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In the context of quantum mechanics, students are often asked to use delta functions to solve problems.
Here, we investigate three typical problem-solving processes using delta functions: a delta function
potential well problem, a position space delta function problem, and a momentum space delta function
problem. We studied students’ solutions in written exams and conducted think-aloud interviews. We use the
activation, construction, execution, and reflection framework for our analysis. We find that students
encountered various difficulties in solving quantum mechanics problems using delta functions. Common
challenges included difficulty with establishing expressions of delta functions for position eigenstates,
difficulty with expressing the orthonormality of eigenfunctions with continuous spectra using delta
functions, difficulty with boundary conditions for delta function potentials, and difficulty with calculating
integrals involved delta functions. In particular, students rarely used effective reflective methods to gain
confidence in their solutions. We commonly observed this challenge for students in all questions we
investigated. In addition, we compare the similarities and differences in the use of delta functions in
electrostatics and in quantum mechanics, and discuss possible explanations for the reasoning mechanisms
that cause these difficulties. Finally, we discuss the potential pedagogical implications of our findings.
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I. INTRODUCTION

The Dirac delta function is a frequently used mathemati-
cal tool in quantum mechanics. Students will encounter
these delta function related knowledge topics in the context
of quantum mechanics courses in Chinese universities.
(i) The state of a particle in a potential field has two basic
states, the bound and scattering states. A particle in a delta
function potential is a typical case in quantum mechanics.
(ii) Position is a fundamental operator in quantum mechan-
ics. Its eigenfunction is a delta function that represents the
position measurement of the particle. (iii) There are two
types of operators in quantum mechanics, with discrete
eigenvalues and with continuous eigenvalues. For an
observable with continuous spectra, its eigenfunctions
satisfy the Dirac orthonormality, which is represented by
a delta function. These three are important cases of the wide
applications of delta functions in quantum mechanics.
Therefore, the use of delta functions is a key element to
understand and master the basic content of quantum
mechanics.

The study of students’ difficulties that arise in their
learning of quantum mechanics is an active area of physics
education research [1–36]. Most of the literature has
focused on the difficulties that arise in students’ under-
standing of the basic concepts and formulas of quantum
mechanics. For example, Singh et al. investigated students’
understanding of basic concepts such as the wave func-
tions, the bound and scattering states, the measurement
results and probabilities of different physical observables
for a particle in a one-dimensional potential [2,5,6,9]. The
results showed that students experience various difficulties
in reasoning these basic concepts.
In the context of quantum mechanics, students are often

asked to combine abstract physical concepts with complex
mathematical calculations to solve problems. Although
there are several reports on the use of differential equation
methods in quantum mechanics [32,33], the use of math-
ematical tools in problem-solving in quantum physics has
not been fully investigated. We are not aware of any studies
that have specifically explored how students relate quantum
mechanics concepts to delta functions in the problem-
solving process. In addition, Wilcox and Pollock studied
students’ difficulties in using delta functions in the electro-
static content [37]. However, the use of a mathematical
technique in solving a problem is highly dependent on the
physical content associated with that problem [32,33,37–
40]. New phenomena can be expected from studying how
students use the delta function in the context of quantum
mechanics.
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In this work, we investigate students’ problem-solving
abilities when using delta functions in the context of
quantum mechanics. In Sec. II, we provide an overview
of the literature related to students’ difficulties in using the
delta function. In this paper, we use the activation, con-
struction, execution, reflection (ACER) framework to ana-
lyze the investigation data. This analytic framework was
specifically developed to analyze how students use math-
ematical tools in solving physics problems [38]. In Sec. III,
we describe the details of the operationalized ACER
framework used for the analysis. In Sec. IV, we describe
the data sources and the details of the interview design
conducted in the study. Students in the School of Physics at
the University of Science and Technology of China (USTC)
have used delta functions several times in their quantum
mechanics courses. Here, we focus on three typical cases of
delta functions: (i) the delta function potential well problem,
(ii) the position space delta function problem, (iii) the
momentum space delta function problem. They provide
an important context for the use of delta functions in
quantum mechanics courses. All three types of problems
require students to build expressions of the delta function
and to calculate integrals involving the delta function to
obtain the corresponding states and their properties. The
study presented here can provide a sample of students’
difficulties in understanding and using delta functions to
solve problems in the context of quantum physics.
Then, in Secs. V, VI, and VII, we present findings and

analyses of the difficulties students encountered in solving
the delta function potential well problem, the position space
delta function problem, and the momentum space delta
function problem, respectively. Although the mathematical
method of the delta function is general, how this method is
used in solving physics problems highly depends on the
specific physics context. Therefore, when students use the
delta function to solve problems in the new context, some
difficulties can persist, and some new difficulties can
emerge. Finally, in Sec. VIII, we discuss in detail the
similarities and differences between our results and those of
previous studies on delta functions and related concepts.
We also briefly discuss the instruction implications of this
work, as well as future work.

II. REVIEW OF THE LITERATURE AND
RESEARCH QUESTIONS

A. Student difficulties with delta functions

Most research in the field of quantum physics has
focused on the difficulties students have in understanding
basic quantum concepts. For example, it has been found
that students have various difficulties in interpreting
quantum interference phenomena [17–19], in determining
the time evolution of wave functions [9,12,21,26], in
obtaining measurement results and probabilities of physi-
cal observables [6,7,11], and in representing quantum

systems using different notations such as the Dirac
notation, the algebraic wave function notation, and the
matrix notation [13,22,25,30].
In the Ref. [34], Muller et al. investigated students’

difficulties in understanding the concepts of quantum
mechanics. Students had a number of common concepts
and misconceptions about quantum objects such as photons
and atoms, including the distinction between classical
and quantum objects (e.g., the distinction between electron
orbitals and electron cloud images), determinism and
nondeterminism (e.g., the interpretation of the double-slit
interference phenomenon), and the uncertainty relation
(e.g., whether quantum objects possess both position and
momentum). Then the authors developed a new research-
based quantum mechanics course in which students dis-
cover from the beginning how quantum phenomena deviate
from classical experience. The evaluation results of the
course show that most students acquire appropriate con-
cepts of quantum mechanics.
In the Ref. [35], Bitzenbauer et al. also investigated the

phenomenon of students’ conceptual understanding of
quantum mechanics. (i) Some students seemed to stick
to their preconceptions dominated by the classical physics
and describe the quantum world as a small-scale classical
world. (ii) Some students knew the significant differences
between quantum and classical physics and describe the
quantum world through effects or aspects that do not exist
in classical world. (iii) In particular, some students knew
the importance of quantum physics for technologies and
describe the quantum world as the world of technology.
Therefore, the authors suggested that raising students’
awareness of the importance of modern quantum technol-
ogies can contribute to their study of quantum physics.
In the article [36], Uhden et al. developed a new model

for analyzing mathematical reasoning in physics. In this
model, mathematical reasoning is divided into different
levels: for example, mathematization (from physical mod-
els to mathematical expressions), interpretation (from
mathematical expressions to physical models), and pure
mathematics (technical mathematical operation). In this
sense, this model is similar to some elements of the ACER
framework. The authors demonstrated the applicability of
this model in the analysis of physical-mathematical rea-
soning processes by using an example from classical
mechanics. This model can illustrate different reasoning
ways and locate possible reasoning difficulties. Thus, it can
be used as a tool to analyze students’ thinking and help
teachers to design and evaluate more applicable teaching
approaches.
In particular, Singh et al. explored students’ difficulties

with position measurement [2,5,6,9], a topic related to the
delta function. They developed a conceptual survey of
quantum physics that consists of a series of multiple-choice
questions to probe students’ understanding and mastery
of various concepts. After a position measurement, the
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particle is in the position eigenstate, which is a delta
function. Research has found that students had several sets
of conceptual difficulties with position measurement.
(i) Students had difficulty in distinguishing between the
stationary state and the position eigenstate. For example,
many students claimed that if a particle is in a position
eigenstate at initial time, i.e., has a definite position value, the
particle will stay in that position at all times. Some other
students claimed that the wave function becomes a delta
function after an energy measurement and drew a peak at a
certain position value. (ii) Students had difficulty in realizing
that the system state will change after the position meas-
urement. For example, a particle is initially in a superposition
of the ground state and the first excited state. After a position
measurement the system wave function collapses to a delta
function, which is a superposition of many energy eigen-
functions. However, many students claimed that the particle
is still in the initial state, i.e., the superposition of only the
ground state and the first excited state.
In addition, Wilcox and Pollock investigated the stu-

dents’ difficulties with the delta function in the context of
electrostatics [37]. The charge distribution can be expressed
using the delta function. The researchers used traditional
exam questions, standard conceptual assessments and
interviews and utilized the ACER framework to analyze
students’ thought processes. They found that students had
common challenges with the delta function. (i) During the
activation stage, students had difficulty in spontaneously
invoking the delta function. (ii) During the construction
stage, students had difficulty in translating the description
of the charge distribution into a mathematical expression of
the delta function and had difficulty in recognizing that the
delta function could have units. (iii) During the execution
stage, students had difficulty in integrating three-
dimensional or non-Cartesian delta function expressions.
In summary, there have been a number of investigations

[1–36] of students’ difficulties in reasoning about the basic
concepts and fundamental formulas of quantum mechanics.
These studies addressed many specific concepts and con-
texts, and students encountered similar difficulties in
learning these fundamental concepts. These difficulties
were often due to overgeneralization of concepts in one
context to another context where they are not directly
applicable (e.g., difficulties in distinguishing between sta-
tionary states and other operator eigenstates). In other
words, reasoning difficulties in distinguishing between
closely related concepts are common.

B. Research questions

These previous studies have focused on students’ diffi-
culties in understanding concepts of quantum physics.
However, there is little research on students’ problem-solving
skills in the context of quantum mechanics [32,33,41–43].
Learning quantum mechanics is challenging, not only
because the concepts of quantum physics are very different

from thoseof classical physics, but also because students have
tremendous difficulty in relating the concepts of quantum
physics to complex mathematical calculations. Delta func-
tions are an important mathematical method that appears
repeatedly in quantum mechanics courses. Therefore, more
work needs to be done to investigate student difficulties with
using delta functions in the context of quantum mechanics.
These investigations can provide additional insight into how
students understand quantum physics concepts and use the
corresponding mathematical methods.
On the other hand, as far as we know, there is only one

paper on students’ difficulties with using delta functions in
electrostatics content [37]. Although delta functions are a
standard mathematical technique, how to translate the
physical content into delta function expressions and how
to calculate the results of delta functions and interpret their
physical meaning are highly dependent on the correspond-
ing physical context. Therefore, it would be interesting to
study students’ thought processes in using delta functions
in different physics contexts and to compare them.
Determining the energy levels of a particle in delta

potentials, using position eigenstates to determine mea-
surements of a particle, and using orthonormality of
momentum eigenstates to determine the properties of a
particle are among the topics that upper-division students
encounter in quantum mechanics. In these cases, the “tool”
we refer to is the delta function, and we define “problem
solving” as the combination of the mathematical tools of
the delta function with the conceptual knowledge of
quantum physics to solve the above long and complex
physical problems in the context of quantum mechanics. In
the present work, we are interested in the following three
research questions.
(1) To what extent are students able to use delta function

tools in the context of quantum mechanics? That is,
to what extent are students able to correctly relate the
concepts of quantum physics to delta functions?

(2) What are the common difficulties students have
when using delta functions in the problem-solving
process? What are the possible causes of these
difficulties?

FIG. 1. Problem 1: A particle in a delta function potential well.
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(3) What difficulties are similar and what difficulties are
different compared to previous studies?

III. THEORETICAL FRAMEWORK

A. Context for research

In our investigation, we use three tasks to probe how
students apply their knowledge and tools of delta functions
in the context of quantum mechanics. As shown in Table I,
in problem 1, students are asked to determine the possible
energies of the bound states with a delta function well
potential. In problem 2, students are asked to determine the
probability of a particular energy measurement outcome
after position measurement. In problem 3, students are
asked to derive an expression for the expectation value in
momentum representation.

B. The ACER framework

In upper-level physics courses, students’ problem-
solving processes are often long and complex. Students
can make a variety of errors at each step of the problem-
solving process. In order to extract useful information from
complex data, we use the activation, construction, execu-
tion, reflection (ACER) framework to guide our inves-
tigation of students’ solutions [38]. The ACER framework
was developed based on a resources theory of the nature of
learning, which divides the problem-solving process into
four stages.

(i) Activation stage: activate the related mathematical
resources.

(ii) Construction stage: construct the corresponding
equations for the physics problem.

(iii) Execution stage: execute the calculations to the
equations.

(iv) Reflection stage: reflect the final answers.
It is clear that how mathematical tools are used depends

on the corresponding physical context. Therefore, the
ACER framework is operationalized for specific physics
problems. Below, we list the operationalized framework for
each specific question, and a more detailed description can
be found in Appendices A, B, and C.
First, the researchers selected a typical problem related

to the delta function in quantum physics. One researcher
worked through the problem and documented all elements
of a complete solution. Then these elements are discussed
with several other researchers to reach a consensus that all
important elements of the solution have been identified.
These problem-specific elements can be organized into
the four components of the ACER framework, which
appear consistently in the use of complex mathematical
tools (e.g., delta functions) to solve various content-rich
problems (e.g., quantum physics problems). These four
components are activation of the tool, construction of the
model, execution of the mathematics, and reflection on
the results.
Students were asked to solve the same problems in the

exams and interviews. The researcher identified each key
element of the ACER framework that appears in the
student’s solution. Each element was then coded. This
coding helped ensure that the ACER framework developed
by the researcher did not miss important but unanticipated
elements of the student solution. By classifying each of the
student’s key actions into one of the four components of the
ACER framework, the student’s problem-solving process
could be analyzed.

C. The operationalized framework for the delta
function well problem

(i) Activation of the relevant tools: The activation
stage identifies the appropriate mathematical tools
to solve the problem. In general, activation is
influenced by the problem’s given prompt. The

TABLE I. Exam questions to probe student difficulties with delta functions.

Problem 1: Consider a particle with mass m interacting with the potential (Fig. 1): VðxÞ ¼ −γδðxþ aÞ; x < 0; VðxÞ ¼ ∞; x > 0. Here
γ > 0, a > 0. Derive the transcendental equation for the allowed energies of the bound states.

Problem 2: Consider a particle with mass m in a one-dimensional infinite square well with boundaries at x ¼ 0 and x ¼ a (Fig. 2). The
nth energy eigenfunction and eigenvalue for the particle are φnðxÞ ¼

ffiffiffiffiffiffiffiffi
a=2

p
sinðnπx=aÞ and En ¼ n2π2ℏ2=2ma2. Perform a

measurement of position at x ¼ a=2. If energy is measured immediately after the position measurement, calculate the probability of
the energy measurement which yields the value of En.

Problem 3: For a momentum space wave function ΦðpÞ, prove the relation hxi ¼ Rþ∞
−∞ Φ�ðpÞðiℏ d

dpÞΦðpÞdp. Hint: Notice that
xeipx=ℏ ¼ ð−iℏ d

dpÞeipx=ℏ.

FIG. 2. Problem 2: A particle in an infinite square well.
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numbering of these elements is for labeling purposes
only, which indicates that there are multiple options.
• A1: The question text directly provides a delta
function expression for the potential.

• A2: The question figure provides a spike shape of
the potential and asks for an expression for the
potential.

(ii) Construction of the physical equations: The con-
struction stage maps the specific physical situations
to the corresponding equations. Here, we divide the
construction stage into four elements whose num-
bering indicates the order of the problem-solving
process.
• C1: Write down the stationary Schrödinger equa-
tion in different regions based on the shape of the
delta function potential.

• C2: Determine the range of energy constants
based on the shape of the delta function potential.

• C3: Apply an integral around the delta function
potential to determine the boundary condition for
the wave function.

• C4: Write down the boundary conditions at x ¼ 0
and infinity.

(iii) Execution of the mathematical calculations: The
execution stage performs mathematical calculations
to the equations built in the construction stage. Here,
we divide the execution stage into three elements,
whose numbering also indicates the order of the
problem-solving process.
• E1: Obtain the general solution to the stationary
Schrödinger equation (i.e., an ordinary differential
equation).

• E2: Calculate the integral containing the delta
function.

• E3: Organize the condition satisfied by the energy
constant.

(iv) Reflection on the solutions: The reflection stage
refers to the use of steps to check whether the results
are consistent with physics-based expectations in
order to gain confidence in the results. Here, we
divide the reflection stage into several elements.
They are numbered for labeling purposes only,
which indicates that there are multiple methods of
checking.
• R1: Check the units of the expressions.
• R2: Check that the wave function satisfies the
boundary conditions.

• R3: Check that the limit behavior of the wave
function is consistent with expectation.

D. The operationalized framework for the position
space delta function problem

(i) Activation of the relevant tools: The numbering of
these elements are for labeling only.

• A1: The question text directly provides a delta
function expression for the position eigenfunction.

• A2: The problem involves position measurements
and asks for corresponding position eigenfunctions.

(ii) Construction of the physical equations: The
numbering of the elements indicates the order of
the problem-solving process.
• C1: Relate the position eigenvalue to the argument
of the delta function and write down the corre-
sponding expression for the position eigenfunc-
tion after position measurement.

• C2: Expand the delta function expression of the
position eigenfunction into a superposition of
energy eigenfunctions.

• C3: Apply an integral of the delta function to
express the probability amplitude.

• C4: Use the probability amplitude to express the
probability.

(iii) Execution of the mathematical calculations:
• E1: Calculate the integral containing the delta
function.

(iv) Reflection on the solutions: The numbering of
these elements is for labeling purposes only.
• R1: Check the units of the expressions.
• R2: Check that the result is consistent with the
expectation based on the form of the wave function.

E. The operationalized framework for the momentum
space delta function problem

(i) Activation of the relevant tools: The numbering of
these elements are for labeling only.
• A1: The question text directly provides a delta
function expression for the orthonormality of
momentum eigenstates.

• A2: The problem involves the momentum repre-
sentation and uses language associated with the
delta functions (e.g., representation transforma-
tion, Fourier transform).

• A3: The problem involves the momentum repre-
sentation and asks for expressions of the ortho-
normality of momentum eigenstates.

(ii) Construction of the physical equations: The
numbering of the elements indicates the order of
the problem-solving process.
• C1: Express the expectation value in terms of the
wave function in position space.

• C2: Relate the wave function in momentum space
to the wave function in position space.

• C3: Use the delta function to express the ortho-
normality of the momentum eigenstates.

(iii) Execution of the mathematical calculations: The
numbering of the elements indicates the order of the
problem-solving process.
• E1: Organize the integral expression.
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• E2: Calculate the integral containing the delta
function.

(iv) Reflection on the solutions:
• R1: Check the units of the expressions.

In the following sections, we apply the coding scheme to
study the students’ efforts to solve these problems.

IV. RESEARCH METHOD

A. Data sources

We collected data from the quantum mechanics course
at USTC. This course covers chapters 1–12 of Zeng’s
book [44] (or chapters 1–10 of Griffiths’ book [45]) for one
semester, with 4 weekly sessions of 50 min each. Upper-
division students in the school of physics take this course
with a typical class size of 60–100 students. Both quanti-
tative and qualitative methods were used in this study, with
two different sources of data: students’ solutions to tradi-
tional midterm exams and “think-aloud” interviews on
the problem-solving process. For the quantitative data, we
investigated the students’ written solutions to the exams
and identified their common difficulties. Then, for the
qualitative data, we collected and analyzed students’
responses in the interviews to gain more insight into the
possible causes of these reasoning difficulties.

B. Written exams

We all taught the quantum mechanics course at USTC.
We designed three exam problems using delta functions
through several discussions: the delta function potential
well problem (i.e., problem 1 in Table I), the delta function
problem in position space (i.e., problem 2 in Table I), and
the delta function problem in momentum space (i.e.,
problem 3 in Table I). On each exam, students were asked
to solve one of the problems using the delta function.
In total, we collected data from six sets of exams over six

years. For problem 1, there were two sets of exam data with
a total of Nt ¼ 466 students. For problem 2, there are two
sets of exam data with a total of Nt ¼ 506 students. For
problem 3, there were two sets of exam data with a total of
Nt ¼ 394 students.
We then used the ACER framework to analyze the

students’ written solutions. Their solutions were coded
according to the elements that appeared in the ACER
framework. Finally, we organized the results to identify
the students’ problem-solving ideas and to identify the
difficulties that arose.

C. Design the interviews

To further understand students’ difficulties with prob-
lem-solving and to uncover underlying reasoning mecha-
nisms, we conducted think-aloud interviews [46]. We
collected data from six sets of interviews, each of which
was scheduled after the midterm exam. For problem 1,
there were two sets of interviews with a total of Nt ¼ 30

students. For problem 2, there were two sets of interview
data with a total of Nt ¼ 24 students. For problem 3, there
were two sets of interview data with a total of Nt ¼ 20
students.
The students interviewed were volunteers willing to

participate in the study. The total number of interviews
was smaller than the total number of students who took the
midterm exams. Most of the interviewed students scored
between 50 and 80 on the exams and they made a variety of
mistakes in solving the exam questions. We chose them to
participate in the interviews because we wanted to inves-
tigate more deeply how they made these mistakes.
The interviews were scheduled to take place within a

week of the exams. Because of the short interval, the
students who participated in the interviews still clearly
remembered how they had solved the same problem
during the exams. That is, the solutions they gave in
the interviews were very similar to the solutions they gave
in the exams. Therefore, if they made a certain mistake in
the exams, they would make the same mistake in the
interviews. In this way, we can study why they made that
mistake.
The interviews were conducted individually outside the

classroom. We noticed that the students became tired if the
interviews were too long. Therefore, each interview lasted
about an hour or so. At the beginning of each interview, we
explicitly told the students, “This is just a think-aloud
interview. We want you to explain your thoughts aloud as
you solve the problem. You do not be nervous because this
is not a test and we will not grade you for your perfor-
mance. This interview is simply because we are interested
in your problem-solving process and ideas.” All of the
students interviewed did not agree to video or audio
recording because this approach would make them feel
watched and give them an uncomfortable feeling.
Therefore, in this study, the results of all interviews were
transcribed verbatim. For the sake of consistency, all
interviews were conducted by the first author of this paper.
The interviews were designed using a semi-structured

think-aloud protocol. Surveys of students’ written solutions
on exams can provide information about the pattern and
frequency of students’ difficulties. However, exam data
provides limited insight into students’ thinking about
problem-solving and into the reasons for their difficulties.
Therefore, we asked the students interviewed to solve the
same problems as on the midterm exams and asked them to
articulate their thought processes.
After the students expressed their thoughts as clearly as

possible, if they had not mentioned them, we asked a list of
questions about their thought processes. Our list of ques-
tions were designed based on the elements of the ACER
framework.

(i) For the activation element, we asked students what
prompted them to use the relevant knowledge
resources.

TU, LI, XU, and GUO PHYS. REV. PHYS. EDUC. RES. 19, 010104 (2023)

010104-6



(ii) For the construction element, we asked students
how they interpreted each expression they wrote
down. For example, “What does this equation
represent?”, “Can you give an explanation for this
expression?”, and “What do you call this quantity in
the expression?”.

(iii) For the execution element, we asked students how
they performed the corresponding mathematical
calculations. For example, from the exam data, we
found that students had difficulty in calculating the
integrals of the delta function. We would like to
know if these errors were due to simple calculation
errors or were caused by some other mechanisms.
So, we asked students, “How did you get this
integral result?”

(iv) For the reflection element, it was difficult to deter-
mine from the exam data whether students checked
their solutions. Therefore, in the interviews, when
students finished solving the problem, we asked
them if and how they checked their solutions.

Thus, these interview questions explicitly address all
aspects of the ACER framework. In addition, based on a
particular student’s responses, we designed additional ques-
tions on the spot to explore his or her thought processes in
more depth. In some interviews, we also asked students
broader questions, such as what, in their opinion, are the
main difficulties in learning quantum mechanics. We did not
interrupt students as they elaborated their ideas and answered
questions, because we wanted them to elaborate as clearly as
they could. If students were quiet for a long time, we would
remind them to continue talking.

V. FINDINGS ON STUDENTS’ DIFFICULTIES
WHEN ADDRESSING A DELTA FUNCTION

WELL PROBLEM

In this section, we use the ACER framework to identify
and classify students’ difficulties in solving the bound
states of a particle in a delta function well (problem 1 in
Table I).

A. Activation of the tools

In the exams and interviews, all students were able to
write expressions related to the delta function. But this does
not suggest that students do not have difficulties in
motivating the corresponding mathematical knowledge
and tools, because the question explicitly provides a delta
function potential well.

B. Construction of the equations

Step C1: In step C1, students are required to establish
the time-independent Schrödinger equation containing the
delta function potential well. There were N ¼ 466 students
who took the exams, and among them, N ¼ 456 students
completed this step correctly. In the remaining N ¼ 10

solutions, the students inappropriately established the time-
dependent Schrödinger equation but could not reduce it to
the time-independent Schrödinger equation.
In the interviews, one student wrote down the time-

dependent Schrödinger equation. Then he spent a long time
trying to reduce it to the time-independent Schrödinger
equation, however he failed. When he explained why he did
this, he said, “The time-dependent Schrödinger equation is
the fundamental equation in quantum mechanics, which I
have already written down. I remember that I need to use
the separation of variables method to deal with the
equation. But this process is too complicated, especially
since the present equation contains a delta function. I really
can’t do it.” The interview results imply that some students
were so focused on the time-dependent Schrödinger
equation that they did not directly establish the time-
independent Schrödinger equation when solving stationary
state problems.
Step C2: In step C2, students need to determine the

range of values of the energy constant E. There were
N ¼ 456 students who established time-independent
Schrödinger equation, and among them, N ¼ 400 students
correctly commented that the bound states should be
E < 0. In the remaining N ¼ 56 solutions, students incor-
rectly discussed the case of E > 0.
In the interviews, four students incorrectly believed that

the energy constant could have the case of E > 0. Their
explanations can be divided into two categories.
Two students wrote down the equation E > 0. One of

them explained, “I remember that I solved a similar
problem when I was doing homework. We usually need
to consider bound and scattering states. Here we are
considering the bound state, whose energy should be less
than the potential energy at infinity E < Vð∞Þ ¼ ∞. Thus
we have E > 0.” The other student gave a similar state-
ment. Actually, the correct criteria is that when the energy is
less than the potential energy at both plus and minus
infinity, the particle is in a bound state. For the present
problem, the potential energies at plus and minus infinity
are different: Vðþ∞Þ ¼ þ∞, Vð−∞Þ ¼ 0. Thus the spe-
cific potential leads to the equation E < Vð−∞Þ ¼ 0. The
interview results suggest that some students do not realize
that to form a bound state, the wave function must be bound
on both sides.
Another two student also discussed the case of E > 0.

One of them explained, “This is a delta function well,
which is equivalent to an infinitely deep well. So the
particle can be bound in this potential well regardless of the
energy E > 0 and E < 0. Thus we should discuss both
cases E > 0 and E < 0.” The other student gave a similar
statement. The interview results indicate that some students
have an incorrect belief that a delta function well can
confine particles of all energy ranges.
Step C3: In step C3, students are required to construct an

integral containing the delta function
R
−aþϵ
−a−ϵ δðxþ aÞφðxÞdx,
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which leads to the boundary condition satisfied by the wave
function. There were N ¼ 384 students who progressed to
this step, and among them, N ¼ 294 students successfully
completed this step. In the remaining N ¼ 90 solutions, the
common errors included: not building an integral expression
for the delta function; or setting an incorrect range of
integration.
The interviews provided insight into students’ difficul-

ties. Their responses can be divided into two types.
In the interviews, three students had never established

the integral of the delta function. We asked them if
they knew the integral property of the delta function and
why they did not use this property. One student wrote
down the integral formula of the delta functionRþ∞
−∞ δðxÞdx ¼ 1 and explained, “This integral formula
shows that the delta function is a narrow spike, whose
integral over the whole space is 1. But I believe that I do
not need to use the integral of the delta function here
because I has already obtained the wave functions on
both sides of the delta function well.” The other two
students gave similar answers. In fact, because the
derivative of the wave function is discontinuous at the
point where the potential is infinite, we need the integral
of the delta function to determine the boundary con-
dition satisfied by the wave function. The interview
results suggest that some students do not understand that
the integral of the delta function is to establish the
corresponding boundary condition.
Seven interviewed students wrote down the integral

expression for the delta function but set the incorrect
range of integration:

Rþ∞
−∞ δðxþ aÞφðxÞdx. One of them

explained, “I learned about the delta function in my
mathematical course, and it is a very special function.
Usually we need to use its integral formula asRþ∞
−∞ δðxÞdx ¼ 1. This formula shows that although the
delta function is infinite at a point, its integral over the
entire space is 1. So in all specific cases, we should
establish the integral over the full space.” The other six
students gave similar answers. In fact, in the quantum
mechanics context that includes a delta function potential, it
is necessary to build the integration around the point where
the delta function is located, rather than over the whole
space. In this way, one can establish the boundary condition
satisfied by the wave function at this point. We believe that
many students are used to the general integral formula for
the delta function, i.e., the range of integration from minus
infinity to plus infinity, which may discourage them from
building the integrals over a finite region.
Step C4: In step C3 students have established the

boundary condition at x ¼ −a, so in step C4 they need
to establish other boundary conditions. There were
N ¼ 211 students who progressed to this step, and among
them, N ¼ 195 students correctly set up all other boundary
conditions. In the remaining N ¼ 16 solutions, students
either lacked the boundary condition for the wave function

at infinity or incorrectly believed that the derivative of the
wave function is always continuous.
In the interviews, one student made a mistake in

constructing the boundary condition at x ¼ 0. When we
asked him about the general rule of boundary conditions in
quantum mechanics, he replied, “The wave function and its
derivative should be continuous at the boundary.” Then we
asked him if the derivatives of the wave function is
continuous at x ¼ 0, where there is an infinitely high
potential. He hesitated for a moment and then replied,
“I made a mistake earlier. At this point, the derivative of the
wave function should be discontinuous.” In quantum
mechanics, the wave function is always continuous, and
the derivative of the wave function is also continuous
except at the point where the potential is infinite. We
believe that some students do not grasp the standard
boundary conditions for the wave function in quantum
mechanics.

C. Execution of the calculations

Step E1: In step E1, students are required to solve
the ordinary differential equation established in step C2.
There were N ¼ 400 students who established the correct
ordinary differential equation, and among them, N ¼ 384
students obtained the correct general solution to this
equation. In the remaining N ¼ 16 solutions, the common
errors included providing incorrect forms of the exponen-
tial function (e.g., obtaining e�ikx instead of e�kx); or
dropping or adding a constant factor.
In the interviews, all students wrote down the general

solutions to the ordinary differential equation directly
without any derivation process. When they were asked
how they provided these general solutions, a typical
response was, “It is an ordinary differential equation with
constant coefficients. I remember that its general solution is
an exponential function.” The interview results imply that
many students do not actually solve ordinary differential
equations, but rather memorize their general solutions.
Step E2: In step E2, students are asked to calculate the

integral expression of the delta function built in step C3.
There were N ¼ 294 students who built the correct integral
expression, and among them, N ¼ 211 students obtained
the correct integral result,

R−aþϵ
−a−ϵ δðxþ aÞφðxÞdx ¼ φð−aÞ.

In the remaining N ¼ 83 solutions, the common errors
included incorrectly assuming that the integral result is 1 or
φð0Þ; or stopping at this step.
In the interviews, eight students made mistakes in this

step. Their interview results can be divided into three types.
Four participants incorrectly wrote down the integral

result as
R −aþϵ
−a−ϵ δðx−aÞφðxÞdx¼1. One of them explained,

“The delta function is an infinite function, and its integral
result is 1.” We then asked him if all integrals of the delta
function are 1, and he answered very clearly, “Of course,
whenever an integral expression contains a delta function,
the result of that integral is 1. This is a special property of
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delta functions.” The other three students gave similar
responses. The interview results suggest that some students
are used to the integral result

Rþ∞
−∞ δðxÞdx ¼ 1 and inap-

propriately generalize this integral property of the delta
function to all integral cases.
Two participants incorrectly wrote down the integral

result as
R −aþϵ
−a−ϵ δðx − aÞφðxÞdx ¼ φð0Þ. We then asked

them how they obtained this result, and one of them
replied, “I remember learning in class that the integral of
a delta function and any function is the value of that
function taken at the origin.” The other student gave a
similar answer. In fact, the example often given in class is a
delta function at the origin that leads to the integral result ofRþ∞
−∞ δðxÞφðxÞdx ¼ φð0Þ. We suspect that some students
are used to the integral result of this particular example and
incorrectly generalize it to all cases. Obviously, the delta
function here is at the point −a, not at the origin.
Two interviewed students stopped at this step without

progressing further. When we asked them why they did not
proceed, one of them replied, “I remember the result of the
integration of the delta function over the full space,Rþ∞
−∞ δðxÞfðxÞdx ¼ fð0Þ. However, the domain of integra-
tion here is ½−a − ϵ, −aþ ϵ�. I don’t know how to calculate
the integral over such a finite region. So there is no way for
me to go on.” The other students gave a similar response. In
fact, the integral does not need to go from minus infinity to
plus infinity. What is important is that the region of
integration includes the point where the delta function is
located, so a finite region would do. The interview results
suggest that some students are used to the result of integral
over the full space, which may discourage them from
understanding and calculating the integral over a finite
region.
Step E3: In step E3, students need to simplify the

equations built in steps C3, C4, and E2 to get the final
answer. Since this step is mostly simple algebraic calcu-
lations, we find that students were usually able to success-
fully pass this step without making mistakes on exams
and interviews.

D. Reflection on the solutions

For problem 1, one of the effective ways to check and
interpret the solution is to check the units of the expressions
(element R1). In this problem, the unit of the delta function
is L−1, where L is the unit of length. Thus the unit of the
constant γ in the expression of the delta function potential is
ML3T−2, where M and T are the units of mass and time,
respectively. Among the 30 students interviewed, only 5
students explicitly commented on the units of the delta
function and the constant. However, they all incorrectly
assumed that the delta function itself must be unitless. For
example, one of the students replied, “The delta function is
definitely a unitless quantity. It is infinite at this point, and
an infinite physical quantity is impossible.” This result

indicates that our students have difficulty in understanding
and applying the unit of the delta function.
For problem 1, looking at the boundary conditions of

the wave function can facilitate the interpretation of the
physical meaning of the delta function potential (element
R2). An effective way to do this is to draw the wave
function in the vicinity of the delta function potential. It is
clear that the wave function has a kink at the point of the
delta function potential. With this graph, it is helpful to
understand the role of the delta function potential in
determining the boundary conditions of the wave function
at this point. In the interviews, 15 students explicitly
commented that they checked the boundary conditions
of the wave function. However, they only checked the
boundary conditions in a purely mathematical, rote way:
look at the expressions for the boundary conditions and see
if they can find an error. They did not draw the corre-
sponding diagram of the wave function or interpret the
behavior of the wave functions to gain a deeper physical
understanding. One student tried to draw the graph of the
wave function when specifically prompted by the inter-
viewer. Then, he replied excitedly, “This is the first time I
have used the method of drawing a wave function to
understand the boundary conditions satisfied by the wave
function. I had never thought of this graphical approach
before.” For experts, the mathematical expressions of the
boundary conditions and their physical meaning are closely
related. However, this result suggests that this relationship
may still be developing for our students.
In addition to commenting on units and boundary

conditions, we would like students to recognize some
limiting behavior and to ensure that this limiting behavior
is consistent with physical expectations (element R3). An
effective way to do this is to check the form of the wave
function at infinity depending on whether the particle is a
bound or scattering state. None of the students in the
interviews explicitly commented on this point. One of the
students used a wave function in the form of a plane
wave eikx. He was confused when we pointed out that this
expression was wrong. We then went on to suggest that the
particle in problem 1 is a bound state and therefore the wave
function should tend to zero at infinity. He then recognized
his error and stated, “I usually just memorize the solution to
the Schrödinger equation for exams. I have never under-
stood the wave functions of bound and scattering states in
this light.”

E. Overview of students’ performance

In total,Nt ¼ 466 students took the exams and attempted
to solve the delta function potential problem. In Fig. 3, we
show the Sankey diagram of the students’ solutions. On the
left, the source represents the total number of students who
took the exams. On the right, a set of destinations shows the
various errors that occurred at each step. The width of the
flow represents the number of solutions that made errors.
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Finally, N ¼ 195 students (approximately 42% of the total)
successfully passed these steps and obtained the correct
answers. As shown in Fig. 3, students tend to make
mistakes in three areas: difficulty with selecting the range
of the energy constant for the delta function potential (C2),
difficulty with building an integral expression for the delta
function potential (C3), and difficulty with calculating the
integral of a delta function (E2). Therefore, these three
areas constitute the main difficulties for students to solve
the problem.

VI. FINDINGS ON STUDENTS’ DIFFICULTIES
WHEN ADDRESSING A POSITION SPACE

DELTA FUNCTION PROBLEM

In this section, we use the ACER framework to classify
and identify students’ difficulties in solving the position
space delta function problem (problem 2 in Table I).

A. Activation of the tools

The question asks for an expression of the wave function
after the position measurement, activating delta functions
as the appropriate mathematical tool. There were N ¼ 506
students who took the exams, of whichN ¼ 18 students did
not know how to proceed.
In the interviews, three students expressed confusion

about being asked to provide the wave function after the
position measurement. When we asked them why they did
not continue, a typical answer was “Measuring the position
of the particle, the state of the particle will become the

position eigenstate. But I don’t remember the expression
for the position eigenstate. I vaguely remember that it
seems to be an exponential function eikx, but I am not sure.”
The other two students gave similar responses. The inter-
view results indicate that some students do not come up
with the delta function as a mathematical description of
this process and they tend to incorrectly assume that the
position eigenfunction is a plane wave. That is, they have
difficulty recognizing the delta function as the appropriate
mathematical tool, even though they know that the wave
function collapses to a position eigenfunction after position
measurement.

B. Construction of the equations

Step C1: In step C1, students need to know that the
position measurement will collapse the system to the
position eigenstate. In addition, they need to know that
the position eigenfunction is a delta function and relate the
position eigenvalue to the argument of the delta function.
There were N ¼ 488 students who started this step, and
among them, N ¼ 406 students wrote down the correct
expression of the delta function for the wave function
after the position measurement ΨðxÞ ¼ Aδðx − a

2
Þ. In the

remaining N ¼ 82 solutions, the common errors included
not building an expression of the delta function at all; or
giving an incorrect expression of the delta function.
The interviews provided additional insight into students’

difficulties in constructing expressions of delta functions.
Their responses can be divided into three types.

FIG. 3. Sankey diagram depicting the pathways of students’ solutions as they progressed through the delta function well problem. The
diagram shows the flow from the beginning to the different types of solutions that have difficulties at a particular step, where the width of
the arrows are proportional to the number of solutions in each flow.
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Four interviewed students wrote down an expression as
jΨðxÞj2. One of them explained, “Measuring the position of
a particle is measuring the probability of the particle
appearing at that point.” The other three students gave
similar responses. The interview results indicate that some
students are unaware of a fundamental concept in quantum
mechanics: a measurement of a physical observable col-
lapses the state of the system to the eigenstate of the
physical observable. This results in their difficulties in
distinguishing between the position eigenfunction and the
probability of position measurement.
Two interviewees gave an incorrect expression for the

delta function as ΨðxÞ ¼ δðxÞ. One of them explained,
“After the measurement, the state of the system becomes a
position eigenstate. The position eigenstate is a delta
function of this form.” The other student gave similar
responses. In fact, measured at x0, the position eigenfunction
is δðx − x0Þ with the eigenvalue x0. We believe that some
students do not understand the meaning of the position
eigenvalue and therefore incorrectly generalize the form of
the commonly used delta function δðxÞ to all cases.
Two participants wrote down an expression for the delta

function as ΨðxÞ ¼ δðx − x0Þ, but did not explicitly give a
specific value for x0. When we asked them why they did not
give a specific value for x0, one student replied, “Measuring
the position of a particle, we do not know exactly where it
is, so we cannot write a specific value for x0. In fact, x0 can
take any value, representing the possibility that the particle
can appear in the whole space.” The other student gave a
similar answer. The interview results imply that some
students did not distinguish between the two basic con-
cepts: the eigenvalue and the probability of the position
measurement.
Step C2: In step C2, students are required to express the

wave function established in step C1 as a superposition of
the energy eigenfunctions. There were N ¼ 406 students
who gave the correct wave function after the position
measurement, and among them, N ¼ 385 students rewrote
this wave function in a linear combination form of the
energy eigenfunctions. In the remaining N ¼ 21 solutions,
a common error was not establishing the superposition
form of the energy eigenfunctions.
In the interviews, one student wrote down an expression

as jΨðxÞj2 at this step. He explained, “The result of a
measurement is the probability of finding a particle at a
certain point. The square of the absolute value of the wave
function jΨðxÞj2 represents this probability.” The interview
results suggest that some students confuse position mea-
surements with energy measurements.
Step C3: In step C3, students are required to express the

probability amplitude as an integral of the wave function
and each energy eigenfunction. There were N ¼ 385
students who progressed to this step, and among them,
N ¼ 341 students correctly wrote the expression for the
probability amplitude cn ¼

R
a
0 φnðxÞδðx − a

2
Þdx. In the

remaining N ¼ 44 solutions, a common error was the
failure to establish the integral expression for the proba-
bility amplitude.
Three interviewed students wrote down a correct

inner product in Dirac notation for the probability and
then obtained an incorrect result as cn ¼ hφnjΨi ¼
φnðxÞδðx − a

2
Þ. When we asked them why there was no

integral part, one of them replied, “To calculate the
probability of a wave function, we should only calculate
the probability of it being at a certain point. Thus we do not
need to include the integral part. Only when we calculate
the probability of a region, we need to include the integral
part.” The other two student gave a similar response. The
interview results show that some students incorrectly
assume that an expression for the probability amplitude
of measuring an observable does not involve the integral,
which may lead to difficulties in converting abstract Dirac
notations into concrete integral expressions in position
representation.
Step C4: In step C4, students are required to express

the probability as the absolute square of the probability
amplitude. There were N ¼ 291 students who proceeded to
this step, and among them, N ¼ 285 students correctly
wrote down the expression for probability. In the remaining
N ¼ 6 solutions, a common error was to treat the proba-
bility amplitude directly as the probability.
During the interviews, one student first wrote down

an expression for probability as cn, then he erased it and
wrote down another expression as jcnj2. He explained,
“Probability is the absolute square of the probability
amplitude. These two quantities are very similar, so I
sometimes confuse them. Fortunately, here I have written
the correct expression for it.”We suspect that some students
tend to confuse the two concepts of probability and
probability amplitude.

C. Execution of the calculations

Step E1: In step E1, students need to calculate the integral
expression established in step C3. There were N ¼ 341
students who built the correct integral containing the delta
function, and among them, N ¼ 291 students obtained
the correct integral result,

R
a
0 sinðnπx=aÞδðx − a=2Þdx ¼

sinðnπ=2Þ. In the remaining N ¼ 50 solutions, the common
errors included: incorrectly calculating the integral as 1; or
stoping at this step.
The interviews provided insight into the students’

difficulties in calculating the integrals of delta functions.
The results of the student interviews can be divided into
two categories.
Five students wrote down the integral asRþ∞

−∞ sinðnπx=aÞδðx−a=2Þdx¼1. One of them explained,
“An integral that contains a delta function should result
in 1, which is a fundamental property of the delta function.”
The other four students gave similar responses. The inter-
view results suggest that some students overgeneralize the
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basic integral formula of the delta function
Rþ∞
−∞ δðxÞdx¼1

to cases where it does not apply.
Another two interviewees stopped at this step. One of

them explained, “I remember that all integrals on the delta
functions are from minus infinity to plus infinity. But here
the integral is from 0 to a. I think it should result in 1, but I
am not sure, so I did not continue writing.” Another student
gave a similar response. The interview results indicate that
some students do not understand the key to the integral
property of the delta function: the integration interval need
not be the full space, but need only include the point where
the delta function is located.

D. Reflection on the solutions

For problem 2, a powerful tool is to check the units of the
expressions (element R1). Among the interviewed students,
only 4 students explicitly commented on the unit of the
delta function, and all of them believed that the delta
function is unitless. Similar to the findings regarding
problem 1, this result suggests that our students’ belief
that the delta function is unitless is widespread and
persistent. This may lead to difficulties in their under-
standing of the physical meaning of the delta function in
specific contexts.
Another effective reflection method is to check that the

results are consistent with the expectations based on the
physical situation (element R2). In particular, one can
draw the position eigenfunction, which is a delta function
centered at a=2. Then, one can draw the energy eigen-
function [sinðnπxa Þ], which is a function of odd (even) parity
centered at a=2 for the case where n is odd (even). With this

graph, it can be expected that the final result should be
different for odd and even cases. However, none of the
students in the interviews commented this relatively subtle
argument. One student’s answer contained an error that the
result was the same for both odd and even cases. After our
prompting, he tried to draw the wave functions and realized
his mistake. He excitedly replied, “Only in classical mechan-
ics, such as problems with a particle moving, I have used
graphical method to help solve the problem. In quantum
mechanics, I have never used this kind of graphical method to
help solve a problem. This is quite enlightening. It is really
great!”Another two students still drew qualitatively incorrect
wave functions after promoting. For example, one student
drew two axes with the horizontal and vertical axes labeled x
and Ψ, respectively, and then drew a point on the x-axis to
represent the position eigenfunction. He explained, “After the
position measurement, the system collapses to a point in
space.” Another student drew only one x axis and drew the
energy eigenfunction as a peak on the x axis. He explained,
“After the energy measurement, the state collapses to a
specific state, so it should be represented by the shape of a
delta function at a certain point.”Agraphical representation of
the wave function can help students gain a deeper under-
standing of the physical situation. However, this result shows
that our students rarely use this reflection method and have
various difficulties in graphing wave functions.

E. Overview of students’ performance

In total, Nt ¼ 506 students took the exams and
attempted to solve the position space delta function
problem. In Fig. 4, we show the Sankey diagram of the

FIG. 4. Sankey diagram depicting the pathways of students’ solutions as they progressed through the position space delta function
problem.
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students’ problem-solving process on this problem. The
types of errors on each solution step are listed on the right
side of the graph, and the width of the flow in the graph
represents the number of solutions that have certain errors.
Finally, N ¼ 285 students (about 56% of the total) success-
fully passed these solution steps and obtained the correct
answers. We found that students tend to make mistakes in
three areas: difficulty with building the delta function
expression for a position eigenfunction and difficulty with
setting the argument of the delta function for a position
eigenfunction (C1), difficulty with building an integral
expression of the delta function for the probability ampli-
tude (C3), and difficulty with calculating the integral of a
delta function (E1). These three areas therefore constitute
the main difficulties for students in solving the problem.

VII. FINDINGS ON STUDENTS’ DIFFICULTIES
WHEN ADDRESSING THE MOMENTUM SPACE

DELTA FUNCTION PROBLEM

In this section, we use the ACER framework to identify
and classify students’ difficulties in solving the momentum
space delta function problem (problem 3 in Table I).

A. Activation of the tools

The question asks for an expression of the orthonor-
mality of momentum eigenfunctions, activating delta func-
tions as the appropriate mathematical tool. There were
N ¼ 340 students progressing to this step, of which
N ¼ 23 students stopped the exams at this step.
In the interviews, four students lost their way at this step.

One of them claimed, “This integral is long and has many
terms. I have been thinking about it for a long time and I
don’t know how to proceed.” Then we prompted that there
are two momentum eigenfunctions in the expression and
the orthonormality of the momentum eigenfunctions can be
used. He thought for a while and replied, “I remember the
expressions for the orthonormality of energy eigenfunc-
tions, because I often deal with this kind of topic. But I
really don’t remember the expression for the orthonormal-
ity of momentum eigenfunctions, because I have hardly
ever dealt with such a topic before.” The other three
students gave similar responses. The interview results
suggest that some students had little training on the
orthonormality of the eigenfunctions with continuous
spectra. Students knew the concept of the orthonormality
of momentum eigenfunctions, but did not come up with the
delta function as a mathematical description of this.

B. Construction of the equations

Step C1: In step C1, students are required to build the
integral expression for the expectation value of position
operator x̂. There were N ¼ 394 students trying to solve this
problem, and among them,N ¼ 384 built the correct integral

expression. In the remaining N ¼ 10 solutions, students
omitted or added some terms to the integral expression.
In the interviews, one student wrote down an expression

as hxi ¼ R
Ψ�ðxÞΨðxÞdx, but left out the most critical term

(i.e., the position operator x̂). He explained, “For position,
its expectation value is the absolute square of the wave
function.” The interview results indicate that some students
did not distinguish between the expectation value of
position and the probability of measuring position.
Step C2: In step C2, students are required to build an

expression for the wave function in the momentum space.
There were N ¼ 384 students who proceeded to this step,
and among them, N ¼ 340 set up the correct momentum
space wave functionΦðpÞ ¼ 1=

ffiffiffiffiffiffiffiffi
2πℏ

p Rþ∞
−∞ e−ipx=ℏΨðxÞdx.

In the remaining N ¼ 44 solutions, the common errors
included not creating an expression for the momentum
space wave function; or missing some terms (e.g., the
exponential factor) in that expression.
In the interviews, one student stopped at this step. When

we asked him if he knew the momentum space wave
function, he hesitated for a moment and then replied,
“I know the position space wave function, but I have no
idea what a momentum space wave function is. So I really
can’t carry on.”
Another three students wrote down an incorrect expres-

sion, for example, ΦðpÞ ¼ Rþ∞
−∞ ΨðxÞdx. One of them

explained, “Usually, in class and in homework, we use
wave functions in position space and rarely use wave
functions in momentum space. I probably remember that
there seems to be an integral between the wave function in
momentum space ΦðpÞ and the wave function in position
space ΨðxÞ. So I write it in this form.” The other two
students gave similar responses.
On the other hand, in the interviews, a student explicitly

commented, “The concepts of wave functions in momen-
tum space and position space, a superposition of momen-
tum eigenstates, the probability amplitude for measuring
momentum, the orthonormality of momentum eigenfunc-
tions, and the completeness of momentum eigenfunctions
are all related together. We can use one formula to derive
another.” Then, he correctly and fluently used the delta
function expression for the orthonormality to connect the
wave function in momentum space ΦðpÞ with the prob-
ability amplitude for measuring momentum hpjΨi, as

hpjΨi ¼
Z

1ffiffiffiffiffiffiffiffi
2πℏ

p e−ipx=ℏΨðxÞdx

¼
Z

1ffiffiffiffiffiffiffiffi
2πℏ

p e−ipx=ℏ
�Z

1ffiffiffiffiffiffiffiffi
2πℏ

p Φðp0Þeip0x=ℏdp0
�
dx

¼
Z

Φðp0Þ
�

1

2πℏ

Z
e−ipx=ℏeip

0x=ℏdx
�
dp0

¼
Z

Φðp0Þδðp0 − pÞdp0 ¼ ΦðpÞ:
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In contrast, several other students claimed that they knew
about wave functions in momentum space or the ortho-
normality of momentum eigenstates, while they did not
comment at all on the connection between these concepts.
Moreover, when we asked them to derive the above
equations, they encountered various difficulties and did
not proceed. Expertise about delta functions in momentum
space contains different nodes that represent different
knowledge pieces in this particular knowledge domain.
The interview result suggests that students who appropri-
ately connect different nodes of knowledge about momen-
tum space often lead to a functional understanding of these
knowledge. In contrast, students who simply memorize
each knowledge piece have only local consistency in their
understanding of these knowledge pieces, but lack global
consistency. This may lead to difficulties in their reasoning
about momentum space, such as difficulties in under-
standing and using the delta function and its closely related
concepts in momentum space.
Step C3: In step C3, students are required to utilize

the orthonormality of momentum eigenfunctions. There
were N ¼ 340 students who proceeded to this step, and
among them, N ¼ 236 students correctly wrote down
the delta function expression for the orthonormality,
1=ð2πℏÞ Rþ∞

−∞ e−ipx=ℏeip
0x=ℏdx ¼ δðp0 − pÞ. In the remain-

ing N ¼ 81 solutions, students either did not build an delta
function expression or built incorrect forms of the delta
function.
In the interviews, eight students made various mistakes

in this step. Their answers can be divided into two types.
Three students wrote down an expression asR
e−ipxeip

0xdx ¼ 1. One of them explained, “The integral
of two momentum eigenfunctions results in 1. This is the
orthonormality that is generally satisfied by the eigenfunc-
tions.” We then asked him if he could give an example to
illustrate. He replied, “For example, a particle in an infinite
square potential well has energy eigenfunctions as φnðxÞ.
Then the orthonormality of any two energy eigenfunctions
can be written as

R
φ�
mðxÞφnðxÞdx ¼ δmn ¼ 1 for m ¼ n.”

Two other students gave similar answers. In fact, the
eigenfunctions with continuous spectra have the orthonor-
mality as the delta function, while the eigenfunctions with
discrete spectra have the orthonormality as the Kronecker
delta δmn. The Kronecker delta reduces to 1 only if the two
eigenfunctions are the same. The interview results suggest
that some students confuse the orthonormality of discrete
spectra and continuous spectra.
Another five students wrote down an expression asR
e−ipxeip

0xdx ¼ δðx − x0Þ. One of them explained,
“I remember that the momentum eigenfunction is very
special and its orthonormality is expressed as a delta
function.” We then asked him to write the orthonormality
of the position eigenfunctions, and he still wrote a similar
expression as

R
φðxÞφðx0Þdx ¼ δðx − x0Þ. We asked him

why the two expressions have the same result. He thought

for a moment and replied, “Both momentum eigenfunc-
tions and position eigenfunctions satisfy the same ortho-
normality as the delta function.” The interview results
show that some students did not distinguish between the
orthonormality of momentum eigenfunctions and position
eigenfunctions.

C. Execution of the calculations

Step E1: In step E1, students are required to perform
some transformations on the expression established in
step C2, such as x ¼ −iℏ d

dp. Because this equation was
explicitly provided in the text of the problem, students did
not make mistakes in this step either in the exams or in the
interviews.
Step E2: In step E2, students are required to calculate the

integral containing the delta function built in step C3. There
were N ¼ 236 students who set up the correct integral
expression, and among them, N ¼ 194 students obtained
the correct result

Rþ∞
−∞ δðp0 − pÞΦðp0Þdp0 ¼ ΦðpÞ. In the

remaining N ¼ 42 solutions, the students obtained incor-
rect integral results as 1 or Φð0Þ.
In the interviews, five students made mistakes in this

step. Their answers can be divided into two types.
Three interviewees calculated the integral asRþ∞

−∞ δðp0 − pÞΦðp0Þdp ¼ 1. One of them explained,
“The integral containing the delta function is always 1,
which is the most important property of the delta function.”
The other two students gave similar responses. The inter-
view results show that some students inappropriately
generalize the particular integral of the delta functionRþ∞
−∞ δðxÞdx ¼ 1 to all integral cases.
Another two participants calculated the integral asRþ∞

−∞ δðp − p0ÞΦðpÞdp ¼ Φð0Þ. One of them explained,
“I remember that the result of the integral of the delta
function and an arbitrary function is the value of that
function taken at the origin point. This is a general
formula.” The other student gave a similar response. We
believe that some students incorrectly generalize the special
integral formula for the delta function

Rþ∞
−∞ δðxÞfðxÞdx ¼

fð0Þ to all integral situations.

D. Reflection on the solutions

For problem 3, checking the units of the expressions is
an effective reflection tool (element R1). However, none
of the students in the interviews explicitly commented on
the units of the expressions. Five of the students wrote
down an incorrect expression for the orthonormality asRþ∞
−∞ e−ipx=ℏeip

0x=ℏdx ¼ δðp0 − pÞ, where they left out a
constant factor 1=ð2πℏÞ. One student was confused when
we suggested that the units on the left and right sides of this
expression did not agree. We then asked him to comment
on the unit of the integral on the left side and the unit of the
delta function on the right side. He correctly thought that
the unit of the integral is L, but incorrectly thought that the
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delta function is unitless. Thus he could not reconcile the
two ideas: that the units of the expression are consistent
and that the delta function should be unitless. We then
prompted that the unit of the integral is L, while the unit of
the delta function is M−1L−1T, where L, M, and T are the
units of length, mass, and time, respectively. So in order to
make the units of the left and right sides consistent, the left
side should have a constant factor 1=ð2πℏÞ. He replied,
“I used to memorize these formulas by rote, so it was easy
to miss some constant factors. This is the first time I
understand these formulas from the perspective of units,
which is interesting. It gives me a refreshing feeling.”
Another two students gave similar responses. This result
suggests the potential value of this reflection in capturing
errors and facilitating interpretation, while also suggests
that our students rarely use such reflection spontaneously.

E. Overview of students’ performance

In total,Nt ¼ 394 students took the exams and attempted
to solve the momentum space delta function problem. In
Fig. 5, we show the Sankey diagram of the students’
problem-solving performance on this problem. The flow
from left to right indicates the types of errors students made
at each step, while the width of the flow indicates the
number of solutions that made a certain error. Finally,
N ¼ 194 students (about 49% of the total) obtained the
correct answers. As shown in the figure, students were
prone to make mistakes in three areas: difficulty with
building the expression for the wave function in momentum
space (C2), difficulty with building the delta function
expression for the orthonormality (C3), and difficulty with

calculating the integral of a delta function (E2). These
three areas are the main difficulties students have in solving
the problem.

VIII. DISCUSSIONS AND CONCLUSIONS

A. Findings regarding the delta function problems

It is commonly assumed that if students learn math-
ematical methods in a given physical context, they are able
to transfer their knowledge and skills from one physical
context to another. However, this phenomenon was not
observed in our study.
In this work, we investigated students’ difficulties by

analyzing their exam answers and conducting think-aloud
interviews. Then, we analyzed the data according to the
ACER framework. We found that students made a variety
of errors when using the tools of delta functions to solve the
problems in the context of quantum mechanics. For the
three different quantum physics problems, we summarize
in Table II, the primary difficulties and possible causes that
students exhibited at each stage of the problem-solving
process. Here, primary difficulties refer to the errors made
by multiple students (typically > 20 students).

B. Comparison of delta functions in different
application contexts

The above sections present the results of our study on
students’ difficulties with delta functions in three contexts.
It is interesting to compare students’ difficulties in different
contexts to see what are the similarities and differences.

FIG. 5. Sankey diagram depicting the pathways of students’ solutions as they progressed through the momentum space delta function
problem.
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(i) Differences in the activation stage: In solving the
delta function potential well problem, the problem text
explicitly suggests an expression for the delta function. It
effectively shortens the activation process but also provides
little information about the activation process.

In solving the position space delta function problem,
students needed to activate the resources related to the
delta functions. However, we found that students knew
that a position measurement collapses the particle wave
function to a position eigenstate, but did not come up

TABLE II. A summary of student difficulties with delta functions in quantum mechanics.

Stages Student difficulties Possible reasons

Evidence in
previous
studies

Activation Students know that the wave function collapses to a
position eigenfunction after position measurement, but
have difficulty recognizing the delta function as the
appropriate mathematical tool

Incorrect belief that the position eigenfunction
is represented by a plane wave form

Novel

Students know the concept of the orthonormality of
momentum eigenfunctions, but have difficulty
recognizing the delta function as the appropriate
mathematical tool

Unfamiliar with the orthonormality of
eigenfunctions with continuous spectra

Novel

Construction Difficulty with selecting the range of the energy constant
for the delta function potential

Incorrect belief that a delta function potential
can confine particles of all energy ranges

Novel

Difficulty with building an integral expression for the
delta function potential

Difficulty in realizing that the delta function
potential must determine the boundary
condition of the wave function

Novel

Difficulty with setting the range of integration for the
delta function

Incorrect belief that the range of integration of
a delta function should be infinite

Novel

Difficulty with building the delta function expression for
a position eigenfunction

Confusion between the position eigenfunction
and the probability of position measurement

Discussed
in [9]

Difficulty with setting the argument of the delta function
for a position eigenfunction

(i) Difficulty in realizing the meaning of the
position eigenvalue (ii) Confusion between
the position eigenvalue and the probability
of position measurement

Novel

Difficulty with building the superposition expression for
a delta function

Confusion between position eigenstates and
energy eigenstates

Discussed
in [9]

Difficulty with building an integral expression of the
delta function for the probability amplitude

Incorrect assumption that the expression for
probability amplitude does not involve an
integral part

Discussed
in [9]

Difficulty with building the expression for the wave
function in momentum space

Difficulty in linking related concepts of wave
functions in momentum space

Novel

Difficulty with building the delta function expression for
the orthonormality

(i) Confusion between the orthonormality of
discrete spectra and continuous spectra
(ii) Confusion between the orthonormality
of momentum eigenfunctions and position
eigenfunctions

Novel

Execution Difficulty with calculating the integral of a delta function Overgeneralization of the special integral
formula

R
δðxÞdx ¼ 1 orRþ∞

−∞ δðxÞfðxÞdx ¼ fð0Þ to all integral cases

Partially
discussed
in [37]

Difficulty with the integral of a delta function for the case
of finite integration range

Incorrect assumption that the integration range
of a delta function should be infinite

Novel

Reflection Difficulty with using effective reflection methods such as
checking units

Incorrect belief that the delta function is
unitless

Discussed
in [37]

Difficulty with using effective reflection methods such as
checking boundary conditions

Difficult in graphing a wave function in the
situation of the delta function potential

Novel

Difficulty with using effective reflection methods such as
checking limits

(i) Difficult in graphing a delta function form
for the position eigenfunction
(ii) Incorrectly graphing a delta function
form for the energy eigenfunction

Novel
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with the delta function as a mathematical description
of this.
Similarly, in solving the momentum space delta function

problem, students also needed to activate the resources
related to the delta functions. However, we found that
although students knew that the momentum eigenstates
should satisfy the orthonormality, they did not come up
with the delta function as a corresponding mathematical
description for this.
(ii) Differences in the construction stage: In solving

these problems, our students made various mistakes in the
construction process. In the case of the delta function
potential well, some students did not set up the integral
of the delta function potential. There are two reasons for
this difficulty: (i) students do not realize that the delta
function potential can determine the boundary condition of
the wave function at the point where the potential is infinite.
(ii) students are used to examples that the range of
integration of the delta function is infinite, which discour-
ages them from establishing a finite range of integration of
the delta function.
In the case of position space delta function, some

students either did not build the delta function or built
the incorrect expression of the delta function. This may be
due to their difficulties with some basic concepts: (i) they
do not recognize that the position measurement would
collapse the state to the position eigenfunction, (ii) or they
do not distinguish between the position eigenvalue and the
probability of position measurement.
In the case of the momentum space delta function, some

students also did not correctly establish the delta function
expressions for the orthonormality of the momentum
eigenfunctions. This may be due to the following two
reasons: (i) students confuse the orthonormality of discrete
spectra and continuous spectra, (ii) or they confuse the
orthonormality of position eigenfunctions and momentum
eigenfunctions.
(iii) Similarities in the execution stage: In all three

problems, students were required to calculate the integral of
the delta function. We found that students commonly made
the same mistakes: incorrectly calculating the integral
results as 1 or fð0Þ. This is due to the fact that students
overgeneralize the special integral formulas

Rþ∞
−∞ δðxÞdx¼1

or
Rþ∞
−∞ δðxÞfðxÞdx ¼ fð0Þ to all integrals of delta func-

tions, where they are not directly applicable.
(iv) Similarities in the reflection stage: Reflection

refers to the use of appropriate approaches to check
whether the solution is consistent with physics-based
expectations in order to gain confidence in the solution.
For the problems covered in this study, the following
reflection methods can be used: checking the units, or
confirming that the boundary conditions are satisfied, or
checking the limiting behavior of the solution.
While our students are able to perform meaningful

reflection when explicitly prompted, few are able to execute

these reflections spontaneously. They often use purely
mathematical, rote procedures without a deeper under-
standing of the physical picture and physical meaning of
the problem. Such an approach is highly inefficient.
On the one hand, students rarely comment spontaneously

on the units of the expression including a delta function.
And they all believe that delta functions are unitless, a
misconception that surprisingly persists whether the delta
function is in position space or in momentum space.
On the other hand, in addition to commenting on the

units of a given expression, we would like our students to
recognize the physical interpretation of this expression and
to ensure that the limit behavior and physical interpretation
are consistent. For experts, the units, the limit behavior and
its physical meaning of a delta function are closely linked;
however, the results of the study suggest that this relation-
ship may still be developing for our students.
In summary, in the construction stage, students need to

construct expressions for the delta function. They need to
translate the physical situation into mathematical expres-
sions (e.g., establish the delta function expression for the
corresponding position eigenfunction after a position
measurement) or explain the physical meaning of the
mathematical expressions (e.g., recognize that the argu-
ment of the delta function corresponds to the position
eigenvalue). The study results indicate that the students do
not develop a functional understanding of the concepts
relevant for solving these problems (e.g., difficulty in
distinguishing between the eigenvalue and the probability
of position measurement). The differences between the
difficulties encountered by students in different contexts are
understandable, as the construction stage of the problem-
solving process is highly dependent on the specific physical
context of the problem. In the execution stage, the
mathematical computing errors made by the students on
these three problems are similar because the integral
calculation of the delta function is content independent.

C. Comparison with previous studies on delta
functions in the context of electrostatics

As mentioned in the literature overview, there is only one
study on students’ difficulties using the delta function in the
context of electrostatics [37]. It is important to compare our
study with previous studies to see what pre-existing
difficulties are persistent and what difficulties are emerging.
(i) Similarities and differences in the activation stage:

The previous study [37] has found that students have
difficulty in recognizing the delta function as the appro-
priate mathematical tool for charge distribution even they
can provide a correct physical interpretation of it. Similarly,
we found this type of difficulty in more aspects of quantum
physics. On one hand, students know that the wave function
collapses to a position eigenfunction after position meas-
urement, but have difficulty recognizing the delta function
as the appropriate mathematical tool. On the other hand,
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students know the concept of the orthonormality of
momentum eigenfunctions, but have difficulty recognizing
the delta function as the appropriate mathematical tool.
(ii) Similarities and differences in the construction

stage: In the study of electrostatics [37], the shape of the
charge distribution is related to the number of delta
functions. The researchers found that students sketch the
charge distribution on the three-dimensional Cartesian axes
as a very narrow spike. This is a one-dimensional graphical
representation of the delta function at x ¼ 0 as an infinitely
high and thin distribution, which is commonly used when
the delta function is first defined. However, students
attempt to apply this one-dimensional representation of
the delta function to a three-dimensional representation,
leading to difficulties in relating the shape of the charge
distribution to the coordinate system and the number of
delta functions.
In the present study of quantum mechanics, we focus on

the case of one-dimensional delta functions. During the
interviews, we found that students mostly understand the
definition of the delta function and they are able to draw a
schematic representation of the delta function: a spike at a
certain position. Unlike the case of electrostatics, it is a
correct visualization to relate this one-dimensional repre-
sentation of the delta function as a very narrow spike to the
mathematical expression of the delta function. In order to
probe how students use high-dimensional delta functions
and possible difficulties, in future studies we will design
questions related to high-dimensional delta functions in the
context of quantum mechanics.
The previous study [37] has found that students have

difficulty in relating the values of the parameters of the
delta function to the locations of the charge distribution.
This type of difficulty also appeared in our study, for
example, students made errors in determining the eigen-
values of the position eigenfunctions. When the delta
function is used to express the charge distribution, the
parameter value indicates the charge position. When the
delta function is used to express the position eigenstate,
the parameter value represents the position of the particle
after a position measurement. Thus, students’ difficulties
with the physical meaning of the parameter values of the
delta function persist in different physics contexts.
The previous study [37] has also found that students have

difficulty in building integrals for regions of the charge
distribution. In fact, we found that this type of difficulty
arise in more contexts of quantum mechanics: for the delta
function potential, students do not know why they need to
build an integral to construct the corresponding boundary
condition for the wave function. For the measurement
probability, students have difficulty in translating the
abstract Dirac notation into the concrete integral expres-
sion, especially when this integral involves the delta
function. A combination of the previous study and our
study indicates that although students mostly understand

the integral nature of delta functions, it is challenging for
them to construct the integrals of delta functions from
scratch for physical situations. Taken together, these studies
suggest that although the delta function methods are
general, students have considerable challenges in trans-
lating specific physical concepts into these delta function
expressions.
(iii) Similarities and differences in the execution

stage: The previous study [37] has found that students
have difficulty in calculating the integrals of delta func-
tions. Further, the study also found that this difficulty is
mainly due to the fact that students recognize that the
delta function can pick out the value of a variable, but they
always apply incorrectly, e.g., they incorrectly believeRþ∞
−∞ δðx − x0Þdx ¼ x0.
In our study, we also observed that students have various

difficulties in calculating the integrals of delta functions.
However, the reasons for these difficulties are somewhat
different from previous findings. On the one hand,
students tend to incorrectly generalize the integral formulasRþ∞
−∞ δðxÞdx ¼ 1 or

Rþ∞
−∞ δðxÞfðxÞdx ¼ fð0Þ to all integral

cases where these integral formulas are not applicable. On
the other hand, students are used to the case that the limits
of integration of the delta function are from negative
infinity to positive infinity, leading their difficulties with
the case of the finite region of integration.
(iv) Similarities and differences in the reflection

stage: The previous study has found that students rarely
use effective checks, and in particular have difficulty in
checking the units of delta functions and constants. A
similar difficulty was found in our study: students believed
that the delta function is unitless. Thus, students’ difficul-
ties with the units of delta functions persist in both
electrostatics and quantum mechanics contexts.
In summary, as shown in Table II, the many difficulties in

using the delta function seem to persist in the students’
reasoning for solving electrostatics problems (as docu-
mented in the previous study) and for solving quantum
physics problems (as documented in this paper). In addi-
tion, some new difficulties in constructing and computing
delta functions are identified in our study.

D. Comparison with previous studies
on position measurement

To the best of our knowledge, there are no studies
specifically on the use of delta functions in the context of
quantum mechanics. In addition, there is some work that
deals with the topic of position measurement [2,5,6,9].
Position is an important physical operator whose eigen-
function is a delta function, and its eigenvalue is the value
of the parameter in the delta function.
Previous studies [2,5,6,9] have found that students do not

realize that the state of the system would become the
eigenstate of the observable after the measurement. This
type of difficulty also appeared in our study. For example,
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some students do not recognize that the state of the system
would collapse to the position eigenstate after the position
measurement, which discourages them to built the delta
function expression for the position eigenstate.
Previous studies [2,5,6,9] also found that students have

difficulty in distinguishing between the probability of
measuring position and the outcome of position meas-
urement. This type of difficulty manifested itself in
numerous ways in our study. On the one hand, some
students confuse the absolute square of the wave function
jΨj2 with the resulted state of position measurement,
which leads to their difficulties in writing down the delta
function expression for the position eigenstate. On the
other hand, some students do not understand the physical
meaning of the values in the delta function δðx − x0Þ and
incorrectly believe that their values cannot be determined
due to probability.
Previous studies [2,5,6,9] have found that students

confuse between positional eigenstates and energy eigen-
states. This type of difficulty also appeared in our study. For
example, the students’ confusion between position meas-
urement and energy measurement results in their difficul-
ties in writing the position eigenstate as a superposition
form of the energy eigenstates.
Moreover, in our study, many difficulties arose in

establishing the integral of a certain delta function and
calculating the result of this integral. However, quantum
mechanics concept investigations [2,5,6,9] usually consists
of multiple-choice questions that do not ask students to
perform calculations, so these difficulties have not been
observed in previous studies.
In summary, as shown in Table II, synthesizing previous

related studies and our study, students have some con-
ceptual difficulties with position measurements. These
difficulties with conceptual understanding affect how they
translate these concepts into mathematical expressions of
delta functions.

E. Implications for instruction

Our investigation of students’ common difficulties can
provide several implications for instruction on delta func-
tions in quantum mechanics.
First, students know the image of the delta function

and they can draw a spike to explain the delta function.
However, they have difficulty in translating the relevant
quantum physics concepts into expressions of the delta
function. In particular, for the delta function expression of
position eigenstate, they often confuse the following
concepts: the result of position measurement, the proba-
bility of position measurement, and the position eigen-
function after position measurement. We suggest that for
the position operator, students should be asked to do more
conceptual test questions, which provide an opportunity for
them to try to distinguish various quantum concepts related
to the position operator.

Second, students have difficulty in establishing expres-
sions of the delta function for the orthonormality of the
eigenfunctions with continuous spectra. In the traditional
homework at USTC, students are often exposed to
eigenfunctions with discrete spectra, such as the energy
eigenfunctions in an infinite square potential well, and
they are able to express the orthonormality of these
energy eigenfunctions. However, they incorrectly assume
that this simple orthonormality can be generalized to the
case of all eigenfunctions. We suggest that more exercises
on the eigenfunctions with continuous spectra can be
assigned and students can try to solve these problems
using delta functions.
Third, students have difficulty in creating integral

expressions for the delta function potential. In fact, students
often incorrectly believe that the wave function and its
derivative are always continuous. We suggest that the
correct boundary conditions should be emphasized in
teaching: although the wave function is always continuous,
its derivative is discontinuous at points where the potential
is infinite. It would also be more enlightening to draw a
graph of the wave function at these singular points for a
specific example. This would allow the students to under-
stand why the delta potential can determine the boundary
condition for the derivative of the wave function.
Fourth, students make various mistakes when they per-

form the integral calculations concerning delta functions. In
particular, students incorrectly generalize the integral for-
mulas of the delta function (e.g.,

Rþ∞
−∞ δðxÞdx ¼ 1) to all

situations where they are not applicable. Since students often
encounter these typical examples, they will remember them
and use pattern matching to deal with the problems they
encounter on the exams. We suggest that more complex
integral calculations of delta functions can be assigned
for homework, so that students can be asked to use the
basic properties of delta functions instead of memorizing
simple examples.
In the calculations, students incorrectly assume that the

integration of the delta function must be from negative to
positive infinity. We suggest that this context should be
emphasized in teaching: all that matters is that the region
of integration includes the point where the delta function
is located.
The ability to meaningfully reflect on or interpret the

solutions is a defining characteristic of physicists.
Checking the solution and constructing a meaningful
interpretation are as important as a practice that gets
solutions. Yet these are the areas where our students
struggle most when manipulating delta functions. These
methods of reflection are not sufficiently emphasized in our
current physics courses. Questions and activities should be
designed to develop students’ reflective skills.
In general, there are several effective ways to reflect on

the solutions in quantum mechanics: checking whether the
units of the expressions are consistent, checking whether
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the wave function satisfies the boundary conditions, and
checking whether the limiting behavior of the results is
consistent with expectations.
Checking the units of an expression is one of the most

common methods of reflection. Exercises can be assigned
while actively prompting students to comment on the units
of the expression and the corresponding physical inter-
pretation, and to ensure that the units and physical
interpretation are consistent. This will develop the habit
of students reflecting on their solutions by checking the
units. Specifically for problems related to delta functions,
students can start by analyzing the integral expression of a
one-dimensional delta function

Rþ∞
−∞ δðxÞdx ¼ 1 to deter-

mine the units of the delta function.
Checking the behavior of the wave function at the

boundary or in a particular regime is also an effective
method of reflection. Specifically for problems with delta
function potentials, students can analyze the wave function
in different regions to ensure that the result is consistent
with expectations. For example, a boundary with a delta
potential of infinity separates two regions with a delta
potential of zero, so a reasonable intuition is that the wave
functions on both sides should behave similarly, while the
wave function should change dramatically at the boundary.
In particular, we can use the Bayesian updating [47,48]

to facilitate students’ application of reflection. The
Bayesian updating activities allow students to test a
hypothesis or model using hypothetico-deductive reason-
ing, and then perform a Bayesian update of their confidence
in the hypothesis or model being tested. Previous work
[47,48] has found that using Bayesian updating activities in
introductory physics courses resulted in significant
improvements in students’ scores on the epistemic beliefs
assessment in the physical sciences (EBAPS).
When solving quantum mechanical problems (e.g.,

solving the Schrödinger equation for a particle in a
potential), students can be asked to reflect on their solutions
by following the steps of the Bayesian updating as

Step 1: assume that the solution is correct and give an
initial confidence Ci.

Step 2: predict how the result in the solution should change
if one of the input physical parameters is changed.

Step 3: redo the calculations to see if the result changes
as expected.

Step 4: determine whether this reflective activity con-
firms or disconfirms the hypothesis.

Step 5: update the confidence in the hypothesis Cf using
Bayes’ theorem.

Cf ¼ CiR
CiRþ 1 − Ci

:

Here Cf is the confidence of hypothesis H being true
given the newly obtained evidence E, and Ci is the initial
confidence of hypothesis H being true before considering

the new evidence, and R is a Bayes factor which refers
to whether a particular piece of evidence E confirms, or
negates, hypothesis H. For example, a confirmatory evi-
dence leads to a large value of R (R > 1); a disconfirmatory
evidence means a small value of R (0 < R < 1).
The ability to learn from reflection on the experimental

and theoretical testing of physical hypotheses is central to
the practice of physics. These Bayesian updating activities
provide students with a consistent structure and clear
motivation to reflect on their work, and lead them to
independent learning.
In conclusion, we utilized the ACER framework to

analyze students’ problem-solving processes using delta
functions in quantum mechanics. We found that students’
understanding of relevant quantum physics concepts affects
their performance using the delta function. Compared to
previous studies of the use of delta functions in electro-
statics, our study showed that some students’ difficulties
can be perpetuated and new difficulties can arise. The delta
functions here are relatively simple and future studies could
be extended to more complex delta functions, such as three-
dimensional ones. Additional research could provide a
broader view of students’ problem-solving processes, help
identify possible patterns of student reasoning, and allow
for the development of appropriate instructional strategies
to address students’ reasoning difficulties.
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APPENDIX A: OPERATIONALIZATION OF THE
ACER FRAMEWORK FOR THE DELTA

FUNCTION WELL PROBLEM

In the following we provide the summary of the process
to solve the delta function well problem (problem 1 in
Table I) according to the ACER framework.

• Step A—In this problem, a particle interacts with a
potential well of the delta function form, which
can active the tools of delta functions.

• Step C1—Set up the basic equation:
We can write the time-independent Schrödinger

equation

�
−
ℏ2

2m
d2

dx2
− γδðxþ aÞ

�
φðxÞ ¼ EφðxÞ:

• Step C2—Choose the range of the energy
constant:

When the energy E is less than the potential
energy at both plus and minus infinity, the
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particle is in a bound state. Thus we have E < 0.
Since

δðxþ aÞ ¼ 0; if x ≠ −a

¼ ∞; if x ¼ −a;

we can write the time-independent Schrödinger
equation as

d2φ
dx2

¼ k2φ

in the region x < −a and in the region
−a < x < 0. This is an ordinary differential
equation (ODE), and k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2mE=ℏ2

p
is real

and positive.
• Step E1—Provide the general solutions to the
ODE:

The above ODE has the general solutions as

φðxÞ ¼ Aekx þ Be−kx;

in the region x < −a, and

φðxÞ ¼ Cekx þDe−kx

in the region −a < x < 0. Here A, B, C, andD are
the unknown constants.

• Step C3—Set up the boundary condition at the
point x ¼ −a:

We can write the time-independent Schrödinger
equation as

�
−
ℏ2

2m
d2

dx2
− γδðxþ aÞ

�
φðxÞ ¼ EφðxÞ

at the point x ¼ −a. Integrating the Schrödinger
equation from −a − ϵ to −aþ ϵ, and taking the
limit as ϵ → 0, we thus obtain

lim
ϵ→0

Z
−aþϵ

−a−ϵ

�
−
ℏ2

2m
d2

dx2
− γδðxþ aÞ

�
φðxÞdx

¼ lim
ϵ→0

Z
−aþϵ

−a−ϵ
EφðxÞdx:

• Step E2—Calculate the integral containing the
delta function:

The integral in the above boundary condition
yields

Z
−aþϵ

−a−ϵ
δðxþ aÞφðxÞdx ¼ φð−aÞ:

Then the left side of the above boundary
condition is

lim
ϵ→0

Z
−aþϵ

−a−ϵ

�
−
ℏ2

2m
d2

dx2
− γδðxþ aÞ

�
φðxÞdx

¼ −
ℏ2

2m

�
dφ
dx

����
−aþ

−
dφ
dx

����
−a−

�
− γφð−aÞ;

and the right side of the above boundary
condition is

lim
ϵ→0

Z
−aþϵ

−a−ϵ
EφðxÞdx ¼ 0:

Thus we obtain

�
dφ
dx

����
−aþ

−
dφ
dx

����
−a−

�
¼ −

2mγ

ℏ2
φð−aÞ:

• Step C4—Set up other boundary conditions:
The second term in the general solution

φðxÞ ¼ Aekx þ Be−kx blows up as x → −∞, so
we are left with φðxÞ ¼ Aekx. Then we impose
boundary conditions: φ continuous at x ¼ 0 and
x ¼ −a,

CþD ¼ 0;

Ae−ka ¼ Ce−ka þDeka:

In addition, utilizing the result in Step E2, we
have the boundary condition: dφ

dx discontinuous at
x ¼ −a,

kðCe−ka −DekaÞ − kAe−ka ¼ −
2mγ

ℏ2
Ae−ka:

• Step E3—Determine the energy eigenvalues:
Using algebraic calculations, we obtain

�
1 −

2

kL

�
Ae−ka ¼ 2C coshðkaÞ:

Here L ¼ ℏ2
mγ. This is the equation for the allowed

energies of the bound states, where k is a function
of the energy E.

• Step R—Use the specific methods to check the
solution: e.g., check the units of the expressions or
check the boundary conditions.
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APPENDIX B: OPERATIONALIZATION OF THE
ACER FRAMEWORK FOR THE POSITION

SPACE DELTA FUNCTION PROBLEM

Following the ACER framework, a summary of the
process to deal with the position space delta function
problem (problem 2 in Table I) is shown here.

• Step A—The measurement of position invokes the
concept of position eigenfunctions, which can
prompt the resources of delta functions.

• Step C1—Write down a delta function expression
for the position eigenfunction after a position
measurement:

After the position measurement at the center
of the well, the wave function is a delta
function as

ΨðxÞ ¼ Aδ

�
x −

a
2

�
:

• Step C2—Express the wave function as a super-
position of the energy eigenfunctions:

A subsequent energy measurement yields the
energy eigenfunctions. Thus we expand the wave
function as

ΨðxÞ ¼ Aδ

�
x −

a
2

�
¼

X
n

cnφnðxÞ;

where the energy eigenfunctions are φnðxÞ ¼ffiffi
2
a

q
sinðnπxa Þ.

• Step C3—Set up the equation for the probability
amplitude:

The probability amplitude of a given energy
eigenfunction can be expressed as a integral

cn¼
Z

a

0

φ�
nðxÞΨðxÞdx¼

Z
a

0

φ�
nðxÞAδ

�
x−

a
2

�
dx:

• Step E1—Calculate the integral containing the
delta function:

Applying the property of the delta function, we
can calculate the integral

cn ¼
Z

a

0

ffiffiffi
2

a

r
sin

�
nπx
a

�
Aδ

�
x −

a
2

�
dx

¼ A

ffiffiffi
2

a

r
sin

�
nπ
2

�
:

• Step C4—Setup the expression for the probability:
The probability of measuring a given energy

value can be expressed as

Pn ¼ jcnj2:

Thus we can find the probability of measuring a
given energy value En,

Pn ¼ jAj2 2
a
for n odd andPn ¼ 0 for n even:

• Step R—Apply the specific methods to check the
solution: e.g., check the units of the expressions or
check that the result is consistent with the expect-
ation based on the form of the wave function.

APPENDIX C: OPERATIONALIZATION OF THE
ACER FRAMEWORK FOR THE MOMENTUM

SPACE DELTA FUNCTION PROBLEM

According to the ACER framework, a summary of the
process to deal with the momentum space delta function
problem (problem 3 in Table I) is shown here.

• Step A—The problem involves the momentum
representation. The important property in the
momentum representation is the orthonormality
of the eigenfunctions, which can motivate knowl-
edge related to the delta function.

• Step C1—Express the expectation value in terms
of the wave function in position space:

For the position operator, we have

hxi ¼
Z þ∞

−∞
Ψ�ðxÞxΨðxÞdx;

where ΨðxÞ is the wave function in the posi-
tion space.

• Step C2—Express the wave function in momen-
tum space:

The wave function in momentum space is a
Fourier transform of the wave function in position
space,

ΦðpÞ ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p
Z þ∞

−∞
e−ipx=ℏΨðxÞdx:

Alternatively, its inverse Fourier transform is

ΨðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2πℏ

p
Z þ∞

−∞
eipx=ℏΦðpÞdp:

• Step E1—Organize the expression of the intergral:
We substitute it into the expression of expect-

ation value, and we obtain

hxi ¼ 1

2πℏ

Z þ∞

−∞

�Z þ∞

−∞
e−ipx=ℏΦ�ðpÞdp

�
x

×

�Z þ∞

−∞
eip

0x=ℏΦðp0Þdp0
�
dx

¼ 1

2πℏ

Z þ∞

−∞

Z þ∞

−∞

Z þ∞

−∞
Φ�ðpÞ

�
iℏ

d
dp

�

× e−ipx=ℏeip
0x=ℏΦðp0Þdp0dpdx:
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Here we use the hint of the question:
xeipx=ℏ ¼ ð−iℏ d

dpÞeipx=ℏ.
• Step C3—Apply the orthonormality for momen-
tum eigenfunctions:

For two momentum eigenfunctions, we can
write their orthonormality as

1

2πℏ

Z þ∞

−∞
e−ipx=ℏeip

0x=ℏdx ¼ δðp0 − pÞ:

We substitute it into the expression of expectation
value, and we obtain

hxi ¼
Z þ∞

−∞

Z þ∞

−∞
Φ�ðpÞ

�
iℏ

d
dp

�

× δðp0 − pÞΦðp0Þdp0dp:

• Step E1—Calculate the integral containing the
delta function:

Using the property of the delta function, we can
calculate the above intergal as

hxi ¼
Z þ∞

−∞

Z þ∞

−∞
Φ�ðpÞ

�
iℏ

d
dp

�

× δðp0 − pÞΦðp0Þdp0dp

¼
Z þ∞

−∞
Φ�ðpÞ

�
iℏ

d
dp

�
ΦðpÞdp:

This is the final answer.
• Step R—Apply the specific methods to check the
solution: e.g., check the units of the expressions.
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