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Engaging in interactions with peers is important for student learning. Many studies have quantified
patterns of student interactions in in-person physics courses using social network analysis, finding different
network structures between instructional contexts (lecture and laboratory) and styles (active and tradi-
tional). Such studies also find inconsistent results as to whether and how student-level variables (e.g.,
grades and demographics) relate to the formation of interaction networks. In this cross-sectional research
study, we investigate these relationships further by examining lecture and lab interaction networks in four
different remote physics courses spanning various instructional styles and student populations. We apply
statistical methods from social network analysis—exponential random graph models—to measure the
relationship between network formation and multiple variables: students’ discussion and lab section
enrollment, final course grades, gender, and race or ethnicity. Similar to previous studies of in-person
courses, we find that remote lecture interaction networks contain large clusters connecting many students,
while remote lab interaction networks contain smaller clusters of a few students. Our statistical analysis
suggests that these distinct network structures arise from a combination of both instruction-level and
student-level variables, including the learning goals of each instructional context, whether assignments are
completed in groups or individually, and the distribution of gender and major of students enrolled in a
course. We further discuss how these and other variables help to understand the formation of interaction
networks in both remote and in-person physics courses.
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I. INTRODUCTION

Social interactions with others, including instructors and
peers, are central to student learning [1–3]. Specifically,
collaboration with others allows for sharing information
and co-constructing understanding while also affording
opportunities for reflection and troubleshooting [4–7].
Students also often feel a stronger sense of belonging
and community in a classroom environment when they
participate in shared learning experiences [8,9]. Within
undergraduate science courses in particular, engagement in
interactions with peers has been linked to increases in
students’ self-efficacy, sense of belonging, self-confidence,
identity development, and academic achievement [9–17].
Understanding how students interact with one another,
therefore, is important for instructional design.
Many researchers have performed quantitative ana-

lyses of student interactions in in-person physics

courses [13,14,16–29]. These studies predominantly use
social network analysis, a methodology for visualizing and
quantifying social structures, to characterize patterns of
such interactions. A handful of studies suggest that the
structure of interaction networks varies between different
instructional contexts (lecture and laboratory) and styles
(active and traditional) [19–23]. Other studies, moreover,
find discrepant results pertaining to how students’ positions
in an interaction network relate to their attributes (e.g.,
grades and demographics) [13–15,28,29].
To reconcile these inconsistent results about interaction

network formation, we investigate student interactions in
four different remote physics courses spanning different
instructional contexts and styles, student populations, and
semesters. We apply statistical methods from social net-
work analysis to examine how students’ laboratory (lab)
and discussion section enrollment, final course grades,
gender, and race or ethnicity relate to network formation
within these various instructional conditions.

A. What variables relate to social network
formation in physics courses?

Previous studies of in-person courses suggest that both
instruction-level variables, such as context (lecture or lab)
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and style (active or traditional), and student-level variables,
such as grades, gender, and race or ethnicity, relate to
interaction network formation.

1. Instruction-level variables

Most quantitative studies of interactions investigate net-
works at the course level. These studies use surveys asking
students to report interactions they have had with their peers
about anything in their physics course [13,14,17,20,23–29].
Because introductory physics courses contain multiple
instructional contexts (e.g., lecture, discussion sections,
labs), these “course-wide” surveys likely capture interactions
about a variety of course material. Lectures and discussion
sections (where students work in small groups on physics
problems related to lecture content), however, often have
different learning objectives and cover differentmaterial than
labs [30–33]. Correspondingly, one study found that course-
wide interaction networks have different structures than lab-
specific interaction networks, where students only report
interactions with their lab peers [19]. They observed that the
course-wide interaction networks contain large clusters of
connections between many students, while lab interaction
networks contain smaller, isolated clusters of a few students
(likely representing defined lab groups). This result suggests
that the structure of interaction networks likely varies across
instructional contexts, whether lecture or lab.
One reason for this distinction might be the course

structure itself. Students gain exposure to different peers in
each course component (e.g., lecture, discussion sections,
labs) and frequently interact with peers in their discussion
and lab sections through small group work [15,19].
Students may discuss different course material with these
discussion and lab peers, however, which might explain the
different structures of lab and lecture interaction networks.
In the current study, therefore, we ask students to report
interactions about lecture and lab material separately. We
also quantitatively examine the relationship between stu-
dents’ discussion and lab section enrollment and network
formation.
Instructional style is also related to interaction network

formation. Researchers have compared the networks of
courses implementing active learning (student-centered
teaching that promotes interactive engagement) and tradi-
tional instruction (transferring information from instructor
to students through lectures) [21–23]. Brewe and colle-
agues [23], for example, report on the interaction networks
of two introductory physics courses, one using an active
learning pedagogy with lots of group work and one using
traditional lectures. They found a significant increase in
network connectedness (the proportion of observed to
possible network connections among students) between
the beginning and the end of the semester in the active
learning course, but not in the traditional course. The end-
of-semester networks in each course, moreover, had very
different structures. The active learning course network

contained long chains of connections among all of the
students, whereas the traditional course network contained
some small clusters of students and many isolated students
remaining completely disconnected from their peers. This
study suggests that network structure might vary by
instructional style, whether active or traditional.
Even between different types of active learning instruc-

tion, however, different network structures emerge [19,20].
For example, Commeford and colleagues [19] examined
two in-person active learning physics courses, one with
many whole-class discussions and one centering around
small group work. The interaction network in the first
course was highly connected, while the network in the
second course contained many isolated clusters of a few
students. This result adds nuance to the relationship
between instructional style and interaction networks:
coarse-grained categories of instruction, such as active
and traditional [34,35], do not fully explain differences
in network structure. Instead, the particular instructional
techniques implemented in a course may impact students’
patterns of interactions. In the current study, therefore, we
examine interaction networks across various traditional and
active learning courses.

2. Student-level variables

In addition to instruction-level variables, research indi-
cates that students’ course grades, gender, and race or
ethnicity may relate to their patterns of interactions.
First, many studies have found that students who have

more and/or stronger connections to their peers earn
higher grades. This correlation could either be due to
students performing well on an assessment and then
engaging in more peer interactions (such as due to
increased confidence or peers seeking their help) or
students learning from their peer interactions and sub-
sequently performing well on assessments [27]. Such a
relationship has been previously observed between stu-
dents’ positions in course-wide interaction networks and
their overall course grades [14,15,17,24,27,36] as well as
between students’ engagement in lab-specific interactions
and their lab grades [6,37].
Other work, however, suggests that the correlation

between interactions and performance varies by the
course material being discussed. For example, Bruun
and Brewe [16] investigated physics students’ interactions
about the conceptual and problem solving aspects of the
course separately. They found that students with higher
numbers of connections to their peers in the conceptual
physics interaction network tended to score higher grades
in the course. In the problem solving interaction network,
however, it was students who were connected to well-
connected peers that earned higher grades. This result
suggests that within different instructional contexts of
the same course, different kinds of network positions
correlate with students’ grades. To further examine this
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possibility, we separately analyze the relationship between
students’ positions in lecture and lab interaction networks
and their final course grades.
Second, prior work observed mixed results with regard

to whether and how students’ gender relates to their
network position. Research has found that men hold more
central positions than women in the friendship network of a
cohort of undergraduate economics majors and the inter-
action networks of introductory physics students at a large
institution [13–15]. Another study, however, found that
women hold more central positions than men in the
interaction network of an introductory physics course for
physics majors at a small liberal arts college [29]. Still
another study observed that men and women hold equally
central positions in the interaction network of an informal
physics learning center [28]. To contribute to our under-
standing of how the relationship between gender and
network formation varies across courses serving different
student populations (e.g., different gender enrollments) and
implementing different instructional styles, we examine
interaction networks in multiple different physics courses.
Finally, students’ race or ethnicity seems to be uncorre-

lated with their network position [14,25,28]. These studies,
however, only analyzed physics courses in which racially
or ethnically minoritized students comprise most of the
student population. We expand on this work by investigat-
ing the relationship between students’ race or ethnicity and
network formation within different student populations and
in remote courses.

B. Interactions in in-person versus remote courses

The research summarized so far examined the interaction
networks of in-person physics courses, however the
COVID-19 global pandemic necessitated remote instruc-
tion at many universities. It is possible that the nature of
student interactions differs between in-person courses and
remote courses. For example, students in in-person courses
have easy access to their peers and instructors in the same
room, whom they can collaborate with or ask for help. In
contrast, students in remote courses might work more
independently if they do not have adequate internet access
or if the instruction does not involve collaboration among
peers or offer means of meeting new peers [38].
Researchers have a limited understanding, however,

of student interactions during remote instruction and
whether or not they align with those in in-person courses.
A handful of studies have examined interactions in online
labs [38–42]. For example, one study found that students in
an in-person undergraduate physics lab value socialization
more than their peers in an online lab [38]. Other studies
directly investigated the impacts of the COVID-19 pan-
demic on student interactions in their remote courses more
generally. These studies [42–52] unanimously found that
undergraduate students engage in fewer interactions with

their peers during remote instruction compared to in-person
instruction. This body of work, however, mostly used
questionnaires to probe students’ perceived experiences
of their interactions. In the current study, we aim to expand
our understanding of student interactions in remote physics
courses by analyzing students’ actual reported interactions
with social network analysis methods.

C. Current study

Research on in-person physics courses suggests that
different interaction network structures emerge in lecture
and lab instructional contexts. Other studies offer possible
explanations for these varying network formations, such as
instructional style and student attributes, however they find
inconsistent patterns. We investigate these explanations
further by examining student interactions in multiple
different remote physics courses. The following research
question guided our study: Between the instructional
contexts of lecture and lab, how do instruction-level and
student-level variables relate to the formation of interaction
networks?
To address this research question, we implemented a

cross-sectional research design to observe student inter-
action networks at a given point in time and measure the
relationships between relevant explanatory variables and
these networks. Specifically, we administered a network
survey in four different remote, introductory physics
courses asking students to self-report peers with whom
they have had meaningful interactions about lecture and lab
material. We then applied statistical methods from social
network analysis—exponential random graph models—to
measure how students’ section enrollment, final course
grades, gender, and race or ethnicity relate to the formation
of the networks.
We find that, similar to studies of in-person courses,

lecture and lab networks exhibit different network struc-
tures. No single variable, however, fully accounts for the
formation of these networks. Instead, network structure is
related to a combination of variables: the learning goals of
various instructional contexts, the pervasiveness of differ-
ent course material, students’ grades, whether assignments
are completed in groups or individually, the distribution of
gender and major of students enrolled in a course, and the
tendency for students to interact with peers of their same
gender. Notably, students’ race or ethnicity seems unrelated
to their position in interaction networks in both in-person
and remote physics courses.

II. METHODS

In this section, we first describe the four courses
analyzed in this study. Then, we provide details about
the network survey we administered and outline the
statistical methods used for analysis.
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A. Courses and participants

Our study includes two course sequences inclusive of
four calculus-based introductory physics courses at Cornell
University: two mechanics courses from Fall 2020 and two
electromagnetism courses from Spring 2021. One course
sequence is intended for students majoring in engineering
or other science, technology, engineering, and mathematics
(STEM) disciplines, while the second is intended for
physics majors. We will refer to the mechanics course
for engineering majors as “M-Eng,” the mechanics course
for physics majors as “M-Phys,” the electromagnetism
course for engineering majors as “EM-Eng,” and the
electromagnetism course for physics majors as “EM-Phys.”
Table I summarizes the four courses by mode of

instruction, enrollment, and students’ self-reported demo-
graphics. All lectures were held synchronously online
through Zoom and in all four courses a male faculty
member in the physics department instructed the lectures.
M-Eng and EM-Eng lectures were taught using active
learning techniques: both were flipped courses where
students read text or watched pre-lecture videos and
completed reading quizzes before attending lecture.
Lectures for M-Eng used conceptual poll questions and

instructor demonstrations and lectures for EM-Eng used
math-based problems through Learning Catalytics [53]. In
both M-Eng and EM-Eng, students answered questions
both individually and following group discussion in Zoom
breakout rooms during lectures. M-Phys and EM-Phys
lectures followed a traditional instruction style, with the
instructor spending most of the time presenting material
and working through example problems. In M-Phys lec-
tures, the instructor also used poll questions that students
answered individually. EM-Phys did not use poll questions.
In all four courses, students completed long, individual
homework assignments (problem sets) each week.
Graduate teaching assistants instructed the discussion

and lab sections for each course. Discussion sections met
twice per week for 50 min and lab sections met once per
week for 2 h. Each discussion and lab section contained
approximately 20 students who worked together in small
groups of two to four students. Most of the discussion
sections and all of the lab sections took place synchro-
nously online through Zoom where students worked in
groups in virtual breakout rooms. In the few discussion
sections held in person, students worked together at round
tables.

TABLE I. Summary of the semester, course, and modality of each course as well as the self-reported gender, URM (underrepresented
and minoritized) status, intended major, and academic year of students in each course. Numbers in parentheses are the N values
corresponding to the percentages. All online components were held synchronously on Zoom.

M-Eng M-Phys EM-Eng EM-Phys

Semester Fall 2020 Fall 2020 Spring 2021 Spring 2021
Course Mechanics Mechanics Electromagnetism Electromagnetism
Modality

Lecture sections 2 Online 1 Online 2 Online 1 Online
Discussion sections 12 Online, 2 In-person 3 Online, 2 In-person 8 Online, 4 In-person 4 Online
Lab sections 14 Online 5 Online 12 Online 4 Online

Total enrollment 208 89 190 56
Students in analysis 198 84 163 43
Gender

Men 42% (84) 70% (59) 33% (54) 54% (23)
Women 47% (92) 28% (23) 39% (63) 23% (10)
Nonbinary 0 1% (1) 0.6% (1) 0
Unknown 11% (22) 1% (1) 28% (45) 23% (10)

Race or ethnicity
Non-URM 71% (140) 81% (68) 58% (95) 70% (30)
URM 16% (32) 14% (12) 12% (21) 7% (3)
Unknown 13% (26) 5% (4) 29% (47) 23% (10)

Major
Physics or Engineering Physics 5% (11) 69% (58) 6% (10) 72% (31)
Engineering 65% (128) 17% (14) 57% (93) 2% (1)
Other (STEM) 10% (19) 8% (7) 6% (10) 2% (1)
Unknown 20% (40) 6% (5) 31% (50) 24% (10)

Year
First-year 83% (166) 93% (78) 56% (92) 74% (32)
Second-year 12% (24) 4% (3) 13% (22) 2% (1)
Third-year 3% (6) 1% (1) 4% (7) 0
Other or unknown 2% (2) 2% (2) 26% (42) 24% (10)
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During discussion sections, students worked together
to solve problems related to lecture content. In M-Eng,
M-Phys, and EM-Phys, discussion problems were com-
pleted as a group but students did not submit any work. In
EM-Eng, students solved problems through Learning
Catalytics [53] and submitted their work as a group. The
formation of small groups during discussion sections
varied by teaching assistant, with some formed randomly
and some formed based on student preference (though
there were no formally administered surveys probing these
preferences). The individual teaching assistants also
decided whether discussion groups changed or remained
the same throughout the semester (we do not have this
information for individual sections).
Labs in every course were nontraditional (as per the work

described in, for example, Refs. [32,33,54–56]) and stu-
dents designed experiments using objects at home or in
their dorm room. Lab groups were formed based on a
group-forming survey where students could indicate their
preferences related to group gender composition and role
division and list the names of their peers they did or did not
want to work with. Teaching assistants created lab groups
using these reported preferences and also avoided groups
containing isolated women. These groups were held the
same for the whole semester (with minor adjustments if
students withdrew from the course or groups were having
collaboration challenges). Students submitted lab notes as a
group, rather than individually, and these notes were graded
by the teaching assistants. Lab groups typically collabo-
rated on an online document for the notes so that all group
members could contribute simultaneously. Students also
completed short, individual lab homework assignments
each week.
All courses contained a majority of first-year students

(see Table I). Similar proportions of men and women were
enrolled in the M-Eng and EM-Eng courses, while more
men than women were enrolled in the M-Phys and EM-
Phys courses. Additionally, all four courses had a majority
of non-URM (underrepresented and minoritized) students.
We designate non-URM students as those identifying their
race or ethnicity solely as White and/or Asian/Asian
American and URM students as those identifying as at
least one of any other race or ethnicity (including Black or
African American, Hispanic/Latinx, and Native Hawaiian
or other Pacific Islander, as defined by the American
Physical Society [57]), defined relative to the physics
discipline [58].
About 55% of the students in our data set are represented

in two of the four analyzed courses (one mechanics course
and one electromagnetism course) because students taking
mechanics in the fall typically go on to take electromag-
netism in the spring. Many students take the two courses
within one course sequence, however some students switch
course sequences between semesters (e.g., if they found
their mechanics course too challenging or too easy).

A small fraction of analyzed students, therefore, are
represented in M-Eng and EM-Phys (0.8%) or M-Phys
and EM-Eng (6%). The remaining 45% of analyzed
students took only a mechanics course or only an electro-
magnetism course during the surveyed semesters. We
suspect that the students taking only a mechanics course
either needed just one physics course to fulfill their major
requirements, delayed taking the electromagnetism course
to a future semester, or dropped out of the course sequence.
The students taking only an electromagnetism course likely
entered the university with transfer or high school credits
that covered the mechanics course.

B. Data collection

Prior work has demonstrated that peers develop a com-
munity among one another by about halfway through the
semester [27]. Therefore, we administered a network survey
in each of the four courses around the halfway point of the
15-week semester. Students completed the survey online via
Qualtrics as part of a lab homework assignment about their
group work experiences. Our two survey prompts adopted
the language used in previous studies [19,20,26,59]
and asked students to self-report peers with whom they
had meaningful interactions about different instructional
material:

Please list any students in this physics class that you had
a meaningful interaction* with about lab material this
week.

Please list any students in this physics class that you had
a meaningful interaction* with about other aspects of
the course this week.
�A meaningful interaction may mean virtually over
Zoom, through remote chat or discussion boards, or
any other form of communication, even if you were not
the main person speaking or contributing.

We refer to the first prompt as “lab” interactions and the
second prompt as “lecture” interactions.
The survey was in an open response format (one text box

per prompt) and students could respond with an unlimited
number of names. This format avoids students feeling
obligated to fill a quota and write down extra names of
peers with whom they may not perceive themselves as
having had a meaningful interaction [24]. Students were
also not given a class roster from which to choose or look
up names. This resulted in some listings being hard to
match to the class roster during analysis, as there were
instances of students misspelling peers’ names or reporting
just a first or a last name. Details about how we processed
the text responses to extract all of the reported interactions
are in the Appendix.
Network measures are robust to up to 30% of missing

data (e.g., due to nonresponders) [60,61] and are more
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robust with denser networks (networks containing many
connections). In M-Eng, M-Phys, and EM-Eng, the survey
response rate was over 75%. Our results for these courses,
therefore, are well grounded. In EM-Phys, about 60% of
enrolled students completed the survey. Networks for this
course (presented in the next section), however, were
particularly dense—students on average reported multiple
peers’ names. This adds some validity to our analysis for
this course because we have information about many edges
and the network likely captures some interactions involving
nonrespondents, but our claims related to this course should
still be considered tentative. We chose not to impute any
interactions because the interdependent nature of network
data means any imputations may substantially change the
properties of the network [59].
We included all students who responded to the survey

and/or were listed by at least one peer in our analysis.
Students who responded to the survey but did not report
any interactions and were not listed by any peers are
represented as isolates (zero connections). We also only
included the interactions reported by students who con-
sented to participate in research. If a consenting student
listed a nonconsenting student, we included the interaction
in our analysis, but removed all information (e.g., demo-
graphics) about the nonconsenting student. In all courses,
more than 75% of enrolled students are represented in our
analyzed data (see Table I).
At the end of the semester, we also identified in which

discussion and lab section students were enrolled and
collected students’ final course grades.

C. Data analysis

With these student data and survey responses, we turned to
methods from social network analysis [24,59,62]. We visu-
alized the data as eight different networks, four separate
courses eachwith two instructional contexts (lecture and lab).
Each network’s nodes represent students and the undirected
edges represent a reported interaction between two students
regardless of which student reported the interaction. We
examined the network diagrams to determine distinguishing
structural features across courses and contexts.
Similar to previous studies [13,14,16,20,23,25–27,29,36],

we treated thenetworks as directed for our statistical analysis.
In directed networks, the direction of each edge corresponds
to which student reported interacting with the other student.
A one-way edge indicates that only one student in a pair
reported interacting with the other, while a two-way edge
indicates that both students in a pair reported interactingwith
each other. Interactions, however, inherently consist of two-
way edges because two studentsmust communicatewith one
another for an interaction to occur.One-way edges, therefore,
could be due to recall bias (e.g., the other student forgot about
the interaction or did not know the other person’s name and
so did not report it) or over-reporting (e.g., one student
reported an interaction that the other student did not perceive

as meaningful) [24]. Thus, converting all one-way edges to
two-way edges (i.e., treating the network as undirected) may
overestimate the total number of interactions in the network,
while eliminating all one-way edges may underestimate the
total number of interactions. We therefore kept the one- and
two-way edges in the network to accurately reflect the
survey responses. This quantitative treatment also amplifies
the difference between students with many connections
and students with few connections, reducing possible
statistical noise.
We first calculated each directed network’s density—the

proportion of all possible edges in the network that we
observed—to gain a sense of the overall level of connected-
ness among students. We determined the standard errors of
the densities via bootstrapping: resampling the observed
networkmany times, calculating the density of each sampled
network, and then determining the standard deviation of the
densities among all of the sampled networks [20,63]. The
bootstrapping was performed with 10 000 bootstrap trials
for each network using the snowboot package in R [64]. We
then focused our analysis on exponential random graph
models (ERGMs).
ERGMs allow us to determine the important structures or

configurations in an observed network [65–67]. Such
models assume that a network’s set of nodes is fixed
and that the set of observed edges among the nodes is a
realization from a random graph that comes from a
distribution belonging to the exponential family. To illus-
trate this, consider an undirected network containing five
total nodes, as shown in Fig. 1. The network on the left
shows all possible edges among the five nodes and the
network on the right shows one of the many possible
realizations or specific instances of the left-hand network
that may emerge due to some social process(es). We use
ERGMs to infer what process(es) specifically occurred to
form this particular realization. For instance, certain social
selection processes, such as women interacting more
frequently with other women than with men, may have
influenced the formation of the realized network.
Mathematically, we can think of ERGMs as having a

similar form to logistic regression models, though the
assumption of independence of observations is relaxed. To
formulate a model, we choose a principled set of predictor

FIG. 1. Network of five nodes with all edges present (left) and
one possible realization of this network (right).
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variables (i.e., configurations) that might be related to the
formation of the observed network. These variables may be
structural (e.g., measuring the tendency for two-way nomi-
nations) or nodal (e.g., measuring the extent to which
students of a certain gender are more likely to have
connections). The goal is to use these k network statistics
gkðyÞ and their corresponding coefficients θk to predict the
structure of the random networkY. Themodel takes the form

Pθ½Y ¼ y� ¼ 1

ψ
exp

�X
k

θkgkðyÞ
�
;

where y is a realization of the random network Y and ψ ¼P
y exp ½

P
k θkgkðyÞ� is a normalization constant that

ensures that the probability sums to one. Given an observed
network y, the coefficients of the model are estimated using
maximum likelihood estimation (MLE). Because of the
dependence between the network edges, the MLE is com-
monly approximated with Markov chain Monte Carlo
(MCMC) techniques [68].
There are two different ways to interpret the coefficients

of ERGMs. In general, the coefficients weight the impor-
tance of each modeled configuration for the formation of
the realized network, where positive (negative) coefficients
show that the configuration is observed more (less)
frequently than by chance after accounting for all other
configurations that are modeled. The second way to
interpret the coefficients is to focus on specific edges of
the network. In this interpretation, the coefficient θk of the
kth configuration shows how the log odds of an edge being
present changes if the formation of the edge increases the
kth configuration by one unit, holding the rest of the
network constant. For instance, if the predictor variable
measures the number of two-way edges in the network, its
coefficient represents how much the log odds of an edge
being present increases when the addition of this edge
would reciprocate an existing edge.
In our analysis, we included both structural and nodal

predictor variables in the model. For the nodal variables,
we focused on those related to degree (the number of
adjacent edges connected to a node), rather than other
measures of centrality (such as closeness and betweenness),
because degree has been shown to be relevant in describing
network structure and to consistently predict learning
outcomes [69,70]. Therefore, we initially considered three
separate ERGM models with the nodal predictor variables
depending on (i) indegree (number of other students who
reported interacting with a given student), (ii) outdegree
(number of students with whom a given student reported
interacting), or (iii) total degree (sum of indegree and
outdegree). Results from the models using indegree and
outdegree variables, however, were not much different than
and did not add any nuance to those from the total degree
model. In some instances, the indegree and outdegree
models also did not fit the observed network sufficiently

well (i.e., the models had poor goodness-of-fit). For these
reasons, we decided to use total degree (hereon referred to
as “degree”) for all nodal predictor variables.
Our final model included the ten predictor variables

listed below. The first three variables provided information
about the structure of each network, while the remaining
variables measured student-level attributes that might be
related to the formation of these networks. For example, the
fourth and fifth variables relate students’ section enrollment
to the network structure. The sixth variable relates students’
network positions to their final course grades. Finally, the
last four variables compare network positions across
demographic groups:

1. Edges: main intercept term measuring the number of
observed edges

2. Reciprocity: measure of reciprocal edges (e.g.,
student A reports an interaction with student B
and student B reports an interaction with student A)

3. Geometrically weighted edgewise shared partners
(GWESP); decay parameter ¼ 0.25 as commonly
used in the ERGM literature [71–73]): measure of
triadic closure (if student A interacts with students B
and C, then an interaction between students B and C
forms triadic closure)

4. Homophily on lab section: measure of edges occur-
ring between students in the same lab section

5. Homophily on discussion section: measure of edges
occurring between students in the same discussion
section

6. Main effect of final course grade on degree: measure
of individuals’ total number of adjacent edges as
related to their final course grade

7. Homophily on gender: measure of edges occurring
between students of the same gender

8. Main effect of gender on degree (woman): measure
comparing women’s total number of adjacent edges
to men’s total number of adjacent edges

9. Homophily on race or ethnicity: measure of edges
occurring between students of the same URM status

10. Main effect of race or ethnicity on degree (URM):
measure comparing URM students’ total number of
adjacent edges to non-URM students’ total number
of adjacent edges

For each of the eight observed networks, we determined
the coefficient estimates of these ten predictor variables
using MCMC MLE in the ergm package in R. We describe
how we determined the model’s goodness-of-fit in the
Appendix.
We note that, particularly in EM-Phys, some sample sizes

(especially across gender and racial or ethnic groups) seem
too small to make statistical comparisons. ERGMs, how-
ever, consider edges and not nodes as the unit of analysis.
Although the number of nodes in EM-Phys is small, the two
interaction networks for this course are relatively dense and
include many of the possible edges. Smaller sample sizes,
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furthermore, do not prevent valid estimation of the coef-
ficient values. Rather, the sample size is reflected in the
standard errors and p values of the coefficients [74].
Quantitative modifications to ERGMs are only necessary
for very small networks (less than six nodes) [75].

III. RESULTS

In this section, we first describe the densities and
structures of the networks in each instructional context.

We then present statistical results about whether and how
students’ lab and discussion section enrollment, final
course grades, gender, and race or ethnicity relate to the
formation of the observed networks.

A. Structural comparisons

Within each course, the densities of the lecture and lab
interaction networks (listed in Figs. 2 and 3) are compa-
rable to an order of magnitude. These densities indicate a

FIG. 2. Diagrams and densities of interaction networks for M-Eng and M-Phys. Nodes are colored by gender and sized proportional to
total degree (number of adjacent edges). Thick edges represent reciprocal edges (students A and B both reported interacting with one
another) and thin edges represent one-way edges (student A reported interacting with student B, but student B did not report interacting
with student A). Densities are the proportion of observed to possible edges, with standard errors of the last digit shown in parentheses.
These same network diagrams with nodes colored by race or ethnicity are in the Supplemental Material [76].
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roughly similar level of connectedness among students in
both instructional contexts, however the structure of
these connections varies. The lecture interaction networks
(shown in the left-hand column of Figs. 2 and 3) contain
long chainlike formations that connect many nodes in one
large cluster, with some additional, smaller clusters not
connected to this main cluster. This structure is consis-
tent across courses using active learning techniques
(M-Eng and EM-Eng) and traditional instruction methods
(M-Phys and EM-Phys) in lectures. In contrast, the lab
interaction networks (shown in the right-hand column of

Figs. 2 and 3), contain smaller chainlike formations and
many disconnected clusters of two to four nodes, likely
indicating separation by lab group.
Coefficient estimates for the first three variables in our

ERGM expand on these visual interpretations (see
Appendix, Table II). The coefficient estimates for the edges
variable (or main intercept) indicate that there are signifi-
cantly fewer edges present in every observed network than
we would expect if the edges were formed randomly. It is
typical of most social networks to have fewer edges than
expected at random [77]. In addition, with the exception of

FIG. 3. Diagrams and densities of interaction networks for EM-Eng and EM-Phys. Nodes are colored by gender and sized proportional
to total degree (number of adjacent edges). Thick edges represent reciprocal edges (students A and B both reported interacting with one
another) and thin edges represent one-way edges (student A reported interacting with student B, but student B did not report interacting
with student A). Densities are the proportion of observed to possible edges, with standard errors of the last digit shown in parentheses.
These same network diagrams with nodes colored by race or ethnicity are in the Supplemental Material [76].
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the M-Phys lab interaction network, all networks contain
a significant number of reciprocal edges (reciprocity vari-
able), meaning that pairs of students frequently report
interacting with each other. There is also a strong presence
of triadic closure (GWESPvariable) inall networks except the
EM-Phys lab interaction network, suggesting grouplike
structures or connections among small subsets of students.
Based on these measures of reciprocity and triadic closure,
therefore, collaboration between groups of two or three
students is characteristic of both lecture and lab interaction
networks. As described above, however, whether these
smaller groups are chained together in larger clusters
(lecture) or remain isolated (lab) is what distinguishes the
network structures of the two instructional contexts.

B. Lecture interaction network formation

Interactions about lecture material frequently occur
between peers in the same lab and discussion sections (left
panel of Fig. 4). In all four courses, students discuss lecture
material with peers enrolled in their lab section significantly
more than with peers not in their lab section (dark purple
dots on the left panel of Fig. 4). Additionally, with the
exception of EM-Phys, students have a strong tendency to
discuss lecture material with peers in their discussion
section (light purple dots on the left panel of Fig. 4).
Lecture interactions are also more frequent for high-

achieving students (left panel of Fig. 5). In all four courses,
students with higher final course grades tend to have more

interactions about lecture material than students with lower
final course grades.
Gender is related to lecture interaction networks in two

ways: whether students of different genders have different
numbers of connections and whether students tend to
interact with peers of their same gender (left panel of
Fig. 6). First, in M-Eng, women have significantly fewer
lecture connections than men (dark green dots on the left
panel of Fig. 6). In EM-Eng, women and men have
comparable numbers of lecture connections. In M-Phys
and EM-Phys, women have significantly more lecture
connections than men. Second, students in M-Eng and
M-Phys tend to interact with peers of their same gender,
however men and women in EM-Eng and EM-Phys
proportionately interact with one another (light green dots
on the left panel of Fig. 6).
Finally, students do not interact with their peers about

lecture material on the basis of race or ethnicity. In all four
courses, URM and non-URM students have comparable
numbers of lecture connections (red dots on the left panel of
Fig. 7) and proportionately interact with one another
(yellow dots on the left panel of Fig. 7).

C. Lab interaction network formation

Lab section enrollment, but not discussion section
enrollment, relates to the formation of lab interaction
networks (right panel of Fig. 4). In all four courses,
students have a significant tendency to interact with peers
in their lab section about lab material (dark purple dots on

FIG. 4. Plot of ERGM coefficients for the homophily on lab
section and homophily on discussion section variables. A more
positive (negative) coefficient estimate indicates that more
(fewer) edges occur between students in the same section. Error
bars indicate the standard error for each estimate and asterisks
indicate statistical significance.

FIG. 5. Plot of ERGM coefficients for the main effect of final
course grade on degree variable for each observed network.
A more positive (negative) coefficient estimate indicates that
students with higher final course grades have more (fewer) total
connections in the network than students with lower final course
grades. Error bars indicate the standard error for each estimate
and asterisks indicate statistical significance.
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the right panel of Fig. 4). Students in every course,
however, proportionately interact with peers in and not
in their discussion section about lab material (light purple
dots on the right panel of Fig. 4). These patterns are distinct
from the lecture interaction networks, where students
frequently discuss lecture material with peers in both their
lab and discussion sections.
Students’ final course grades are mostly unrelated to their

position in the lab interaction networks. In M-Eng, M-Phys,
and EM-Phys, students of all levels of achievement (e.g., low
or high final course grades) have comparable numbers of lab
connections (right panel of Fig. 5). In EM-Eng, however,
high-achieving students have significantly more lab con-
nections than their low-achieving peers. With this one
exception, final course grades offer another difference
between how interaction networks form in each context:
students with higher final course grades tend to have more
lecture connections, but they do not necessarily have more
lab connections.
Gender is only moderately related to the formation of lab

interaction networks. In M-Eng, M-Phys, and EM-Eng,
men and women have comparable numbers of lab con-
nections (dark green dots on the right panel of Fig. 6). In
EM-Phys, women have significantly more lab connections
than men. Network connections, therefore, are more
equally distributed between men and women in the lab

context than in the lecture context. In addition, students in
M-Eng and M-Phys have a significant tendency to interact
with peers of their same gender about lab material (light
green dots on the right panel of Fig. 6). Men and women in
EM-Eng and EM-Phys, however, proportionately interact
with one another about lab material. This trend is the same
as in the lecture interaction networks.
Lastly, students mostly do not interact with their peers

about lab material on the basis of race or ethnicity. In
M-Eng, M-Phys, and EM-Phys, URM and non-URM
students have similar numbers of lab connections (red dots
on the right panel of Fig. 7) and proportionately interact
with one another (yellow dots on the right panel of Fig. 7).
In EM-Eng, however, URM students have significantly
fewer lab connections than their non-URM peers and
students tend to interact with peers of a different race or
ethnicity about lab material. With this one exception, the
relationship between students’ race or ethnicity and net-
work formation is the same in both the lecture and lab
instructional contexts.

IV. DISCUSSION

In this study, we used ERGMs to determine whether and
how students’ section enrollment, final course grades, and
demographics relate to the formation of interaction

FIG. 6. Plot of ERGM coefficients for the two predictor
variables related to gender. A more positive (negative) coefficient
estimate for the main effect of gender on degree variable indicates
that women have more (fewer) connections than men. A more
positive (negative) coefficient estimate for the homophily on
gender variable indicates that more (fewer) edges occur between
students of the same gender. Error bars indicate the standard error
for each estimate and asterisks indicate statistical significance.

FIG. 7. Plot of ERGM coefficients for the two predictor
variables related to race or ethnicity. A more positive (negative)
coefficient estimate for the main effect of race or ethnicity on
degree variable indicates that URM students have more (fewer)
connections than non-URM students. A more positive (negative)
coefficient estimate for the homophily on race or ethnicity
variable indicates that more (fewer) edges occur between students
of the same race or ethnicity. Error bars indicate the standard error
for each estimate and asterisks indicate statistical significance.
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networks in four different remote physics courses. We
found that these variables had different relationships to
network formation in lecture and lab instructional contexts,
offering multiple explanations for the different network
structures we observed.

A. Network structure

We found that the lecture and lab interaction networks
contained similar levels of connectedness, however the
structure of these connections varied. Specifically, the
lecture interaction networks centered around one large
cluster of students connected along chains of edges. The
lab interaction networks, however, contained many small
and disconnected clusters of students. Interestingly, these
distinct structures of lecture and lab interaction networks
arise in both in-person [19] and remote (our study) physics
courses. Patterns of interactions about lecture and lab
material, therefore, seem to form differently, regardless
of the modality.
Prior work suggests that the instructional style of

lectures, whether active or traditional, might explain the
different network structures [19,20,23]. In our study,
however, we observed similar structures in all four lecture
interaction networks despite two of the lectures employing
active learning techniques and the other two lectures
following traditional instruction. This contradiction agrees
with others [19] who argue that, while instructional style
may relate to network structure, broad categories of
instructional styles (e.g., active and traditional) do not
offer a sufficient explanation [34,35]. Instead, it is neces-
sary to examine more fine-grained instructional differences
or student-level variables, which we elaborate on below.

B. Section enrollment

Beyond instructional style, the nature of student inter-
actions varies between the different components of a
course. We found that students discussed lecture material
with peers in both their lab and discussion sections, but they
only discussed lab material with peers in their lab section.
One explanation for these results might be that students’ lab
and discussion peers were the same people. If that were the
case, however, we would observe students discussing both
lecture and lab material with both lab and discussion peers,
which we did not.
Instead, we propose two explanations for the different

relationships between section enrollment and the lecture
and lab interaction networks: the distinct learning goals and
levels of pervasiveness of each instructional context. First,
the learning goals for lectures and discussion sections in all
four courses were for students to understand physics
concepts and solve problems about these concepts. The
learning goals for the labs, on the other hand, aimed to
develop students’ experimental skills and scientific deci-
sion-making and explicitly did not reinforce lecture content
(as per, e.g., Refs. [30–33]). It is sensible, therefore, that we

observed students discussing the material relevant to each
context with their peers in the corresponding class sections
(e.g., interacting with lab peers about lab material and with
discussion peers about lecture material). The distinct
learning goals also explain why interactions about lab
material did not take place during discussion sections or
with discussion peers: lab content was not relevant to
discussion work.
We speculate that the pervasiveness of lecture material

explains why students discussed lecture material with lab
peers. Outside of lectures and discussion sections, students
completed weekly prereading quizzes and written home-
work assignments, studied for exams, and attended office
hours for help. The lecture material, therefore, remained
salient at all times, including during lab section when
students could interact with other peers in the course.
Students also had more time during labs to have con-
versations about the broader course because lab sections
were 2 h long (lectures and discussion sections were 50 min
long). In contrast, the lab material was not as pervasive
because the experiments and lab notes were completed
during lab sections and the individual homework assign-
ments were short. This likely reduced students’ need to
interact with their peers about lab material outside of class
time. Future work should probe this explanation more
directly, such as by asking students to comment on the
nature of their interactions with their peers on the network
survey.

C. Final course grades

Previous studies have unanimously shown that students
holding a more central position in an interaction network,
whether course-wide or within labs, achieve higher learning
outcomes [14–17,24,27,36]. We might expect, therefore,
that lecture interactions correlate with students’ learning of
lecture material and that lab interactions correlate with
student’s learning of lab material. In our study, we found
that students with more lecture connections tended to have
higher final course grades than their peers with fewer
lecture connections, replicating previous work on in-person
physics courses. Students with more lab connections,
however, did not systematically earn higher final course
grades than their peers with fewer lab connections.
We surmise that these results are due to the relative

weightings of lecture and lab material in students’ final
course grades. In all four courses, lecture material (exams,
homework, participation in discussions, etc.) accounted for
at least 80% of students’ final course grades. It is
unsurprising, therefore, that students with more lecture
interactions also earned higher final course grades: if
students’ interactions about lecture material improved their
learning of lecture concepts, then that learning would be
largely captured by these grades. We note that our statistical
models do not infer causal relationships (i.e., having more
lecture interactions might not necessarily cause the learning
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of lecture concepts); rather, our proposed explanation is
conjectural. Lab assignments (individual homework and
group lab notes), on the other hand, only accounted for
between 10% and 20% of students’ final course grades in
each course. Additionally, the lab notes were graded at the
group level: all students within a group received the same
grade regardless of their individual contributions. With
this low weighting and group-level grading, even if
interacting about lab material with peers correlated with
individual students’ performance in lab as prior work
suggests [6,37,78], our statistical analysis likely did not
catch it.
There was one anomaly in these results, namely that

number of lab connections was positively correlated with
final course grade in EM-Eng. One explanation for this is
that interacting with peers about lab material helped
students master lecture material in this course. Prior work,
however, suggests that this explanation is unlikely because
the two contexts have distinct learning goals [54,79–81].
Our results for EM-Phys also refute this explanation: if lab
interactions helped students learn material from electro-
magnetism lectures then we would observe a similar result
in EM-Eng, which we do not. Alternatively, this observa-
tion could be a statistical signal that students with more lab
interactions earned higher lab grades. EM-Eng weighted
labs more than M-Eng and M-Phys (20% versus 10%), in
which we observed no significant correlation between
number of lab connections and final course grade. We
might have resolved a relationship between lab interactions
and lab performance in EM-Eng, therefore, because labs
were given more weight in the final course grades. This
correlation would agree with previous studies suggesting
that interacting with peers about lab material improves
students’ performance in labs [6,37]. EM-Phys, however,
also weighted labs as 20% of the final course grades and we
observed no correlation between number of lab connections
and final course grade in that course. While the low survey
response rate for this course (about 60%) leaves this result
only tentative, this finding provides evidence against our
second explanation. Future work should further investigate
the relationship between the content of students’ inter-
actions and students’ academic performance across instruc-
tional contexts.

D. Gender

Previous studies found conflicting results related to
whether men and women have different or comparable
numbers of connections in course-wide interaction net-
works [13–15,28,29]. Our study adds nuance to these
findings, suggesting that in both remote and in-person
courses such gender-based patterns likely depend on the
student population of a course—the composition of
enrolled students’ genders and majors—and/or the struc-
ture of assignments—whether submitted in groups or
individually.

The gender balance and, relatedly, majors of students
enrolled in a course seem related to the formation of lecture
(and in other studies, course-wide) interaction networks.
In gender-balanced or majority-women courses (M-Eng
and EM-Eng in our study and the in-person courses in
Refs. [13–15,28]), either men and women had comparable
numbers of lecture connections or men had more lecture
connections than women. When a minority of students in a
course are women (M-Phys and EM-Phys in our study and,
presumably, the in-person course in Ref. [29]), however,
women hadmore lecture connections thanmen. Importantly,
the gender composition of science courses also tends to
correlate with students’ majors, therefore we cannot disen-
tangle these two explanations. In our study, for example,
students in the courses for physics majors (M-Phys and EM-
Phys) were majority men and the courses for non-physics
majors (M-Eng and EM-Eng) contained gender-balanced
enrollment. These results indicate that students in the
minority gender group of a class often engage in more
interactions than their peers and that this phenomenon is
typical of science courses intended for students majoring in
the discipline. Futurework should examinewhether and how
peer interactions support the learning experiences of such
underrepresented and minoritized students.
Additionally, our results pertaining to gender suggest

that the structure of assignments within an instructional
context might relate to network formation. In three out of
four lab interaction networks and in the EM-Eng lecture
interaction network, men and women proportionately
engaged in peer interactions. In each of these contexts,
students completed and submitted assignments in small
groups. We found in the remaining three lecture interaction
networks, however, that men and women had significantly
different numbers of network connections. In these con-
texts, students completed work in small groups but sub-
mitted them individually. We note that the EM-Phys labs
depended on group work and that women had more
connections than men in this network, offering a possible
contradiction. This result is only preliminary because of the
low survey response rate for this course (about 60%).
Future work should investigate whether and how assign-
ment structure is also related to network formation in in-
person courses.
We also found in both the lecture and lab interaction

networks that students tended to interact with peers of their
same gender in the mechanics courses (M-Eng and
M-Phys), but not in the subsequent electromagnetism
courses (EM-Eng and EM-Phys). We speculate that stu-
dents in the mechanics courses of our study, most of whom
were entering their first semester of college, interacted
based on the guiding principle of homophily [82]. This
principle contends that interactions between people of
similar attributes (e.g., gender) are more common than
interactions between people with different attributes.
Indeed, another study found gender homophily within
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the interaction networks of first-year students in in-person
economics courses [15]. We observed in the subsequent
electromagnetism course the following semester, however,
that students no longer tended to interact with peers of the
same gender. Given that many students in the observed
electromagnetism courses also took one of the observed
mechanics courses, we infer that this increase in inter-
actions between students of different genders could be due
to social integration. That is, students likely became
familiar with diverse peers during the mechanics courses.

E. Race or ethnicity

We generally found that students’ race or ethnicity was
not related to interaction network formation. In seven out of
eight observed networks, URM and non-URM students had
comparable numbers of connections and proportionately
interacted with one another. This observation may be
surprising given that URM students have been found to
have a lower sense of belonging than their non-URM peers
during remote instruction [52]. Previous studies [14,25,28],
however, found that students’ race or ethnicity was not a
significant predictor of their network position in in-person
courses when the majority of students were URM. Our
study, therefore, provides evidence that students’ race or
ethnicity still does not strongly relate to their patterns of
interaction during remote instruction when most students
are non-URM.
The one exception to our claim above was the lab

interaction network in EM-Eng. In this network, URM
students had significantly fewer connections than their non-
URM peers and there was a strong tendency for students to
interact with peers of a different race or ethnicity. This
might add nuance to our claim above that race or ethnicity
does not relate to the formation of interaction networks,
namely that URM students may be marginalized in lab
interactions. This relationship was not observed in the
other three lab networks, however, leaving possible claims
only tentative—this result may simply be a statistical
fluctuation.

F. Limitations

We conclude this section by acknowledging a few
limitations to the study. First, all data reported here were
collected during a global pandemic. Students’ emotional
lives, learning experiences, and interactions with their
peers were strongly impacted by this pandemic and the
transition to remote instruction [42–52]. These circum-
stances might have influenced the extent to which students
engaged in, recalled, and reported meaningful interactions
with their peers on the survey we administered. We found
similar network structures to those observed in in-person
courses [19], however, suggesting commonalities between
students’ interaction patterns in both settings.
The network survey itself carried other limitations.

Students completed the survey as part of a homework

assignment. While other studies have similarly asked
students to complete network surveys online and outside
of class [19,20], students may have reported different
interactions if they had completed the survey in class when
surrounded by their peers. In addition, when administering
the survey, we did not provide the names of students in the
course to respondents. Students may have recalled mean-
ingful interactions with their peers but could not remember
the names of these peers. There could also be recall bias,
where students failed to remember and report meaningful
interactions. These factors may have led to underreporting
of meaningful interactions. The nature of the online
instruction over Zoom, however, meant students readily
had access to their peers’ names—more readily than in-
person instruction. Finally, we relied on surveys adminis-
tered at one point in time. Networks evolve over the course
of a semester [23,83], so while our analysis captures one
snapshot of these networks in detail, they may have
changed by the end of the courses. Future work may
collect and analyze similar surveys at more points in time
during a semester to examine the network dynamics.
Lastly, this study was conducted at a private, research-

based institution and offers a glimpse of the nature of
interactions with that population and the types of instruc-
tion employed there. Future work should continue to probe
additional student populations and instructional contexts.
The results here already build on previous work with other
institutions and types of instruction, demonstrating poten-
tial commonalities and differences between these contexts.

V. CONCLUSION

Previous research on in-person physics courses suggests
that differences in interaction network structure between
the instructional contexts of lecture and lab may be related
to differences in instructional style and/or a handful of
student-level variables. We investigated these possible
relationships further by examining lecture and lab inter-
action networks in four different remote physics courses
serving various student populations. We also applied
statistical analysis methods, exponential random graph
models, that have only recently emerged in the physics
education research community but offer a promising
avenue for further work.
We observed very similar network structures to prior

studies of in-person physics courses. Results suggest that
these network structures likely relate to a combination of
variables: the learning goals of various instructional con-
texts, the pervasiveness of different course material, stu-
dents’ grades, whether assignments are completed in
groups or individually, the distribution of gender and major
of students enrolled in a course, and the tendency for
students to interact with peers of their same gender.
Interestingly, our study agrees with prior work that stu-
dents’ race or ethnicity does not correlate with their position
in an interaction network.
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We are currently collecting more network surveys with
an additional question asking students to write the specific
content about which they interacted with their peers. We
will use these responses to characterize the content of
student interactions within each instructional context. We
will then form multilayer interaction networks, for exam-
ple, distinguishing interactions about homework from those
about exam preparation. We plan to relate these different
interactions to student performance to determine whether
certain kinds of interactions are more central to learning, as
called for by recent work [70]. Wewill conduct the research
in the same course sequences as this study, but now with the
lab as a stand-alone course. This new structure will allow us
to disentangle the relationship between lecture and lab
interactions and student performance in those contexts.
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APPENDIX A: SURVEY TEXT PROCESSING

The interaction survey asked students to list the names of
all peers with whom they interacted about the course in one
text box. Some students only wrote their peers’ names,
while others wrote sentences with names embedded in the
text. To extract the names of students listed, we took each
response and split it on common delimiters (periods,
commas, spaces, line breaks, and semicolons) to get a list
of tokens in the response (e.g., “the cat is red” turns into
[“the,” “cat,” “is,” “red”]) and compared each of the tokens
to each of the first and last names from the class roster. We
connected the token to a student on the class roster only if
there was an exact match. We then checked pairs of tokens
for matches on full name (e.g., pairs of tokens from the last
example are [“thecat,” “catis,” “isred”]), matching up
names for which fewer than 0.3 times the length of
someone’s full name corrections were needed to match
the full name on the roster. We chose the constant 0.3 via
trial and error, finding that this worked best for capturing as
many close matches as possible without producing false
negatives. If a name (either first or last) appeared multiple
times in the data set, then we did not match on listings of
just that name itself and we only matched listings of the
other half of the name or the full name.

APPENDIX B: ERGMs: GOODNESS OF FIT

To determine whether an ERGM fits an observed net-
work well, we compare our observed network to random
networks simulated using the model’s predictor variables
and coefficient estimates. For example, Fig. 8 shows the

distributions of three different network measures—inde-
gree, outdegree, and edge-wise shared partners (measure of
edges forming triadic closure)—for the observed M-Eng
lab interaction network (shown as a black line) and ten
simulated networks (shown as box plots) using the esti-
mated model coefficients for this network. For all three
measures, the distribution for the observed network falls
within the box plots of simulated networks, indicating a
good fit of the model to the observed network. We observed
similar plots for the other seven networks as well.

APPENDIX C: ERGM COEFFICIENT
ESTIMATES

Table II summarizes the coefficient estimates of the
ERGMmodel for each network.We interpret the coefficient
estimates as log odds of edge formation. For example, the

FIG. 8. Goodness-of-fit plots for the M-Eng lab interaction
network. The horizontal axis represents the value of the network
measure and the vertical axis represents frequency. Plots compare
the distribution of each measure for the observed data (thick black
line) to that for 10 network simulations generated using the
coefficient estimates of the model (box plots).
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coefficient estimate for the homophily on lab section
variable for the M-Eng lecture interaction network is
0.90. This means that the log odds of an edge forming in
the network increases by 0.90 for each additional edge
connecting students in the same lab section, holding the rest

of the network the same. In other words, edges connecting
students in the same lab section are more probable than
edges connecting students in different lab sections, even
after accounting for the other configurations included in
the model.
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