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This study describes a psychometric evaluation of high school student responses to the Colorado
Learning Attitudes about Science Survey (CLASS), and the subsequent development of a more
parsimonious attitudes and beliefs survey structure for potential use with K-12 students in physics
courses aligned with the Next Generation Science Standards. Pre- and postsurvey response data were
obtained from high school students in the 2017–2018 and 2018–2019 school years, whose instructors
were partnered with the Physics through Evidence: Empowerment through Reasoning project.
Exploratory factor analysis methods were used to propose a physics attitudes and beliefs survey with
a more parsimonious factor structure, and confirmatory factor analysis methods provide support for the
survey’s structural stability. These preliminary results suggest that the CLASS is fertile ground for the
development of shorter attitudes and beliefs surveys that may be more easily implemented and interpreted
by instructors in K-12 contexts. Replication analyses and potential uses of the more parsimonious survey
structure are also discussed.
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I. INTRODUCTION

For more than a century, efforts seeking to reform
physics education in the United States have attempted to
shift general instruction from solely didactic methods
toward approaches that seek to actively engage students
in inducing physics principles from evidence [1]. The
results of these reform efforts have been mixed, high-
lighting the historical difficulty within the United States to
implement and sustain novel and research-based educa-
tional practices on a national scale [2]. One common theme
of these reform movements is a concern for fostering
positive attitudes and beliefs of students toward the practice
of science, as well as toward the relationship between the
scientific enterprise and their personal lives. Since the late
1800’s, reform educators have called for fostering a “spirit
of science” or a “spirit of inquiry” in students, and similar
language has been used throughout the decades to describe
how appreciating the beauty and internal coherence of the
scientific process should be one of the main foci of science
education [1]. More recently, studies have connected
student attitudes and beliefs, as well as perceptions of
self-efficacy regarding physics, to both a lack of diversity

within the field and retention rates in the university
context [3,4].
Many survey instruments with the purpose of attempting

to measure student attitudes and beliefs toward science
have been developed to help address these concerns. Two
examples of survey instruments in the context of physics
are the Maryland Physics Expectations Survey [5] and the
Colorado Learning Attitudes about Science Survey
(CLASS) [6]. The CLASS in particular is classified as a
highly reliable instrument [7], and it has been adapted for
use in other subject-matter disciplines such as biology [8],
chemistry [9], and laboratory-focused physics courses [10].
Within the U.S. university context, many studies have been
published that report CLASS results in a wide variety of
university-level introductory physics courses, such as
calculus-based physics courses for science majors [11],
inquiry-based conceptual courses directed at elementary
education majors [12], and modeling-instruction courses
[13], among others [14]. The CLASS has also been
translated into multiple languages and applied in non-
U.S. contexts [15,16].
However, few studies exist that involve applications of

the CLASS with high school students, and those that do
have occurred mostly outside of the U.S. [17,18].
Considering that many students’ first contact with physics
occurs in K-12, the relatively small number of studies
involving the application of attitudinal surveys with stu-
dents in this context offers an opportunity to enrich the
academic debate surrounding students’ attitudes and beliefs
toward science. Attending to the development of positive
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student attitudes and beliefs toward physics prior to the
college experience becomes more significant when one
considers studies showing how CLASS results with under-
graduate students tend to remain static, or even decrease,
throughout their time in college [19]. While some teaching
methods and curricular approaches have been reported to
positively impact undergraduate student attitudes and
beliefs as measured through the CLASS [13,20], courses
with these characteristics tend to be offered to nonscience
majors, and the traditionally oriented courses offered to
science majors are commonly shown to have a negative
attitudinal impact, or no impact at all [14]. Thus, we argue
that fostering positive student attitudes and beliefs toward
physics should be a goal of physics instruction prior to the
college experience, and within this objective, the CLASS
provides a means of investigating the potential attitudinal
impacts of different pedagogies and curricular approaches.
This study is concerned with investigating the psycho-

metric properties of high school student response data to
the physics CLASS, collected by instructors partnered with
the Physics through Evidence, Empowerment through
Reasoning project. Through descriptive statistics, explor-
atory factor analysis, and confirmatory factor analysis,
responses were analyzed to inform the extraction of a
more parsimonious survey instrument inspired by the full
CLASS. A shorter survey instrument with replicable
structure and a greater ease of statistical interpretation
has the potential to facilitate comparison between results of
future studies investigating high school student attitudes
and beliefs toward physics. Thus, the research questions
guiding this study are

1. What are the psychometric properties of CLASS
results with a high school student sample popu-
lation?

2. Do CLASS responses obtained from a high school
student sample population inform the development
of a shorter physics attitudinal survey instrument?

3. Does a smaller factor structure obtained from
students’ beginning-of-year CLASS responses

provide acceptable fit indices when applied to the
same students’ end-of-year CLASS responses?

II. THE CLASS

The CLASS is an instrument that seeks to “probe
students’ beliefs about physics” and measure the extent
to which students have beliefs that align with those held by
professional physicists [6] (p. 1). Influenced by prior
science-related attitudinal surveys such as the Maryland
Physics Expectations Survey [5] and the Epistemological
Beliefs Assessment about Physical Science [21], the
CLASS is designed to be applicable with a wide variety
of student populations. The instrument seeks to address a
broad variety of issues considered significant by educators
in the process of learning physics, and it was designed to be
easily administered, with item wordings that facilitate
adaptation for use in other science disciplines [8,22].
Since their inception, the CLASS and its variations have
been widely used in science education research [14].
The CLASS has 41 attitudinal statements about physics,

to which students indicate their level of agreement on a
5-point Likert scale ranging from “strongly disagree” to
“strongly agree,” as well as one “filter” question to identify
students that are not reading statements prior to responding.
Some item statements are worded so that agreement with
them indicates “expertlike thinking” (e.g., alignment
with beliefs held by expert physicists), while agreement
with other statements indicate “novicelike thinking” (see
Table I). CLASS results are scored under an ordinal
method, which does not assume an exact mathematical
relationship between each level on the scale being used
[23]. In other words, it is not assumed that the difference
between “agree” and strongly agree corresponds to the
same difference between agree and “neutral” regarding
the psychometric construct measured by the instrument.
The CLASS developers defended the use of a 5-point scale
during application, as cognitive interviews with students
revealed a meaningful distinction between levels of

TABLE I. Examples of CLASS statements by category.

Agreement indicates expertlike beliefs
Statements without consistent
expert opinions, not scored

Statements where agreement
indicates novicelike beliefs

2. When I am solving a physics
problem, I try to decide what
would be a reasonable value
for the answer.

4. It is useful for me to do lots and lots of
problems when learning physics.

6. Knowledge in physics consists of many
disconnected topics.

28. Learning physics changes my
ideas about how the world works.

9. I find that reading the text in detail is a
good way for me to learn physics.

18. There could be two different correct
values to a physics problem if I use two
different approaches.

38. It is possible to explain physics
ideas without mathematical
formulas.

41. It is possible for physicists to carefully
perform the same experiment and get two
very different results that are both correct.

35. The subject of physics has little relation
to what I experience in the real world.
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agreement or disagreement during statement interpretation.
However, interviews also showed a lack of consistency
within student interpretations of response options, in the
sense that different respondents with the same conviction of
belief could respond differently to the same statement [6].
Under this rationale, neutral responses are disregarded for
scoring purposes, and CLASS responses are then collapsed
into a 2-point scale that treats strongly agree and agree as
the same answer for expertlike statements, while the
opposite occurs for novicelike statements.
When scored, CLASS results for a sample population are

represented in relation to various dimensions of student
attitudes and beliefs toward physics. Most of the survey
statements are grouped into eight categories, developed
through an iterative process combining statistical data-
driven approaches and predetermined categorizations pro-
posed by physics experts and teachers. These categories are
not fully independent of each other, some statements are
not scored in relation to any given category, and some
statements are not scored at all. Nonscored statements are
kept in the survey because they provide formative assess-
ment information that is potentially valuable for physics
faculty. Therefore, in the automatic scoring spreadsheet for
the CLASS [7], results for a given sample set of pre- and
postassessment responses are shown in various ways (see
Table II):

i. “Overall,” which takes into account the 36 scored
statements with “consistent expert responses.”

ii. For each of the eight category groupings, which are
various combinations of 26 statements.

iii. In relation to statement groupings that lack consis-
tent expert perspectives but are still seen to provide
formative assessment information of use to teachers.

III. LITERATURE ON THE CLASS AND K-12
PRACTICAL MEASURES

A. CLASS results with traditional instruction

Studies involving the CLASS instrument generally
apply it in the form of a pre- and postsurvey, where
students take the survey at the beginning and end of a
course experience. The differences between student results
in the pre- and postsurvey (“shifts”) are interpreted in
relation to various course characteristics and valued out-
comes, such as reform structures [11], curricular or
pedagogical approaches [12,13], and student conceptual
learning [24]. Commonly reported results from most of
these investigations show few positive shifts toward expert-
like thinking among student populations. For instance, in
their meta-analysis of student beliefs about learning phys-
ics, Madsen et al. [14] indicated that the most common
effect of lecture-based instruction was an overall regression
of student beliefs toward being more aligned with “novice”
views of science. In connection to this finding, researchers
have correlated traditional instructional practices with
negative shifts in student CLASS results [25]. Research

TABLE II. Categories and statement groupings in CLASS scoring.

Category or statement grouping Category or grouping description Statements in category

Personal interest Do students feel a personal interest in or connection
to physics

3, 11, 14, 25, 28, 30

Real world connection Seeing the connection between physics and real life 28, 30, 35, 37
Problem solving (general) No description 13, 15, 16, 25, 26, 34, 40, 42
Problem solving (confidence) No description 15, 16, 34, 40
Problem solving (sophistication) No description 5, 21, 22, 25, 34, 40
Sense making or effort For me (the student), exerting the effort needed

toward sense making is worthwhile
11, 23, 24, 32, 36, 39, 42

Conceptual understanding Understanding that physics is coherent and is
about making sense, drawing connections,
and reasoning, not memorizing or making
sense of math

1, 5, 6, 13, 21, 32

Applied conceptual understanding Understanding and applying a conceptual approach
and reasoning in problem solving, not
memorizing or following problem solving
recipes

1, 5, 6, 8, 21, 22, 40

Statements not categorized, but with
“consistent expert perspective”
(included in “overall” scoring)

No description 2, 10, 12, 17, 18, 19, 20, 27, 29, 38

Learning style questions (not a
validated category in terms of
expertlike responses)

What students believe to be useful for learning 4, 9, 12, 16, 19, 33

Statements not scored Described as “on slate for revision” 7, 41
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into student perceptions of self-efficacy has proposed that
traditional physics instruction may not support students in
generating positive self-efficacy states [26], and that this
phenomenon could be related to the lack of student
diversity in a field whose population has been historically
dominated by white males.

B. Differences in CLASS results across demographics

Studies have also investigated students’ interpretation of
CLASS statements and the patterns that may exist between
student demographics and survey results. Gray et al. [27]
found that students understand what the beliefs of expert
physicists are but do not personally agree with them,
suggesting that the importance of developing expertlike
beliefs was not being fostered in their course experiences.
CLASS scores have been shown to vary in relation to
gender and race in the U.S. and abroad, with white male
students often having the most expertlike scores in pre- and
postsurvey applications [15,18,26,28,29]. These results
lend themselves to some interesting interpretations, given
that the norms of modern professional science are influ-
enced by the norms of European academic societies whose
membership has historically been composed mainly of
white men. Potential explanations aside, given the calls for
increased gendered and racial diversity within the physics
community [30], gendered and racially biased results such
as these indicate the need for increased attention toward the
fostering of positive attitudes and beliefs in marginalized
student groups.

C. The CLASS as a predictor for student
learning and retention

Studies have revealed a potential connection between
student beliefs and conceptual understanding, showing not
only that the beliefs held by students prior to instruction can
be a predictor for the conceptual gains that they will achieve
[25], but also that students without a certain threshold of
expert beliefs are unlikely to become a physics major [31].
Furthermore, longitudinal studies investigating student
beliefs related to physics show that these beliefs remain
essentially static throughout the entire undergraduate expe-
rience [17,31]. To summarize, the attitudes and beliefs
toward physics that students in a science major hold when
they leave university may well be the same—or even more
novicelike—than the attitudes and beliefs they had when
they entered. This leads to an uncomfortable view of
current higher education in physics: undergraduate courses
do not invite students into the field. Instead, they perhaps
filter out students who do not already enter the university
context with the expertlike beliefs that are required to
succeed. A similar threshold idea regarding student per-
ceptions of self-efficacy has also been proposed in other
research regarding retention rates in university introductory
physics courses [4].

D. Contexts for positive CLASS results

Not all studies involving applications of the CLASS in
undergraduate populations report negative or nonexistent
shifts in survey results. When instructors either explicitly
attend to fostering expertlike beliefs about physics with
their students or implement reform structures, positive
CLASS shifts are reported in lecture-based courses with
large class sizes directed at science majors [11]. Moreover,
some curricular approaches and course structures consis-
tently show positive impacts on CLASS results—all share
the characteristic of engaging students in the process of
constructing and defending conceptual models of physics
phenomena [14]. For instance, Otero and Gray [12]
reported positive CLASS shifts in Physics and Everyday
Thinking (PET), an inquiry-based course for nonscience
majors. In PET, students inductively formalize physics
concepts through guided-inquiry experiments, consensus
discussions, and engagement in science practices [32].
Other examples of studies reporting positive CLASS shifts
include implementations of modeling instruction in under-
graduate physics courses [13] and courses applying the
Physics by Inquiry curriculum [33]. While these curricular
approaches differ in the extent that they explicitly address
the nature of physics learning, scientific epistemology, and
the history of science, they share the characteristic of
providing students the opportunity to learn physics by
engaging in practices that align with those of professional
scientists.

E. Psychometric properties of the CLASS

Finally, a recent line of inquiry into the CLASS focuses
on analyzing the various psychometric qualities of data
gathered by the CLASS and its variants. Van Dusen and
Nissen [29] used original CLASS response data collected
through the Learning About STEM Student Outcomes
platform to discuss criteria for collapsing rating scale
responses. They argued for the use of a 3-point or 5-point
scoring scale for the CLASS, instead of the 2-point scale
recommended by Adams et al. [6], stating that collapsing
response categories could remove information and bias
interpretations of survey results. Heredia and Lewis [22]
used factor analysis methods to perform an evaluation of
response data for the chemistry version of the CLASS,
proposing that the survey provides fertile ground for the
development of shorter instruments with reasonable psy-
chometric properties, and further suggesting that similar
analyses be performed for data obtained with the physics
and biology versions of the CLASS. In line with this
recommendation, Douglas et al. [34] used factor analysis
methods to conduct an evaluation of the physics CLASS,
arguing for a shorter version of the instrument with a more
parsimonious structure. They proposed a 15-item version of
the CLASS with three factors. This factor structure was
similar to the one proposed by Heredia and Lewis [22] for
the chemistry CLASS. However, the demographics of the
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sample population in Douglas et al. [34], composed largely
of white male students, was a potential cause for concern in
relation to the generalizability and replicability of their
proposed factor structure with other student populations.
Lastly, Cahill et al. [35] implemented the CLASS in their
multiyear evaluation of an interactive-engagement curricu-
lum, and used factor analysis methods to develop a pair of
orthogonal factors using 25 CLASS items that most closely
captured aspects of students’ approaches to learning and
problem solving.
The developers of the original CLASS responded to

Douglas et al. [34], critiquing its methodology and findings
[36]. They argued that nuances in student beliefs were lost
with a reduced factor structure, and that using a subset of
the original survey would “substantially reduce its utility”
(p. 10). For example, Douglas et al. [34] suggested
collapsing the “personal interest” and “real-world con-
nection” factors from the original CLASS into a single
category named “personal application and relation to the
world” (p. 7). Wieman and Adams [36] responded to this
suggestion by stating that collapsing these factors would
reduce the sensitivity of the instrument, as instructors
would no longer be able to differentiate between shifts
in personal interest which had been correlated strongly
with becoming a physics major, and shifts in real-world
connection which had a more negative shift than personal
interest in the population originally tested by the CLASS
developers [6]. Therefore, it could be the case that remov-
ing CLASS statements that do not correlate well with other
statements would lead to the loss of important information
about student perceptions. To justify these recommenda-
tions, the CLASS developers emphasized the purpose and
utility of the CLASS as a formative assessment. While
parsimony may make for a tidier analysis and more
replicable results across population samples, a shorter
instrument would also provide less information about
student attitudes and beliefs. That said, Wieman and
Adams [36] agreed that the validity of a survey instrument
is not a “one-time stamp,” and that evidence toward
reliability and validity should be collected for different
populations (p. 9).

F. Practical measures for use in K-12 contexts

By grounding their argument against condensing the
CLASS in the utility of the instrument for providing
nuanced formative information to teachers, the original
developers assumed that teachers would have the motiva-
tion, time, and expertise to implement, score, analyze, and
apply the information provided by the survey to inform
instruction. Since Wieman and Adams [36] argue that the
CLASS is to be used for formative purposes, it follows that
the instrument is intended to be implemented and analyzed
while teaching a physics course. Indeed, Wieman and
Adams [36] state that the utility of the CLASS lies in
“defining particular aspects to which instruction can be

targeted” (p. 4). For instructors to use the CLASS in this
manner, their students must take the CLASS and have their
responses properly scored and analyzed, a task which may
not be feasible for K-12 instructors during an academic
year. Although the CLASS scoring spreadsheet automati-
cally scores student data and generates graphical results,
this output must still be interpreted by instructors and given
that the CLASS has not been analyzed psychometrically
with high school populations, this interpretation is not a
trivial task.
We argue that it is important to acknowledge how the

individual and contextual differences between university
and K-12 instructors may influence instrument implemen-
tation and perceived utility. The above capacity assump-
tions may hold true for university instructors seeking to
implement the CLASS, many of whom have received
quantitative research training through their graduate stud-
ies, have less teaching responsibilities than K-12 teachers,
and have access to university-based resources such as the
learning about STEM student outcomes platform. This may
result in more time to score and interpret the results of the
CLASS, alongside having less student surveys to analyze.
More support may be required for similar instrument usage
to occur in the K-12 context. Studies of data use by K-12
teachers have indicated the importance of explicitly attend-
ing to the capacity of individuals and their local commun-
ities to support the productive implementation of formative
instruments like the CLASS. At the individual level,
teachers have varying degrees of knowledge regarding
how data can be used to inform instruction, a conceptual
relationship referred to as pedagogical data literacy [37]. In
their article on the growing need for data-driven decision
making in education, Mandinach and Gummer [37] discuss
how pre- and in-service educators should be exposed to
multiple experiences throughout their careers to develop
data literacy. They argue that institutions of teacher
preparation must take a more active role in developing
educator data literacy, given that educators are increasingly
expected to use diverse forms of data to inform instruction.
An important component of pedagogical data literacy is
making sense of the link between assessment results and
their implications for specific practices [38], and research
has found that effective data use is encouraged by col-
laboration, as distributed expertise is shared across teachers
[39]. Local organizational conditions such as structured
time for analysis, timely access to evidence of student
learning or affective outcomes, tools and guides for
collaboration, and sustained professional development,
have been found to enable data use [38,40,41].
Unfortunately, most studies have pointed to a lack of data

use capacity in K-12 systems at the individual [42] and
organizational levels [43]. Some reasons identified for this
lack of capacity include a dearth of professional develop-
ment opportunities, limited courses on data usage during
preservice training, the decoupling of organizational
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policies and practice, and few opportunities for productive
social networking around data use practices [42,43].
Scholars concerned with improving instructional practices
in K-12 settings have attempted to address data use
capacity issues by proposing the development and usage
of formative instruments known as “practical measures”
[44]. The intention of a practical measure is to provide
evidence about the impact of specific educational prac-
tices that is gathered and interpreted in the context of those
practices. In their paper describing the design of a system
of practical measures (one of which was a short student
survey), Penuel et al. [45] state that they should be
embedded in teaching practices, predictive of valued
outcomes, able to generate data that can be used to
improve practice, and frequently usable by educators.
The usability of practical measures is described in terms of
dimensions such as learnability and efficiency, which
relate to how easily the measure can be used for the first
time and to how quickly the measure’s tasks can be
performed [45]. To ensure that practical measures are
taken up by K-12 teachers with limited capacity for data
use, key design features should also include relative ease
of analysis, where analysis results have clear implications
for instruction.
In contrast to the reasoning proposed by Wieman and

Adams [36] for keeping the CLASS complex, proponents
of practical measures contend that such complexity often
discourages instrument usage, as teachers are overwhelmed
with a deluge of information that does not offer clear
guidance for shifts in practice [44,46]. In addition, practical
measures are especially important for teachers with a lack
of individual, network, or organizational capacity for
understanding or responding to the results of complex
instruments [47]. The previously reviewed research sug-
gests that this is the existing condition for most K-12
physics teachers. Following this reality, the development
and validation of a shorter, more practical, and more easily
interpreted version of the CLASS may be a useful step for
providing formative evidence to K-12 teachers that can be
used to inform practice. This conclusion aligns with prior
research into the psychometric properties of the CLASS.
For instance, Heredia and Lewis [22] also argued for the
increased feasibility of shorter surveys, particularly in
contexts with strong time constraints where there are
concerns that survey respondents may not fully complete
a longer instrument.
It should be stated that this study is not intended to

criticize the CLASS instrument and argue for large-scale
revisions to the instrument for all purposes. Rather, the
objective is to explore the psychometric properties of
response data for a new sample population of interest
and use this data to develop a more parsimonious and
statistically interpretable set of statements, whose proper-
ties can be potentially replicated in other high school
contexts. As contended above, high school physics teachers

are much more likely to use research-based instruments like
the CLASS to inform their instruction if the instrument is
easily implemented and interpreted. Therefore, this study
has an overarching goal of supporting future lines of
research into the impacts of innovative curricular
approaches in high school physics education, alongside
offering a practical measure to K-12 teachers that requires
less capacity for usage. To produce this measure, we first
calculated descriptive statistics and performed exploratory
factor analysis on CLASS preresponses to produce four
potential factor structures. We then tested these potential
factor structures and the structures proposed by Douglas
et al. [34] and Cahill et al. [35] on CLASS postresponses to
identify the structure that best fit our sample of data.
Finally, we employed bootstrapping methods to provide
further evidence about the structural validity of the final
proposed instrument. These methods are described in
further detail in the following sections.

IV. METHODS

A. PEER Physics

The student response data analyzed in this study
were gathered by high school instructors partnered with
the Physics through Evidence, Empowerment through
Reasoning (PEER Physics) project at the University of
Colorado Boulder. PEER Physics is a suite that provides
teachers, schools, and districts with curricular materials and
sustained professional development. These resources help
promote inquiry-based physics instruction aligned with the
pedagogy proposed by A Framework for K-12 Science
Education [48] and upheld in the Next Generation Science
Standards [49]. The PEER Physics approach is adapted
from Physics and Everyday Thinking–High School (PET-
HS) [50,51], which is in turn adapted from the PET
undergraduate course for nonscience majors [32]. PEER
Physics thus shares the main characteristics of PET of
inviting students into the process of experimentation,
building scientific models of physics phenomena, and
inducing physics principles from data and the process of
consensus. PEER Physics uses the methodology of placing
students in small groups that routinely engage in whole-
class discussions to make sense of experimental observa-
tions and conceptual reasoning, as is also the case with
other similar curricula, such as Physics by Inquiry and
Modeling Instruction [13,33].
High school teachers partnered with PEER Physics

engage in sustained professional development with a focus
on understanding and implementing NGSS ideals, through
immersion activities that apply the same pedagogical
approaches as PEER Physics activities themselves. As
instructors gain more experience with PEER Physics, their
professional development evolves to include teacher-
directed inquiry into common problems of practice, as
well as training to become professional development
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providers for their school districts. Since the original PET-
HS curriculum started being field-tested in Colorado in
2014, a body of literature has been developed that supports
the impact of the curricular suite on increasing student
equity [52], student conceptual understanding [53], and
professional learning [54].

B. Data collection and student demographics

A total of 15 instructors participated in data collection
during the 2017–2018 and 2018–2019 academic years,
with four instructors participating in both years.
Participating instructors teach at public and charter high
schools in the Midwest and Pacific Northwest of the United
States. Initial application of the CLASS instrument for
predata collection occurred in September of each academic
year, while postdata collection occurred in May. The survey
was given in paper and pencil format. During pre- and
postapplications of the CLASS instrument, participating
students also completed a physics diagnostic assessment
developed by the PEER Physics team which included a
short survey component. Participating teachers were asked
to implement both the CLASS and the PEER Physics
diagnostic assessment so that the impacts of PEER Physics
instruction could be investigated through multiple data
sources.
The data collected for this study represents approxi-

mately 800 students attending 11 high schools in seven
school districts. Many students neglected to provide names
on pre- or postresponse sheets, making it difficult to
provide more precise estimates regarding numbers of
individual students impacted by PEER Physics participa-
tion. Unlike prior investigations involving the CLASS in
undergraduate semester-course contexts, this study uses
data collected over an entire academic year with younger
student populations, which brings unique challenges and
constraints regarding the collection and treatment of
matched data. For instance, in some districts it is common
for students to be shifted between instructors after an
academic semester, and therefore some students wind up
with missing pre- or postdata. Another factor affecting data
collection was the lack of explicit incentives for students to

provide full responses to the CLASS. Thus, overall
response rates were low.
Given that matched response sets to both the PEER

Physics diagnostic and the CLASS instrument were
desired, student information was kept only if a set of
conditions were simultaneously met:

i. Student had the same instructor for the entire
academic year;

ii. Student provided responses to >80% of the
PEER Physics diagnostic assessment in pre- and
postapplication;

iii. Student provided responses to >80% of the CLASS
in pre- and postapplication.

This initial filtering of data reduced the full sample set to
683 students (261 students in 2017–2018, and 422 students
in 2018–2019). In a following stage of student response
data selection, two additional conditions were applied:

iv. Student provided responses to >80% of PEER
Physics demographic survey questions in pre- and
postapplication;

v. Student correctly answered the CLASS filter ques-
tion in pre- and postapplication.

After these two stages of treatment, the sample set was
reduced to 497 students. Missing response data for the
reduced sample set can be seen in Table III.
As the CLASS instrument has 41 attitudinal statements

and the reduced dataset included 497 individuals, the
maximum number of possible responses was 20 377.
Incomplete responses were analyzed to investigate miss-
ingness, and the reduced sample set contained 85 missing
responses in the pre-survey and 88 in the postsurvey, a
missingness rate for total responses of 0.4% in both
academic years. An initial analysis of the mechanism for
missing responses indicated that survey fatigue within
sample respondents could have affected response rates.
A higher-than-expected proportion of missing responses
were concentrated in the final 10 items of the CLASS
survey, particularly in 2018–2019. To avoid biased results
due to this nonrandom source of missingness, particularly
within the final 10 items in the original CLASS, students
with missing responses were also removed from the dataset.
This resulted in a final sample set of 423 students. More

TABLE III. Missing response information.

2017–2018
Number of
possible

Number of
PRE missing %

% of PRE missing
in last 10 items

Number of
POST missing %

% of POST missing
in last 10 items

7790 33 0.4 54.5 38 0.5 52.6

2018–2019

Number of possible
Number of
PRE missing %

% of PRE missing
in last 10 items

Number of
POST missing %

% of POST missing
in last 10 items

12 546 52 0.4 88.5 50 0.4 86
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information on sample demographics can be seen in
Table IV.

C. Data analysis

This study’s analyses were primarily conducted using R
Studio, except for the CFA analysis of CLASS postres-
ponse data, which used Mplus 7.4. Prior to analysis, items
4, 7, 9, 33, and 41 were removed. These items do not have
consistent expert responses, and are thus considered neutral
items that are not used for scoring purposes in the original
CLASS. Items 1, 5, 6, 8, 10, 12, 13, 17, 18, 20, 21, 22, 23,
27, 29, 32, 35, and 40 are worded so that agreement
indicates alignment with novice beliefs toward physics,
these items were reverse scored using the “recoder” R

package. The “psych” R package was used to calculate
descriptive statistics for the remaining 36 CLASS items,
obtain estimates of internal consistency, perform EFA, and
perform replication or bootstrapping analyses.

V. FINDINGS

A. Item descriptive statistics and internal consistency

Average scores for the remaining 36 CLASS items
ranged from 1.85 to 4.12, with standard deviation values
from 0.81 to 1.16. Sixteen items had a median of 4, 18
items had a median of 3, and only two items had a median
of 2, indicating an overall positive skew to response
distributions. Minimum and maximum values for every
CLASS item were 1 and 5, respectively, indicating that
every possible response option was selected by respon-
dents. Only two items, 12 and 24, were found to have skew
or kurtosis with a magnitude larger than 1, indicating that
their response distributions were concentrated around
certain values—of these, item 12 was also one of the
two items to have a median of 2. The relatively high
medians among most of the items in the dataset, in
combination with standard deviations close to 1.0 for all
items, suggests non-normality of the data. However, for
ordinal data of this nature, an assumption of normality
would be tenuous even if descriptive statistics seemed to
support it.
Reliability estimates were obtained for the 36 non-

neutral CLASS items. Cronbach’s α is a commonly
reported statistic of internal consistency for survey instru-
ments, and it is a function of average interitem correlation
and the number of items in the analyzed instrument.

Cronbach’s α for the entire scale was calculated as 0.81,
with 95% confidence boundaries of 0.78 and 0.83.
However, Cronbach’s α on its own is misleading as a
measure of internal reliability, as the average inter-item
correlation of the 36 CLASS items in this dataset was 0.11.
Given that α is a function of average interitem correlations
and the number of items, this suggests that the calculated
value of α in this case is skewed by the large number of
items in the scale. Therefore, item-whole correlations
(corrected for item overlap) were calculated for each item,
and this statistic was used as a criterion to inform the
removal of further items. After each iterative removal of
items, Cronbach’s α was recalculated for the remaining
items in the scale.
In the literature, cutoffs for item-total correlations vary

from 0.3 to 0.5 [55,56]. Although it is desired that the final
reduced survey instrument is able to measure an overall
single latent construct, the original CLASS was designed as
a multifactor instrument and thus it is assumed that the
reduced survey will also contain multiple correlated factors.
Therefore, a lower cutoff of 0.3 for corrected item-total
correlation was chosen in this case. With this condition for
a first filtering process, items were iteratively removed from
the dataset until all remaining items possessed corrected-
item total correlations above 0.3. Table V provides more
information regarding this first iterative item-removal
process, including reliability estimates for all remaining
items at each stage.

B. Exploratory factor analysis

Exploratory factor analysis (EFA) was chosen as the
statistical tool to inform the development of a shorter
physics attitudinal survey from the CLASS. EFA examines
the “pairwise relationships between individual variables” in
a scale and seeks to extract latent factors from them [57]. It
is thus a data reduction tool which serves to aid in
psychometric analyses of a scale. EFA is well suited for
the overall objective of this study, which is to investigate
whether high school student CLASS item response patterns
can be modeled through a smaller set of latent variables.
Three separate factor structures were obtained through EFA
for this data, and the steps in this procedure are outlined
below. Factor extraction and rotation methods are discussed
first, followed by factor retention decisions, interpretation
of results from different generated factor structures, and
finally an evaluation of robustness.

TABLE V. Item removal iterations informed by descriptive statistics.

Item Number
Lower, raw,

upper estimates of α
Average interitem

correlation
CLASS items with corrected
item-total correlation <0.3

36 0.78, 0.81, 0.83 0.11 1, 2, 8, 12, 18, 19, 21, 22, 27, 38
26 0.83, 0.85, 0.87 0.18 6, 10, 17
23 0.83, 0.85, 0.87 0.2 � � �
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1. Methods of factor extraction and rotation

Communalities were initially estimated through each
item’s squared multiple correlation [58]. In a second stage
of item filtering, one item with SMC below 0.2 was
removed from the dataset prior to factor extraction.
Multiple methods of factor extraction exist, and in this
case, principal axes factoring [57,58] was chosen as it was
not tenable to hold an assumption of multivariate normality
within the dataset. During extraction, factors were rotated
to help interpretation. Factor loadings for items can be
conceptualized as axis coordinates, where each axis rep-
resents a factor. With N extracted factors, each item
possesses N factor loadings that characterize its location
within an N-dimensional space. Put simply, when factors
are rotated, the axes that represent the factors are shifted so
that items cluster closer to the axis they load more strongly
upon. Ideally, this leads to nondominant factor loadings
being placed near zero, which then facilitates the inter-
pretation of factor loading matrices.
Rotations are classified as orthogonal or oblique,

depending on whether underlying factors are uncorrelated
[57] or correlated [59], respectively. In this case, given that
the original CLASS was designed as a multi-factor instru-
ment, and that in the social sciences it is generally expected
that factors within a single scale correlate with each other
[57], an oblique rotation was chosen, particularly Promax
rotation. This rotation method is recommended as a
desirable oblique rotation choice [57,60] and is designed
to result in a simple structure by producing greater
correlations among factors [58].
Twenty-two items remained in the dataset following the

removal of items due to low corrected item-total correla-
tions and SMC, and each of the original eight CLASS
factors (see Table II) was represented in the reduced dataset
by at least two items. To investigate whether a similar factor
structure could be obtained from our reduced dataset, our
initial EFA sought to extract eight factors, and the resulting
calculated communalities were examined. Communality is
the sum of the squared correlations of the variable with the
factors, and it represents the variance in the observed
variables which are accounted for by a common factor
[58]. Items with low calculated communalities do not load
strongly onto any factor, and in this case one item was
removed for having communality below 0.3. An eight-
factor EFA was performed with the remaining 21 items,
with all items possessing resulting calculated communal-
ities above 0.3.

2. Factor retention and interpretation

In the first stage of factor extraction interpretation, the
eigenvalues of the extracted factor loadings matrix were
examined. Eigenvalues are the sum of squared factor
loadings for a given factor, and multiple rules exist for
eigenvalue cutoffs for factor retention. While the Kaiser
criterion [57,61] suggests retaining factors with eigenvalues

above 1.0, the Joliffe criterion [58,62] recommends a cutoff
of 0.7. Each criterion would inform the retention of
different factor quantities in this case, so a scree plot test
with parallel analysis was performed. A scree plot is a
graphical representation of the extracted eigenvalues for all
factors, while a parallel analysis involves generating
random uncorrelated data of the same size as the observed
data sample, from which eigenvalues are also extracted.
When comparing the eigenvalue scree plots from the
observed and randomly generated datasets, the quantity
of observed eigenvalues with values above the 95th
percentile of the random eigenvalues should be retained.
Results from the parallel analysis in this case supported the
retention of two to four factors, depending on which
criterion for eigenvalue cutoff is chosen—for instance,
the Kaiser criterion suggested retaining only two factors,
while the comparison between observed and random
eigenvalues suggested retaining four (see Fig. 1). Our
initial EFAs therefore sought to extract four factors.
Examination of the factor loadings matrix for the eight-

factor EFA indicated that there were items that loaded
weakly (<0.3) onto multiple factors, three factors that had
three or less items with significant loadings, and one item
that only loaded significantly onto one factor. This initial
output indicates that an eight-factor solution is not
adequate, which aligns with the results of the parallel
analysis shown in Fig. 1. The item that loaded onto an
isolated factor was removed from the dataset, and a four-
factor EFAwas performed with the remaining 20 items. The
factor loadings matrix from the 20-item, four-factor EFA

FIG. 1. Parallel analysis scree plot of 21-item survey, with
overlaid Kaiser criterion cutoff; factor analysis (FA).
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can be seen in Table VI, where factor loadings are <0.3
omitted for clarity.
Adequacy test indices for the 20-item, four-factor EFA

were within acceptable bounds. The root-mean square
residual (RMSR) measures the standard deviation of model
prediction errors, and a good fitting model would generate a
narrow distribution of such errors. Thus, the calculated
RMSM for a good fitting model would be close to zero—in
our case it was 0.03. The root mean square error of
approximation (RMSEA), which should be below 0.05,
was 0.032; and the non-normed fit index, which analyzes
the discrepancy between the chi-square value of the
hypothesized model fit vs the chi-square value of a null
model, was 0.954, where values>0.95 indicate good model
fit. Although some items cross load onto multiple factors,
this factor loadings matrix indicates that there are three
factors with at least five significantly loading items and one
factor with only four items, one of which with a negative
loading. The item statements were then analyzed to
interpret the factor loadings. All items associated with
factor 1 refer to student attitudes and beliefs surrounding
personal effort or motivation to understand physics con-
cepts and formulas. This factor was thus called “sense
making effort and motivation.” All items associated with
factor 2 refer to how physics understanding relates to
students’ lived experiences and personal enjoyment, this
factor is therefore called “personal connection and real-
world application.” The last two factors relate to student
attitudes and beliefs toward problem solving, with factor 3

possessing only items worded to align with novice beliefs,
and factor 4 possessing only items worded to align with
expert beliefs. Cronbach’s α was calculated as a measure of
internal reliability for each separate factor (see Table VII).
These internal reliability estimates indicate that factor 4

is problematic. Following these results, in combination
with the obtained eigenvalues that showed little difference
between the third and fourth factors, as well as evidence
from the factor loadings matrix suggesting that factor 4
does not possess enough significantly loading items to
constitute a stable factor, we decided to investigate whether
different three-factor structures could be extracted from the
data. This led to multiple three-factor EFA attempts on the
20-item dataset, and initial factor loadings matrices sup-
ported the removal of items 34 and 35 for not loading
significantly onto any of the three proposed factors. Results
from the subsequent three-factor, 18-item EFA indicated
that each item loaded onto at least one factor and given that
each factor was theoretically sensible, this became the first
potential model for CFA testing.
Three more potential competing EFA models were

generated from the 20-item dataset. As the fourth factor
extracted from the above four-factor, 20-item EFA was
composed almost solely of items aligned with “expert”
perspectives toward problem solving, we investigated
whether a three-factor structure could adequately model
the data if all items that loaded solely onto this factor were
removed. This decision led to removing items 15, 34, and
36 from the dataset prior to iterative three-factor EFAs. The
purpose of removing these items was to investigate whether
a third extracted factor from the reduced set of items could
be composed only of items aligned with novice perspec-
tives toward problem solving, which would provide a more
theoretically focused factor called “attitudes toward prob-
lem solving.” A three-factor, 17-item EFA followed, the
results of which led to the removal of item 35 from the
dataset as it did not load significantly onto any factor.
Results from a three-factor, 16-item EFA provided appro-
priate overall adequacy test indexes and factor loadings for
all items, and this factor structure became the second model
proposed for CFA testing.
The third potential model was generated from the

decision to remove item 23 from the three-factor, 16-item
factor structure. Item 23 reads, “In doing a physics
problem, if my calculation gives a result very different
from what I’d expect, I’d trust the calculation rather than

TABLE VI. Factor loadings from 20-item, four-factor EFA,
sorted by factor. Loadings with magnitudes below 0.3 are omitted
for clarity.

CLASS item
Number Factor 1 Factor 2 Factor 3 Factor 4

11 0.541 � � � � � � � � �
16 0.418 � � � � � � � � �
23 0.403 � � � 0.438 � � �
24 0.632 � � � � � � � � �
28 0.406 0.310 � � � � � �
30 0.347 0.418 � � � � � �
32 0.425 � � � � � � � � �
42 0.357 � � � � � � � � �
3 � � � 0.733 � � � � � �
14 � � � 0.573 � � � � � �
25 � � � 0.452 � � � � � �
35 � � � 0.381 � � � −0.307
37 � � � 0.365 � � � � � �
5 � � � � � � 0.692 � � �
13 � � � � � � 0.388 � � �
29 � � � � � � 0.447 � � �
40 � � � � � � 0.563 � � �
15 � � � � � � � � � 0.477
34 � � � � � � � � � 0.455
36 � � � � � � � � � 0.488

TABLE VII. Cronbach’s α and average inter-item correlation
for each factor in the 20-item, four-factor structure.

Factor Cronbach’s α Average interitem correlation

1 0.75 0.27
2 0.75 0.30
3 0.66 0.28
4 0.49 0.20
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going back through the problem.” Although this item
loaded onto factors that made theoretical sense with its
content, its descriptive statistics indicate that the vast
majority of students answered it in a way that aligns with
expert perspectives in both pre- and postapplications of the
CLASS. A lack of a response pattern shift for a given item
is not concerning in and of itself, but in light of the context
of PEER Physics, we believe this item’s usefulness is
questionable. PEER Physics’ inquiry-based curricular
approach emphasizes the development of physics concep-
tual understanding instead of the quantitatively oriented
problem solving that characterizes most physics class-
rooms. While the curriculum suite does include problem-
solving modules, they are optional within the overall PEER
Physics curricular progression. Problems included in the
core curricular progression relate to how experimental
evidence supports or refutes claims about physical phe-
nomena, and within these problems, applications of for-
mulas serve to emphasize their conceptual origins instead
of single correct quantitative results. Item 23’s wording
targets number sense—the ability to understand whether an
obtained quantitative result is contextually sensible—in
connection to the sense-making effort during quantitative
problem solving, and this sets it apart from the other items
within its proposed factor. All other items whose statements
relate to problem solving are worded so that their state-
ments can relate to the physics problems that PEER Physics
students engage with. After removing item 23, a three-
factor, 15-item EFA was conducted. All items loaded onto
conceptually appropriate factors and adequacy test indexes
were acceptable, so this factor structure became the third
potential model for CFA testing.
Although the different three-factor EFA structures all had

acceptable adequacy text indexes, some of their items
double-loaded onto multiple factors, and unequal amounts
of items loaded onto each factor. This created difficulties in
terms of factor and score interpretation, which worked
against our overall objective with this work: to propose a
survey factor structure with simpler interpretation, to
support the development of a student attitudes and beliefs
survey with greater usability in the high school context. To
propose an even more parsimonious factor structure that
might accomplish this objective, a fourth EFA structure was
developed by seeking to extract only two factors, with more

stringent conditions for factor loadings. Through an iter-
ative process, EFAs were conducted, and items were
removed if they did not meet a 0.4 threshold for their
factor loading. This process resulted in a factor structure
with diminished internal consistency indexes for both the
entire scale and each factor, which was expected given the
smaller number of items. However, items loaded onto
conceptually appropriate factors and adequacy test indices
were comparable to those of the other proposed factor
structures. Furthermore, all items loaded strongly onto only
one factor and there was no double loading, which aligns
more closely with the overall objective of this study. The
two-factor, 11-item structure thus became the fourth and
last potential model for CFA testing.
Scree plots generated through parallel analysis for the

18-, 16-, and 15-item EFA structures all supported the
extraction of three factors, and the interpretation of factor
groupings is conceptually identical across each proposed
model. However, the scree plot generated for the 11-item
EFA structure was more ambiguous, suggesting either two
or three factors, depending on which criterion was used to
justify the factor extraction decision. The Kaiser criterion
would support the extraction of two factors in this case.
Table VIII provides more information on the four factor
structures generated by EFA. These tables include internal
reliability estimates for each model scale and factors, as
well as calculated adequacy test indexes for each model’s
proposed factor structure.
In summary, our EFA analysis of pre-CLASS responses

resulted in four potential factor structures, whose scree
plots each support the extraction of either two or three
factors. We now turn to a description of a CFA analysis that
tested these structures, alongside those proposed by Cahill
et al. [35] and Douglas et al. [34], on post-CLASS
responses.

C. Confirmatory factor analysis

We initially ran six confirmatory factor analysis (CFA)
models on our post-CLASS response data—one utilizing
the Douglas et al. [34] factor structure extracted from
undergraduate student CLASS responses, one utilizing the
Cahill et al. [35] factor structure extracted from and for
usage in interactive physics course, and four others to test

TABLE VIII. Internal reliability estimates and adequacy test indices for EFA factor structures.

Model

Full scale α
(average interitem

correlation)

Number of items
in factor 1 (α)

[average interitem
correlation]

Number of items
in factor 2 (α)

[average interitem
correlation]

Number of items
in factor 3 (α)

[average interitem
correlation] RMSR

RMSEA with
90% confidence

intervals

Tucker-
Lewis
Index

18-item 0.81 (0.20) 9 (0.76) [0.26] 5 (0.66) [0.28] 5 (0.68) [0.30] 0.04 0.030, 0.042, 0.051 0.919
16-item 0.80 (0.20) 8 (0.75) [0.27] 6 (0.72) [0.31] 5 (0.66) [0.28] 0.03 0.020, 0.035, 0.046 0.950
15-item 0.78 (0.20) 7 (0.74) [0.29] 6 (0.72) [0.31] 5 (0.63) [0.25] 0.03 0.020, 0.035, 0.048 0.950
11-item 0.73 (0.2) 6 (0.72) [0.3] 5 (0.66) [0.28] � � � 0.04 0.026, 0.045, 0.061 0.933
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the factor structures extracted by our EFA analyses. Our
rationale for testing the factor structures extracted from pre-
CLASS response data on post-CLASS data was to decrease
the possibility that CFA fit results could capitalize on the
same chance variation [63]. In addition, as a pre or
postinstrument, the factor structure should hold over time
even if students experience shifts in their attitudes and
beliefs during a course. In other words, if the factor
structure is adequate, response patterns for respondents
may shift over time, but the correlations between response
patterns for items that relate structurally should not.
For model identification, we used Mplus 7.4. As

responses to the CLASS are ordinal and cannot be assumed
to follow a normal distribution, we used the weighted least
square mean and variance (WLSMV) estimator, which uses
a probit link function to account for the estimation of
polychoric correlations between categorical variables. To
compare how well the six models fit the data, we employed
three of the global fit indices suggested by Kline [63]:
model χ2, Stieger-Lind root mean square error of approxi-
mation (RMSEA), and Bentler comparative fit index (CFI).
The model χ2 fit index tests the assumption that the
covariance matrix calculated for the specified model is
different from the population’s actual covariance matrix,
but this statistic is highly sensitive to sample size and is
routinely violated in CFA. More practical measures include
RMSEA, which is a badness-of-fit test calculated using the
chi-square model statistic, but also accounts for degrees of
freedom and sample size [63]. Values below 0.06 are
considered to indicate good fit. CFI is a goodness-of-fit
test that compares the amount of departure from close fit for
the proposed model to the null model [63]. Values above
0.95 are considered to indicate good fit [64]. Mplus also
provides a weighted root mean square residual (WRMR)
value, which is a residual-based, badness-of-fit index
suggested for categorical data instead of the more com-
monly applied standardized root mean square residual. A
recent simulation study by DiStefano et al. [65] suggested
that values below 1.0 indicate good model fit, which was
aligned with previous recommendations for WRMR [66].
To investigate local fit, we instructed Mplus to incor-

porate residual correlation matrices and suggested modifi-
cation indices in the model output. Since the factor
indicators are ordinal with five categories, Mplus output
included polychoric correlations, and correlation residuals
above 0.1 may have indicated local misfit [63]. In addition,
suggested modification indices with values above 10 that
were theoretically consistent with the content and purpose
of the instrument’s factors were considered for model
respecification. Potential modifications included the addi-
tion of correlations between error covariances, which may
indicate similar sources of measurement error.
Finally,Mplus reported standardized parameter estimates

for factor loadings, correlations between factors, error
correlations, and a statistical significance test at the

p ¼ 0.05 value. Although we were more concerned about
the overall fit of the six proposed models instead of a
specific parameter loading, parameter estimates were a
useful tool for assessing whether the empirical factor
structure of the proposed models were consistent with
the theoretical constructs the instrument attempts to mea-
sure. Parameter estimates were also useful for identifying
potential locations of model misspecification.

1. CFA results

Descriptive statistics.—The average postresponses for the
21 CLASS items used in the six models ranged from 2.6 to
4.1. Eleven items had a median of 4, and eight items had a
median of 3, indicating an overall positive skew to response
distributions. Standard deviations were all close to 1.0, with
a range of 0.89 to 1.1. Only item 24 was found to have skew
or kurtosis with a magnitude larger than 1.0, indicating that
their response distributions were concentrated around
certain values. The relatively high medians among most
of the items in the dataset, in combination with standard
deviations close to 1.0 for all items, suggests non-normality
of the data, which is consistent with the nature of the
CLASS items and supports our decision to use the
WLSMV estimator.

Global model fit statistics.—For comparative purposes, we
list the model fit statistics for the Cahill et al. [35] and
Douglas et al. [34] item structures alongside our proposed
EFA models in Table IX.
Presented global fit indices suggest that the 11-item

factor structure extracted from pre-CLASS data fits the
post-CLASS data better than the factor structures proposed
by Cahill et al. [35], Douglas et al. [34], or the other EFA
analyses we conducted. Although all the models’ χ2

statistic had p values below 0.05, the χ2 magnitude for
the 11-item factor structure was the lowest (χ2 ¼ 119.2). In
addition, the 11-item factor structure had the CFI value
closest to the 0.95 cutoff (CFI ¼ 0.94), the RMSEA value
closest to the 0.06 cutoff (RMSEA ¼ 0.065), and a WRMR
below the 1.0 cutoff (WRMR ¼ 0.951). Following these
results, we conducted a subsequent analysis with the goal
of improving the 11-item factor structure through localized
indicators of model misspecification.

Potential misspecifications to 11-Item EFA model.—There
were three residual correlations between items that had
absolute values greater than 0.1, indicating possible corre-
lation overestimations: item 3 with item 14, item 23 with
item 28, and item 5 with item 37. Mplus also produced a
modification index greater than 10 associated with the
residual correlation between item 3 and item 14, which
suggests that adding error variance correlations between
these indicators would improve overall model fit.
In addition to error variance correlations, modification

indices suggested adding one cross loading to the model:
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cross loading item 30, which reads “Reasoning skills used
to understand physics can be helpful to me in my everyday
life,” on a factor we named “problem-solving practices.”
Conceptually, the perceived everyday usefulness of physics
reasoning skills could be related to a student’s approach to
solving physics problems. However, given our goals of
simplifying the CLASS for usability and measuring distinct
factors, we decided not to follow this modification sug-
gestion and further examined the recommendation to
include error variance correlations.

Respecification of EFA model.—Kline [63] states that the
respecification of CFA models should be driven by “sub-
stantive consideration” rather than purely empirical
grounds (p. 310). To add a correlation between the error
correlations of items 3 and 14, there should be evidence that
items have similar sources of measurement error. Item 3
reads “I think about the physics I experience in everyday
life” and item 14 reads “I study physics to learn knowledge
that will be useful in my life outside of school.” Both items
attempt to probe whether students relate physics to their
lived experiences and use similar phrasing besides “every-
day” versus “outside of school” to probe for a factor we
named “personal connections to physics.” Therefore, it
seemed reasonable to include an error variance correlation
between these items.
The simple addition of an error variance correlation

between items 3 and 14 improved model fit to the point
where three practical tests of global fit all reached the cutoff
values suggested for good fit. The RMSEA was below the
0.06 cutoff (RMSEA ¼ 0.056), and the WRMR was well
below the 1.0 cutoff (WRMR ¼ 0.851). This iteration of
the model also met the 0.95 CFI criterion (CFI ¼ 0.954). A
summary of the influence of the modification on model fit
is shown in Table X.
After adding the described re-specifications, the χ2 test

was still statistically significant (p ¼ 0.00), indicating that
there was a difference between the correlation matrix

predicted by the model and the population correlation
matrix. However, the factor structure we tested had rela-
tively sparse loadings and correlations compared to most
structures used in CFA analysis, resulting in relatively high
degrees of freedom for the model, making it difficult to
reach a χ2 value that is not statistically significant. In
addition, only two correlation residuals out of a possible 55
had an absolute value above 0.1, which is below the number
of residuals over 0.1 we would expect by chance at
p ¼ 0.05. There were also no further modification indices
above 10 that would not result in a negative factor cross
loading. Following these results, we decided to tentatively
accept the model shown in Fig. 2. In addition, Table XI
shows the 11 CLASS items in our model and their
associated factors.

Conceptual interpretation of factors.—As shown in
Table XI and Fig. 2, our analyses resulted in a proposed
structure with two factors that we named personal con-
nections to physics and problem-solving practices. Factor
1, personal connections to physics (referred to as “per-
sonal” in following sections) consists of six items that elicit
whether students are making connections between disci-
plinary physics ideas and their experiences outside of
formal education settings. Items are drawn from two
categories originally proposed by Adams et al. [6]: Real
world connection and personal interest. All items are
worded so that agreement with them is considered to
indicate expertlike personal connection to physics. For
example, if a student agrees with item 28, “Learning
physics changes my ideas about how the world works,”
there is evidence to suggest the student is beginning to
think about and use physics to better understand their
interactions with, and the behavior of, the natural world,
much like an expert physicist might.
Factor 2, problem-solving practices (referred to as

“problem” in following sections) consists of five items
that elicit student perceptions of the efficacy of different

TABLE IX. Comparison of global fit indices across models.

CFA structure χ2 χ2 dof χ2 p value RMSEA (95% CI) CFI WRMR

Cahill et al. 948.5 274 0.00 0.076 (0.071–0.082) 0.80 1.589
Douglas et al. 294.2 83 0.00 0.077 (0.068–0.087) 0.89 1.230
18-item EFA 421.6 132 0.00 0.072 (0.064–0.080) 0.90 1.258
16-item EFA 418.8 101 0.00 0.086 (0.078–0.095) 0.87 1.368
15-item EFA 357.1 87 0.00 0.076 (0.077–0.095) 0.88 1.294
11-item EFA 119.2 43 0.00 0.065 (0.051–0.079) 0.94 0.951

TABLE X. Impact of modifications on global fit indices.

Model modification χ2 χ2 dof χ2 p value RMSEA CFI WRMR

11-item EFA 119.2 43 0.00 0.065 0.93 0.951
11-item EFA with error correlation 96.8 42 0.00 0.056 0.95 0.851
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strategies for solving physics problems. We used the word
practice when naming this factor to reflect that each item
describes something that students actually or potentially do
within a problem-solving context. Items 5, 13, and 40 come
from three problem-solving categories proposed by Adams
et al. [6], while item 23 was grouped with “sense making or
effort,” and 29 was considered a stand-alone item. All
items are worded so that disagreement with them is
considered an expertlike perception of the efficacy of the
described problem-solving practice. For instance, if a
student disagrees with item 13, “I do not expect physics
equations to help my understanding of the ideas; they are
just for doing calculations,” it may be an indicator of a

student’s expertlike beliefs about the usefulness of com-
pleting physics equations.

D. Replication analysis

Replication analyses serve to investigate whether a
proposed factor structure for a given data set is likely to
be observed within other datasets with similar character-
istics [57]. The most basic threshold of replicability is
replication of the basic factor structure, which can be
ascertained by identifying whether item loadings remain
congruent across data samples [57]. We performed an
internal replication analysis to assess whether the 11-item,

FIG. 2. Standardized factor loadings and correlations for the final model. Black numbers represent factor loadings; red numbers
represent interfactor correlations; blue numbers represent interitem correlations; numbers in parentheses represent standard errors.

TABLE XI. CLASS items in 11-item, two-factor model, sorted by factor.

Factor CLASS items

Personal connection to physics 3. I think about the physics I experience in everyday life.
14. I study physics to learn knowledge that will be useful for my life outside of school.
28. Learning physics changes my ideas about how the world works.
30. Reasoning skills used to understand physics can be helpful to me in my everyday life.
37. To understand physics, I sometimes think about my personal experiences and relate them to the
topic being analyzed.

39. When I solve a physics problem, I explicitly think about which physics ideas apply to the
problem.

Problem-solving practices 5. After I study a topic in physics and feel that I understand it, I have difficulty solving problems on
the same topic.

13. I do not expect physics equations to help my understanding of the ideas; they are just for doing
calculations.

23. In doing a physics problem, if my calculation gives a result very different from what I expect, I’d
trust the calculation rather than going back through the problem.

29. To learn physics, I only need to memorize solutions to sample problems.
40. If I get stuck on a physics problem, there is no chance I’ll figure it out on my own.
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two-factor model’s basic factor structure would emerge
within random subsamples of the full preresponse dataset.
Subsamples of approximately equal size were obtained by
randomly assigning respondents from the full dataset, and
the same EFA procedure was applied on each subsample.
Factor loadings were then compared to check if items
loaded onto the same factors across subsamples.
EFA results are sensitive to sample size, and Osborne

[57] recommends 20 cases for each variable present in an
analysis as a minimum for generalizable results. There are
22 calculated factor loadings within our proposed 11-item,
two-factor model, and thus an appropriate sample size to
ascertain the replicability of such a model should contain at
least 440 respondents. This is approximately the size of our
full dataset, so it could be expected that factor loadings
would be volatile when splitting the dataset further.
Therefore, performing only one internal replication analy-
sis could provide potentially untrustworthy results. To
avoid this, we performed 2000 subsample EFA procedures
and generated factor loading distributions for each item. We
found that all items had factor loading distributions with
one clear peak, which, given the sample size sensitivity of
EFA, is an encouraging indication of the reduced survey
model’s potential stability. Figure 3 shows example factor
loading histograms for two items in both factors—all items
had nonvolatile behavior across subsamples.

E. Bootstrap resampling analysis

Given our relatively small dataset, bootstrap analyses
offer a more appropriate path toward investigating the
replicability of our potential factor structure. The resam-
pling approach is designed for studies with inadequate
samples [57], and it involves using an existing dataset to
generate a certain number of related samples by randomly
selecting and replacing subjects in the dataset. Unlike
internal replication analysis, which involves splitting an
existing dataset into multiple possible subsamples, boot-
strapping resampling analysis generates new datasets by
randomly selecting individual respondents from the master
sample to be copied multiple times (or excised entirely).
Thus, one can generate multiple samples of equal size, with
slight variations between them, that allow the estimation of
sampling distributions for various relevant statistics [60].
Generated resamples are all related since they derive from
the same master sample but are varied in the sense that each
individual from the master sample might be present in
varying degrees (or not at all) in each. While resampling
analyses cannot compensate for inappropriately small
samples and can also promulgate biases that exist within
a given dataset, they are able to provide confidence
intervals and other forms of evidence toward the precision
of a statistical solution [57].

FIG. 3. Example distributions of factor loadings from replication analysis. Top row shows CLASS items 14 (left) and 37 (right) from
factor 1 (personal), bottom row shows CLASS items 5 (left) and 29 (right) from factor 2 (problem).
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In this case, bootstrap resampling analyses allow us to
investigate the precision of our obtained factor loadings, to
investigate whether we can expect other, similar samples
to produce similar results. For our study, we performed
5000 bootstrap replications of the two-factor, 11-item EFA
on the full preresponse dataset and analyzed the confidence
intervals of the calculated factor loadings, which are shown
in Table XII.
Results from the bootstrap resampling analysis indicate

that only one of the calculated factor loadings has a
confidence interval where the lower bound is below the
0.30 threshold (item 13), which is evidence toward the
replicability of the proposed factor structure. Given that all
items have their upper confidence bound above 0.50, and
that these results were obtained from the application of a
much longer survey instrument, we believe that this factor
structure is worth testing with high school student pop-
ulations, to investigate the structural replicability of our
proposed model. It is possible that conceptual connections
between these items will become more statistically salient if
they are implemented on their own in the context of a more
parsimonious instrument, where other biasing effects such
as survey fatigue may be mitigated.

VI. DISCUSSION: POTENTIAL USES
OF THE SCALE

Our proposed 11-item survey structure contains items
from five of the eight factors within the original CLASS. Of
the six items comprising our personal connections to
physics factor, four were originally from the personal
interest CLASS factor (original CLASS items 3, 14, 28,
and 30), one from the real world connection CLASS factor
(original CLASS item 37), and one from the sense making
or effort CLASS factor (original CLASS item 39). Of the
five items comprising our problem-solving practices factor,

two were originally from the conceptual understanding
CLASS factor (original CLASS items 5 and 13), one from
the sense making or effort CLASS factor (original CLASS
item 23), one from the applied conceptual understanding
CLASS factor (original CLASS item 40), and one that did
not have a CLASS factor categorization (original CLASS
item 29). Only the problem solving (general) and problem
solving (sophistication) CLASS factors are not represented
in our proposed survey instrument. It may be the case that
the items in these factors probe aspects of physics problem
solving that were not appropriate for the context of students
in PEER Physics courses.
This study’s objective is to describe the extraction of a

parsimonious factor structure from a longer survey instru-
ment’s response data, and any discussion of real-world
interpretations and analyses of student response patterns
would require implementing the shorter instrument itself
with the appropriate student population and collecting new
data. However, we believe that it could be of value to
provide examples, using our current data, of how student
responses obtained with the hypothetical parsimonious
instrument could be interpreted and used by researchers
and practitioners. Some of these examples are discussed in
the following subsections, and considering that these data
are a subset of a greater dataset collected via a different,
longer instrument, we emphasize that the empirical results
below are not intended to provide evidence toward any
rigorous argument regarding PEER Physics, or the attitu-
dinal impacts of inquiry-based physics instruction.

A. Overall attitudinal shifts

The 11-item instrument has acceptable internal reliability
(α ¼ 0.73) for a scale seeking to measure a single overall
latent variable (e.g., attitudes and beliefs toward physics),
and each of its items has acceptable average interitem
correlation with each other item within the scale (average
interitem correlation ¼ 0.2). These two qualities lend
themselves toward using students’ “performance” on the
11-item instrument as a primary outcome of interest. If
scored on a 5-point scale, the 11-item instrument has an
outcome space with a maximum score of 55, which could
be interpreted as “complete agreement with expert views of
physics.” In this investigation, we first scored the pre- and
postapplications of the 11-item subset within our full
sample using a 5-point scale; these results are shown in
Table XIII and Fig. 4.

TABLE XII. Bootstrapped coefficients and confidence
intervals generated from the two-factor, 11-item EFA model.
Bolded cells highlight item-factor pairings suggested by our
proposed structure.

CLASS
item
Number

Factor 1 (personal)
loading (confidence

intervals)

Factor 2 (problem)
loading (confidence

intervals)

3 0.56 (0.41; 0.70) −0.08 (−0.22, 0.08)
5 −0.13 (−0.24, −0.01) 0.64 (0.50; 0.77)
13 0.09 (−0.03, 0.21) 0.41 (0.27; 0.55)
14 0.61 (0.47; 0.74) −0.08 (−0.27, 0.05)
23 0.02 (−0.09, 0.15) 0.55 (0.39; 0.70)
28 0.57 (0.47; 0.68) 0.06 (−0.05, 0.19)
29 −0.02 (−0.13, 0.11) 0.53 (0.39; 0.66)
30 0.56 (0.45; 0.68) 0.15 (0.04, 0.26)
37 0.55 (0.43; 0.66) 0.15 (0.04, 0.26)
39 0.42 (0.31; 0.54) −0.08 (−0.19, 0.03)
40 0.02 (−0.09, 0.15) 0.53 (0.40; 0.67)

TABLE XIII. Descriptive statistics of scored pre- and postres-
ponses to proposed 15-item instrument.

Mean % SD % Median % Min % Max % SE %

Pre 67.87 10.21 67.27 32.73 96.36 0.50
Post 68.83 11.06 69.09 30.91 96.36 0.54
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Score distributions of the 11-item subset instrument
show very little overall change in students’ attitudes and
beliefs toward physics after an academic year of instruction.
There are slight shifts in mean, minimum, and maximum
scores between pre- to postapplications, but the overall
score distributions are nearly identical. The distribution of
score shifts (difference between post- and prescores) for the
11-item subset instrument is centered around 1%, with
most shifts falling in the −150% to 150% range. These
results can be seen in Table XIV and Fig. 5. To ascertain
whether this small shift was statistically significant, a
Shapiro-Wilk test of normality was performed on the
pre- and postresponse distributions, which indicated that
they were not normally distributed. Therefore, we per-
formed a Wilcoxon paired-sample test on the distributions,
whose results suggest the shift was indeed signifi-
cant (p < 0.001).
Although prior research on the attitudinal impacts of

physics instruction using the full CLASS instrument has
indicated that inquiry-based instruction can be successful at
fostering positive shifts in student expertlike beliefs [14],
the results shown here indicate little change in such beliefs
for high school students. However, this same meta-analysis
[14] indicated that lecture-based courses tended to foster
negative shifts in student expertlike beliefs, and in light of
such results, no shifts at all (or very small positive shifts) in
expertlike beliefs is encouraging, especially considering a
high school population. This suggests that PEER Physics
inquiry-based instruction did not generally impact high
school students’ attitudes and beliefs toward physics in a
negative way as is usually the case in lecture-based courses.
These results indicate that following their course expe-

rience, there was a somewhat even split between students
with positive and negative shifts in their attitudes and

beliefs toward physics. Given the high school context, not
all students necessarily intend to enroll in a university after
their high school experience, and it may also be the case
that for some of them, this was the first physics course they
had ever taken. In this sense, even though these score
distributions indicate a relatively small (or even nonexist-
ent) overall shift, we believe these results to be positive
given the school contexts and student demographics from
which these data were collected. PEER Physics classrooms
have an above-average proportion of students from histor-
ically underrepresented groups in physics. In addition,
physics tends to be a mentally and emotionally challenging
subject matter for most students. Therefore, results showing
both negative and positive shifts in scores obtained from the
11-item instrument are not altogether surprising and using
such results to try and understand why some students were
positively impacted could be of worth for practitioners. We
believe that such an instrument could provide instructors
with data about aspects of students’ experiences and
internal motivation that traditional performance metrics
such as quizzes and assessments do not seek to measure,
and it could help highlight students who struggle concep-
tually, but otherwise possess the attitudes and beliefs that, if
fostered, could encourage advancement in a scientific field.

B. Instrument correlation with other relevant outcomes

Teachers who participated in data collection imple-
mented the CLASS alongside the PEER Physics diagnostic

FIG. 4. Score distributions of pre (left) and post (right) responses to proposed 11-item instrument—bolded line represents the density
curve for each histogram.

TABLE XIV. Descriptive statistics for % shifts between pre-
and postresponses to proposed 11-item instrument.

Mean % SD % Median % Min % Max % SE %

11-item
instrument

0.96 11.40 1.82 −38.18 60.00 0.55 FIG. 5. Distributions of score shifts between pre- and post-
responses of proposed 11-item instrument—bolded line repre-
sents the histogram density curve.
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assessment, a conceptual exam which possesses a short
survey component. One of the questions contained in the
survey asks, “Rate how much you enjoy learning science.”
Responses to the survey questions are scored on a 5-point
scale, and their results are used by some instructors to
inform student groupings. The Spearman correlation,
which indicates whether two variables are monotonically
related, between students’ responses to this survey question
and their scores on the 11-item subset instrument were 0.33
in preresponses and 0.46 in postresponses. This indicates a
positive, albeit weak, monotonic correlation between stu-
dents’ affect toward learning science and their attitudes and
beliefs toward physics, a correlation which seemed to be
strengthened after an academic year. This correlation
provides first-order evidence of the construct validity of
our hypothetical 11-item instrument, as it would be
theoretically expected that students who self-report greater
affect toward learning science would also showcase more
expertlike thinking toward the connection science has to
their own lives, as well as toward their own personal
motivation to engage in it as an academic discipline.

C. Factor scores

As the 11-item instrument is composed of two factors,
one could also investigate students’ scores for each factor
separately. Here we are calculating factor scores by sum-
ming scores from each item in the factor, and it should be
noted that results from such an approach should be viewed
with skepticism, as factor scores calculated in this manner
are implicitly assuming that each item contributes equally
toward the latent construct being measured by that factor
[57]. EFA results themselves indicate that this assumption
is difficult to hold, as some items have stronger factor
loadings than others and thus should contribute more
heavily to a hypothetical factor score. However, we have
taken this approach here because this is how we believe
instructors might use the scale in practice, and because
calculating weighted factor scores in this context would be
an unnecessarily complex approach given the exploratory
nature of this study. Summed factor scores and score shifts
between pre- and postapplications of the 11-item subset are
shown in Table XV.
Factor 1 (α¼ 0.72, average interitem correlation¼0.3),

theorized as personal connections to physics, shows a slight
increase in mean score between pre- and postapplications,
while the median was unaffected, and the minimum score
shifted downwards. Pre- and postresponse distributions
for factor 1 were not normal under a Shapiro-Wilk test,
while a Wilcoxon paired-sample test indicated that this
shift was not statistically significant (p ¼ 0.559). Factor 2
(α ¼ 0.66, average interitem correlation ¼ 0.28), theo-
rized as problem-solving practices, also shows a slight
increase in mean scores between pre- and postapplications
while the median was unaffected. However, in factor 2 both
the minimum and maximum shifts were more pronounced,

indicating more dramatic impacts on students’
attitudes toward problem solving. Pre- and postresponse
distributions for factor 2 were also not normal under a
Shapiro-Wilk test, however, a Wilcoxon paired-sample test
indicated that this shift was statistically significant
(p < 0.05). We find the slightly larger mean positive shift
in factor 2 somewhat unexpected, albeit encouraging, given
that problem solving is an aspect of science practice that
tends to be negatively viewed by students. Factor score
distributions and shifts can be seen in Figs. 6 and 7.
Student personal factor scores and shift distributions for

both pre- and postscores suggest that overall, students were
not impacted with regards to this factor. However, the
distribution of factor score shifts tells a different story, one
in which therewere large shifts in individual students’ scores
related to this factor, a story that is hidden by the distribu-
tion’s approximately normal shape. This is an example of the
importance of obtaining matched sample data when imple-
menting attitudes and beliefs surveys, as this allows practi-
tioners and researchers to see individual effects that might be
obfuscated under a population perspective. In this case, we
see that there were students with negative shifts of up to
−45% and positive shifts of up to 50%, dramatic results that
the first two plots on their own would not indicate.
The distributions of student factor scores and shifts for

problem-solving practices indicate, somewhat surprisingly,
that student attitudes and beliefs toward problem solving in
this population were positive to begin with and tended to
stay that way overall. This might be due to response bias, as
students could be hesitant to respond negatively to state-
ments that could reflect on them poorly in an academic
sense. As was the case with personal connections to
physics, this factor had dramatic positive and negative
shifts that the pre- and postscore distributions alone would
not have indicated. Having the opportunity to identify
individual students with such shifts may be of value to
instructors, especially considering the negative views that
students tend to have of problem solving.

VII. LIMITATIONS

This study’s main limitations stem from the population
sample and the exploratory and sample-size dependent

TABLE XV. Descriptive statistics of personal and problem
factor scores and shifts from pre- and postresponses to proposed
11-item instrument.

Mean
%

SD
%

Median
%

Min
%

Max
%

SE
%

Personal–Pre 65.24 12.24 66.67 33.33 96.67 0.60
Personal–Post 65.63 14.02 66.67 23.33 96.67 0.68
Personal–Shift 0.39 14.92 0 −46.67 50.00 0.73
Problem–Pre 71.03 13.34 72.00 24 100.00 0.65
Problem–Post 72.67 12.89 72.00 28.00 100.00 0.63
Problem–Shift 1.65 13.63 0 −48.00 72.00 0.66
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nature of the EFA procedures used to propose the tested
factor structures. Decisions made during data cleaning
reduced the sample size significantly and might have
generated significant selection bias, as students who
responded to all PEER Physics survey and CLASS items
might also tend to be more academically oriented in
general, or already have above-average positive attitudes
and beliefs toward science and physics. However, these

decisions seemed sensible given the sample population and
optional nature of the original CLASS implementation.
Instructors partnered with PEER Physics teach at schools
serving a wide variety of student demographics and
socioeconomic status, and all student data was combined
for the purposes of the study.
We strongly emphasize the “exploratory” aspect of

EFA, as our study does not intend to propose the 11-item,

FIG. 7. Distributions of factor scores and shifts for problem-solving practices. Top row shows score distributions for pre (left) and post
(right) responses, bottom row shows the distribution of score shifts. The bolded line represents the density curve for each histogram.

FIG. 6. Distributions of factor scores and shifts for personal connections to physics. Top row shows score distributions for pre (left)
and post (right) responses, bottom row shows the distribution of score shifts. The bolded line represents the density curve for each
histogram.
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two-factor structure as an improved version of the CLASS
for all purposes. Rather, we contend that this more
parsimonious survey structure seems appropriate for the
curricular approach and student population of PEER
Physics, as well as for other similarly NGSS-aligned
classroom environments that focus on engaging students
in science practices. This study intends to support future
empirical research regarding student attitudes and beliefs
toward physics in these contexts. Researchers interested in
taking inspiration from the CLASS to collect attitudinal
data from students in different contexts should undergo
similar data analyses and procedures as we have described.
Different student populations might interact differently
with the survey items, which implies that different item
structures could be more appropriate in those contexts. This
is exemplified by how our results differ from those of
Douglas et al. [34] and Cahill et al. [35], whose studies
were conducted with markedly different student
populations.

VIII. CONCLUSION AND NEXT STEPS

The goal of this study was to ascertain the psychometric
properties of high school student responses to the CLASS,
and to use these properties to propose a more practical
survey factor structure for measuring high school students’
attitudes and beliefs about physics. Our proposed factor
structure is more parsimonious than the original CLASS
and fits a sample of high school responses better than the
model proposed by Douglas et al. [34] and Cahill et al. [35]
from samples of undergraduate students. This might be
expected given the pronounced demographic differences
between our student populations. Where Douglas et al.’s
[34] sample was disproportionately white and male, ours
has a relatively high proportion of students who self-
identified as Hispanic, as well as a more even split between
genders. Cahill et al.’s [35] sample is more evenly split in
terms of gender, but with a smaller proportion of students
underrepresented in physics than our own. In turn, this
factor structure may provide initial validity evidence for a
shorter measure of high school students’ attitudes and
beliefs toward physics.
From a practical perspective, our proposed instrument

may be easier for instructors to implement, score, and
interpret than the original CLASS. This is important for
high school teachers with busy schedules, large teaching
loads, and limited capacity for data use. Teachers could use
the information gleaned from this measure to adjust their
pedagogy to account for students’ attitudes and beliefs
toward physics, as traditional performance metrics do not
target this aspect of the student experience. From a
psychometric perspective, this instrument may also have
more easily interpretable properties for usage with high
school student populations than the original CLASS.
Testing these hypotheses would require implementing

our proposed survey instrument with different samples of

high school students, some ideally involving students in
non-PEER Physics contexts, in order to see if the factor
structure proposed in this paper holds across similar
groups. Once the model structure is confirmed or respe-
cified, it would also be beneficial to measure its usage and
impact across a large sample of high school teachers, so
that the instrument’s value as a practical measure can also
be ascertained. We anticipate that high school teachers will
find this instrument to be more practically useful than the
original CLASS, as it has increased utility to inform both
day-to-day pedagogical decisions and provide evidence for
longitudinal comparisons of long-term instructional
improvement efforts. Supporting this hypothesis is the
relative ease of usage of a 11-item survey with two clear
factors in comparison to a 42-item survey with a complex
factor structure, alongside the validity evidence presented
in this paper. Future validation work or studies involving
applications of the CLASS with high school populations
should also seek to investigate how high school students
interpret the item statements themselves, similarly to how
Sawtelle, Brewe, and Kramer [67] did for undergraduate
students at a primarily Hispanic-serving institution, as there
may be common misunderstandings that affect their
responses to statements and thus skew survey results.
While the lack of more than one discernible maxima in
the item response distributions generated by our replication
analysis suggests that the students in our sample were
interpreting items similarly, whether that interpretation is
akin to what the developers of the CLASS intended should
be specifically investigated.
Prior research involving the CLASS has argued for the

importance and potential long-term impacts of the affective
response of students both to physics instruction, and to the
perceived significance that physics has to their own lives
[31]. We agree that attending to high school students’
attitudes and beliefs toward physics is an important step
toward improving the physics instruction found in high
school classrooms. This research contributes to this goal by
providing first-order evidence that the factor structure of a
more parsimonious version of the CLASS fits response
patterns provided by a high school student population,
which might draw greater scholarly attention to the
potential value of collecting data on the attitudes and
beliefs of students prior to the university context.
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