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Limiting case analysis (LCA) is important to practicing physicists. Yet, there is little concrete guidance
for physics educators, and a lack of consensus in the research community about how to help students learn,
and learn from, limiting case analysis. In this study, we first review existing literature to find commonalities
and variations in how instructors encourage and assess students’ limiting case analysis and to highlight how
it has been used by practicing physicists. Then, we examine written work from successive cohorts of
physics students, all of whom have completed a course with the same instructor who emphasizes limiting
case analysis in his teaching. We frame our analysis largely in terms of the theoretical framework of
“adaptive expertise,” finding support in the literature for the view that it is the nonalgorithmic and even
playful aspects of LCA that are instrumental to its alignment with adaptive expertise rather than routine
expertise. Analysis of students’ commentary about how they decide which limiting cases to examine when
evaluating the reasonableness of an equation provides new insights into how LCA might be better
supported in the classroom so that more students can access this important tool of physics.
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I. INTRODUCTION

Limiting case analysis (LCA) is a widely recognized tool
of professional physics. Checking behavior of equations in
limiting or special cases helps physicists evaluate the
reasonableness of an expression; move from specific
equations to more generalizable or complete mathematical
models; extract new information about behavior under
conditions that are unobservable or outside one’s intuition;
and persuade themselves and others that a result is (or is
not) valid and trustworthy [1–3]. Because of its utility in
professional physics, limiting case analysis is also becom-
ing part of the “canon” of undergraduate physics problem-
solving instruction. A wide variety of textbooks and
instructional guides, for example, include reminders for

students to check limiting cases of their answers [4–7].
There has also been some research into how to encourage
students to check if equations make sense, with limiting
case analysis as one of many possible checks. Yet, very
little is known about how students actually use LCA to
make sense of mathematical equations. This study
addresses that gap.
We describe here the results of a design-based research

study of learning limiting case analysis in undergraduate
physics. The study took place over four successive years of
a junior-level electricity and magnetism course, exploring
how students engage with written prompts intended to
develop their capacity for limiting case analysis. In addition
to providing new empirical insights about how students
conduct limiting case analysis, the study articulates the
instructional target of LCA in theoretical terms, using the
concept of adaptive expertise, as articulated by Hatano and
Inagaki [8] and expanded upon by Kuo et al. [9] and others.
For clarity, we present here (see Fig. 1) a typical example

of the kind of questions and student responses that make up
the bulk of our data. Students received a scenario, a formula

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 19, 010125 (2023)

2469-9896=23=19(1)=010125(33) 010125-1 Published by the American Physical Society

https://orcid.org/0000-0002-7654-5424
https://orcid.org/0000-0003-3971-6535
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.19.010125&domain=pdf&date_stamp=2023-04-07
https://doi.org/10.1103/PhysRevPhysEducRes.19.010125
https://doi.org/10.1103/PhysRevPhysEducRes.19.010125
https://doi.org/10.1103/PhysRevPhysEducRes.19.010125
https://doi.org/10.1103/PhysRevPhysEducRes.19.010125
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


associated with that scenario, and instructions to check the
sensibility of the formula. Various versions of the example
shown here were used over the course of the study, along
with other examples involving similar prompts, but focus-
ing on magnetic field interactions with moving charged
particles.
It should bementioned that early in the study, the prompts

were much more specific: “Check to see if this formula is
sensible in the three usual ways,”where the usual threeways
were identified as (1) unit analysis of the formula, (2) LCA
of the formula, and (3) exploring characteristic numerical
values of the formula. However, we discovered from
examining the responses that this kind of prompt, while
perhaps having some merits, often resulted in more rote
replies from the students and gave us little insight into what
kinds of checks that the students would perform if given
more leeway [10]. In later iterations, we began asking
students what kinds of checks they preferred to perform

and about their reasoning.We saw rich variations, especially
in the kinds of commentary that accompanied the students’
approach to LCA, which resulted in the focus of this paper.
This study captures details, which are not reported in

other literature, about how students conduct limiting case
analysis. The results include how students determine which
checks to conduct, the details of how they conduct LCA,
and what they say about the purpose of LCA in written
surveys. We find that students choose which limiting cases
to check based on a variety of considerations, including
their ability to anticipate what a sensible result would be,
their assumptions about how quantities can be manipulated,
and their expectations about which checks will be most
informative. The study also reveals at least two different
ways that intuition features in students’ LCA. Some
students clearly articulate an intuition in the early stages
of analysis, while other students waited to articulate an
intuition until after the result of the limiting case is known.

FIG. 1. Example prompt, student response, and researcher notes.
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Finally, we observe at least one instance of a student
developing new intuition about what a particular quantity
means physically in an equation. Collectively, these results
provide further evidence that teaching students limiting
case analysis might “boost” problem-solving performance
by encouraging students to develop and blend physical and
mathematical intuition [9,11–14]. We also see in these
student responses occasional indicators of what Hatano
et al. call “adaptive expertise,” particularly in their inno-
vation in implementing LCA, in their flexibility in inter-
preting what they find, and in their expectation that
something new can be learned from performing LCA.
By providing this detailed account of how students imple-
ment limiting case analysis, and how they describe its
purpose and usefulness, we aim to contribute new knowl-
edge about how to better support learning of this important
tool of physics.

II. DEFINING LIMITING CASE ANALYSIS

We use the phrase “limiting case analysis” as an umbrella
term for nine closely related tools described in professional
physics and in physics education (see Table I). The
meaning of LCA is unpacked throughout the remainder
of the paper, starting with existing literature on the topic.
We examine meanings and uses of LCA within three
categories of literature: historical and philosophical per-
spectives on LCA in professional physics; textbooks and
teaching materials that have explicitly called for limiting
case reasoning as part of problem solving, but with little or
no student data; and investigations of students’ use of LCA.
Our anecdotal conversations with colleagues and searching
of professional physics literature suggest that LCA is
widely recognized and highly valued in professional
physics. Yet, few studies specifically focus on how students
learn and learn from LCA, suggesting a disconnect between
the practices valued in professional physics and what is
taught in classrooms [15]. Our study aims to bridge this gap
in part.
Nersessian’s work provides among the most well-known

accounts of limiting case analysis in history and philosophy
of science literature. Nersessian analyzes the writings of
famous figures in the Western history of science, such as
Einstein, Galileo, and Maxwell, to argue that limiting case
analysis is a recurring feature of scientific discovery [3].
She defines LCA as follows:

Limiting case analysis is a form of idealization em-
ployed frequently in thought experimenting. In this
species of thought experimenting, the simulation con-
sists in abstracting specific physical dimensions to
create an idealized representation. Isolating the physi-
cal system in thought allows us to manipulate variables
beyond what is physically possible and this creates data
we did not possess before. [26] (p. 298)

This definition of LCA is rooted in an important concept
from cognitive psychology—the mental model. A mental
model is an imagined representation. LCA is a specific type
of mental modeling where aspects of the representation are
taken to extremes, beyond what one might be able to
measure [27]. Thus, one way that LCA supports scientific
progress is by helping scientists generate data, so to speak,
about scenarios or conditions that are difficult to create in
the physical laboratory. As one of the students in our study
explained, checking limits, values, and units is akin to
conducting a “rapid test without a physical experiment.”
A secondway that LCA contributes to the advancement of

science is by helping scientists create quantitative represen-
tations of the world. Nersessian presents Galileo’s use of
LCA as a critical example of the shift toward mathematiza-
tion in physics. To study free fall motion, Galileo developed
an idealized world that is easily quantified and represented
symbolically. This idealized representation allows Galileo to
extrapolate what happens to motion of an object in a
successively less dense medium. When students check
limiting cases, they sometimes present the result as a state-
ment of the value at the limit, e.g., “as density goes to zero,
resistance goes to zero.” But, Galileo’s use of LCA includes
quantification of how the “differential lifting effect” changes
as the limit is approached, leading to a more complete
mathematical representation. Students in our study were
reminded to pay attention to not only the value at the limit but
also how the limit is approached. When asked to describe
LCA in an end-of-semester survey, one student explained
succinctly, “what are limits as your independent variables get
very large and very small and how does your value approach
them. Understanding how the limits are approached helps to
visualize the physical properties or behavior of a problem.”
Mathematization is a core component of professional physics
but also one that is difficult to teach [28,29]. We suspect that
more careful treatment of LCA in the physics classroom
might help in this regard.
Nersessian’s accounts of conceptual change in electro-

magnetic theory highlight yet a third important use of
limiting case analysis—to check that a proposed model is
“consistent under the appropriate conditions with estab-
lished mathematical results” [30] (p. 34). The “appropriate
conditions” could include limiting cases. For example,
Maxwell required that his developing unified model of
electromagnetism be mathematically consistent with pre-
viously derived results. In the case of his “vortex medium”
model, this meant that the model must generate Coulomb’s

TABLE I. Related limiting case analysis terms in the literature.

• Boundary condition [16] • Limiting behavior [21,22]
• Degenerate case [17] • Limiting case [14,23]
• Extreme case [18] • Limiting condition [24]
• Functional dependence [19] • Special case [11,12,25]
• Leading order analysis [20]
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law in the limiting case of a uniform magnetic permeability
and no current in the medium. (Bohr also invokes similar
consistency requirements through his correspondence
principle).
So far, we have discussed three important ways that LCA

supports scientific progress: generating new data about
unobservables, representing phenomena quantitatively and
symbolically, and developing unified models that are
mathematically consistent with past results. Nersessian
highlights a fourth critical function—to communicate.

When physicists describe the limiting case as a thought
experiment, they “assist readers in constructing their own
mental simulation, thereby creating an understanding of
what they have not actually witnessed themselves” [31]
(p. 207). In this way, the arguments constructed from LCA
can be very compelling as a way to communicate discov-
eries to the rest of the scientific community. In the writings
of Bohr, Einstein, and Galileo, limiting cases are repre-
sented mathematically and in the form of a narrative. The
narrative, according to Nersessian, is what adds to the

TABLE II. Some purposes and uses of limiting case analysis.

Purpose or use Illustrative reference

Practice physics problem solving “A useful class of problem for encouraging students to work with symbols
is the limiting case problem…” [19] (p. 4)

Extend perception or intuition “In both cases, thinking about extreme cases is used for purposes of overcoming
the limits of human intuition, with the aim of finding some ‘deeper truth.’” [33] (p. 152)

Generate models, solutions,
equations, or answers

“They [students] can generate new and creative uses for extreme-case reasoning,
here recasting it from a tool for evaluating answers to one
for generating them.” [34] (p. 108)

Explore or interpret models,
solutions, equations, or answers

“Let’s now examine some limiting cases of the general expression (8).
One interesting special case occurs when μs;floor ¼ 0. In that case, the argument
of the arctangent function diverges, and we see that θcrit ¼ 90°, i.e., equilibrium
is not possible if the ladder leans. This occurs because if the ladder leans,
the floor’s static friction force is necessary to balance the normal force
from the wall if equilibrium is to be maintained.” [35] (pp. 567–568)

Create quantitative representations
of phenomena (e.g.,
mathematization)

“Galileo repeatedly used thought experiments and limiting case analyses
in tandem…both in constructing a quantifiable representation
of bodies in motion and in attempting to convey this new
representation to others.” [27] (p. 433)

Communicate results See above.
Establish a correspondence
between theories or phenomena

“…the idealized representations of the thought experiments and limiting
case analyses often facilitated Galileo’s recognition of analogies
between different phenomena, such as the motion of falling bodies
and the motion of a pendulum. That is, idealized representations
form abstract schemata common to different problems.” [36] (p. 175)

Check results for reasonableness
or consistency (including
critique and peer review)

“…as with checking units, checking limiting cases (or special cases)
is something you should always do at the end of a calculation.
But as with checking units, it won’t tell you that your answer
is definitely correct, but it might tell you that your answer is
definitely incorrect.” [37] (pp. I–6)

Generalize or infer solutions from
known or specific cases

“This type of analysis, known in physics as limiting case analysis [1,19],
allows for generalizing inferences by evaluating or estimating values
of algebraic functions based on its extreme inputs.” [1] (p. 40)

Identify relevant variables
and identify relationships
between them

“…If you’re having trouble figuring out how a given system behaves,
then you can imagine making, for example, a certain length become
very large or very small, and then you can see what happens to the behavior.
Having convinced yourself that the length actually affects the system
in extreme cases (or perhaps you will discover that the length doesn’t
affect things at all), it will then be easier to understand
how it affects the system in general…” [37] (pp. I–6)
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“logical and empirical force” [27] (p. 431) of LCA as a
communicative tool; it helps readers imagine the simulation
represented by the mathematical form of the limit. In our
study, students were reminded in class to include some
explanation of how they determined whether the results of a
limiting case check were sensible. Students who initially
presented only the mathematical form of the limit would
typically include a bit more narrative explanation as the
semester went on [32]. Still, one student admitted, “I don’t
always explicitly write it out, rather just do it in my head.”
We did not investigate students’ coming to appreciate LCA
as a tool for scientific communication in this study but that
could be an interesting direction for future work given the
importance of communicative functions of LCA in
Nersessian’s account.
More recent professional physics literature shows LCA

being used to check one’s own or other’s results; this
function is not emphasized in Nersessian’s work but lies at
the core of our pedagogical intervention and is related to the
communicative function previously discussed. We searched
the databases of professional physics journals for use of
phrases like “limiting case” and “in the limit of” in
published articles. We were particularly inspired by the
errata and comments articles, where physicists can be
observed critiquing or disputing claims in a published
paper by way of a limiting case analysis. Our prompts
encouraged students to use LCA to evaluate the sensibility
of a result in a mathematical limit. We present students with
a situation and a formula and then ask students to check
whether that formula makes sense. Limiting case analysis is
one tool that students have at their disposal to critique the
formulas; in this way, we hope they learn to recognize LCA
not only as a tool for checking their own answers but also as
a practice invoked by the physics community as part of the
construction and verification of knowledge.
We have argued that physicists invoke LCA “locally” for

many purposes, including to generate data, extend intuition,
communicate results, and critique results. LCA has played
an important role in the advancement of physics knowl-
edge, allowing physicists to explore regimes that could not
otherwise be investigated experimentally, and also sup-
ported mathematization of physics. Table II summarizes
some of the ways we have encountered physicists describ-
ing the uses of LCA in their research and teaching of
physics, with one or two illustrative references for each.

III. LITERATURE REVIEW

If LCA is a useful tool of physics, then as physics
educators, it is important to understand different ways that
students might learn and use this tool. Previous studies of
how students learn and use LCA indicate widespread
agreement that typical physics teaching is not effective
for teaching LCA. For example, Loverude [38] reports that
upper-level students from a math methods course do not
spontaneously use limiting cases to make sense of

equations after traditional instruction and calls for explicit
instruction to promote this kind of “nonprocedural” learn-
ing. One way that instructors try to encourage students to
check limiting cases is by providing students with a
problem-solving process that includes an answer-checking
step. However, this approach does not seem to be particu-
larly effective. Wilcox et al. [39] (p. 3) found that only 8%
of students in a junior-level electricity and magnetism
course attempted to check their solution in the fourth
“reflection” step of the ACER protocol, and while some
of these students examined limiting cases, most merely
“made superficial statements about whether the solution
looked familiar”. Lenz et al. [40] indicate that in postcourse
interviews, none of the 11 introductory students invoked
special case analysis, whether they experienced traditional
classroom instruction or reformed instruction where special
case analysis was demonstrated. We suspect that the low
uptake of LCA in such studies might be partially explained
by the lack of consistency between the instructor’s state-
ments about what is valued in the class and how points are
actually awarded [41]. In situations where students are
rewarded for quickly generating a correct answer, some-
times called “answer-making,” there is little incentive for
students to check limiting cases; such checks take time, and
it is not immediately clear to students that LCAwill help get
to “the answer,” and perhaps even worse from the student’s
perspective, a limiting case might actually further compli-
cate their thinking about a problem or result or hinder their
attempts to get to the next problem.
In studies where limiting case analysis is rewarded

explicitly and treated as important content in the course,
some positive results are observed. Warren [12] aimed for
his introductory physics students to learn to assess their
own work, rather than having to rely on an outside authority
to tell them whether or not their work is correct. To achieve
this goal, students were introduced to a range of “evaluation
strategies,” including special case analysis in class.
Students were assigned problems that required the use of
these evaluation strategies for homework and during
recitation sessions. Further, students received a rubric that
clarified the expectations for how each evaluation strategy
was to be used, and students received descriptive feedback
on their performance throughout the course. Under these
conditions, Warren reported an increase in students’ use of
LCA on a variety of problems. Warren also reported further
that “use of evaluation strategies, particularly…special case
analysis, help[ed] generate a significant increase in per-
formance on multiple choice exam questions…” but only
when those questions cover the same topics as the evalu-
ation strategies (p. 020103–10). Chasteen et al. [42] also
report that targeted instruction can encourage answer
checking in physics education research (PER)-aligned,
junior-level electricity and magnetism students, such that
these students can describe limiting behavior for their
solutions better than students in standard courses. In earlier
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work [10], the authors argue that upper-level electricity and
magnetism students on their campus readily adopt limiting
case analysis when instruction was explicit and reward
structure apparent, but lamented a certain rote-ness in their
adoption. Eichenlaub et al. [34] treat LCA as a variation of
an epistemic game, specifically documenting a case
wherein the student is guided through extreme case
reasoning. This pedagogical approach “can cause signifi-
cant shifts to students’ epistemic frames and lead to new,
creative sorts of blended mathematical and physical cog-
nition” and even result in successful application to prob-
lems previously not solvable by the students (p. 111).
Following their discovery that instructor demonstration and
homework prompts were not sufficient to encourage special
case analysis in introductory physics courses, a team at
Oregon State developed an upper-level Techniques of
Theoretical Mechanics course that explicitly addressed
“sensemaking strategies,” including special case analysis,
in nearly all course meetings and assignments [43]. The
team found that when sensemaking tools, such as LCA, are
“treated on equal footing as the content goals of the
course,” students will embrace these tools and even use
them on homework without explicit scaffolding [43,44].
Students reported “special case” and limiting case as the
most common “sensemaking tool” they use on homework
[44]. Student Charles reported that he “probably do[es] the
dimensions without prompting most of the time and then
one or two limiting cases” [45] (p. 115). Thomas also
reported using limiting case analysis throughout the course
but found it particularly helpful for a topic introduced
toward the end of the course:

Limiting cases I think, yeah, especially since we just
started special relativity. I think limiting cases have kind
of helped a lot, especially when you’re just like ‘oh, if the
velocity is really small compared to c then it ends up
being kind of what you’d expect classically’. That help
me a lot in the homework that’s due on Friday because
it’s just a really quick check. [45] (p. 110)

Finally, further evidence of the effectiveness of a
comprehensive approach to teaching LCA can be found
in student quotes like those below:

I think looking back on some of the [other physics
classes], they’d give us a couple of the limiting cases
and then just give us the solution to those and then run
the fit, but it wasn’t more of the holistic kind of thing that
we do I guess. [45] (p. 118)

We conclude from these studies that students are more
likely to implement and find value in LCA if it is woven
throughout the course, not treated simply as an add-on step
of problem solving. As described in Sec. IV B, we used a
similar approach as Hahn and Lenz, attempting to elevate
LCA as a central tool of physics and to cultivate its use

throughout an upper-level electricity and magnetism
course.
The previous studies identify instructional conditions

that support students’ learning of LCA. Another line of
work attempts to model how and what students learn from
checking limiting cases. Zietsman and Clement [18]
propose “extreme cases” as a pedagogical tool for learning
physics. During a series of tutoring sessions about levers,
7th grade students were presented with two diagrams and
asked to consider which showed a scenario that would be
“easier” to maintain. The diagrams were identical except
for one feature. Both showed a person holding one end of a
board, with the other end of the board resting on a fulcrum.
In one diagram, a mass was located directly over the
fulcrum; in the other diagram, the mass was located next to
the person’s hand. The researchers found that these extreme
cases were effective in drawing students’ attention to a
variable that they overlooked in preassessments—the effort
arm. Further, students were able to infer a “general
direction of change relation” between the effort required
to keep the board level and the effort arm (p. 63). Vidak
et al. similarly observed that introducing extreme cases
helped students use their intuitions about thermodynamic
expansion in one dimension to answer questions about
thermodynamic expansion in two dimensions [46].
Together, these studies indicate that extreme case reasoning
may be beneficial because it requires learners to activate
intuitions and develop an explanatory model and also
facilitates construction of new causal relationships by
drawing attention to variables that may have been over-
looked [18]. Both of these studies introduced extreme case
reasoning to students; however, Stephens and Clement have
also observed students spontaneously invoking extreme
case reasoning during physics class discussions [47]. In our
study with college physics students, we also find evidence
that while conducting LCA, students articulate “intuitions”;
however, as discussed in the findings, we are at times
unsure whether these are truly physical intuitions in the
sense of being grounded in students’ everyday ideas about
the physical world.
Limiting case analysis involves examining an expression

and determining which limiting cases might be useful to
examine. We were unable to find very much information
about this aspect of LCA in the existing literature, other
than a note from Hahn about future plans to attempt to teach
students “how to choose advantageous cases to analyze”
because “while students often used these strategies, they
did not always choose cases that would yield the most
insight into the problem” (p. 163). In this study, we did
examine which variables students preferred to vary in their
implementations of LCA, finding that there was some
resistance to considering variations in things considered
constant (such as Coulomb’s constant or the speed of light
or the gravitational constant), even while an expert might
have fewer such inhibitions [19]. These points are further
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elaborated on in the findings. We conclude here by noting
that in reviewing the literature we did not find any articles
with a singular focus on students’ perceptions and use of
limiting case analysis; this paper is a unique contribution in
that regard.

IV. THEORETICAL FRAMEWORK

In this study, we aimed for students to use limiting case
analysis more often, and in the process, discover potential
ways that limiting case analysis can be epistemically
valuable in physics. While some students will spontane-
ously check limiting cases on their own, and a few may
even do so systematically, we did not think that our classes
would reach our pedagogical goals related to adaptive
expertise without some instructional support. As previously
described, including a “checking” step at the end of a
problem-solving protocol is not sufficient for learning
LCA [38–40]. Students are unlikely to complete this step,
and even if they do, it is not clear whether they actually get
better at LCA as a result. A more concerted approach is
required, in our view.
Over the course of the study, we aimed to change

students’ use of LCA through targeted instruction, in a
design-based approach (see Sec. V. B). We conceptualized
an end goal of instruction as students’ development of
adaptive expertise in checking limiting cases. The concept
of adaptive expertise holds that “innovative uses of knowl-
edge” [48] are the hallmark of professionalism in fields that
require innovation and problem solving (p. 217). Though
our instruction included scriptlike elements as a starting
point, rote implementation of these scripts does not
constitute expertise. As Nersessian explained, LCA is
“nonalgorithmic”; it requires innovation, choice, and con-
text-dependent reasoning.

A. Conditions for development of adaptive expertise

Hatano and Inagaki [8] identify three factors that are
important for the development of adaptive expertise. The
first is built-in randomness that necessitates trying out
variations of the target skill, monitoring the results, and
then inferring conceptual relationships between the varia-
tion and the result. They provide the example of cooking.
When following a recipe, you may not have all of the
ingredients or exactly the same cookware as the recipe
requires. Therefore, you make an adjustment, maybe
substituting one ingredient for another, and now you have
the opportunity to see how that adjustment impacts the
results. If you cook only once, then you may not build
adaptive expertise, but if over many opportunities following
recipes, you make many adjustments, eventually you will
build up a conceptual model including many variations and
how they impact the results. However, if you always follow
the recipe exactly, you are unlikely to gain these kinds of
insights. Nersessian noted that LCA and related “modelling

activities” are “nonalgorithmic, and even if used correctly,
may lead to the wrong solution or to no solution” (p. 13).
The nonalgorithmic nature of LCA discouraged philoso-
phers of science from attempting to account for its role in
scientific discovery [3]. This nonalgorithmic property of
LCA also poses a challenge for instructors.
In our study, we began with a more “follow the script”

like approach, G.W., the course instructor, introduced three
“easy to remember” checks (checking units, using LCA,
and plugging in numerical values) as a way to scaffold
students’ use of limiting case analysis. Students were
routinely asked to check answers in “the three usual ways.”
While the script was effective in helping students remember
which checks to conduct, we found early on in the study
that it also constrained students’ sensemaking [10]. Even
though students had repeated opportunities to conduct the
checks over the semester, over time, they conducted only
the three checks introduced in class, pruning out of their
repertoire other useful checks (such as sign dependence or
symmetry arguments) that did not seem to fit the script [49].
While routines may help students remember to conduct a
limiting case check, a purely algorithmic approach is not
consistent with the ways that Nersessian observes this
tool’s use in professional physics. Thus, we began modi-
fying the prompts to allow for more flexibility and
experimentation.
A second critical factor in the development of adaptive

expertise is the social context in which the skill is being
developed. If the skill is developed in a community where
ingenuity is valued, even when it comes at the cost of
efficiency, learners are more likely to be “playful” and try
variations [8]. However, if the community upholds effi-
ciency as the main value, then learners are unlikely to be
willing to take the risk of trying something new that may
not pay off. In a classroom, however, both of these norms
are present. For example, during class, G.W. provided
metacognitive commentary about the use and value of
limiting case analysis. In this way, the instructor’s tacit
epistemic commitments were made public to students. For
example, one sequence of questions involved ascertaining
the electric field at the center of a square fashioned from
charged rods, then generalizing beyond the square to the
equivalent n-gon problem, and finally then determining
whether the limit as n goes to infinity matches what was
previously obtained for the electric field due to a circular
loop of charge. Clearly, this would not be the most efficient
way to derive the electric field at the center of a circular
loop of charge, but we maintain that there is a certain
satisfaction in seeing that the results match those obtained
before despite the inefficiency and that this acknowledg-
ment helps to foster a culture that is more “understanding
oriented” than “promptitude oriented” [8] (p. 35). However,
students did express that on tests, they were unlikely to
have time to try many different checks, so they would focus
on those that were likely to help them make a determination
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of “sensible” or “not sensible” as quickly as possible.
Students noted that unit checks were especially helpful in
this regard.
The third factor that Hatano and Inagaki posit is required

for adaptive expertise again relates to how the social
context encourages, or discourages, individuals from trying
variations of the target skill. If individuals are performing
the skill to receive a reward, such as a grade, then they are
more likely to employ “conventional” versions of that skill,
as they do not want to risk missing out on the reward by
trying something new. However, if the skill is not being
performed for a reward, then people are more willing to
make adjustments and monitor the results. A number of
studies support the negative impact of grades on student
learning:

Inagaki (1980), reviewing these studies, points out the
possibility that the expectation of reward may prevent
learners from understanding things deeply: It changes
the “goal structure” of the activity and thus leads
learners to shift their strategy from “heuristic,” such
as “examining possibilities of alternative solutions” or
“seeking a more universal solution beyond the present
successful one,” to “algorithmic,” such as strategy
ensuring steadier and often quicker solutions within a
given time. [8] (p. 34)

However, here, we diverged from the recommendations
of Inagaki and Hatano. Because students receive a grade at
the end of the semester, the grade “goal structure” is always
operating, even if a particular assignment is not graded.
Turpen et al. found that grading practices can influence
how students perceive the instructor’s messages about
classroom norms. In encouraging students to conduct
LCA, but then not awarding them credit for it (while still
awarding points for other aspects of the course), we risked
sending the message that LCAwas not really that important
to physics. Instead, points were used as a way to put LCA
on the same footing as other components of the class for
which students received credit [32,44]. G. W. rewarded
limiting case checks in class through verbal encouragement
and by assigning points to students who attempted checks
on quizzes and tests, even if those checks were not
completed fully or accurately. Wilcox and Pollock [50]
found that awarding partial credit in this way can be a
helpful way to acknowledge the internal consistency of
students’ reasoning and their attempts to connect ideas
together in unexpected ways. Warren [12] was able to
increase the quality and quantity of usage of LCA (he calls
it special case analysis) by algebra-based intro physics
students over the course of the academic year by the use of
feedback to students on homework and tutorials using
specific formative rubrics and then summative assessments
to measure whether the students invoke LCA to solve open-
ended questions. While our approach is at odds with

Hatano and Inagaki’s guidance, by assigning points to
checks, we hoped to consistently message that checking
answers is a valued part of students’ physics learning,
thereby encouraging exploration and search for under-
standing required to develop adaptive expertise.
Hatano and Inagaki’s model of adaptive expertise devel-

opment requires that learners have many opportunities to
practice the target skill. As previously mentioned, the
typical “solve and check your answer” approach on its
own does not seem to be effective for teaching LCA. We
suspect that one shortfall of this approach is that students
do not have much opportunity to actually perform the target
skill. They may run out of time at the end of a problem, or
get stuck generating a solution, and never have an oppor-
tunity to conduct the checks. The types of problems
students are reasonably able to solve also limit the kinds
of variations they can experience. To address these short-
comings, we decided to create prompts that are designed
specifically for students to practice checking solutions for
sensibility. To get around the issue of students being unable
to solve a problem, we sometimes provided students with a
situation, and a possible solution, and then asked students
to check that solution for sensibility. We are not the first to
use this approach [11,51]. Students were positioned more
in the role of a peer reviewer, checking to see whether
someone else’s solution holds up under scrutiny. For
example, in the response below (Fig. 2), the student
indicates that they pick their second choice because it
“minimizes a different component than does” their first
choice, suggesting that they are choosing which limit based
on an ideal that allows them to learn as much as possible by
choosing a parameter that addresses a “different compo-
nent”…Next they say they do not choose “n” because it is
“unitless” and it “merely changes the coefficient” sug-
gesting that understanding it is not as important for full
understanding as are their first and second choices…One
might quibble with the assertion about the relative impor-
tance of these parameters’ limits giving reasonable results,
but it seems clear that the student values fuller under-
standing over achieving a successful (but less meaningful)
limit analysis. These prompts were provided to students
repeatedly throughout the semester, to ensure multiple
opportunities to practice.
Thus, the pedagogical approach aligns in many ways

with Hatano and Inagaki’s requirements for the develop-
ment of adaptive expertise summarized in Table III (built-in
randomness, community emphasis on understanding, and
encouragement to try variations of the target skill) [8,52].
But, these are features of the context that support adaptive
expertise, not features of adaptive expertise itself. To
formulate potential indicators of adaptive expertise in
LCA, we reviewed Hatano and Inagaki’s original writings,
as well as PER literature citing those writings, to identify
three potential indicators of adaptive expertise.
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B. Indicators of adaptive expertise in LCA

The first indicator derives from a consensus in the
literature that adaptive expertise is uniquely characterized
by innovation [9,53]. Routine experts “are outstanding in
terms of speed, accuracy, and automaticity of performance”
[8] (p. 31); they typically approach novel problems as
“opportunities to use their existing expertise to do familiar
tasks more efficiently” [54] (p. 46). Like routine experts,
adaptive experts find ways to be more efficient, but they
also sacrifice immediate efficiency in order to “explore a
variety of possibilities and try to make sense of their
actions” [55] (p. xii). In our prompts, we asked students to
check a range of limiting cases and thus explored a “variety
of possibilities” [55]. However, adaptive expertise is not
characterized by the number of different limiting cases a
student checked. Rather, a better indicator of adaptive
expertise is when a student willingly checked a limiting
case because the results were not immediately obvious to
them, and they wanted to see what they could learn, even if
it turned out the limit was difficult to interpret or not
particularly insightful, a sort of willingness to go down
“rabbit holes.” Because adaptive experts invest time in
developing a conceptual understanding of how variation
impacts their performance, they are better able to determine
which procedures to implement in a new situation or even
develop new procedures [56]. In other words, adaptive

experts will sacrifice efficiency in the short term in order to
explore and develop knowledge that might prove useful in
the future.
A second possible indicator of adaptive expertise,

arguably at the core of what differentiates adaptive from
routine expertise, is students’ attempts to glean new
insights by conducting a check. Some evidence can be
found in students’ expression of the purpose and principles
underlying their implementation of LCA. When asked
“What are some reasons you might give to someone
new to physics about why it is a good idea to “check
your answer in the usual three ways”? Students often
respond with some version of “it keeps you from making a
mistake.” However, students sometimes say something that
suggests that they learn from the limiting case analysis, as a
student in cohort 4 did, “Limiting cases are important for
understanding not just the equation, but the actual physical
concepts behind the equation.” or another who wrote, “I’ve
found that, as I said earlier, you can learn a lot about what
the equation is actually predicting from utilizing the three
checks: limiting cases, numerically, and units…Studying
the variables and seeing what happens to them in the
equation tells you what the process is that is happening, and
if you’ve characterized it correctly in this form of equation.”
The language they use reflects that they are not really
surprised that they learn something from this procedure,

TABLE III. Conditions for adaptive expertise.

• Built-in randomness that necessitates trying out variations of the target skill, monitoring the results, and then inferring conceptual
relationships between the variation and the result.

• A social context that values ingenuity over efficiency.
• A goal structure that allows individuals to try out variations without fear of missing out on a reward.

FIG. 2. Student response describing why they picked which variables for LCA. The response indicates a desire to explore variables
and cases that may generate interesting or meaningful results.
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indicating that they did not know what they were going to
find before embarking on the LCA. Students’ acceptance of
“unanticipated” learning is perhaps reflective of the dis-
covery nature of LCA described by Polya [17] and adaptive
expertise more broadly. We uncovered further evidence of
students’ inferring new conceptual relationships during the
fourth year of the study when we intentionally modified
prompts to frame LCA as a way to discover physics (in
addition to checking if a formula or answer makes sense).
The third indicator derives from Inagaki and Hatano’s

suggestion that adaptive experts possess conceptual knowl-
edge that allows for the flexible application of procedures
or even the development of new procedures. A routine
expert operates with extreme efficiency under a fixed set of
conditions; if these conditions change too dramatically, the
routine expert may not be able to adapt. In contrast,
adaptive experts are not constrained to high performance
under fixed conditions. They can apply their conceptual
understanding of procedures gleaned through many iter-
ations of practice to make informed choices about what
procedures to apply (or develop) in an entirely new context.
Thus, when studying students’ development of how to use
LCA, we were particularly interested in this study in
understanding how students decide which limiting cases
to check when judging the reasonableness of an equation.
All of the students in this study, when prompted, provide
some sort of rationale for why they chose to examine a
specific limiting case. Sometimes, students’ rationales
indicate a rigid scriptlike implementation that is not
characteristic of adaptive expertise, e.g., “we don’t check
constants.”Thoughadaptive experts dodevelop these sorts of
procedures, they are careful to “avoid the over-application of
previously efficient schema” [56] (p. 3). Rather, they con-
sider a range of possibilities, such as checking constants, and
select among those possibilities through careful analysis of
the situation at hand. Thus, when we saw students provide a
rationale that indicated they were flexibly applying insights
gleaned from previous problems, we interpreted these
responses as evidence of adaptive expertise.
The adaptive expertise literature provides a framework

for the pedagogical goals of the study, i.e., for students to
learn and learn from LCA. Though we did not set out to
refine the theory of adaptive expertise in this study, our
efforts to apply this framework required novel synthesis

and application of prior work on the conditions and
indicators of adaptive expertise, as summarized in Table IV.

V. STUDY DESIGN

A. Context and origin of study

This study occurred at a midsized, private university and
predominantly white institution. Participants in the study
enrolled in an upper-level electricity and magnetism class
required for all undergraduate physics majors. Twelve (12)
students participated in research during the first year of the
study, 10 students in the second year, 16 students in the
third year, and 8 students in the final year. We did not
collect demographic data from individual participants.
However, the institutional dataset indicates that the com-
position of physics majors changed each year of the study.
Majors ranged from 44% to 54% White; 8% to 20%
Hispanic; 0% to 15% Asian; 0% to 14% unknown
ethnicity; 0% to 11% Black; 7% to 11% two or more
races. During this period of the study, no physics majors at
the institution identified as Pacific Islander or American
Indian. International students comprised 8%–14%of physics
majors. In terms of the reporting categories available for
gender in the institutional dataset, 56%–67% of physics
majors were male and 33%–44% were female. The institu-
tion enrolled between 7 and 16 physics majors per year.
The study emerged from anecdotal evidence gleaned

from conversations with former students. Some of these
students suggested that they learned an especially valuable
skill in the electricity and magnetism class—how to check
if answers are reasonable. In general, the instructor’s
approach, prior to the study, could be characterized initially
as a rather rote, but consistent, element introduced into the
curriculum in an effort to move students toward more
expertlike behavior. Specifically, the instructor routinely
would ask the students to “check whether their answer is
sensible in the usual three ways” on graded homework
assignments, as part of in-class group work, and on tests.
The word “usual” was used intentionally as was the
omission of what exactly the three ways were (after
introducing them once early on), as the instructor wanted
the students to internalize them, to remind each other what
they were as a way to initiate peer discussions, and draw
upon them reflexively as expert physicists do. (For

TABLE IV. Indicators of adaptive expertise.

• Sacrificing immediate efficiency to explore and develop knowledge that might be useful for the future (e.g., student checks limiting
case because the results were not immediately obvious to them and they wanted to see what they could learn).

• Inferring “new” conceptual relationships between variation tried and the result (e.g., student discovers value of checking distance
dependence for scenarios involving electrostatics).

• Flexible application of knowledge, such as inventing, modifying, or breaking from a procedure (e.g., deciding a scenario warrants
checking limiting cases of constants).
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reference, we include them here: unit or dimensional
analysis, limiting case analysis including whether the
LCA matches physical intuition, and computing numerical
values to see whether they match expectations)….The word
“limit” is also used intentionally (as opposed to extreme
cases or “special cases,” for example) so as to remind
students more explicitly of the word limit and how it was
used in their math classes, leveraging the wealth of math
class ideas that they should bring to bear (L’Hospital’s rule,
indeterminate forms, etc.). Feedback from a few high-
performing former students about this aspect of the course
was particularly striking (and mostly positive) but helped
reveal that perhaps not all studentswere benefitting from this
more cryptic approach regarding LCA in the same way.
Thus, began the attempt to study how students take up
checking and particularly LCA. This led to a more nuanced
introduction to the LCA ideas such as providing more
explicit scaffolding early on about what the instructormeans
by limiting case analysis and giving students purported
algebraic answers to some problems (rather than always
insisting that they derive the results themselves) and asking
them to check whether this answer is sensible in as many
ways as possible.
The research team consisted of G.W., the electricity and

magnetism course instructor; T. Sikorski, a science edu-
cation researcher at the same institution; and two under-
graduate research assistants (M. Ahmed and J. Landay)
who participated in data logging and analysis. The research
team met approximately weekly in the fall of each year to
design the prompts, analyze data, discuss related literature,
and prepare for conference presentations. A system was
designed whereby G. White would not know which
students were participating in the study while they were
enrolled in the course. The undergraduate research assistant
J. Landay participated in year 1 of the study. J. Landay was
a physics major, a former physics learning assistant, and
had previously taken the electricity and magnetism class
that was the focus of this study. J. Landay assisted in
analyzing cohort 1 data to identify which check(s) students
conducted. The second assistant, M. Ahmed, joined the
project in year 4. M. Ahmed took a class on pedagogy with
T. Sikorski, was a biology learning assistant, and had no
prior physics training at the time of the study. M. Ahmed
looked across all four cohorts of data to create data tables
showing which limiting cases students checked, and in
what order, for each prompt. We presented our ongoing
analysis regularly throughout the project, at AAPT [2,49],
APS [57], and PERC [10,58] in order to gather critical
feedback from the physics education research community.

B. Research process

Design-based research “simultaneously pursues the goals
of developing effective learning environments and using
such environments as natural laboratories to study learning
and teaching” [59] (p. 200). We approached the study with

the dual goals of interpreting and influencing how students
check equations for sensibility. The study took place within
the bounded context of an electromagnetism course. The
course ran 4 times, once per year of the study, each timewith
the same instructor, but with students and learning assistants
changing for each iteration. Thus, the classroom acted as a
“living laboratory” allowing us to hone in on specific aspects
of our pedagogical intervention “while maintaining the
complexity of the local context” [60] (p. 32). Over the
course of the four years of data collection, we made many
systematic adjustments informed by our hypotheses about
student thinking and our ongoing data analysis.
The study was iterative, and modifications in each

iteration were principled and driven by the aforementioned
instructional and research goals [61]. We began with a set of
instructional goals and research questions at the start of each
year. Based on what we learned from each round of data
collection, wemademodifications for the next round of data
collection. These adjustments occurredwithin each year and
also across years. For example, year 1 began with the
instructional goal of students learning to check their sol-
utions in three ways: to check if the units of the solution are
reasonable, to check if the limiting cases of a solution are
sensible, and to try plugging in numerical values into the
solution. As already discussed, prior research had shown
that students often skip the “answer checking” stage of
problem-solving protocols. We wondered if requiring stu-
dents to generate their own solutions got in the way of their
being able to practice checking solutions. For example, if
students spend the entire time allotted generating a solution,
they may not have sufficient time or focus to try any of the
checks. In the electromagnetism course, we also knew that
studentswould face quite difficult problems that theymaybe
unable to solve. From a pedagogical perspective, we thought
at the time that in order to develop adaptive expertisewith the
checks, students must, at minimum, have adequate oppor-
tunities to practice using the checks. Thus, in order to make
sure that students had adequate opportunities to practice the
checks, we generated a type of “layered” exercise that
focused exclusively on the checking aspect of problem
solving. By “layers” we mean to indicate that the students
were shown only one layer of the exercise or prompt at a
given time (a layer might be one or two or evenmore pages),
and students were not able to access responses on a previous
layer after viewing and responding to that previous layer.)
Students were presented with a scenario, such as a charged
pith ball suspended near a chargedVan deGraaf sphere and a
proposed formula describing some aspect of that scenario.
Students were asked to check if that solution is sensible,
either explicitly by asking them to invoke the three checks
(units, limiting cases, numerical values) or by asking them
more generally to check the formula in as many ways as
possible. Most of these data collection prompts occurred
during the “high stakes” situation of quizzes and tests.
In year 1, we focused exclusively on students invoking

the three checks explicitly taught (units, numerical values,
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and limiting cases). However, in analyzing the student
responses to the prompts, we noticed that over time students
stopped conducting other, potentially useful checks that
were not part of the “usual three ways,” such as looking for
resemblances to other equations or trying to derive the origin
of terms in the equation [49]. So, in year 2, we emphasized in
the written exercises that students should check “in as many
ways” as they could think of, and we began keeping track of
the other types of checks students used. We also noticed
differences in terms of which variables students would
choose for their limiting case checks—an important obser-
vation that shaped our year 3 investigations.
Year 3 marked a critical phase of the research when we

began to focus in greater depth on how students imple-
mented limiting case analysis. We had noticed in prior
datasets that for any given formula, students would check
particular variables frequently and others rarely or not at all.
We wanted to better understand how students were select-
ing which variables to check; students’ rationales might
provide evidence of their focus on efficiency, scripts, and
routines, or playfulness, flexibility, and innovation. In year
3, we modified our prompts so that students could identify
which variables they would check first, second, and never,
and why. We learned for example, that students do not take
limiting cases of constants because they perceive these as
unchanging. Critically, year 3 also revealed that limiting
case analysis could serve a potentially important role in
students’ development of physical and mathematical intu-
itions; invoking physical intuition is explicitly part of the
check, which may explain its apparent greater effect on
student problem-solving performance as described in the
literature review [9,11–14].
Years 1 through 3 focused on students’ implementation

of the limiting case analysis to make a judgment about the
reasonableness of a solution. A professional physicist
might use limiting case analysis in this way, for example,
to check a formula in peer review [62], or to check an
intermediate result. In year 4, we shifted our attention to
another very important role of limiting case analysis in
professional physics: to develop new intuitions about the
world [20,26]. Here, our instructional and research goals
merged. Can we shift students’ framing of limiting case
analysis so they view it as a way to learn or discover
physics? (as opposed to or in addition to checking if a
formula or answer makes sense). We wondered whether, as
Polya suggests, our students could develop new insights
about a formula by conducting limiting case analysis.
To our knowledge, this study represents one of the first

iterative and ongoing analyses of how students learn to use
limiting case analysis in the context of an upper-level
undergraduate electricity and magnetism course. This paper
is a cumulative presentation of four iterations of data
collection and analysis, exploring how students develop
capacity for, and perspectives about, limiting case analysis
in response to written prompts specifically designed for that
purpose. Our findings yield new insights into what

instructional approaches might support students’ learning
this tool of professional physicists. As well, we identify a
number of promising directions for future research that
considers more specifically the role of limiting case
analysis in the development of physical intuition in the
context of studying electromagnetism and the blending of
their physical intuitions with mathematical formalism.

VI. FINDINGS

In prior work, we have reported on our efforts to increase
students’ use of LCA, checking units, and checking numeri-
cal values, detailing some success in increasing the use of
LCA among undergraduate majors [2,10,49,57]. In addition,
we have noted in earlier work that our less experienced
students,while able to produce a robust list of kinds of checks
that they might apply to a purported solution did, not readily
generate the idea of checking limiting cases; this was in
dramatic contrast to students in upper-level courses who had
previously taken a course with the instructor [58]. This
provides additionalmotivation for us to studyLCAbecause it
seems that we are able to see substantial changes in
performance over a relatively short period, within a single
semester.
Here, we report cumulative observations from all four

cohorts of the electricity and magnetism class, addressing
students’ choice of which limiting cases to check, evidence
of intuition in students’ limiting case analysis, and exam-
ples of student learning from their use of LCA. We present
these findings as emerging from the local conditions of the
study. The instructor’s way of explaining and introducing
the checks, the students’ prior academic history in the
program and with the instructor, the design of the prompts
and implementation, and the social context of the class all
likely contribute to the way that students chose to respond
to these prompts. Past studies of students’ use of limiting
case analysis present very different results, speaking to the
importance of local contextual factors in how students may
understand and utilize this tool.

A. Students’ choice of which limiting cases to check

Part of what makes limiting case analysis interesting to
study is that, in the words of Nersessian, it is not
algorithmic; an equation can afford many possible limiting
cases, which may yield more or less insight depending on
one’s purpose. This aspect of LCA—the choice of limits to
take—is not addressed in past studies of students’ use of
LCA, and only cursorily addressed in teaching materials.
Polya’s texts stand out as providing detailed elaboration of
the roles that curiosity and experience can play in choosing
limiting cases. For example, he writes, “You may consider a
generalization, or particular cases, limiting cases, analogous
cases. There is a chance to find something interesting as well
as a chance to learn to do research” [17] (p. 192). Polya also
describes limiting case analysis as curiosity driven. He often
invites the reader to ask questions, e.g., “Is thewhole straight
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line a limiting case of an ellipse?Or that of a hyperbola?Or is
some part of the line this and the other that? And so on.”
(p. 201). This presentation of limiting case analysis as a
discovery and curiosity-driven process differs from the more
routinized or scripted approaches promoted in some con-
temporary physics teaching materials and even in our first
treatment of LCA in the present study [10].
In the early years of the study, when we asked students to

check equations “in the usual three ways” (year 1) and in as
many ways (year 2), we noticed that students almost never
checked a limiting case for a constant [2]. To better
understand how students decided which limits to take,
we modified the prompts in years 3 and 4 to ask students
which limits they would check first, and why, and which
limits they would be unlikely to check at all, and why. We
imagine that this question serves to make the students
aware of the variation in the problem, and suggests to the
students a certain “randomness” in how to proceed, and
further suggests that understanding is valued compared to
efficiency, thus hopefully, facilitating the development of
adaptive expertise. With this prompt, we are inviting them
to create a set of instructions…to realize that they have to
make their own script.
As an example of how this plays out, consider how an

interviewee responded when asked how she decided to
choose which variables to check in this formula for the
tension when two charged balls are suspended symmetri-
cally as shown (see Fig. 3):

Some of it is kinda just a guess…I think in some
problems, it’s a little more clear, like in the wording
…I checked the mass because the mass was a fairly easy
one to check, although I forgot that there was a mass
right here as well (revisits mass check and notes a
problem) that I didn’t think about when I was initially
doing this…also at least in my mind, I already kind of
had an idea of what the…should happen if the mass gets
larger…

Note that, in addition to alluding to the flexible appli-
cation of knowledge, she also states that she chooses based
on what seems “easy” to check, conveying that her criteria
for easiness include her own evaluation of her intuition
about the mass dependence. Wewill have more to say about
intuition in the next section.
In written responses to these questions about what limits

they would check and how they decided, many students
reported that of all possible “symbols” in an equation, they
would be least likely to check a constant such as the
Coulomb constant (k) or magnetic constant (μ0), as we
expected. Students’ explanations for why they would
refrain from checking limiting cases for constants ranged
from the tautological (“Since it is a constant”), to utilitarian
(“μ0 is a constant (also g) so taking the limiting case does
not make sense or give you any information”), to contextual
(“constant. this is the amount of resistant encounter when

forming a B-field in a classical vacuum, unless we were
trying to prove μ0 or refute it’s [sic] value, there wouldn’t be
a reason to change it” and “these are constants (or very
nearly constant) and would not give a great deal of physical
meaning about the problem if changed as this can be
assumed to be in a lab setting”). The aversion to these kinds
of checks seems to us to be related to Bing and Redish’s
suggestion that students’ perceptions of “valid uses of math
in physics class tend to align with physical reality,” leading
to their hesitancy to differentiate with respect to universal
constants [63] (pp. 010105–5). From the perspective of
developing students’ adaptive expertise, the utilitarian and
contextual explanation are the most appealing in that they
leave open possibility for innovation, whereas the tauto-
logical arguments seem to close the door on any possibility
of future learning from limiting cases involving constants.
For any given equation, students did not all conduct the

same limiting case checks; rather, there was quite a bit of
variation in which limits students would check first,
second, and so on. For example, during cohort 3, students
were presented with a diagram of a cross-sectional view of
a copper wire surrounded by an aluminum casing. The
particle at point P is stated to be moving into the page at a
constant speed V0 parallel to the wire at a fixed distance D
above the wire. The prompt included multiple parts (see the
Appendix). Here, we focus on layer 3 where students are
provided a possible formula for the mass of a particle
traveling in this way and asked which limiting or special
case checks would help them determine if the formula is
sensible (see Fig. 4).
Figure 5 shows which symbols students from cohort 3

planned to check. Of the eight symbols offered, six were
selected by at least one student for the first check (V0,D, g,
J1, J0, and R). A similar variation was seen in other
prompts. From the perspective of adaptive expertise, the
variation is important evidence that, collectively, students
have not internalized a single procedure for the choice of
limiting cases; rather, each student is having to figure out
how to apply their knowledge and experience to select
among a number of viable options.
While there was variation in the selection, there is also

some consistency across responses. For example, as men-
tioned previously, students were least likely overall to

FIG. 3. Proposed tension in symmetric suspended charged balls
problem.
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check constants, with the exception of one student.
Symbols representing distance (such as D, representing
the distance of the particle from the wire in Fig. 4) were
selected most often across many prompts. Almost all
students referred to checking the “large” limit of D, e.g.,
the particle far from the wire. This check seemed to be
preferred because students had a clear sense of what the
sensible result should be. One student wrote,

WhenD gets large

→ force obviously decreases

→ requiringmo lessmass for attracted particle to balance:

Students seemed to value when it was “obvious” what
should happen in the case of a particular limit. It is
our sense that obvious often corresponded to familiar

FIG. 4. Example prompt from the electricity and magnetism class asking students to describe their choice of limiting cases. Student
selects R because as the annulus gets bigger, the mass would also need to increase to stay at constant velocity (Images of student work
are modified to improve readability).

FIG. 5. Summary of student responses to prompts related to Fig. 4, asking which symbols they would check first and second, and
which they would be least likely to check.
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quantities—distances, masses, and velocities. The
preference for familiar quantities indicates students’
attention to efficiency; the prompt asks students if
the formula is sensible; to accomplish that goal expedi-
ently, they look for limiting cases that could immediately
reveal a fundamental flaw in the formula or that corre-
sponds to a scenario for which the outcome seems
especially apparent. The prompts did not readily reveal
if students were willing to sacrifice this efficiency in
order to develop knowledge that might be useful for the
future. However, students did show a preference for
“simple” limits that yield information they already know
to be valuable, as one student wrote about checking the
initial velocity:

Checking the limiting cases of the initial velocity
involves a simple limit but gives you valuable informa-
tion. Of course you know that if Vo → 0, m will be zero
because there is no initial velocity to launch mass m and
therefore won’t travel parallel to the wire. So if you get a
different answer you know there is something wrong. If
Vo → infinity, then m → infinity because if the
initial velocity is very fast the particles [stet] mass must
be heavy in order to travel at a fixed distance at a
constant speed.

This response (and others also) indicates metacognitive
activity; in selecting which checks to conduct, students are
considering whether or not they are equipped with the
physical or mathematical intuition needed to evaluate the

FIG. 6. Student responses to the first LCA prompt provided during year 2 of the study. The prompts provide explicit instructions about
which checks to conduct.
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results, an observation which we elaborate on in the next
section.

B. Aspects of intuition in students’ limiting case analysis

Limiting case analysis involves application of one’s
physical and mathematical intuitions [64] and simultane-
ously provides a means for developing and refining
intuitions [17,18]. Because these processes cannot be
meaningfully reduced to routines or scripts in the context
of professional physics, we model LCA as characteristi-
cally adaptive. LCA requires flexible application of intu-
itions to solve problems, as well as the willingness to
sacrifice immediate efficiency to explore and refine intu-
itions. Here we address some aspects of how students
respond when asked questions about their “intuition” while
conducting limiting case analysis.

1. Attempts to elicit student elaboration
about intuitions

Note that no systematic attempt was made to define
intuition for the students other than to use the phrase in the
contexts shown below. Early in the semester for each
cohort, the instructor indicated what he had in mind with
explicit direction such as “show that this formula matches
your intuition in the limit as the charge goes to zero…”
Students often responded to this explicit instruction sat-
isfactorily (in the instructor’s view), such as in the response
shown below in Fig. 6, where the student writes “if there is

no charge, the tension should just be from gravity” and uses
mathematical notation to indicate that the formula produces
that result in the limit as q goes to zero.
Likewise, in other cohorts, we have similar examples

where the students write out their expectations in
brief, such

As q goes to zero…T ¼ mg makes sense because it is a
free fall problem if no charge is included

When there is no charge the balls do not repel each
other and hang only by the string keeping them from the
ground. Thus tension should just be mg. When q is 0 the
denominator is 1 and mg is the tension.

These responses provide some insight into students’
physical and mathematical intuitions. For example, stu-
dents identify causal relationships between variables (e.g.,
charge and force) and describe physical relationships
between material components of the problem (e.g., strings
and ground). They also point out when a limiting case
yields a familiar equation (e.g., free fall problem).
These responses are to be contrasted with much more

terse responses that we collected if the phrase about
explaining why it matches your intuition was not explicitly
included, at least at the beginning. When using open-ended
prompts such as that indicated above in Fig. 1 and in
Fig. 7—“check to see that this formula is sensible in as
many ways as you can think of, explaining your thinking
clearly.”—we saw little in the way of student commentary

FIG. 7. More elaborate responses eventually forthcoming even with vague prompt, once earlier specific prompts were used.
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reflecting intuition. Students provided meager commentary,
simply asserting that the formulas “make sense” or behave
“as expected” without indicating what they mean, as in the
student response below.

If L increased, the tension would decrease as expected.
If m increased, the tension would increase, as expected
If q increased, the tension would increase, also as
expected.

Typically, the instructor would mark this kind of
response as inadequate. However, we note that this type
of response is very similar to the verbiage that students
encounter in physics textbooks. Griffiths’ [6] widely used
text for upper-level undergraduate electricity and magnet-
ism courses uses limiting cases as a sort of pedagogical
tool, to introduce new formulas. In example 2.1, to derive
the equation for the electric field at some distance from the
midpoint of an infinite straight wire of uniform charge,
students are shown a solution to calculate the field at a
distance from a line segment 2L (at this point, students do
not know where the derivation is headed). Then, students
are shown that in the limit L → ∞, an equation for a wire of
infinite length is obtained. No explanation is provided for
why such an equation is useful, but the importance is tacitly
suggested in a series of practice problems that follow the
derivation. This approach to LCA happens repeatedly in the
text, and there are a few aspects of this use we wish to
highlight. First, the result is often treated as a forgone,
trustworthy conclusion; equations derived by taking limits
of other equations are generally not accompanied by
dimensional analysis or numerical value checks to confirm
sensibility. Second, it is rarely explained to the student how
the choice to take a particular limit (e.g., L → ∞, z ≫ L)
and not another (e.g., L → 0; ε0 → ∞) is made. Finally, the
interpretation of the limiting case as “making sense” is
often abbreviated; Example 2.1 shows that in the limit far
from the line of charge, the equation reduces to that of a
point charge. This result is labeled as making sense, and it
is taken for granted that students will be able to rationalize
why a line should behave like a point from far away (nor are
students explicitly invited to challenge this “intuitive”
result.) In contrast, we explicitly encouraged students to
question whether they thought the results of their limiting
case check were intuitive or sensible and to explain their
reasoning. By doing so, we hoped to get a better sense of
the considerations that go into students’ determination of
whether a result makes sense, and simultaneously, we
hoped students would begin to view themselves as arbiters
of reason, rather than defer to instructors about whether a
result makes sense [7].
In our study, the students only began to elaborate on their

intuitions after being given an explicit prompt such as that
shown above in Fig. 6, part 1b) early on; afterward, we then
found that much less explicit prompts are needed to draw
out richer student commentary about intuition in later

iterations. Here is just one example of several from day
8 layer 2 cohort 1; note that the prompt is again more
generic, and the student responds with “The denominator
has ðLþ RÞ2 so the acceleration decreases like 1=r2 which
makes sense for the Coulomb force…”

2. LCA and student intuition
via the lens of adaptive expertise

We argue that because LCA is nonalgorithmic in many
respects, it has the potential to be more valuable peda-
gogically than other means of checking answers. This
corresponds to the flexible application of knowledge in
response to “random” variations in conditions that Hatano
and Inagaki emphasize. Students engaging in LCA are
afforded opportunities to query themselves about their own
knowledge of physics in order to decide which quantity to
vary in their imagined limit taking. Affording students the
time and space to discern whether their own choices of
limiting cases make sense to them sends a signal that there
is value in understanding even at the expense of efficiency.
The act of making these choices, we believe, is productive
for students as they are developing as physicists. For
example, we see evidence of a more nuanced understanding
of “infinity” among students in these cohorts as they
respond to various prompts over the semester. Early in
the semester, when asked “what happens to the electric field
due to a charged rod, say, as you get farther away?,” we see
that students almost universally respond with some version
of “the field goes to zero,” but as the semester progresses
the students learn to ask, “How exactly does it go to zero, as
1=r2 like a point charge, or as 1=r like a line of charge, or as
1=r2 like a dipole?
As a further example of this, consider student 3’s

response on day 19 of the class. The second layer (page)
of the prompt provides an expression for the mass required
such that the particle maintains a constant speed at a fixed
distance above the wire as shown in Fig. 4 and asks students
to explain how they would go about checking if the
expression is sensible. Student 3 listed D as the first
symbol to check, providing a clear articulation in layer
3: “confirming that distance behavior is a 1=D relation
confirms that the proportionality of mass to the magnetic
field is kept (ma ¼ qv × b); B at D → ∞ decreases at rate
1=D for a wire.”
Here student 3 shows clear evidence that they are picking

this limiting case to check because of their confidence in
their knowledge that the magnetic field strength should go
to zero as 1=D since this cylinder can be treated as a wire in
that limit. One might raise the question whether this
qualifies as a physical intuition or rather something else
such as “memorized facts about electrostatics.” For our
purposes, it is useful to see that the student is comparing the
expression at hand to their storehouse of knowledge to see
if it is sensible. Furthermore, student 3 notes that checking
J0 will be useful for “confirming that a high current density
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requires a higher mass, as the increased repulsive force has
to be canceled by a stronger gravitational force.” The
student then conducts a couple of different limiting case
checks, most of which hold up to the student’s expect-
ations. However, one special case involving the current
densities (the limit as J0 goes to infinity with J0 > 1) yields
an “impossible” result of negative mass and the student
interprets that this means that the equation is indicating that
the only way to maintain the velocity of the particle, in this
case, is to have the charge on the particle to be negative.
This indicates an admirable level of flexibility on the part of
the student, in our view, in how to interpret the equation so
that it aligns with their intuition. In other words, the student
notes that the equation can still give a relevant mass for the
problem if J0 > J1, but only if one ascribes the opposite
sign to the particle’s charge. This willingness to seek out
meaning (and this ability to find meaning) in the expres-
sion, even when moving beyond the original specifications
of the scenario, seems consistent with the idea of adaptive
expertise, as well.

We also note here that a certain level of enthusiasm for
performing LCA is also evident, such as in the example
shown above (Fig. 8) where the student writes, after noting
that the limit of the acceleration of this sphere approaches
“−g” as L goes to infinity and explains how this can be
understood from physical considerations “Quite sensible!”
This aligns with the idea that adaptive expertise has a
playful aspect to it. However, we also see evidence that
students are sometimes more focused on “performing
school” when engaging in LCA. In the example below
(Fig. 9), a student first checks the limit as L → ∞ and
concludes, “this matches their intuition since the electro-
static force would become negligible as the small sphere
moved away.” Then the student turns to the limit as R → 0

and indicates that the expression goes to 1=R2 like a point
charge, matching their intuition (and overlooking the R3

dependence in the numerator). The student may have been
so eager to see the familiar point charge result that they
gloss over the complications presented by the R3 factor in
the numerator.

FIG. 8. Student shows some enthusiasm for LCA when results go as expected.

FIG. 9. Student recognizes 1=R2 dependence is to be expected and overlooks other R dependence.
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3. A rich example wherein LCA and intuition interact

As previously discussed, one of the reasons that students
provided for why they checked certain “symbols” was
because they had an idea of what to expect or an intuition
about what would be sensible. However, students did not
always articulate an intuition about what limiting behavior
would “make sense,” and some openly professed difficulty
formulating an intuition at all. Here we provide a contrast-
ing example to those above, an example that conveys some
of the nuance and breadth of issues about how intuition
figures into students’ limiting case analysis.
Recall that in layer 2 of the prompt, the student is

provided with an expression that gives the mass necessary
to travel at constant speed at a fixed distance above the wire
as shown in Fig. 4 and asks students to explain how they
would go about checking if the expression is sensible.
Student 8 lists the checks in the usual order (units, limits,
and values). For the limiting case check, the student writes,
“In this scenario, I would check the limit as V0 → 0, V0 →
∞ to see how the mass behaves with an increasing/
decreasing velocity (all other things held constant).” In
contrast to student 3 discussed earlier, student 8 does not
offer any sort of expectation of what behavior would be
sensible for either of these limiting cases. On layer 3 of the
prompt, students are asked which limiting cases they would
check first, second, or not at all, and why. Student 8 selects
D first because “provided all other factors stay the same,
changing the distance could be a good indicator of how the
mass will change.” Notice that student 8 does not describe
what result might be sensible or how mass should change
with D. Instead, the student seems to present limiting case
analysis as a way to determine what the functional relation-
ships might be. The student picks R as the second limit to
check, saying that this check might provide a “good
indication of how the mass may change” but without
actually suggesting what functional relationship might be
sensible. It is difficult to tell from this response what, if any,
physical intuition student 8 activates while planning a
limiting case check.
However, in contrast to the earlier layers of the prompt,

student 8’s actual execution of the checks on layer 4 does
reveal more about what they are thinking. The student first
finds that as V0 → 0, m → 0, and writes, “This doesn’t
match my intuition because just because something isn’t
moving doesn’t mean it will be massless.” The student
draws a big “X” next to the check to indicate that the result
is not sensible. The student also checks D → ∞ and does
not think the result makes sense: “This doesn’t match my
intuition because just because we move away from the wire,
doesn’t mean it will lose its mass.” Though this represents a
misinterpretation of the prompt, the student’s commentary
does show evidence of activating physical intuition, in our
view. Student 8 seems to read this limiting case check as a
causal story, e.g., V0 → 0 causesm → 0 (rather than saying

that as V0 goes to zero, one expects that the particle’s mass
would have to be smaller since there is less magnetic force
to “levitate” the particle.). The physical intuition is acti-
vated in assessing the reasonableness of these causal
stories. Student 8’s everyday intuition is that an object’s
mass does not change as the velocity or distance changes.
We suspect that student 8 did not activate any sort of
physical intuition until the check was actually conducted
when the student was trying to determine whether the result
was “sensible.” In this problem, the student treated limiting
case analysis as a process of discovering potential causal
relationships and then pausing to evaluate whether those
relationships make sense. Student 8’s approach to LCA is
an important counterexample to Burkholder et al.’s claim
that “in order to think about limiting cases, students need to
have a sophisticated enough mental model of the problem
to have certain expectations for the results they will find”
[64] (pp. 020134–4). In fact, we suggest, a better indicator
of adaptive expertise is when a student willingly checked a
limiting case because the results were not immediately
obvious to them and they wanted to see what they could
learn, even if it turned out the limit was difficult to interpret
or not particularly insightful, a sort of willingness to go
down “rabbit holes.” This perspective helps us see merit in
student 8’s approach, which we might have otherwise
overlooked.

C. Examples of students learning from LCA

So far, we have discussed indications that students
implemented LCA in ways suggestive of adaptive exper-
tise, for example in recognizing the opportunity for choice
in response to variation in problem scenarios, as well as the
flexible application of knowledge. We have also noted
where our pedagogical intervention fell short, for example,
by reinforcing students’ attention to efficiency, potentially
at the cost of their developing useful knowledge for the
future. In our final year of the project, we designed a
problem specifically intended to help us see whether
students in cohort 4 could learn new physics from perform-
ing LCA. The initial context is the problem featured at the
beginning of the paper, wherein a small charge is sus-
pended by a string beneath a large sphere of charge. The
string is cut and the students are asked about the subsequent
motion of the small charge.
In this version of the problem, the radial distribution of

charge in the large sphere is given by ρ ¼ ρ0ðr=RÞn, that is,
it is directly proportional to rn, with the charge density ρ0
being the same constant no matter which value of n is
considered. The students are then asked to “Think about the
motion of the ball after the string is cut; what ideas do you
have about how this motion depends upon the value of “n”?
(see the Appendix for the full version of this question). In
response to this question, student 1 initially predicts that the
electrostatic attraction will increase if n is increased:
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As n increases, that greater charge density will be closer
to the surface of the sphere than the center so more
charge will be closer to the ball. The ball will experience
greater electrostatic force as n increases. It’s [sic]
acceleration downward from the force of gravity will
be more offset by the greater electrostatic attraction.

After the students have had a chance to write about their
initial ideas regarding how the motion of the small ball after
the string has been cut depends upon n, they are then
presented with a proposed equation for the acceleration of
the small sphere (see Fig. 10). The students are asked to
examine this formula in various limits to see whether it
matches up to their own earlier predictions.
Student 1 recognizes explicitly that this formula conveys

that the Coulomb interaction (and thus the upward accel-
eration of the little sphere) weakens with increasing n
(opposite of what they had predicted); furthermore, they
present some reasoning about why their earlier idea was
misguided, acknowledging that some of the charges on the
big sphere will be closer to the small charge, but some will
be further as n gets larger, making it difficult to extract the
full effect, saying

This formula is more involved version of what I thought
on the other page. Only difference is I didn’t figure out
what Fc would be. The Coulomb’s force term [Fc]
decreases as n increases or as charge becomes more
distributed on outer area. I had hard time figuring out
what could happen as n changes because of how ball is
positioned relative to sphere. As more charge comes
closer, charge on other side of sphere is getting further
away but the r2 term makes that hard to picture w=o
math.

We claim that this excerpt provides evidence that by
performing LCA (on a proposed but unsubstantiated
equation) Student 1 has achieved more insight into this
charge distribution and how it should affect the acceler-
ation. For us, this is reminiscent of Zietsman and Clement
idea [18] that by performing extreme case analysis, the
student’s attention is focused on the nature of the charge
distribution in more detail, recognizing a feature that went
unnoticed before and strengthening the student’s overall
grasp of the situation. At the end of the exercise, when
asked directly whether new physics was learned, student 1

writes, “I think you can learn new physics by examining the
expressions as long as you know the assumptions the
expression is based on. Sometimes an expression looks
valid but does not hold for all cases or situations and could
teach you wrong physics.” The student explicitly conveys
that LCA could teach you new physics in a specific regime,
or could possibly be a problem if the solution does not
apply in that regime, but emphasizes that it is important to
consider what assumptions have been made. Note that the
student is admirably cautious about concluding too much
here; also note that they are willing to reconsider their
earlier claims about the dependence even though there is no
assurance given that the provided equation should be
trusted. We also see this example as providing an indicator
of adaptive expertise in that the student shows willingness
to abandon the original idea as decisive (that the larger
value of n would mean that the charges would be closer on
average to the ball) revealing a flexibility in the student’s
application of knowledge.
As another example of a student learning about physics

from LCA, we present the following, also from cohort 4 but
later in the semester (day 20; see the Appendix for the full
set of questions). The students are asked about how the
magnetic field outside a long fat wire depends upon the
distribution of current inside the wire, with the parameter n
once again playing the role of the power of the radial
current distribution within the wire (that is, we can write
JðsÞ ¼ JRðs=RÞn for s < R, and JðsÞ ¼ zero otherwise,
where JR is the same constant independent of n). In this
case, there is a charged particle at P (see Fig. 11) traveling
(anti-)parallel to the wire at distance D above the upper
surface of the wire (influenced only by the wire’s magnetic
field and the gravitational field). The particle is traveling at
precisely the speed “v” necessary so that it maintains a
straight-line trajectory at distance D above the surface of
the wire. Here again, we are especially interested in what
the students think about how this speed depends upon the
power n.
In response to the query, “Think about the speed of the

small particle; what ideas do you have about how the speed
of the particle depends upon the value of n?” a student
writes, So the question is which value of n produces the
greatest total current, a greater value of n should produce
a greater total current which would have a stronger
B-field, which would cause a lower velocity.

FIG. 10. Proposed formula for the acceleration of a small charged sphere.
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In this exercise, after the students have expressed their
initial views about how vmight depend upon n, the students
are asked to work in groups to arrive at an equation relating
these two parameters, starting from “famous laws of
physics.” Most groups, including the group with student
5, apply Newton’s second law and Ampere’s law to arrive at
a solution for v in terms of n and other parameters such as

v ¼ mgðRþDÞðnþ 2Þ
qμ0JRR2

:

The student then notes that the equation that they have
derived predicts the opposite of what their initial ideas were:
Prompt: What does this formula say about how the speed

depends upon the value of n?
Student: “as n increases v increases”
Prompt: Does this match your ideas from earlier (see

other side)? Explain.
Student: “no, I said they would be inversely related”
Prompt: Have any new ideas about how the speed

depends upon the charge q or the parameter n emerged
from when you first thought about the problem to now, after
you have solved the problem in detail? Explain.
Student: “Yes, I understand better how n plays a role

into it and how q does as well”
Note that while the student does not explain in detail

what it is that they understand better, it seems clear that the
student believes that they have learned something from the
equation (and presumably from the derivation that they
themselves performed in the group work). This is the only
example we saw where students explicitly examined a bit of
physics that they developed and appeared to have come
away with a more expert perspective on some aspect of the
related physics, having learned something from doing
LCA, but we do feel that this example captures in some
sense the ambitions expressed by the cited educators in
teaching LCA explicitly. Because the student has adopted a

new conceptual relationship between the parameter n
and the speed v, we maintain that this scenario suggests
adaptive expertise is at play in this context.
In our discussion of our findings throughout this section

we have referred to Figs. 4, 10, and 11, but these figures are
only abbreviated versions of the full prompts. For the full
version of the prompts corresponding to Fig. 4, see Figs. 12,
13, 14, and 15 in the Appendix. To see the full version of the
prompts for Fig. 10, see Figs. 16 and 17 in the Appendix;
Finally, the full version of the prompts represented byFig. 11
can be seen in Figs. 18, 19, 20, and 21 in the Appendix.

VII. DISCUSSION AND RESEARCH
IMPLICATIONS

This study employed a design-based research method-
ology to study students’ use of limiting case analysis in an
upper-level electricity and magnetism course. From a
research perspective, our orientation to understanding
variation in students’ use of limiting case analysis led to
important new discoveries regarding how students select
cases for analysis, and how they attribute meaning to the
results of their limiting case checks. We also observed the
benefits of our research for teaching practice. Because we
were able immediately to assess students’ responses to our
intervention, we could quickly make adjustments informed
by systematic analysis of our data. Some discoveries that we
made during the study were not related to limiting case
analysis butwerevery important for students’ understanding
of electricity and magnetism. For example, students’
responses to one of the prompts about charge density led
the instructor to realize that studentswere strugglingwith the
concept of nonuniform density. The continuous feedback
between research and practice led us to constantly ask:What
is the pedagogical value of students completing this task?
What is the research value of students completing this task?
As our data collection consisted primarily of individual

students’ responses, we were limited in what kinds of
information we could glean about students’ perceptions of
limiting case analysis. If we had asked students to discuss
limiting case analysis with each other in class or observed
their study groups, we may have gathered more information
about how they perceived this tool as part of a physics
community resource or norm. Stephens and Clement [47]
observed that during physics class discussions, students’
spontaneous use of extreme case reasoning was always
accompanied by a “depictive gesture.” Because our data
collection focused on students’ written responses, we were
unable to observe other types of evidence, such as gestures,
which might have increased the instances of limiting case
analysis observed or revealed more about the substance of
students’ LCA. In addition, most of our data collection
prompts occurred during the “high stakes” situation of
quizzes and tests. We did not look at how students take up
limiting case analysis in more relaxed settings such as on
homework assignments or in study groups.

FIG. 11. Particle at point P is traveling in the direction opposite
the current and remains parallel to the cylinder with a nonuniform
current distribution.
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The results of our study might be confined to our unique
instructional context. We worked in small classes (less than
20 students, usually about 10–12 students), with high
instructor-student interaction. We are not sure if the ways
that limiting case analysis was encouraged in this class
would “work” in a larger or different type of class, although
the instructor uses the phrase “check your answers in the
usual three ways” when he teaches larger classes as well.
We also note that there and, in fact, even in the small setting
described here, there was evidence of routinized enactment
of the checks. Whether we should be hopeful or discour-
aged by routine enactment is unclear, but we want to
acknowledge it occurred.
An important shift in our conversation occurred during

this study, from “Can students do LCA?” to “What do
students do and learn from LCA?” We have shown that in
our local context, students will conduct LCA, and further,
they will enact LCA in a variety of ways that are consistent
with representations of LCA in the professional physics
literature. Our initial efforts to encourage LCA may have
inhibited other kinds of useful checks that are part of
students’ adaptive expertise, an important lesson for future
work. However, we also discovered through our prompts
that students exhibited adaptive expertise in how they made
choices about which limiting cases to check. Asking
students to provide the rationale for which checks they
would conduct (or not conduct) and why was critical to our
deepening understanding of how students enact LCA. We
recommend additional work to support students’ informed
choice in LCA, as choice is an important component of
adaptive expertise and a thoughtful research design might
allow for refinement of the theory of adaptive expertise
itself.

VIII. IMPLICATIONS FOR TEACHING PHYSICS

Upon reflecting upon this study, we feel we have gained
some insights about teaching; chief among them is the
sense that LCA is important for practicing and developing
physicists alike and deserves more attention in class. Like
Warren, Hahn, and others we see value in emphasizing
LCA in multiple ways, not just telling students to “check
their answer” at the end. In this electricity and magnetism
class specifically, we see LCA as playing an especially
important role in the pedagogy of distance behaviors
(“ways that things can go to zero”); see Sec. V B and
the discussion of the electric field dependence on a large
distance from a long cylinder of charge.
We acknowledge here that the equations upon which our

students practiced LCA tended to be quite complicated, and
perhaps not ones they might have generated on their own in
typical problem-solving settings. While often the framing
implies that LCA is to be done at the end of the work, we
want to emphasize, as pointed out by Kuo and others, that it
should be considered as important to conduct at various
points in the problem-solving procedure, not just for

checking final answers. Finally, we would add that there
is value in promoting even the routinized version of LCA
(“check your answer in the three usual ways”), even while
providing opportunities to move beyond such scripts to
more adaptive expertise.
One thing that we began to appreciate as we moved from

asking students to check their answers to asking students
which variables they wanted to test first and why is that the
latter prompts seemed to move the students to a better
starting place pedagogically. The latter prompts seem to
elicit responses that had more connection to learning
something useful than to performing school. These prompts
also helped us see what is confusing or ambiguous to
students and also “rules” they are forming (such as “don’t
check constants”). Attention to students’ choices also
helped us monitor whether the instructional intervention
was becoming too “scripted” for students and not explor-
atory in Polya’s sense; we made specific changes, but in a
different context, other changes may be needed.
Prior work has suggested that compared to other forms of

answer checking (e.g., units), LCA seems to have the most
potential for students’ development of problem-solving
expertise. Our study suggests that this advantage may be
the result of students’ invoking their own physical intuition
in concert with the mathematical formalism and seeking
consistency between the two. We claim that another afford-
ance of LCA is that it often can push students to a better
understanding of an aspect of a given problem that they are
not so confident about. ExaminingLCA in the context of trig
functions can enhance students’ understanding of trig
functions because they can leverage their intuition about
the situation. We saw evidence of this with regard to
nonuniform density, where the student was able to better
understand that when the exponent on the density distribu-
tion was higher, it resulted in a smaller acceleration of the
influenced particle whereas their original view contrasted
with that perspective. While we did not investigate the
various math skills (algebra, limits, etc.) necessary to
accomplish LCA, that also seems like a rich area for future
investigation. Furthermore, we see that a very challenging
part of our design-based research study was creating con-
ditions under which students felt that they were discovering
new physics through LCA. Future research might examine
how students come to attribute epistemic value to LCA.
Limiting case analysis is important to practicing physi-

cists. Yet, there is little concrete guidance for physics
educators, and a lack of consensus in the research commu-
nity, about how to help students learn, and learn from,
limiting case analysis. This designed-based research study
examines how students implement and attribute meaning to
limiting case analysis using data largely from a junior-level
electricity and magnetism course. Results suggest that
limiting case analysis could play a pivotal role in the
development of adaptive physics expertise, as it invokes
student choice about which variables to examine and the
linking of physical intuition with mathematical formalism.
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APPENDIX: SELECTED PROMPTS FROM THE STUDY

Here we provide more detailed versions of some of the prompts used in this study, particularly those associated with
Figs. 4, 10, and 11. We refer to ‘layers’within the prompts, by which we mean to indicate that the students were only shown
one layer at a given time (a layer might be one or two or even more pages), and students were not able to access responses on
a previous layer after viewing and responding to that previous layer.

FIG. 12. Aluminum and copper wire problem referenced in Fig. 4, layer 1 of 5.
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FIG. 13. Aluminum and copper wire problem referenced in Fig. 4, layer 2 of 5.
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FIG. 14. Aluminum and copper wire problem referenced in Fig. 4, layer 3 of 5.
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FIG. 15. Aluminum and copper wire problem referenced in Fig. 4, layer 4 of 5. Layer 5 of this exercise was not relevant to this study
and is not included here.

FIG. 16. Sphere with nonuniform charge density referenced in Fig. 10, layer 1 of 2.
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FIG. 17. Sphere with nonuniform charge density referenced in Fig. 10, layer 2 of 2.
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FIG. 18. Magnetic field around a conducting cylinder problem referenced in Fig. 11, layer 1, part A.
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FIG. 19. Magnetic field around a conducting cylinder problem referenced in Fig. 11, layer 1, part B.
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FIG. 20. Magnetic field around a conducting cylinder problem referenced in Fig. 11, layer 1, part C.
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FIG. 21. Magnetic field around a conducting cylinder problem referenced in Fig. 11, layer 2.
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