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Social network analysis (SNA) has been gaining traction as a technique for quantitatively studying
student collaboration. We analyze networks, constructed from student self-reports of collaboration on
homework assignments, in two courses from the University of Colorado Boulder and one course from the
Colorado School of Mines. All three courses occurred during the COVID-19 pandemic, which allows for a
comparison between the course at the Colorado School of Mines (in a fully remote format) with results
from a previous pre-pandemic study of student collaboration at the Colorado School of Mines (in an in-
person format), as well as comparison between the Mines results with the two University of Colorado
courses (in a hybrid format). We compute nodal centrality measures and calculate the correlation between
student centrality and performance. Results varied widely between each of the courses studied. The course
at the Colorado School of Mines had strong correlations between many centrality measures and
performance which matched the patterns seen in the pre-pandemic study. The courses at the University
of Colorado Boulder showed weaker correlations, and one course showed nearly no correlations at all
between students’ connectivity to their classmates and their performance. Taken together, the results from
the trio of courses indicate that the context and environment in which the course is situated play a more
important role in fostering a correlation between student collaboration and course performance than the
format (remote, hybrid, in-person) of the course, a finding which has implications for the broader use of
SNAwithin physics education research. Additionally, we conducted a short study on the effect that missing
nodes may have on the correlations calculated from the measured networks, an analysis largely missing
from the SNA literature within PER. This investigation showed that missing nodes tend to shift correlations
towards zero, providing evidence that the statistically significant correlations measured in our networks are
not spurious.
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I. INTRODUCTION

A. Motivation

Many studies have demonstrated that interactive engage-
ment, which encourages learning through discussion and
collaboration, improves student understanding of physics
concepts [1,2]. Additionally, having a sense of belonging
within an academic community is associatedwithpersistence
and achievement among students, especially among students
from underrepresented backgrounds [3,4]. Homework
assignments in physics courses are one of the primary
situations in which students can collaborate and form bonds
and a sense of belonging, so studying the relationship

between collaboration on homework assignments, connec-
tionwithin a community, and performancemay shed light on
effective ways to create supportive environments within
physics courses.
Social network analysis (SNA) provides a quantitative

method for analyzing how individuals can be connected to
a larger group. Key concepts related to network analysis are
discussed in more detail in Sec. II, but briefly, a social
network is a complex network (or graph) with individuals
represented by nodes (or vertices), while connections
between individuals are represented by links (or edges).
In a general network both nodes and links carry weights
(indicating characteristics of an individual or the strength of
a connection between individuals), and links can have a
direction indicating a nonreciprocal type of connection.

B. Background

SNA is an analytical tool that is gaining traction within
the field of physics education research (PER), and there is a
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small but growing collection of studies examining students’
connections to their peers and how it relates to student
experiences and outcomes. In a recent article, Traxler [5]
provides a comprehensive summary of this growing body
of literature. Here, we will focus on a subset of this body of
work that is particularly relevant for the study at hand.
For example, a pair of studies investigated whether

students’ connection to their classmates (measured via a
series of surveys given periodically throughout the semes-
ter) predicts their persistence within the introductory
physics sequence [6,7]. The first study found that centrality
(i.e., quantitative measures of a student’s level of con-
nectivity to other students; see Sec. II A for mathematical
definitions) was a good predictor of persistence. The
second study provided a more nuanced analysis that
investigated social networks that developed in the physical
classroom (the in-class network) and networks that formed
outside of the physical classroom (the out-of-class network)
which incorporated collaboration on homework assign-
ments. This second study found that course grade was more
correlated with persistence for students with high final
grades (or lack of persistence for students with low final
grades), and that centrality in the out-of-class network was
more correlated with persistence for “middle-of-the-pack”
students. With these observations, they concluded that
developing social connections outside of the classroom
either helped create, or reflected an already existing,
commitment to their studies [7]. Another study investigated
the relationship between various network centrality and
grades by looking at networks formed by reported friend-
ships in college student [8]. They found positive relation-
ships between several centrality measures and GPA, as well
as a bounded positive impact of belonging to denser
networks.
Additionally, SNA has been used to explore whether

changes in students’ feelings of self-efficacy in physics is
related to their connection to other students [9]. Though
this study found that students left their introductory physics
courses with a lower average sense of self-efficacy, central-
ity within the network predicted postcourse self-efficacy
after controlling for pre-course self-efficacy. Furthermore,
centrality measures were associated with various sources of
self-efficacy [9]. Another study used SNA to analyze
student interactions in a help-room setting and determined
that the environment was equitable because gender and
ethnicity were not predictors of participation [10]. SNA is a
subdivision of the larger field of network analysis which
uses networks (graphs) to analyze complex systems.
Outside of the context of social interactions, networks
have been used in PER to study the patterns of student
responses to multiple choice surveys [11–13], to character-
ize interactions in active learning environments [14], and to
characterize co-authorship patterns [15].
The studies described above focus on quantitative data

collection and analysis. However, there has also been work

extending SNAwith mixed methods data collection where
the quantitative data are augmented by qualitative data
sources to provide insight into, for example, the meaning of
the interactions being studied. A review of this body of
work, along with discussion of limitations to this approach
can be found in Ref. [16].

C. Prior study

In a direct precursor to this study, Vargas et al. created
social networks from students’ reports of collaboration on
homework assignments in three upper-division courses at
the Colorado School of Mines (Mines). Various measures
of a student’s centrality within the network were then
correlated with performance on exams and homework
assignments. In all three courses, homework scores were
positively correlated with several centrality measures, but
negatively correlated with measures representing whether a
student collaborated with only a few versus many other
students. The findings suggested that students who col-
laborate both frequently and with many others tended to
perform better on graded assignments [17]. Another closely
related study examined this same connection between
students’ performance and their connections to their peers
in a highly collaborative introductory physics course and
also found a significant link between students’ centrality
and performance using regression analysis [18].
The study presented in this article builds on the study by

Vargas et al. to examine the relationship between self-
reported student collaboration and performance during the
COVID-19 pandemic. Data were collected from one course
at Mines and two courses at the University of Colorado
Boulder (CU Boulder). This allows for a direct comparison
between networks from pre-pandemic and pandemic-
affected courses at Mines. Furthermore, the data collection
in the CU Boulder courses adds an additional perspective
on student collaboration by investigating a different student
population and educational context.
In the following section, Sec. II, we discuss the meth-

odology of the study beginning with a brief overview of key
network analytic concepts. Then the context and structure
of each of the courses in the study, data collection methods,
and our data analysis process are described. Next, in
Sec. III, we present our results and findings on the
relationship between students’ collaboration and perfor-
mance. Then in Sec. IV, we present a short study of random
and simulated networks to provide some perspective on our
findings, particularly to address possible impacts of miss-
ing data. We end in Sec. V with conclusions, discussion of
limitations, and future work.

II. METHODOLOGY

In this section we provide an introduction to relevant
network analytic concepts accessible to readers with no
prior experience in network analysis. This includes
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centrality measures, which quantify a student’s connection
to their peers (Sec. II A); the context of the courses from
which data were collected including course format, grading
structure, and data collection methods (Sec. II B 1 and
Sec. II B 2); and our data analysis process (Sec. II C).

A. Overview of key network analysis concepts

An example of a complex network is given in Fig. 1. In
general, links connecting two students have both a weight
and a direction. In the networks analyzed in this study, the
weight of the link represent the number of times the pair of
students reported working together while completing a
homework assignment and the direction of the link indi-
cates which student was giving or receiving help, respec-
tively. A network in which the links have a direction is
called a directed network.
The information about the links in a network is encoded

into an adjacency matrix. The adjacency matrix, A, is an
N × N matrix, where N is the number of nodes, and the
matrix elements, aij, are the weights of the links that
connect a node i with the node j. In a directed network, the
adjacency matrix is generally not symmetric since directed
connections between individuals are not necessarily recip-
rocal. Additionally, nodes in a network may also contain
information. In our case, this information includes the
homework and exam grades of the student represented by
the node.
From the networks, we calculate a number of centrality

measures, which quantify a node’s connection to the rest of
the network. Each centrality measure captures a different
way in which a node can be connected to the larger
network, which in turn can represent different ways in
which the node may contribute to the flow of information
within the network. The simplest of these centrality
measures are the in-strength and out-strength.

In-strength si and out-strength so quantify the total
weight of links terminating and beginning on a node,
respectively. The net-strength sn is simply the difference:
si − so. For example, the node in Fig. 2 has an in-strength
of eight, an out-strength of four, and a net-strength of four.
In our networks, the total number of times a student gave
help to other students over the course of the semester is that
student’s out-strength. The number of times they received
help is their in-strength.
The in-disparity Yi and out-disparity Yo measure the

nonuniformity of a node’s inward and outward links,
respectively, and provide more information about the
distribution of links attached to a node. Nodes with large
disparities tend to be connected to very few other nodes
within the network, reflecting the large disparity between
the few, present connections to other nodes and the many
nonexistent connections.Anode’s disparity tends to decrease
the more connections the node has to other nodes, and is not
defined for nodes without connections. The in- and out-
disparities differ from si and so. For example, it is possible for
a nodewith a very strong connection to just one other node to
have large in- and out-strengths and as well as large
disparities. In contrast, a node with many weak connections
to other nodes may also have large values for si and so, but
small values for Yi and Yo. So, for example, a student who
has a strong connection to a fewother studentswill have large
disparities and large in- and out-strengths. Alternatively, a
student with many relatively weaker connections to other
students will have smaller disparities, but could also have
large in- and out-strengths depending on the sum of the
strengths of the connections. For the equations that describe
how the disparity and the in-, out-, and net-strength can be
calculated from the adjacency matrix, see the article by
Vargas et al. [17].
The closeness cC and harmonic cH centralities measure

how close a node is to all the other nodes within a network.
The closeness centrality of node i is

FIG. 1. Example of a complex network. Here the blue dots
denote nodes (or students) and lines between the notes represent
links (or edges). Directionality of the link is denoted by the
direction of the arrow on each link.

FIG. 2. An isolated node with three inward links and two
outward links. This node has in-strength si ¼ 8, out-strength
so ¼ 4, and net-strength sn ¼ 4.
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cCi ¼ n − 1

N − 1

n − 1
P

i≠jdij
; ð1Þ

where N is the total number of nodes in the network, n is
the number of nodes reachable from node i (i.e., able to be
reached by traversing one-way links), and dij is the shortest
distance between nodes i and j. If node j is not reachable
from node i, then the dij term is not considered in the sum
and the ðn − 1Þ=ðN − 1Þ prefactor scales the closeness
centrality by the number of reachable nodes. The distance
dij can be related to link weights in a variety of ways (i.e.,
the distance can some functional dependence on the link
weight depending on the context of the network). We
discuss our definition of distance in more detail in Sec. II C;
however, in our network strong connections mean short
distances. The formula above for the closeness centrality
was proposed by Wasserman and Faust specifically to
account for the case of networks in which some nodes are
unreachable from others [19].
Another way to address the possibility of certain nodes

being unreachable is to use the harmonic centrality which is

cHi ¼
X

i≠j

1

dij
; ð2Þ

where dij is again the shortest distance between node i and
node j. If a node j is unreachable from node i, dij is
effectively infinite and the term in the sum for this pair of
nodes is zero. Within the context of social networks, the
closeness and harmonic centralities capture the idea of
“degrees of separation.” If a student has many connections
to their classmates, and if their connections also have many
connections (and so on) the first student will have high
closeness and harmonic centralities. Additionally, this
means that for a student to be unreachable from another,
they must share zero mutual collaborators at all levels (i.e.,
not only do they share no mutual collaborators, their mutual
collaborators share no mutual collaborators, and so on).
With regards to directed networks, an important subtlety of

the closeness and harmonic centralities is that they can be
defined using either the shortest inward directed path or the
shortest outward directed path. For example, if a node n has
only outward directed links, it is not reachable from other
nodes in the network, but other nodes will be reachable from
n. In this case using the inward shortest paths to compute cC

or cH will result in centralities of zero, but using the outward
pathswill result in nonzero centralities.When discussing our
results in later sections, we will refer to the closeness and
harmonic centralities calculated using the inward shortest
paths as cCi and cHi, respectively, and the quantities calcu-
lated using the outward distances as cCo and cHo.
The last centrality measure we will consider is the

betweenness centrality. For a node i, the betweenness
centrality cB is

cBi ¼
X

j;k∈V

σðj; kjiÞ
σðj; kÞ ; ð3Þ

where σðj; kÞ is the number of distinct shortest paths
between nodes j and k, σðj; kjiÞ is the number of shortest
paths between nodes j and k that pass through node i, V is
the set of nodes in the network and the sum runs over all
pairs of nodes in the network (excluding pairs of nodes
containing node i) [20]. Conceptually, the betweenness
centrality quantifies the extent to which a node is a hub that
provides connections between different regions within a
network. So, a student who collaborates with two (or more)
tight-knit groups that would otherwise be disconnected will
have a large betweenness centrality.
These centrality measures can be broken down into two

groups: local centrality measures which only consider a
node i and the set of nodes directly connected to i, and
global centrality measures that depend on the structure of
the entire network. The in-strength, out-strength, net-
strength, in-disparity, and out-disparity are all local central-
ity measures while the harmonic, closeness, and between-
ness centralities are global measures.
The final network analysis concept relevant to this study

(which was not considered in the previous study by Vargas
et al. [17]) is reciprocity [21,22]. Reciprocity r is only
meaningful in directed graphs where the directed links can
create an imbalance in the connections between pairs of
nodes. For networks with weighted links Squartini et al.
present the definition of the reciprocity which was used in
this study:

r ¼ W↔

W
; ð4Þ

where W is the total weight of all links in the network
which can be obtained by summing all the elements of the
adjacency matrix [23]. The quantity W↔ represents the
total weight of reciprocated links. The weight of reciprocal
links between a pair of nodes i and j is defined as the
minimum of the “mirrored pair” (i.e., a matrix element and
its partner element in a position reflected across the
diagonal) of matrix elements: w↔

ij ¼ minðwij; wjiÞ. With
this definition, the total reciprocated weight W↔ is

W↔ ¼
X

i

X

j≠i
w↔
ij : ð5Þ

The reciprocity r calculated in Eq. (4) represents the
reciprocity of the entire network. Conceptually, reciprocity
measures the extent to which the connections between
nodes are bilateral within the entire network. If a network
has few pairs of bilateral links between nodes then the
reciprocity will be low, and as links within a network
become more bilateral the reciprocity approaches one. In
our networks, reciprocity can arise from one of two cases:
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either from a single student reporting both getting help
from and giving help to a second student, or from a pair of
students both reporting getting (or giving) help to
each other.

B. Context

1. CU Boulder: Thermal physics

The two CU Boulder courses from which data was
collected occurred during the Fall 2020 and Spring 2021
semesters. Both courses were an upper-division thermal
physics course and taught by the same instructor (BRW)
and occurred in a hybrid format with an option to attend
synchronous lectures either in-person or remotely and
asynchronous lecture recordings available. In both semes-
ters, less than 25% of the class opted to attend in person.
Each course had a total of 12 weekly homework assign-
ments, with collaboration data collected from all but the
first assignment.
In the Fall 2020 iteration, data on student collaboration

was collected through a Qualtrics survey that students
completed upon submission of their weekly homework
assignments. The survey consisted of two questions which
asked from whom the student received help and to whom
the student gave help. In the Spring 2021 semester, students
reported their collaborators directly on their homework
solutions. The fall course had three take-home midterm
exams and a final with each of the four exams comprising
15% of a student’s final grade. The spring course had only
two take-home midterms and a final with each of the three
exams comprising 20% of student’s final grade. Students
were allowed to submit revisions on both homework
assignments and exams for the opportunity to earn back
missing points. Students could earn back all missing points
on homework assignments but only a fraction of missing
points on exams.
Typically, on-sequence physics majors at CU Boulder

take this thermal physics course during the fall of their
senior year. This is reflected in the total enrollments of the
two courses: 83 students took the course in the fall, and 55
took the course in the spring. The process of obtaining
consent for collection of student data decreased the number
of students from whom data were collected from 83 to 53 in
the fall term and 55 to 48 in the spring term. We investigate

the possible effects of this missing data in Sec. IV B. CU
Boulder is a large, predominantly white research institution
with an undergraduate population of roughly 30 000
students with roughly 110 physics majors and 25 engineer-
ing physics majors per class year.

2. Colorado school of mines: Math methods

At Mines, collaboration data were collected from an
intermediate-level mathematical methods course taught
within the physics department and covering both analytical
and numerical methods relevant for physics with significant
programming content, during the Fall 2020 semester, which
was on-sequence with the normal curriculum at Mines. The
course was fully remote, synchronous, and taught by author
LDC. Students reported their collaborators directly on their
homework assignments, just as in the spring iteration of the
CU Boulder thermal physics course.
Graded assignments in the course consisted of seven five-

point homework assignments, a course project broken into
two six 7.5-point assignments across the semester, and 15
points of participation (for a total of 95 possible points). The
course had no exams. Mines students also had the oppor-
tunity to submit homework revisions to receive points back.
A total of 27 students enrolled in the course, and 23

students consented to the study. Mines is a medium
research institution with roughly 5000 undergraduates,
and about 60 physics majors per class year. See Table I
for a summary of the course participation.

C. Analysis

The first step in processing the collaboration data was to
create the adjacency matrix which encodes all students’
reports of getting and giving help across the semester. For
all three courses, this adjacency matrix was built up
assignment by assignment. For each assignment, two
separate matrices were created: one containing all reports
of getting help (the “got-help” matrix) for the assignment,
and one containing all reports of giving help (the “helped”
matrix) for the assignment. Each of these matrices repre-
senting the collaboration on a single assignment contain
only ones and zeros. The helped matrix was transposed so
that the direction of links would match that of the got-help
matrix. The got-help and transposed-helped matrices were

TABLE I. A summary of the results of the data collection on student collaboration. The final two columns directly compare the level of
student collaboration since the courses at Mines and CU Boulder had a different number of homework assignments.

Participating
students

Total
enrollment

Reports of
getting help

Reports of
giving help

Sum of edge weights
in network

Reports per student
per assignment

Links per student per
assignment

CU Boulder
Fall 2020

53 83 777 691 1110 2.52 1.90

CU Boulder
Spring 2021

48 55 378 335 495 1.35 0.94

Mines Fall 2020 23 27 140 138 208 1.73 1.29
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then combined using an element-wise logical OR oper-
ation, which repeats the analysis performed in the prior
study by Vargas et al., to create one “combined” matrix for
each homework assignment [17]. Finally, the individual
combined matrices for each assignment were summed
element-wise to create the “total” adjacency matrix Atot
representing all collaboration during the course. As a final
step, the diagonal of the adjacency matrix was set to zero to
ignore any cases of a student reporting them self.
This total adjacency matrix can be used to directly

compute si, so, sn, Yi, and Yo for each node according
to equations which can be found in [17]. To compute the
closeness, harmonic, and betweenness centralities, the
matrix of distances dij must first be calculated. Entries
in Atot range from zero to eleven in the CU Boulder courses
and from zero to seven in the Mines course, and large
values in Atot represent a large amount of collaboration
between students. Large values in Atot should correspond to
short distances in dij. To create a dij consistent with this
relationship between collaboration and distance, we took
the reciprocal of the elements of Atot, unless the element
was zero in which case it remained zero.
The calculation of the closeness, harmonic, and betwe-

enness centralities was done using built-in functions from
the NetworkX python package. When calculating the
closeness and harmonic centralities in a directed network,
the NetworkX functions default to calculating cCi and cHi.
To calculate cCo and cHo, the directions of all links in the
adjacency matrix are swapped which is accomplished,
practically, by transposing the adjacency matrix.
After calculating the various centrality measures for each

student in the network, the centrality was correlated with
homework, exam, and final course grades. To maintain
consistency with the previous study by Vargas et al., we
utilize the Pearson correlation [17]. This allows for a direct
comparison between the current and prior work.
Furthermore, as is shown in Sec. IV, the distribution of
Pearson correlations calculated from simulated networks
follows a t distribution which provides some justification for
the use of a parametric test. We also calculated Spearman
correlations and a discussion of these results appears in the
Appendix.
The students in the CU Boulder courses could submit

revisions to exams to receive points back, but we calculated
correlations using the prerevised exam scores. Correlations
with homework scores were calculated using the post-
revised grade as the prerevised grade was never recorded
for these courses.
Only reports from students consenting to the study were

included in the construction of the social network. In some
instances, though, a student would report collaboration
with a student who had not consented to the study. In this
case, a node and appropriate links (depending on the
reports from consenting students) for the nonconsenting
student would be added and included in the final network

representing only information reported from the other,
consenting student (i.e., collaboration reports submitted
by nonconsenting students as part of the normal course-
work were not included in the data collection or the
network). Thus, some nonconsenting students appear in
the final networks, the presence of which contributes to the
centrality measures for other students in the network.
However, the nonconsenting students were not included
in the calculations of correlations as their course scores
were not collected as part of the study.
Visual representations of the three courses are provided

in Figs. 3, 4, and 5.

FIG. 3. Collaboration network from the Fall 2020 course at
Mines. This network does not show six disconnected nodes
representing students for whom no collaborations were reported.
Nodes are colored based on the outward directed closeness
centrality cCo.

FIG. 4. Collaboration network from the Fall 2020 course at CU
Boulder. This network does not show 16 disconnected nodes
representing students for whom no collaborations were reported.
Nodes are colored based on the outward directed closeness
centrality cCo.
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III. RESULTS

One of the main goals of this study was to compare the
networks and correlations between student centrality and
performance between courses taking place before the
COVID-19 pandemic and courses occurring during the
pandemic. An overview of the collected data in this study is
provided in Table I. In all three courses, students more often
reported getting help than giving help, though the differ-
ence was smallest by far in the course at Mines. This
observation cannot be compared to the prior study since
only aggregated adjacency matrices remain from the prior
study, but it suggests there may be a different conceptu-
alization about the nature of giving and receiving help
between students at Mines and CU Boulder.
Likewise, the frequency of reporting also cannot be

directly compared between the pre-pandemic and pan-
demic-affected courses, but the density of the networks,
in terms of the number of links per student per assignment
present in the full networks can be compared. In the courses
analyzed in the prior study, the classical mechanics,
electromagnetism, and quantum mechanics courses had
1.4, 1.5, and 1.7 links per student per assignment. Except
for the Spring 2021 thermal physics course at CU Boulder,
the level of collaboration occurring between students in the
pandemic-affected courses is relatively similar to the pre-
pandemic courses (see Table I). In the Fall 2020 course at
CU Boulder and the course at Mines, students, on average,
gave or received help from more than one other student on
each assignment (see Table I). This may be unexpected
since the COVID-19 pandemic made face-to-face collabo-
ration more difficult between students; however, it is also
possible that students’ definition and threshold for report-
ing giving and receiving help may have changed due to the
pandemic and online modes of interaction became more
common.
The correlations between centrality measures and stu-

dent performance in the three pandemic-affected courses
are shown in Fig. 6. The results from the math methods
course at Mines very closely matched the patterns seen in
the pre-pandemic courses at Mines [17]. The Fall 2020
course at Mines had strong correlations between per-
formance and the in-strength, out-strength, closeness
centrality, and harmonic centrality. Furthermore, the non-
significant correlations between the net-strength and betwe-
enness centrality also matched the pre-pandemic findings.
The largest difference between the pre-pandemic and
pandemic-affected courses at Mines is that during the
COVID-19 pandemic, the in-disparity and out-disparity
were not correlated statistically significantly with perfor-
mance (as they were in the prior study). Among the three
pre-pandemic courses, though, the in- and out-disparities
correlated negatively with performance in two of the
courses, but not the third (Quantum Mechanics).

(a)

(b)

(c)

FIG. 5. The three components, representing three isolated
groups of students, of the network from the Spring 2021 thermal
physics course at CU Boulder. There were also 16 fully
disconnected students who do not appear in the networks above.
Nodes are colored based on the outward directed closeness
centrality cCo. (a) First component of the collaboration network
from the Spring 2021 thermal physics course at CU Boulder, (b)
Second component of the collaboration network from the Spring
2021 thermal physics course at CU Boulder, and (c) Third
component of the collaboration network from the Spring 2021
thermal physics course at CU Boulder.
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The negative correlation suggested that students who
collaborated with many other students (as opposed to only
few other students) tended to get higher scores [17]. This
replication of the patterns from the pre-pandemic courses
indicates that the environment at Mines was largely able to
preserve the connection between collaboration and

performance during the pandemic despite the course being
fully remote.
The Fall 2020 iteration of the thermal physics course at

CU Boulder showed some of the same patterns as the
courses from Mines. The outward closeness centrality and
outward harmonic centrality were positively correlated
with performance on homework assignments and exams
at the p < 0.05 level with performance on homework
assignments, and the out-strength (in addition to cCo and
cHo) was positively correlated with performance on home-
work assignments at the p < 0.05 level. Since outward
directed links from a node represent giving help to other
students, the statistical significance of only the outward
oriented centrality measures indicates that students who
were a source of help close to many other students in the
course tended to get higher grades. This could suggest that
students doing well in the course were more able to provide
help to others, or that providing help to others (but not
receiving help) improves a student’s performance.
The goal of this analysis was to compare patterns of

correlation in these courses to the pre-pandemic data; thus
the analysis does not focus on the significance of individual
correlations, but rather the overall pattern of the correla-
tions. However, multiple statistical tests were performed
with these data, introducing a risk of false positives (a type
1 error). To address this possibility, we applied the
conservative Bonferroni test which effectively lowers the
p-value threshold required to reject a null hypothesis at
the p < 0.05 level. The test divides the initial p-value
threshold (of 0.05) by the number of statistical tests
performed which in this case was ten tests per course
for a stricter threshold of p < 0.005. Table II shows the
results of the application of this stricter criterion on the
significance levels of the correlations.
The nuances of this distinction between the inward

closeness and harmonic centralities and the outward close-
ness and harmonic centralities were not explored in the

(a)

(b)

(c)

FIG. 6. Correlations between nodal centrality measures and
student performance in three pandemic-affected courses. Corre-
lations significant at the p < 0.05 level are indicated with filled
markers. The math methods course at Mines had no exams. (a)
Fall 2020 Math Methods at Mines, (b) Fall 2020 Thermal Physics
at CU Boulder, and (c) Spring 2021 Thermal Physics at CU
Boulder.

TABLE II. A summary of the application of the Bonferroni test
to the significance levels of the measured correlations between
student centrality (listed in the first column) and homework
scores. p values for correlations that satisfy the Bonferroni test
are indicated in bold with asterisks, meaning that these correla-
tions are less susceptible to type I error.

Correlation Correlation value p value

Mines si 0.549 0.0067
Mines so 0.547 0.0069
Mines cCo 0.718 0.00011�
Mines cCi 0.718 0.00011�
Mines cHo 0.687 0.00029�
Mines cHi 0.687 0.00029�
CU Fall so 0.274 0.047
CU Fall cCo 0.430 0.0013�
CU Fall cHo 0.395 0.0034�
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prior study. Both before and during the pandemic, in the
courses at Mines the correlations for the inward and
outward centralities were nearly identical rendering a
discussion of the distinction somewhat irrelevant. In both
courses at CU Boulder, however, different correlations
were observed which indicated that being a well-connected
source of help was associated with high performance.
To investigate the different correlations between the

inward-directed versus outward-directed closeness/har-
monic centralities and grades observed in the CU Boulder
courses (and lack of difference seen in theMines courses, see
Fig. 6) we looked at the reciprocity of each network.
Reciprocity measures the degree to which a connection
between nodes is bidirectional (i.e., that an edge from node
i to node j has amatching edge from j to i). Using themethod
proposed by Squartini et al. for calculating reciprocity in
weighted networks [23], we found that all networks were
highly reciprocal.
The reciprocities calculated in Table III are higher than

typically seen in social networks [21,23]. In the case of the
Mines course, this finding appears consistent with the
symmetry in the correlations between inward- versus
outward-directed closeness and harmonic centralities and
grades. Because, if for every outward directed edge there is
a corresponding (equally weighted) inward edge, then the
outward shortest distances from a node to all other nodes
will be identical to the inward shortest distances. The
reciprocities in the CU Boulder networks were lower than
those for the Mines network, though still relatively large.
Despite these large reciprocities, there is an asymmetry
between the correlations with the inward versus outward
centrality measures.
Such a result may seem counter intuitive, but it is not

unexpected since reciprocity within a directed network, in
general, is not related to the symmetry of its adjacency
matrix [23,24]. The larger asymmetry between students’
reports of receiving versus giving help is a possible
explanation for the asymmetry in the correlations, but is
not, by itself, sufficient to account for the asymmetry since
the networks simulated in Sec. IV were constructed with an
asymmetry in reporting, but did not reproduce the asym-
metry in the correlations. One possible explanation for this
lack of consistency in the correlations at Mines and CU
Boulder is a cultural difference in how students define

thresholds for giving and receiving help or in how students
collaborate at the two institutions.
Correlations between a student’s centrality and perfor-

mance were almost nonexistent in the spring 2021 iteration
of the thermal physics course at CU Boulder. The only
statistically significant correlation was between the stu-
dents’ net-strength and exam performance. This correlation
was negative, and since the net-strength is the in-strength
minus the out-strength, indicating that students who
received more help than they gave tended to get lower
scores on exams. This result appears consistent with and
somewhat complementary to the results from the fall
iteration of the course that students who provided help
tended to perform better. Another feature of this course
from the spring of 2021 was that it had the least level of
student interaction in terms of links and reports per student
(see Table I) and was the only course which contained
multiple, disconnected components.1 This could be a
consequence of the course occurring in the off-sequence
semester, thus students in the spring semester course may
be less likely to know each other and less likely to have
taken prior courses together. Alternatively, students may
have been less engaged overall in the spring due to
increased pandemic-related burnout, an effect which may
be compounded by the large proportion of second semester
seniors in the course who were approaching graduation. All
these possible explanations are speculation; interviews with
students in the course would be necessary to provide more
insight into these results.
Overall, these results show that the format of the course

(whether in-person, remote, or hybrid), does not appear to
dictate whether there will be a correlation between student
collaboration and performance. The environment at Mines
maintained the connection despite a fully remote instruc-
tion format during the COVID-19 pandemic, while the
hybrid instruction format at CU Boulder was not able to
consistently produce a connection despite having an option
for in-person lectures during both semesters. To determine
whether the correlation is just typically weaker at CU
Boulder or whether the variation in results between the
spring and fall semesters is due to on- or off-sequence
effects versus pandemic related burnout more research
would need to be done after a return to normal instruction.

IV. STATISTICAL SIMULATIONS
OF SOCIAL NETWORKS

Networks are complex, nonlinear objects. A small
perturbation in a network could have anywhere from a
negligible to a large affect on the network depending on
the location and nature of the perturbation. As in any

TABLE III. The reciprocity for each of the courses in the
present study. The reciprocity takes on values from 0 (for no
reciprocity) to 1 (completely reciprocal). The method proposed
by Squartini et al. was used to calculated the reciprocity taking
edge weight into account [23].

Course Weighted reciprocity

Mines Fall 2020 0.990
CU Boulder Fall 2020 0.861
CU Boulder Spring 2021 0.848

1Individual components within a network are subsets of
connected nodes within a network that connected to each other,
but completely disconnected from nodes in other components.
The network in Fig. 1 has only one component.
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experimental study, our data collection is susceptible to
random and statistical errors. In particular, a cursory
analysis of the consistency of student reporting in this
study indicates that students may have different thresholds
for what qualifies as giving or receiving help which can
result in either missing or spurious links. The effect of this
inconsistency is partially addressed by combining student
reports using a logical OR operation as discussed in
Sec. II C, but as with any human subjects research, some
level of human error is expected. Additionally, collabora-
tion reports from students who did not consent to the study
were not included in the construction of the social networks
resulting in both missing links and missing nodes.
To better understand the significance of our findings

given the limitations of the data collection process, we
conducted analyses of random networks and the effect that
removing nodes from networks has on the correlations
between centrality measures and performance. Because of
the rather large proportion of missing nodes in the Fall 2020
course at CU Boulder, most of our analyses focus particu-
larly on understanding how the results from this semester’s
course may have been affected by missing nodes. As noted
by a recent study on the effects of missing data on
robustness of centrality measures, most applied network
studies do little more than acknowledge that measurement
errors may have occurred [25]; so, in addition to better
understanding the significance of our results, we hope to
expand the knowledge of, and introduce a practice of, error
analysis into social network research within the PER field.

A. Simulated courses using random networks

To provide a deeper perspective, beyond the simple
application of a t test, on the significance of our results, we
developed four methods for constructing random networks.
Real world networks, generally, are poorly modeled by
random networks [26], so we attempted to create models
which more closely matched the structure of the networks
we measured. Simulating networks directly explores ran-
domness in networks and helps to demonstrate how our
results compare to ensembles of networks with similar
characteristics, and demonstrate that the results we reported
in Sec. III are unlikely to be due to random chance.
Data used to simulate the networks were taken from the

Fall 2020 CU Boulder thermal physics course as it was the
course with the largest enrollment but the smallest fraction
of participating students. While accumulating the network
for this course from the 11 homework assignments, all
reports of getting help were compiled into a “got-help”
adjacency matrix. A second matrix containing all the
reports of helping another student, the “helped” matrix,
was also compiled. Elements in these matrices had values
between 0 and 11 (inclusive), and the edge distribution
represents the relative abundance of each of the possible
edge strengths between nodes.

The most basic method for simulating social networks,
which will be referred to as the Degree Match (DM)
method, used the edge distributions from the CU Boulder
Fall 2020 course’s got-help and helped matrices to con-
struct simulated got-help and helped matrices which
matched the distribution of edge weights seen in the Fall
2020 CU Boulder thermal physics course. Then the
simulated helped matrix was transposed for the sake of
directly matching the analysis performed on the real net-
works. The two simulated adjacency matrices were then
combined using an element-wise maximum function to
mimic the effect of using the logical OR operation in the
analysis of the real network data. As expected, the DM
method succeeded in matching the distribution of edge
weights seen in the measured networks (see Fig. 7).
The second method, which will be called the multiple

homeworks (MH) method, uses the simple probability that
a pair of students collaborated to create 11 pairs of got-
helped and helped adjacency matrices, one pair for each
homework assignment. Unlike the DM method, the matri-
ces simulated in the MH method only contain ones and
zeros which were pulled from a Bernoulli distribution. The
helped matrices in each pair was transposed to match the
original analysis process, then a logical OR operation was
applied assignment by assignment and the total network is
created by accumulating the combined helped and got-help
adjacency matrices over all assignments. In further dis-
similarity with the DMs method, the MH method does not
succeed in matching the distribution of edge weights seen
in the real networks. As can be seen in Fig. 7, the MH
method results in more low-weight links and fewer high-
weight links between nodes that what was seen in the Fall
2020 course at CU Boulder.
In both of these methods above, the helped and got-

help adjacency matrices were created from independent

FIG. 7. Distribution of edge weights in the Fall 2020 CU
Boulder thermal physics course and in simulated networks. The
height of the bars is the log of the ratio of the number of links of a
particular weight to square of the number of nodes, i.e., the total
number of ordered pairs of nodes.

CROSSETTE, CARR, and WILCOX PHYS. REV. PHYS. EDUC. RES. 19, 010106 (2023)

010106-10



probability distributions. However, as noted in Sec. III, our
measured networkswere all highly reciprocal. Upon analysis
of the random networks generated with the MH and DM
methods,we found they lacked the level of reciprocity seen in
the real networks (see Fig. 8). This motivated the develop-
ment of our third and fourthmethods tomake our simulations
better match the real networks.
The multiple dependent (MD) method is identical to the

MH method except it only randomly generates 11 got-help
adjacency matrices (with the same probability of an edge as
the MHmethod) to simulate the 11 homework assignments.
Then, the helped adjacency matrices for each assignment
are generated depending on the respective got-help adja-
cency matrix. If there was a got-help report between a pair
of students (i.e., student A reports getting help from student
B) there was a relatively large probability that there would
also be a reciprocal report of helping between the students
in the helped matrix (specifically, student A would also
report giving help to student B). If there was no report of
getting help between a pair of students, there was still a
small probability that a report of helping would exist. While
this method better matched the level of reciprocity in the
real network (see Fig. 8), the MD method fails to match the
edge distribution seen in the real networks, just as with
the MH method (see Fig. 7).
Our final method, called the direct dependent (DD)

method, comes the closest to matching the level of
reciprocity seen in the real networks (see Fig. 7). The
DD method creates a single got-help adjacency matrix
representing reports of getting help from across all home-
work assignments using the same edge distribution as the
DM method. However, similar to the MD method, the
adjacency matrix representing all reports of giving help
across the course is created based on the got-help matrix.
So, if there was a report of getting help between a pair of
students (say student A reports getting help from student
B), there was a high likelihood that there would be a

reciprocal report of giving help between the pair (i.e.,
student Awould also have given help to student B). Similar
to the DMmethod, the DD method generated networks that
better matched the edge distribution of the real networks. A
summary of the key features of the methods are supplied in
Table IV.
These second two methods (MD and DD) required some

tuning of the dependent probabilities, but we were suc-
cessful in creating networks with the correct number of
total students reports of getting and giving help we saw in
the real networks. Furthermore, both methods greatly
increased the reciprocity we saw in the simulated networks,
nearly to the level seen in the real networks (see Fig. 8).
Importantly, this finding indicates that the reciprocity seen
in the real networks is not a consequence of combining
student reports using a logical OR operation, but rather a
real signal that student collaboration tends to be highly
reciprocal since low reciprocity was seen in the DM and
MH networks despite the use of the logical OR combina-
tion method.

B. Simulated removal of nodes

To investigate the effect of missing nodes within our
networks, we simulated the removal of nodes from the
Mines network and from networks generated using the DD
method described in the previous section. This method was
chosen since it roughly matched the distribution of links
seen in the real network, and came closest to matching the
reciprocity of the real network. Nodes were missing from
all networks, but were most prevalent in the Fall 2020
course at CU Boulder which was missing nodes for 36% of
the course’s total enrolled population. In this analysis, we
consider there to be a “true,” “complete” network which
accurately and precisely represents student collaboration in
a course. From the true network we will remove nodes to
make “reduced” networks, then see how the correlation
between centrality and grades is affected in the reduced
networks.
Five different methods for dropping students from the

networks were tested. Each method used a different
probability distribution to select students to drop from
the network. Two probability distributions determining a

FIG. 8. Distributions of reciprocities for each of the four
random network methods developed in this study. For each
method, 1000 random networks were created.

TABLE IV. A summary of the key features of the four methods
developed to simulate networks of student collaboration. The row
for independent and dependent subnetworks refers to whether the
got-help and helped matrices were created independently or
whether the helped matrix depended on the got-help matrix.

Simulates multiple
assignments

Single matrix for all
assignments

Independent Multiple HWs Degree match
subnetworks (MH) (DM)
Dependent Multiple dependent Direct dependent
subnetworks (MD) (DD)
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node’s likelihood to be dropped were created based on
grades: one where high-performing students had a large
probability of being dropped and another which gave low-
performing students a higher likelihood of being removed.
Two more distributions were created based on centrality:
one in which students with high centrality were more likely
to be dropped, and a second in which students with low
centrality were more likely to be dropped. The final method
removed students randomly, i.e., all students had the same
probability of being removed.
Dropping nodes from the Mines network provides

insight into the effect removing nodes from a complete
network which has a strong correlation between centrality
and grades. For each of the five methods described above,
1000 sets of eight distinct nodes were selected for dropping
from the network to match the proportion of missing nodes
from the fall semester course at CU Boulder. The selected
students were dropped to create reduced networks, and
the centralities for the remaining nodes were recalculated.
The new centralities were then correlated with the grades of
the students remaining in the reduced network. The
resulting distribution of correlations in the 1000 reduced
networks are shown in Fig. 9 for the methods preferentially
dropping students with low grades and low centrality. We
chose to show these plots since we suspected that students
with low grades or low centrality were less likely to
participate in the study, report their collaborators, and
more likely to be disconnected from the larger network.
The results in Fig. 9 represent the pattern seen in all the five
dropping methods since the all methods gave qualitatively
similar results.
As can be seen in the histograms in Fig. 9, very few

reduced networks had a correlation larger than the corre-
lation measured in the complete network (i.e., there are
relatively fewer counts above the red lines in the histo-
grams). Furthermore, the median correlation splits the
distribution of correlations in half, so when removing
nodes from the Mines network there is an equal probability
of getting a correlation above or below the median. The
median correlation among the reduced networks falls below
the original correlation, indicating that removing nodes
from a complete network with a strong correlation between
grades and centrality tends to decrease the correlation
measured in a reduced network. Removing nodes using
the other three methods (high grades, high centrality, and
randomly) all produced similar results as seen in Fig. 9.
To extend the analysis of the effect of missing nodes, a

similar dropping process was performed on random net-
works generated using the DD method described in the
previous section. To create the probability distributions for
dropping nodes by grades, the homework scores from the
Fall 2020 CU Boulder thermal physics course were applied
randomly to the nodes of the simulated network. This
process of randomly assigning grades to nodes resulted in

complete networks that typically did not have significant
correlations between grades and centrality (specifically, the
distribution of correlations closely fit to a t distribution
centered at zero, as would be naively expected). So, while
dropping nodes from the Mines network helped to show
what happens when nodes are removed from networks with
statistically significant correlations between grades and
centrality, removing nodes from complete networks with-
out significant correlations helps show the likelihood of us
finding a spurious correlation in the reduced network.

(a)

(b)

FIG. 9. Histogram of correlations between grades and inward
harmonic centrality, cHi, in networks created by dropping nodes
from the full Mines network. The red lines in each plot represent
the correlation between grades and inward harmonic centrality
measured in the original Mines network. The green and black
lines represent the mean and median correlation of the ensemble
of reduced networks. The blue bars represent the histogram of
correlations calculated from the networks in the ensemble. (a)
Histogram of correlations in reduced networks created by
preferentially dropping nodes with low grades from the Mines
network, and (b) Histogram of correlations in reduced networks
created by preferentially dropping nodes with low centrality from
the Mines network.
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Two approaches were taken to study the effect of
missing nodes from these simulated networks. First, a
single network was constructed (with 83 nodes), then 30
nodes were dropped, and correlations re-calculated to
directly mimic the loss of nodes from the Fall 2020 course
at CU Boulder. This approach was applied iteratively and
allowed for a large number of simulated networks to be
analyzed. The distribution of resulting correlations in the
reduced networks (after dropping the most and least
central student) are shown in Fig. 10. The average and
original correlations are not shown (as in Fig. 9) since they
were all nearly equal to zero. The distribution of corre-
lations in the reduced networks also fit very well to a t-
distribution centered on zero, suggesting that dropping
students does not tend to produce a net shift the corre-
lation measured in the reduced networks.
The second approach more closely matched the process

applied to the Mines network. In this approach, a single
network (of 83 nodes) was constructed, but instead of

choosing only one set of nodes to drop, 500 sets of 30
nodes were produced and each set was dropped from the
complete network to create 500 different reduced networks.
New correlations were then calculated in all of the reduced
networks before repeating the process with a new simulated
complete network. This process repeated for 500 random
complete networks. This method allowed for a more
detailed perspective on dropping nodes, but fewer networks
could be analyzed with this process. All five methods for
selecting nodes to drop were applied in this analysis and in
each case the result was similar: dropping nodes tended to
shift the correlation measured in the reduced network
towards zero, and the proportion of complete networks
with a nonsignificant correlation that became reduced
networks with a significant correlation when dropping
nodes was less than 3%.
When taken together, the results from dropping nodes

from the Mines and simulated networks suggests that the
statistically significant correlations between homework
scores and network centrality measured in the Fall 2020
thermal physics course at CU Boulder likely are not
spurious results caused by missing data.

V. SUMMARY AND CONCLUSION

We collected data on student collaboration in two
physics courses at the University of Colorado Boulder
and one course at the Colorado School of Mines. The
courses occurred in the midst of the COVID-19 pandemic
which allowed for a partial comparison to the results of a
prior study which occurred before the implementation of
remote and hybrid courses as a result of the pandemic.
Social networks were constructed based on students’
reports of giving and receiving help on homework assign-
ments throughout each course. From the networks we
calculated nodal centrality measures which quantify the
level of connection a student has to the rest of their
classmates.
When calculating the correlations between students’

centrality and their performance on homework assignments
and exams we found different results in each of the courses.
The results from intermediate math methods course at
Mines closely matched the results from the pre-pandemic
study: there were statistically significant correlations
between students’ in-strength, out-strength, closeness cen-
trality, and harmonic centrality which indicates that stu-
dents who collaborate frequently and are closely connected
to their peers tend to get higher grades on homework
assignments.
The courses at CU Boulder had less connection between

students’ centrality and course performance. Despite hav-
ing a higher density of links than the math methods course
at Mines, the Fall 2020 thermal physics course at CU
Boulder only had statistically significant correlations
between homework grade at the out-strength and the
harmonic and closeness centralities calculated using the

(a)

(b)

FIG. 10. Histogram of correlations between grades and inward
harmonic centrality, cHi, in networks simulated with the DD
method and 36% of nodes removed based on the nodes’
centrality. (a) Preferentially dropping nodes with high centrality,
and (b) Preferentially dropping nodes with low centrality.
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out-ward directed shortest paths from a node (exam scores
were only correlated with the latter two centralities). This
indicates that students who tend to provide help to others,
and are close sources of help to their classmates tended to
score better on the course’s homework assignments and
exams. In the spring 2021 course at CU Boulder, there was
only a negative correlation between exam score and net-
strength (representing the net amount of help given or
received). This suggests that students receiving more help
than they gave tended to score lower on this course’s
exams.
The consistency between the results found in this study

and the pre-pandemic results from Vargas et al. show that
the environment at Mines was able to preserve a connection
between collaboration and course performance despite a
fully remote course format. When contrasted with the lack
of consistency in the results from hybrid courses at CU
Boulder, this study demonstrates that course context is
important for creating a connection between student col-
laboration and performance. For example, the on-sequence2

iteration of the thermal physics course at CU Boulder did
show some correlation between collaboration and perfor-
mance, while the off-sequence iteration showed nearly no
correlation. This finding has important implications for
interpreting the results of SNA studies within PER.
One of the primary limitations to this study stems from

limitations in the data collection process. This was spe-
cifically a concern for the Fall 2020 course at CU Boulder
which was missing roughly 36% of nodes representing
student who did not consent to the data collection process.
To address possible effects caused by missing data, we
constructed several models for generating networks which
resulted in one which was able to match the edge
distribution and reciprocity seen in the measured networks.
The simulated networks assumed that the level of collabo-
ration in the missing part of the network matched the level
seen in the measured networks. Simulations of random
networks with this method provides justification for the use
of a t test to established the statistical significance of our
findings.
The development of the network simulation models also

allowed for an investigation of the effect that removing
nodes from larger networks has on the correlations between
centrality and course performance, an analysis that has
been missing from the SNA literature within PER to this
point. Complete networks of 83 nodes were created and
sets of 30 nodes were selected for removal by various
metrics. The removal of nodes tended to shift correlations
towards zero and resulted in a nonsignificant correlation (in
the complete network) to shift to a significant correlation

(in the reduced network) in less than 3% of trials. A similar
approach to dropping nodes was applied to the measured
network from the math methods course at Mines, which
produced similar results: a tendency to decrease correla-
tions. These results suggest that the statistically significant
correlations measured in the Fall 2020 course at CU
Boulder reflect statistically significant correlations in the
complete network.
Though prior research in education shows that collabo-

rative interaction among students generally leads to better
learning outcomes (at least in part due to developing a
student’s sense of belonging), lacking a correlation between
student performance and centrality should not be consid-
ered a necessarily undesirable feature. In the case of
commuting students, students who are working while
attending school, recently transferred students, or other
situation in which students are less able to collaborate with
their peers, an ideal course would overcome the obstacles
faced by these students’ disconnection from the course and
result in learning outcomes not dependent on a students’
ability to interact with their classmates. Further research on
the utility of high centrality in the collaboration network of
a course will benefit from a validated assessment of
students’ thermal physics understanding. This tool will
help identify whether there are differences in learning gains
between courses of well-connected versus more discon-
nected students.
Future work on the analysis of student collaboration

would benefit from qualitative interviews with students to
investigate their beliefs and conceptions of group work. In
particular, understanding students’ thresholds for reporting
helping or being helped by other students, the range of
interactions that students have with their collaborators, and
whether or not students find collaboration to be helpful will
provide deeper insight into our results. Students’ qualitative
responses may shed light on what aspects of a course help
to create a correlation between collaboration and perfor-
mance. Furthermore, more data collection on in-person
courses at CU Boulder would establish whether collabo-
ration is associated with performance during regular
instruction, or whether the environment at CU Boulder
generally tends to have a weaker connection between
student collaboration and performance. Finally, future work
could examine using networks with more types of edges
between nodes in order to make a distinction between
which student reported the connection. So, instead of only
having two possibilities (one for each direction) for edges
connecting nodes, four possible edge types could be
allowed to distinguish not only the direction help was
given by the student reporting the instance of collaboration.
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APPENDIX: COMPARISON OF PEARSON AND
SPEARMAN CORRELATIONS

To further explore the correlation between performance
and students’ centrality, Spearman’s rank correlations were
calculated for our data and are reported in Table V. The
Spearman correlations were calculated in Python and cor-
roborated against a permutation test in R. Though the general
trend (i.e., the sign of the correlation) between the Pearson
and Spearman correlations for the correlations is the same,
there were eight cases where the statistical conclusion
differed. While the cases where the Pearson correlation
was not significant while the Spearman was (for the betwe-
enness centrality, in-disparity, and out-disparity in the course
at Mines) are somewhat interesting since the Spearman
correlation is a nonparametric test and so has less statistical
power, we were more interested in the comparison between
the correlations for the harmonic and closeness centralities
since they were the most consistently significant across both
the courses studied in this article and those studied in Vargas
et al. before the COVID-19 pandemic.

To better understand this result (particularly for the
correlations from the Fall 2020 course at CU Boulder),
scatter plots of students’ homework scores versus closeness
and harmonic centrality for the three courses analyzed in
this study are shown in Fig. 11. One common feature
between the plots for all three courses is that they tend not
to have students with high centrality and low grades (which
would appear as points on the lower right corner of the
plots). All courses show a relatively wider range of scores
for students with low centrality than for students with high
centrality (whose grades also tend to be close to the
maximum possible score). Furthermore, since we have
students with low centrality and a range of scores partici-
pating in the study, there is no clear selection effect (e.g., a
Berkson’s bias) that would tend to preferentially exclude
students with high scores and low centrality from the study.
Selection effects were particularly a concern for the Fall
2020 CU Boulder course because of the large proportion of
students who did not consent to the study, but the general
trend of no low-scoring, highly central students in the other
two courses with higher participation rates supports the
result from the Fall 2020 CU Boulder course.
A unique feature of the Spring 2021 course at CU

Boulder was there was a dense cluster of highly performing
students with no connection to the rest of the network. This
would tend to flatten the line of best fit through the data,
which indirectly lowers the value of the correlation since it
adds large residuals for the students with low centrality and
low homework scores.

TABLE V. Pearson and Spearman correlation between homework grades and centralilty measure in each of the
three courses analyzed in this study. Statistically significant correlations (at the p < 0.05 level) are indicted in bold.

Mines FA20 CU FA20 CU SP21

Pearson Spearman Pearson Spearman Pearson Spearman

si 0.549 0.614 0.246 0.107 0.218 0.106
so 0.547 0.620 0.274 0.182 0.251 0.146
sn −0.002 −0.044 −0.194 −0.391 −0.089 −0.310
cCo 0.718 0.715 0.430 0.136 0.160 0.010
cHo 0.687 0.722 0.395 0.177 0.219 0.088
cB 0.389 0.616 0.075 0.011 0.019 0.045
Yi −0.142 −0.404 0.018 0.062 −0.024 0.047
Yi −0.140 −0.414 −0.093 0.007 −0.057 −0.076
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