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Physics instruction is often unable to support students’ self-efficacy. The remote teaching brought on by the
COVID-19 pandemic has also affected learning. We surveyed an introductory quantum mechanics course for
three years during a transition into the spin first approach, adapting the student-centered prime-time learning
model and using it through the remote teaching during the pandemic. Prime-time learning includes weekly
meetings where students and instructors discuss in a small group, and the assessment is based on exercises,
group work, and self-assessment. We show that this teaching method improved students’ self-efficacy.
Students’ conceptual knowledge post teaching remained high throughout the teaching reform, as measured by
an abbreviated Quantum Mechanics Concept Assessment test. We also find that the prime-time model is
remarkably stable during remote teaching: in contrast to many other studies, we did not see a decline in
conceptual learning outcomes or self-efficacy in remote teaching during the COVID-19 pandemic.
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I. INTRODUCTION

Quantum mechanics (QM) is often regarded as a
notoriously difficult topic to learn. For the instructors of
QM this reputation is an unfortunate one, as it has been
shown in previous literature that these kinds of presump-
tions are likely to reduce students self-efficacy and thus
affect their learning [1]. Self-efficacy refers to the beliefs a
person has about their ability to succeed in a given topic [2].
These beliefs are highly situational, and they uniquely
predict study success [3,4]. Self-efficacy can be supported
by experiences of mastery, social persuasion, and by
reducing stress and negative feelings [2], which also are
key components to successful learning. This is particularly
important in QM, because studies show that on QM
courses, students are often valued based on their ability
to calculate, which leads to a culture that can hurt students,
particularly those who are not perceived as typical physics
majors [5].
The aforementioned culture that emphasizes calculation

skills is strongly present in the instructional approach QM
courses have traditionally used, namely, the “position first”

approach. This approach often starts from the introduction
of wave functions, and students begin with calculations in
continuous bases and infinite-dimensional systems [6].
During recent years, a new approach to teaching QM has

emerged, aiming to reduce the emphasis on calculations.
This novel approach, the “spin first” approach, focuses on
using spin-1=2 particles and sequential Stern-Gerlach
experiments [7] as a context to introduce the postulates
of QM [6,8,9]. Even if the research in the effectiveness of
the spin first approach is limited, the results so far have
been promising [6,9].
In order to support student learning as much as possible,

the spin first instructional approach should be applied
together with active learning teaching strategies [10,11].
One such teaching strategy, prime-time learning [12], has
been pioneered by University of Jyväskylä, Finland, and
adapted for use in many other Finnish universities [13]. The
method improves student commitment and supports learn-
ing by offering student groups individualized support from
teachers [12]. Prime-time learning has also proven resilient
during the challenges brought by the emergency remote
teaching in the COVID-19 pandemic [13].
At the University of Helsinki, we have taught an

introductory course in QM combining the spin first
approach and the prime-time method. The teaching reform
preceded the shift to remote teaching due to the COVID-19
pandemic, which enabled us to study whether students’
performance changed due to remote teaching.
In this paper, we discuss how students’ self-efficacy can

be supported by prime-time learning also during remote
teaching, and how the spin first approach is suited for an
introductory university course. To this end, we, on the one
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hand, studied students’ self-efficacy and, on the other hand,
their conceptual understanding and knowledge profiles.
Our research questions were

1. Does prime-time learning affect the self-efficacy
beliefs in quantum mechanics, and what was the
effect of remote teaching?

2. Does prime-time learning affect the learning of
QM concepts, and what was the effect of remote
teaching?

3. What kind of QM knowledge profiles emerge from
the data?

4. How are knowledge profiles and self-efficacy related?
To address these research questions, we begin by

describing the background in Sec. II, where we introduce
the concept of self-efficacy, the spin first approach, and the
Finnish university education system as well as the prime-
time method. In Sec. III, we describe the study methods,
and in Sec. IV, we present the results of the study and
discuss the implications by research question. We conclude
with a summary in Sec. V.

II. BACKGROUND

A. Self-efficacy

Student beliefs regarding their ability to perform are
collectively called self-efficacy. These beliefs are built up
through experiences of successes, through interpersonal
contacts (social models and persuasion) and by reducing
stress and negative feelings [2,14]. For example, mastery
experiences predict self-efficacy in science [15]. On the other
hand, self-efficacy beliefs predict success in studies [3,4],
and they are precursors of student interest and choice of
major subject [16]. For physics students, self-efficacy is
highly aligned with physics identity [17], and physics
identity predicts a choice of physics as a career [18]. Self-
efficacy can be supported with teaching. For example, using
self-assessment for administering grades links to higher self-
efficacy for mathematics students [19]. However, university
physics instruction has often negative effect on self-efficacy
beliefs [20,21].
In addition to physics identity, gender is an important

factor in self-efficacy. Male physics students generally
have higher self-efficacy than female students with similar
grades [22], and recognition from teachers influences wom-
en’s and men’s self-efficacy in different ways [17]. Women
studying physics in Finland report more anxiety and lower
self-efficacy than men [23]. However, studies often view
physics as a monolith and only sparse literature exists on the
relationship between the subfields of physics, although
many physicists feel that subfields of physics are valued
differently [24]. Physicists from certain specializations such
as applied physics may not even feel like proper physicists.
This division is experienced by both genders [24]. To our
knowledge, no studies have probed the connection between
self-efficacy beliefs and physics subfield.

In addition, research shows that particularly on quantum
mechanics courses, physics students are often valued based
on their ability to calculate, which leads to a culture that can
hurt students who are not perceived as typical physics
majors [5]. However, changing the culture of the courses
can be difficult, as students may not readily accept teaching
styles which are different from their expectations [25].

B. Spin first

Quantum mechanics (QM) is a highly interesting and
motivating, but abstract and difficult topic for university
physics students. Often QM courses start from the
Schrödinger equation and wave functions, and introduce
problems related to the energy and position of particles in
potential wells. This instructional approach is called the
position first approach.
Recently, a new approach, called the spin first approach,

has emerged in teaching QM. This approach utilizes spin-
1=2 particles and sequential Stern-Gerlach experiments [7]
as a context to introduce the postulates of quantum mechan-
ics within a mathematically simple two-state system [6,8,9].
The idea of the spin first approach is to focus on

introducing quantum mechanical concepts without tedious
calculations involving differential operators in the infinite
dimensional Hilbert space. Rather, the concepts are dis-
cussed in terms of discrete systems, where states are
represented using the Dirac notation and observables are
represented by operators with simple action on the states.
These are explicitly connected to their vector and matrix
representations. Examining the simplest systems possible,
the spin-1=2 particles, we end up using two-component
state vectors and 2 × 2 matrices. This is to be contrasted
with the traditional position first approach, where students
need to do calculations in continuous bases and infinite-
dimensional systems from the very beginning.
Even if the position and momentum representations of

the position first approach are often regarded more intuitive
for students, the previous research shows that using the spin
first approach may improve their understanding of certain
topics, such as quantummeasurement and probability [6,9].
In addition, using the state representation supports student
reasoning [26,27].
Furthermore, in the Finnish context, the spin first

approach has been applied also in extracurricular high
school studies [28], and qualitative treatment of spin
systems was recently introduced to the Finnish high school
physics curriculum [29]. Understanding these systems
becomes thus vitally important for new student groups
such as preservice teachers.

C. Finnish university education
and prime-time learning

The Finnish education system is renowned for producing
high learning outcomes in primary school especially in
mathematics, science, and reading comprehension [30,31].
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In high school, students study a broad collection of
subjects, but focus on a few onwhich they takematriculation
exams. University students choose their major subject when
applying, and in science, minor subjects are in related fields.
Engineering students generally attend technical universities.
As a consequence, in calculus-based physics courses in
research universities, virtually all students are sciencemajors
and the majority are physics majors.
Physical science students choose their study track early in

their studies, usually in the first or second year. The study
tracks at the University of Helsinki are (experimental)
physics, theoretical physics, physics with broad science
orientation, meteorology, and astronomy. Preservice physics
teachers study mostly the same courses as students on the
experimental physics study track. The mode of teaching is
active and, recently, several courses have adapted the prime-
time approach as an alternative to lectures and individ-
ual work.
The prime-time model uses four steps of learning:

Principles, or the individual study timewhere students watch
lecture videos and read course material; practice, with
collaborative problem solving; problems, meaning tradi-
tional exercises which are solved either individually or in
groups; and prime time, where the small group that has
practiced together meets with the teacher and discusses their
questions and problems. Previous research shows that the
accountability students feel both towards their group mem-
bers and the teacher reduces drop-out, and learning outcomes
are at least as goodaswith other active learningmethods [12].
While research on the prime-time learning method is still
limited in scope, versions of it have been adopted in many
physics courses in several Finnish universities [13].
The value in prime-time learning is the personal con-

nection between the instructor and the student groups. The
importance of social connections for learning has long
been known. For example, good integration into the social
network correlates with learning [32,33]. The COVID-19
pandemic has made this even more visible: the lack of
contacts has been detrimental in particular to students in the
beginning of their physics studies [34], and remote teaching
has been detrimental to the self-efficacy of physics students
in general [35].

D. Teaching reforms

The course examined in this study, called Basics of
Quantum Physics, is an introductory course in theoretical

physics at the University of Helsinki. The course is
compulsory for all students of physics, theoretical physics,
and meteorology, as well as for preservice physics teachers.
During recent years, many teaching reforms have taken

place on the course. The course was taught in the position
first approach until 2018, and in spin first from 2019
onward. In 2018–2019, the course had active lectures, and
from 2020, prime-time learning was implemented. The
formative assessment of 2020–2022 was augmented by
students continuous self-assessment using the DISA plat-
form [36]. Furthermore, due to the COVID-19 pandemic,
the teaching was remote in 2021–2022. A summary of the
changes is presented in Table I. In all years, there were also
tutored exercise sessions to support learning.

III. METHODS

A. Questionnaires

To study the self-efficacy beliefs specifically in the con-
text of quantum mechanics, we devised a short questionnaire
loosely based on the questions by Bailey et al. [39]. The
statements were formulated for a quantummechanics course,
and originally contained statements on the ability to under-
stand the lectures, reading material, the mathematics, and the
ability to perform in the exercises and exam to the student’s
own satisfaction. The reason to formulate the statements to
include students’ own satisfaction was to account for the
different motivation levels of students and to support a
mindset in which grades are not the most important outcome
of the course. During the study, the statement referring to the
exam was dropped, as from 2020, there was no exam. The
statements are presented in Table II, and the validation of the
questionnaire is presented in Sec. III C 1. The self-efficacy
questions were answered on a 5-point Likert scale (strongly
disagree, 1, to strongly agree, 5).
From 2019 and the transition to the spin first approach,

we also surveyed conceptual knowledge post teaching.
To do this, we used an abbreviated translation of QMCA
(version 6.2.2) [40–42]. The original QMCA questionnaire
includes 38 multiple-choice questions that are designed to
measure students’ understanding of quantum mechanical
concepts in both the spatial wave function and the spins
contexts. From this set of questions, we selected 13
questions, the topics of which were covered on Basics
of Quantum Physics. These questions include seven prob-
lems in the spins context, three in the wave function context,

TABLE I. Summary of the teaching reforms by year.

Year Approach Teaching modality Textbook Assessment Data

2018 Position first Active onsite lectures [37] Exercises and exam SE
2019 Spin first Active onsite lectures [38] Exercises and exam SE and QMCA and major
2020 Spin first Onsite prime time [38] Exercises, group work and self-assessment SE and QMCA and major
2021 Spin first Remote prime time [38] Exercises, group work and self-assessment SE and QMCA and major
2022 Spin first Remote prime time [38] Exercises, group work and self-assessment SE and QMCA and major
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and three problems about measurements of fictitious quan-
tum mechanical observables called color and size. Six of
these questions form three isomorphic pairs (questions 1 and
11, 2 and 12, and 3 and 13) that ask practically the same
question but in the spins and wave function contexts. A
summary of the contents of the post-test questions and their
corresponding QMCA questions are presented in Table III.
The post-test questions were translated into Finnish by the
authors. After this, the Finnish questions were translated
back into English by a native English speaker, who is fluent
in Finnish. The minor differences in wording were resolved
by discussion. The data were scored based on whether the
answer was correct or not.

B. The sample and data collection

Each year at the end of the course, students were asked
to fill up a course feedback form, which was a familiar
procedure from previous courses. The self-efficacy ques-
tions were included in this feedback form. Students were
granted exercise points corresponding to points from a
single calculation problem. They were asked for informed
consent of participation in the research, and exercise credit
was given regardless of whether students gave consent to
participate in research.
The dataset of 2018 comprises 50 students. Data

collected from this course has also been used in Ref. [43].
In 2019–2022, as a part of the last course exercise sheet,

students were also asked to take the abbreviated QMCA

post-test. The post-test was administered using an elec-
tronic questionnaire on the Moodle platform of Basics of
Quantum Physics, and exercise credit was given as
described above. The test was not proctored, but students
were asked not to use any course material in answering
the questions and at the end of the questionnaire they
were asked if they had used any additional material. Only
answers from the students who reported that they had not
used materials in answering the questions were used in
analysis.
In addition, in 2019–2022 students were asked to report

their major subject. This question was included either in a
background questionnaire at the beginning of the course or
in the feedback questionnaire at the end of the course.
In 2019–2022, only the answers from the students who

gave their consent to using all the collected data were
included in the dataset. From the students who had given
the consent on their data being used in research we selected
only those who had answered all the post-test questions. In
addition, we had to omit one response from the analysis
because the Rasch model introduced below was not able to
treat it. This respondent had answered 5 to self-efficacy
questions SE1–SE3 and left SE4 blank, resulting in a too
extreme answering pattern for the model to handle. This
brought the number of students in 2019–2022 to 222. The
dataset includes two respondents who did not answer all
self-efficacy questions (one each for SE1 and SE2).
All study participants were consenting adults. The

research did not involve intervention in the physical

TABLE III. Post-test multiple-choice questions, their corresponding QMCA question numbers, and the conceptual content of each
question. The descriptions of the question contents are adapted from Ref. [40].

No. QMCA Question summary

1 22 Spin-1=2 particle; What is the maximum value that can be measured from a superposition state?
2 23 Spin-1=2 particle; What is the normalized state after the most probable value is measured?
3 24 Spin-1 particle; What are the possible values of repeating measurements for noncommuting operators Ŝx and Ŝz?
4 27 Spin-1=2 particle; What is the state after a measurement of Ŝz?
5 28 Spin-1=2 particle; Does Q̂jψi describe the state after a measurement of Q̂? (T=F question)
6 29 Spin-1=2 particle; Is there a definite spin value for a superposition state? (T=F question)
7 30 Spin-1=2 particle; Does the addition of a relative phase affect the probability of measuring spin?
8 34 ColorTron and SizeUp; Is a property preserved in immediate subsequent measurements?
9 35 ColorTron and SizeUp; Choose a valid representation of the state given measurement results on the state.
10 36 ColorTron and SizeUp; What are the possible values of repeating measurements for commuting operators?
11 1 Wave function; What is the maximum value that can be measured from a superposition state?
12 2 Wave function; What is the normalized state after the most probable value is measured?
13 3 Wave function; What are the possible values of repeating measurements for noncommuting operators Ĥ and x̂?

TABLE II. Self-efficacy statements, adapted from Ref. [39].

No. Statement

SE1 I understand the concepts of quantum mechanics when I read.
SE2 I understand the concepts of quantum mechanics when I attend a lecture or prime-time meeting.
SE3 I understand the mathematics used in quantum mechanics.
SE4 My performance in exercises satisfied me.
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integrity of the participants, deviation from informed
consent, studying children under the age of 15, exposure
to exceptionally strong stimuli, causing long-term mental
harm beyond the risks of everyday life, or risks to the
security of the participants. Hence the study did not require
an ethics review, according to the guidelines of Finnish
Advisory Board on Research Integrity [44]. All the data
were pseudonymized before analysis.

C. Data analysis

Latent variable models are statistical models that relate
observed variables to unobservable, latent traits. In this
study, we used two such models: the Rasch model for the
self-efficacy data and latent class analysis for the con-
ceptual knowledge data (cf. Refs. [45,46]).
Rasch analysis converts the raw data (in our case 5-step

Likert data) to linear measures. Doing so, the analysis
provides an estimate of the probability that a respondent
with certain self-efficacy will answer one way or another to
an item with a certain agreeableness [47]. In addition,
Rasch analysis provides useful tools to investigate the
validity and reliability of measurement [48,49].
The latent class analysis (LCA) is a segmentation method

for identifying underlying class membership among sub-
jects using categorical variables (cf. Ref. [50]). Hence, the
respondents are divided into groups according to patterns in
the data, rather than a single metric such as the total score.
All statistical analysis was conducted with R (version

4.1.0) [51] using RStudio [52].

1. Rasch analysis

We used a polytomous extension of the Rasch model
called the partial credit model to study the validity of the
self-efficacy survey and compute a total self-efficacy score.
There are no general sample size guidelines for Rasch
analysis, though one lower limit suggested in literature is
N ¼ 50 [45,53]. As our sample of 272 respondents well
exceeds this suggested lower limit, we deemed it appro-
priate for analysis.
All the analysis related to Rasch was run using the R

package eRm [54,55], except for computing Spearman’s
rank correlation [56] that is included in standard R and
Cronbach’s alpha [57] that was done with the ltm package
[58] as well as computing and examination of Q3 statistics
that was carried out using the TAM package [59].
To investigate the validity and reliability of the meas-

urement, we calculated Spearman’s rank correlations for
item-rest correlation (in the range 0.49–0.60) [48] and
Cronbach’s alpha (0.752), indicating an acceptable level of
unidimensionality [60]. Examining the residual correla-
tions using Q3 statistics [61], we saw that they are in the
range −0.480–0.043. Even if the minimum value of the
residual correlation (between items 2 and 4) is larger than
ideal, we deemed it acceptable based on the upper bound of
0.5 for the absolute value of a correlation suggested in

literature [62]. Thus we can regard our questionnaire items
locally independent.
To estimate the data-model fit, we have used the infit

and outfit mean-square [63] as well as χ2 goodness-of-fit
statistics shown in Table IV. Examining the χ2 values, we
see that the value for the item 4 is relatively large indicating
worse data-model fit. However, the p values do not point to
significant deviations from the fit, and the outfit and infit
mean-square values are well in the range 0.6–1.4 acceptable
for a rating scale survey [48,64]. In addition, we have
computed separation reliability [48,65] and person-misfit to
estimate the person-fit (i.e., the fit of the response patterns).
In our case, the separation reliability is 0.663 which
indicates that the items separate between respondents to
an acceptable degree [65]. Also the computed person misfit
percentage is as low as 2.38%, indicating that the response
patterns of only a handful of respondents deviate from the
model expectation.

2. Latent class analysis

To examine the knowledge profiles of the students in our
sample, we conducted latent class analysis (LCA) for
the post-test results. The minimum sample size for LCA
depends on the complexity of the survey and model. A
lower limit for LCA has been set at N ¼ 70 [66], but for
simple models, even N ¼ 30 may be enough [67]. Hence,
our sample (N ¼ 222) was deemed sufficient. The analysis
was performed using the poLCA package [68].
For model selection, we used the parsimony measures

Bayesian information criterion (BIC) and Akaike informa-
tion criterion (AIC), normalized entropy and likelihood
ratio chi-square statistic G2. The model fit indices are
shown in Table V. In general, the optimal class solution is
the one with the lowest BIC and AIC values, the highest
normalized entropy and the lowest G2 [68,69]. In addition
to the fit indices, we evaluated the sizes and average
posterior probabilities of the classes, as well as class
interpretability. As the other fit indices did not show strong
preference for another model, while the AIC was lowest
for the model with three groups, we chose this model for
further examination.

3. Statistical analysis

To further examine the data after the Rasch and latent
class analyses, we used Pearson’s χ2 to examine whether

TABLE IV. Item-fit statistics for the questionnaire items.

Item number χ2 p value Outfit MSQ Infit MSQ

SE1 193.490 0.997 0.771 0.784
SE2 194.971 0.996 0.777 0.796
SE3 169.527 1.000 0.673 0.636
SE4 245.850 0.580 0.976 0.858
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the observed frequencies deviated from expected frequen-
cies [56]. Where the expected frequencies were less than 5,
Fisher’s exact test was used [70]. Once a statistically
significant difference in samples had been found, the
strength of the association (effect size) was determined
using Cramer’s V [71].
For comparing samples, we first determined whether

they were normally distributed with the Shapiro-Wilks test
[72,73]. As this was not the case, the Kruskal-Wallis H test
was used [74], and if a significant difference was found, the
post hoc pairwise testing was done with a Wilcoxon rank
sum test [74,75], using the Bonferroni correction for the
p value for significance [76]. The effect sizes were
estimated using Cliff’s delta [77]. In addition to standard
R, we used packages effsize [78] and rcompanion [79].

IV. RESULTS AND DISCUSSION

A. The effects of teaching modality

Before studying the effects of prime-time learning and
remote teaching on student self-efficacy and conceptual
knowledge, we examined the student sample. In terms of
self-reported major subjects the sample remained approx-
imately unchanged during the shifts in teaching modality,
and the analysis did not show statistically significant
differences [χ2 ð4; N ¼ 222Þ ¼ 2.163, p ¼ 0.706] between
the proportions of major subjects. The proportions of
different major subjects for 2019–2022 are shown in Fig. 1.

1. The effect of teaching modality on self-efficacy

To study whether the teaching modality had an effect
on students’ self-efficacy, we compared the self-efficacy

scores of the different years. We discovered that there was a
statistically significant relationship between the mode of
teaching and self-efficacy score with Hð3; N ¼ 272Þ ¼
8.168, p ¼ 0.043. The average self-efficacy scores are
presented in Table VI. Follow-up tests showed that the
distribution of the self-efficacy differed significantly
between 2019 and 2020, when the course shifted from
active onsite lectures to onsite prime-time learning, and the
self-efficacy was significantly higher in 2020 than in 2019
(W ¼ 861.5, p ¼ 0.0082). The α level for significance is
0.05=6 ¼ 0.0083 after the Bonferroni correction. The effect
size for the difference between the years 2019 and 2020 is
small (Cliff’s delta −0.31) [80].
Overall, the students self-efficacy remained fairly

stable throughout the study and through the teaching
reforms. There was a dip in the self-efficacy average scores
in 2019, when the spin first approach was first imple-
mented. As the mode of teaching was the same between
2018 and 2019, this effect likely relates to a lack of
experiences of mastery or negative feelings experienced
by students, rather than a change in interpersonal contacts.
Previous research shows that when students encounter new
types of study materials, they find it difficult to change their
strategy of learning [25].
However, adoption of prime time in 2020 resulted in a

significant increase in self-efficacy scores, when compar-
ing the active lectures to onsite prime-time teaching.
Hence, the benefits of prime time compensated the
negative effects of the new curricular approach. This
might be due to the fact that prime time focuses on
comprehensive assessment of knowledge and perfor-
mance. For example, the use of self-assessment supports
students’ self-efficacy beliefs [19].

TABLE V. Fit indices for LCA and class sizes.

No. of classes BIC AIC G2 Normalized entropy Class sizes

1 3233.21 3188.97 1074.054 � � � 100%
2 3015.42 2923.55 780.627 0.720 25%, 75%
3 3041.33 2901.82 730.896 0.705 20%, 32%, 48%
4 3093.57 2906.42 707.500 0.699 20%, 24%, 25%, 31%
5 3145.58 2910.79 683.874 0.693 8%, 16%, 19%, 26%, 31%

TABLE VI. Averages of post-test results (maximum points 13) and self-efficacy measures (ranging between −2.71 and 5.27) by year
and LCA group.

2018 2019 2020 2021–2022 Group A Group B Group C

N 50 46 54 122 70 107 45

Mean post-test score � � � 9.02 8.24 9.09 11.53 8.79 4.93
Mode post-test score � � � 11 10 11 11 9 6
Standard deviation of post-test scores � � � 2.534 2.670 2.650 0.896 1.252 1.724

Mean self-efficacy measure 2.20 1.51 2.29 2.15 2.40 2.08 1.45
Mode self-efficacy measure 2.05 1.60 2.60 2.60 2.05 2.60 1.60
Standard deviation of self-efficacy measure 1.690 1.505 1.351 1.478 1.418 1.324 1.726
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The self-efficacy beliefs of students remained on the
higher level also during remote instruction. The difference
in self-efficacy between active onsite lecture and remote
prime time (comparing years 2019 and 2021–2022) was not
quite statistically significant (W ¼ 2080, p ¼ 0.0094)
when accounting for the Bonferroni correction, which is
known to be conservative [81].
As the self-efficacy distributions from the onsite prime-

time teaching in 2020 and remote prime-time teaching
in 2021–2022 did not differ, there is a strong indication
that prime time equally supports self-efficacy in a remote
setting. These results indicate that the prime-time model,
possibly together with the self-evaluation, has enabled
students to perform to their own satisfaction.
As the detriments of remote teaching are well estab-

lished, and the effect is particularly large for beginning
physics students [34], it is remarkable how resilient the
prime-time model seems in light of our results. In remote
teaching, students in general feel less connected to both
their peers and the university staff, and their self-efficacy
beliefs suffer [35]. Our results however show that in prime-
time teaching the personal connection with the teacher can
be implemented also through video conference platforms.
It is important to note that we did not measure student

well being, and there may be negative effects which our
dataset does not show. However, the self-efficacy beliefs
were remarkably stable between the implementations of
onsite and remote prime-time implementations in our
sample.

2. The effect of teaching modality on conceptual learning

To study the effect of the mode of teaching (onsite and
remote, active lectures and prime time) to conceptual
knowledge post teaching, we compared the results from
the conceptual tests based on mode of teaching. The
average post-test scores are presented in Table VI.
The analysis showed that the differences in post-test

scores between the different modes of teaching were not
statistically significant [Hð2Þ ¼ 5.022, p ¼ 0.081]. Thus,
we conclude that the prime-time model had no measurable
impact on the learning of quantum mechanics concepts.
This is in line with previous results, where the implemen-
tation of prime time had a larger effect on student retention
than on conceptual learning [12].
In contrast, a recent study surveying physics students in

the United States found that regularly working in small
groups increased conceptual learning [82]. However, at the
University of Helsinki, the physics courses already used
collaborative learning strategies prior to prime-time learn-
ing, and the majority of students have always attended the
collaborative tutored exercise sessions. Hence, it seems that
the added value of the prime time was the personal
connection to the teacher.
To summarize, during the teaching reforms, the stu-

dents had a better learning experience, and the learning

outcomes remained the same. Importantly, taking away
the exam and implementing self-evaluation as part of the
grade did not lead to a decrease in conceptual knowledge
post teaching.

B. Comparison between LCA groups

Looking purely at the conceptual questions, we wanted
to study what kind of learning profiles emerge from the
data and to examine the connection between self-efficacy
and conceptual learning. As described in Sec. III C 2, we
identified three LCA groups of students based on their
answers to the abbreviated QMCA post-test: Group A
consists of 70 students who performed very well in the
post-test, with scores ranging from 10 to 13 out of the
maximum 13. The students in group B (107 students) have
acquired average or good points (between 6 and 12) in the
test, while group C (45 students) contains the students with
the lowest scores in the test (between 1 and 8). A summary
of the groups’ post-test scores are presented in Table VI and
the distributions of the scores in Fig. 2.
First we established that there was no statistically

significant relationship between teaching modality and
LCA group [χ2ð4; N ¼ 222Þ ¼ 7.860, p ¼ 0.097]. In other
words, the distribution of students into different LCA
groups remained approximately unchanged throughout
the study. Instead, we noticed that the self-reported major
subject and LCA group were not independent from each
other [χ2ð4; N ¼ 222Þ ¼ 10.003, p ¼ 0.040]: First, there
are more students of theoretical physics than expected in
group A. Second, there are less students of theoretical
physics and more students of other major subjects (other
than experimental or theoretical physics) than expected in
group C. The proportions are shown in Fig. 1.
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FIG. 1. Proportions of students’ self-reported major subjects by
year and LCA group.
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1. Learning profiles

To analyze the learning profiles, we evaluated the
differences between the LCA groups in terms of conceptual
knowledge by comparing the average scores in each
question.
As can be seen in Fig. 2, students in group A performed

well in almost all questions, but only a few of them
managed question 13, which indeed was difficult for all
groups and did not differentiate between them (p > 0.05;
effect size 0.04) [83]. This question deals with repeating
measurements for noncommuting operators in the wave
function context. The difficulty of this question has been
noticed also in previous studies when using the spin first
approach [40], and the difficulty may be amplified in an
introductory course.
The middle group B is large and their mean scores follow

closely the average scores of the whole student sample.
Students in group B have stumbled on mostly the same
questions as group A, but in addition have had difficulties
especially with question 5, which concerns the connection
between operators and measurements. This is not surpris-
ing, as the misconception that an operator acting on a state
constitutes a measurement is known to be confusing for
students [84]. This question is seen to differentiate strongly
between the groups (p < 0.05; effect size 0.61) [83].
In the lowest-performing group C, students have on

average answered correctly questions 6 and 7 that differ-
entiate between the groups only slightly (p < 0.05; effect

sizes 0.22 and 0.23, respectively) [83]. Question 6 asks
about a definite spin value for a superposition state and
was relatively easy for all groups, while question 7, dealing
with a relative phase, was demanding for all groups.
Furthermore, the students in group C have on average
known what the maximum measurement result is when
measuring the spin of a spin-1=2 particle (strongly differ-
entiating question 1; p < 0.05 and effect size 0.58) and
that a property is preserved in subsequent measurements
(moderately differentiating question 8; p < 0.05 and effect
size 0.43) [83].
Interestingly, the question pair 2 and 12, asking about the

normalized state of the system after measurement of the
most probable value, show the strongest differentiation
between groups with p < 0.05 and effect sizes 0.71 and
0.79 respectively [83]. This result implies that students who
understand the normalized state after measurements can
answer questions about it in both spin and wave function
contexts.
To summarize, looking at the learning profiles, it seems

that even the weaker students grasped the basic concepts
of quantum mechanics: they were able to recognize the
possible measurement results for spin, they knew that a
property is preserved in subsequent measurements, and they
had some sense of the concept of relative phase. Stronger
students built on that by understanding that the state of a
system collapses in measurement and could read probability
amplitudes in both the spin and wave function contexts. The
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most skilled students moreover handled subsequent mea-
surements for noncommuting operators, they knew how to
construct a state representation based on the measurement
results and recognized the connection between operating
and measuring. However, very few of them were able to
correctly interpret the infinitelymany possiblemeasurement
results of the energy of a particle in a box.

2. Self-efficacy in LCA groups

Finally, we studied the relationship between students’
group membership and their self-efficacy, and we discovered
statistically significant differences between groups [Hð2;
N ¼ 222Þ ¼ 11.636, p ¼ 0.003]. Post hoc testing showed
that the students in groups A and B rated their self-efficacy
significantly better than the students in group C (W ¼
2155.5, p ¼ 0.001 and W ¼ 3014.5, p ¼ 0.014, respec-
tively). The α level for significance is 0.05=3 ¼ 0.017
with the Bonferroni correction. The difference between the
groups A and C is medium (Cliff’s Delta 0.37) and that
between B and C small (Cliff’s Delta 0.25) [80].
Previous research has shown that self-efficacy beliefs

mediate learning [4]. In our previous study,we found that the
raw scores from the self-efficacy survey were not correlated
with students’ initial mathematical knowledge but, rather,
the students who aimed at theoretical physics reported
higher self-efficacy beliefs, even though their mathematical
skillswere only developing [43].Nowwe see that theoretical
physics students are overrepresented in group A, which
leads us to conclude that their self-efficacy beliefs are in line
with their conceptual knowledge post teaching.
These results offer an interesting view into the role of self-

efficacy and physics identity. Physics self-efficacy and
physics identity are largely aligned [17], and indeed some
view self-efficacy as a subcomponent of physics identity [18].
At least in Finland, the question of physics identity has been
problematic, with theoretical physics being more highly
valued by physicists [24]. Our results show that students
who intend to major in theoretical physics have higher self-
efficacy, and as is typical in the literature, higher self-efficacy
correlates with stronger conceptual knowledge. From a
snapshot of our students, we cannot say how students’
self-efficacy develops and why students choose their major
subject. Clearly more research is needed on this topic.
There is a well-established link between self-efficacy and

gender [21,22], as well as between gender and physics
identity [17,85], and theoretical physics is one of the
subfields of physics with the least women. On the other
hand, some physicists perceive theoretical physics as the
only real physics and both male and female physicists of
other subfields may struggle with identifying as physicists
[24]. As the interplay between gender, interest, and identity
is very complex, physics should not be viewed as a single
field when studying physics identity.

V. CONCLUSIONS

We surveyed students’ self-efficacy and conceptual
knowledge post teaching through a transition from the
position first to spin first instructional approach and a shift
from active lectures to prime-time learning. These changes
preceded the COVID-19 pandemic, which provided us the
opportunity to study the effects of prime-time learning
during remote teaching.
We saw that students’ self-efficacy beliefs were

negatively affected by the transition to spin first
teaching, but the introduction of prime time improved
self-efficacy. Contrary to findings from other studies,
we did not see a decline in self-efficacy during the
remote instruction.
Post-test scores were satisfactory throughout the study,

and we did not see statistically significant changes in them
during the changes in teaching modality. Thus it seems that
the prime-time model did not significantly improve con-
ceptual learning. Instead, the model proved its resilience
in the transition to remote teaching, as students’ post-test
scores did not suffer.
To study QM learning profiles, students were distributed

into groups based on their post-test answers. We saw that
the distribution of students into different groups was not
affected by mode of teaching.
The learning profiles show that knowledge of quantum

mechanics is built up from the basic understanding about a
single measurement in a two-state system and repeated
measurements of the same observable. This understanding is
required for grasping the idea of repeated measurements for
different—both commuting and noncommuting—operators.
Most of our students, who were taught in the spin first
approach, gained also the basic understanding of the wave
function representation but still struggled with the infinitely
many possible measurement results of the energy of a
particle in a box.
Students in the two highest-performing groups had

significantly higher self-efficacy scores than the students
in the third group. Students of theoretical physics were
over-represented in the highest-performing group with the
highest average self-efficacy score, while the students with
a major subject other than experimental or theoretical
physics were over-represented in the lowest-performing
group with the lowest average self-efficacy score. This
finding is in line with the previous studies showing that, on
the one hand, self-efficacy mediates learning and, on the
other hand, that physics courses may not support self-
efficacy of students who are not perceived as typical
physics majors. Our results show that the interplay between
physics interest, choice of a major subject, and competency
beliefs is highly complex, and more research is needed on
the relationship between, for example, gender and choice of
physics subfield.
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