,
89.9% of the data was retained with 7.4% removed due to
time, 2.3% removed due to completeness, and 0.4%
removed due to both.

APPENDIX F: FACTOR LOADINGS

Table VI provides the factor loadings for the initial CFAs
on the pretest and post-test for all ten social identity groups.

TABLE VI. Factor loadings across the ten social identity groups for the pretest and post-test. Note that in contrast to the natural
sciences, which usually deal with observable constructs that can be measured using a single instrument (e.g., measuring length with a
ruler), variables in psychology are nonobservable (latent), and can be measured using several facets or indicators. Alpha coefficient is
lower bound to omega coefficient. They are equal if and only if the items fit the single-factor model with equal factor loading.

Pretest CFI values Post-test CFI values

White Black Asian Hispanic
White

Hispanic White Black Asian Hispanic
White

Hispanic

Factor question M W M W M W M W M W M W M W M W M W M W

1 6 0.48 0.43 0.33 0.23 0.47 0.53 0.33 0.36 0.56 0.43 0.64 0.60 0.52 0.35 0.60 0.69 0.48 0.46 0.65 0.53
1 7 0.49 0.43 0.47 0.42 0.56 0.58 0.51 0.27 0.48 0.29 0.55 0.56 0.52 0.51 0.72 0.73 0.59 0.65 0.58 0.48
1 8 0.56 0.38 0.36 0.41 0.53 0.51 0.25 0.36 0.52 0.39 0.56 0.48 0.41 0.46 0.59 0.59 0.59 0.63 0.64 0.37
1 10 0.73 0.70 0.67 0.57 0.72 0.74 0.64 0.72 0.66 0.71 0.77 0.71 0.44 0.62 0.79 0.68 0.59 0.74 0.72 0.68
1 20 0.72 0.65 0.72 0.58 0.71 0.65 0.71 0.63 0.77 0.75 0.70 0.68 0.72 0.59 0.73 0.68 0.72 0.70 0.77 0.66

(Table continued)

MEASUREMENT INVARIANCE ACROSS … PHYS. REV. PHYS. EDUC. RES. 19, 020102 (2023)

020102-13



[1] S. Singer and K. A. Smith, Discipline-based education
research: Understanding and improving learning in under-
graduate science and engineering, J. Eng. Educ. 102, 468
(2013).

[2] J. L. Docktor and J. P. Mestre, Synthesis of discipline-
based education research in physics, Phys. Rev. ST Phys.
Educ. Res. 10, 020119 (2014).

[3] A. Madsen, S. B. McKagan, and E. C. Sayre, Resource
letter RBAI-1: Research-based assessment instruments
in physics and astronomy, Am. J. Phys. 85, 245
(2017).

[4] B. Van Dusen and J. Nissen, Equity in college physics
student learning: A critical quantitative intersectionality
investigation, J. Res. Sci. Teach. 57, 33 (2020).

[5] E. Brewe, V. Sawtelle, L. H. Kramer, G. E. O’Brien, I.
Rodriguez, and P. Pamelá, Toward equity through partici-
pation in modeling instruction in introductory university
physics, Phys. Rev. ST Phys. Educ. Res. 6, 010106 (2010).

[6] I. Rodriguez, E. Brewe, V. Sawtelle, and L. H. Kramer,
Impact of equity models and statistical measures on
interpretations of educational reform, Phys. Rev. ST Phys.
Educ. Res. 8, 020103 (2012).

[7] P. Martinková, A. Drabinová, Y.-L. Liaw, E. A. Sanders,
J. L. McFarland, and R. M. Price, Checking equity: Why

differential item functioning analysis should be a routine
part of developing conceptual assessments, CBE Life Sci.
Educ. 16, rm2 (2017).

[8] A. Traxler, R. Henderson, J. Stewart, G. Stewart, A. Papak,
and R. Lindell, Gender fairness within the force concept
inventory, Phys. Rev. Phys. Educ. Res. 14, 010103 (2018).

[9] A. Traxler and E. Brewe, Equity investigation of attitudinal
shifts in introductory physics, Phys. Rev. ST Phys. Educ.
Res. 11, 020132 (2015).

[10] Z. Y. Kalender, E. Marshman, C. D. Schunn, T. J. Nokes-
Malach, and C. Singh, Gendered patterns in the construc-
tion of physics identity from motivational factors, Phys.
Rev. Phys. Educ. Res. 15, 020119 (2019).

[11] Z. Hazari, G. Sonnert, P. M. Sadler, and M.-C. Shanahan,
Connecting high school physics experiences, outcome
expectations, physics identity, and physics career choice:
A gender study, J. Res. Sci. Teach. 47, 978 (2010).

[12] T. I. Smith and M. C. Wittmann, Comparing three methods
for teaching Newton’s third law, Phys. Rev. ST Phys. Educ.
Res. 3, 020105 (2007).

[13] T. I. Smith, M. C. Wittmann, and T. Carter, Applying
model analysis to a resource-based analysis of the force
and motion conceptual evaluation, Phys. Rev. ST Phys.
Educ. Res. 10, 020102 (2014).

TABLE VI. (Continued)

Pretest CFI values Post-test CFI values

White Black Asian Hispanic
White

Hispanic White Black Asian Hispanic
White

Hispanic

Factor question M W M W M W M W M W M W M W M W M W M W

1 23 0.72 0.59 0.75 0.50 0.71 0.73 0.57 0.66 0.59 0.52 0.75 0.68 0.67 0.63 0.67 0.69 0.69 0.74 0.72 0.63
1 24 0.66 0.53 0.51 0.30 0.59 0.54 0.56 0.52 0.49 0.49 0.81 0.67 0.65 0.62 0.69 0.68 0.57 0.61 0.63 0.63
2 9 0.51 0.40 0.40 0.59 0.62 0.55 0.42 0.27 0.53 0.41 0.65 0.63 0.65 0.77 0.76 0.73 0.58 0.66 0.70 0.60
2 12 0.48 0.41 0.37 0.44 0.43 0.53 0.44 0.39 0.45 0.38 0.59 0.53 0.49 0.55 0.59 0.59 0.47 0.62 0.51 0.52
2 14 0.56 0.61 0.61 0.59 0.70 0.67 0.59 0.57 0.57 0.47 0.58 0.58 0.69 0.60 0.69 0.73 0.62 0.63 0.64 0.64
2 19 0.62 0.55 0.65 0.52 0.63 0.58 0.58 0.52 0.59 0.35 0.72 0.71 0.75 0.72 0.79 0.69 0.66 0.66 0.77 0.68
2 21 0.52 0.37 0.58 0.81 0.69 0.63 0.44 0.43 0.45 0.40 0.56 0.59 0.70 0.84 0.79 0.73 0.72 0.78 0.71 0.62
2 22 0.55 0.36 0.30 0.33 0.60 0.52 0.36 0.32 0.53 0.41 0.68 0.61 0.50 0.57 0.70 0.67 0.52 0.62 0.67 0.65
2 27 0.45 0.35 0.41 0.36 0.47 0.43 0.40 0.27 0.47 0.31 0.60 0.52 0.55 0.50 0.67 0.64 0.55 0.47 0.68 0.45
3 4 0.84 0.80 0.85 0.64 0.79 0.92 0.78 0.87 0.87 0.78 0.82 0.84 0.79 0.65 0.81 0.88 0.64 0.70 0.76 0.81
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