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Abilities in scientific thinking and reasoning have been emphasized as core areas of initiatives, such as
the Next Generation Science Standards or the College Board Standards for College Success in Science,
which focus on the skills the future will demand of today’s students. Although there is rich literature on
studies of how these abilities develop in students across grade levels, the research community has not
reached consensus on their definition, modeling, or assessment. To advance research in this important area,
a coherent theoretical model of scientific reasoning is needed for practically guiding instruction and
assessment. For decades, the only instrument available for large-scale application was the Lawson’s
Classroom Test of Scientific Reasoning, but the instrument has demonstrated validity weaknesses and
ceiling limitations, and its design is missing an explicit modeling framework for justifying the included
skills. As a result, there is an urgent need for the development of a comprehensive modeling framework of
scientific reasoning and a valid scientific reasoning assessment that targets the wide-ranging skills required
for 21st century learners. This paper reports on the development of a modeling framework of scientific
reasoning along with a new assessment instrument, adding to the research literature in a much needed area.
The modeling framework integrates research in scientific and causal reasoning and operationally defines
the skills and subskills that underlie the reasoning for knowledge development through scientific inquiry.
Subsequently, this framework is used to guide the development of an assessment instrument on scientific
reasoning. The validity and reliability of the instrument, which have been established based on large-scale
testing, will also be discussed.
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I. INTRODUCTION

The economy and future workforce call for a shift of
education goals from content drilling towards fostering
higher end skills including reasoning, creativity, and open
problem solving [1]. In education of science, technology,
engineering, and mathematics (STEM) initiatives on
advancing 21st century learning, such as the Next
Generation Science standards (NGSS) [2] or the College
Board Standards for College Success in Science [3], focus
on the skills the future will demand of today’s students; i.e.,
both the STEM-disciplinary knowledge and attributes
necessary to successfully contribute to the workforce and

global economy [4–7]. Among the many skills emphasized
in 21st century education, student abilities in scientific
reasoning and critical thinking are the most commonly
noted, which are highly connected with other cognitive
skills needed for problem solving, decision making, and
creative thinking [8–10]. As a result, they play a founda-
tional role in defining, assessing, and developing the skills
and learning outcomes emphasized in the 21st century
science standards [2,11].
In the literature, there is extensive research on critical

thinking [8,9,12–14], which is defined as the cognitive
skills and strategies that aim for and support evidence-
based decision making. It is the thinking involved in
solving problems, formulating inferences, calculating like-
lihoods, and making decisions [15,16], and is recognized as
a way to understand and evaluate subject matter, produce
reliable knowledge, and improve thinking itself [17,18].
Meanwhile, the notion of scientific thinking or reasoning

is often used to label the set of skills that support critical
thinking, problem solving, and creativity in STEM learn-
ing. In the literature, the terms scientific thinking and
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scientific reasoning are often used interchangeably, and in
this paper the term scientific reasoning will be used
throughout. Broadly defined, scientific reasoning includes
the thinking and reasoning skills involved in scientific
inquiry for knowledge development and revision, such as
the ability to systematically explore a problem, formulate
and test hypotheses, manipulate and isolate variables, and
observe and evaluate consequences [19,20].
Critical thinking and scientific reasoning share many

common features, where both emphasize evidence-based
decision making in multivariable causal conditions. Critical
thinking can be promoted through the development of
scientific reasoning in inquiry-based learning, which trains
students’ ability to identify a researchable question, for-
mulate hypotheses, design and implement experiments,
gather and analyze data, and evaluate the hypotheses. In
this way, scientific reasoning can be viewed as a more
domain-specific expression of critical thinking in the
context of STEM learning. Therefore, targeting scientific
reasoning in teaching is aligned with the goals emphasized
in 21st century education and promoted through initiatives
such as NGSS. Through development of scientific reason-
ing skills, student critical thinking, open-ended problem-
solving abilities, and decision-making skills can be
improved. The educational importance and benefits for
students to develop scientific reasoning have been widely
researched, which has documented favorable outcomes
including positive correlation with course achievement
[21–23], improvement on concept tests [24,25], engage-
ment in higher levels of problem solving [26], and success
on transfer to improve learning of STEM content [27,28].
Unfortunately, research has shown that college students

lack essential skills in scientific reasoning, suggesting that
these skills were not developed in K-12 or beyond. For
example, Lawson [29] found that about half of introductory
biology students lack the ability to develop hypotheses,
control variables, and design experiments. Others demon-
strated that undergraduates have difficulty making evidence-
based decisions and differentiating between and linking
evidence with claims [30–32]. In addition, research has
shown that scientific reasoning skills are difficult to develop
in traditional STEM curricula but can be effectively pro-
moted with targeted inquiry-based instruction [20,33].
In order to develop scientific reasoning in formal and

informal STEM education settings, it is important to have a
guiding model and effective assessment tools to facilitate
the teaching and evaluation of scientific reasoning under
different educational settings. The research reported in this
paper is about the development of a modeling framework as
well as a new assessment instrument for scientific reason-
ing. The former is particularly important as it provides a
theoretical foundation that can organize the concepts and
learning outcomes emphasized in NGSS and the College
Board Standards for College Success in Science into a
coherent modeling framework and provide the cognitive

underpinnings to support the teaching and learning of their
respective goals. As an example, the 21st century skills
emphasized in NGSS promote a cohesive understanding of
science through three dimensions in science learning,
including cross-cutting concepts, science and engineering
practices, and disciplinary core ideas [2]. Although there
are different views and arguments about the emphasis and
organizing principles of NGSS [34,35], there are important
concepts and reasoning skills that are commonly recog-
nized as the learning outcomes for which scientific reason-
ing and causal explanation are highly emphasized. In
addition, the modeling framework and the operationally
defined reasoning skills can also provide practical means
for the teaching and learning of the related concepts and
skills emphasized in NGSS.
In terms of the assessment of scientific reasoning, the

Lawson’s Classroom Test of Scientific Reasoning (LCTSR)
[36] has gained wide popularity in the STEM education
community. Unfortunately, the design of the assessment
lacks a theoretical frameworkother than the claim that the test
is designed around formal operational reasoning, which was
defined for purposes of the LCTSR to include abilities in
control of variables, hypothesis testing, correlational think-
ing, probability, proportional reasoning, and conservation. In
addition, a recent study, which thoroughly inspected the
assessment features of LCTSR, has identified several validity
weaknesses and a ceiling effect for college students [37].
Although Kalinowski and Willoughby addressed some of
these issues through the design of an updated version of
Lawson’s instrument, which they refer to as the Montana
State University Formal Reasoning Test (MSU-FORT) [23],
they acknowledge that additional approaches are needed to
define and measure scientific reasoning, and they call for a
broader set of constructs to guide assessment development.
Therefore, it is critical to develop a valid and updated
assessment instrument on scientific reasoning that targets
21st century learners.
To contribute to the literature in the needed areas, this

paper presents a new modeling framework along with the
development and validation of a scientific reasoning assess-
ment instrument that is grounded in this framework. In the
following sections, a synthesis of existing models of
scientific reasoning will lead to the development of the
new model and the justification for the assessment design.

II. EXISTING MODELS OF SCIENTIFIC
REASONING

Thinking and reasoning as a cognitive ability has been
studied for many decades by psychologists and cognitive
scientists. A comprehensive review of this area of work has
been conducted by Zimmerman [19,38], including the
landmark work by Piaget [39] on cognitive development
to recent studies on reasoning in the STEM context by
Lawson [40], Klahr [41], Kuhn [42], and many more.
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In current education initiatives, scientific reasoning (or
thinking) has been well established as a core ability for the
21st century learners.
Among the existing research, Lawson has done extensive

work in assessment of scientific reasoning and in under-
standing how to teach these skills through inquiry-based
science curricula [43,44]. Following Piaget’s theory of
formal reasoning and stages of development, Lawson
identified 6 subskills as the basis for the assessment of
scientific reasoning. Among these subskills, control of
variables (COV) and hypothetico-deductive reasoning are
highly emphasized as they provide the foundation for
hypothesis testing, which is essential for scientific inquiry.
In Lawson’s studies, scientific reasoning is considered to
play a central role in the generation of scientific knowledge.
In his approach to science teaching, the scientific reasoning
skills are incorporated into cycles of scientific inquiry, a
process which has proven effective in helping students
construct concepts and conceptual systems as well as
develop more effective reasoning patterns [45].
In cognitive science, the research on thinking and

reasoning is extensive. Within the topic of scientific
reasoning, two threads of research are most related to this
research, including Kuhn’s research on multivariate causal
inference and theory-evidence coordination [42] as well as
Klahr’s theoretical framework on scientific discovery as
dual search (SDDS) and empirical studies regarding control
of variable skills [41,46]. Both researchers have broadened
the field of study on scientific reasoning to go beyond
investigating student abilities in controlling variables and
engaging in inductive causal inferences, which had pre-
viously been the primary areas of research.
Kuhn claims that scientific reasoning is a conscious and

purposeful process for revising ideas and generating new
understanding in light of evidence. This process, known as
theory-evidence coordination [47,42], represents an inte-
grative framework of reasoning that requires questioning
existing theories, identifying alternative explanations, seek-
ing and validating evidence (both supportive and contra-
dictory), and evaluating and determining explanations
based on evidence. New knowledge is constructed through
the intersection of students’ existing theories (including
misconceptions), data-driven outcomes (covariation rela-
tions established through controlled experiments), and
scientifically accepted theories. This coordination for
building new knowledge involves a process for considering
these types of evidence to form a network of meaningful
connections among them and between evidence and
explanations. It also involves the ability to consider the
potential impact of unknown, but possible causal factors, as
components and relations to form new evidence and
explanations. These competencies are crucial as they
represent the kinds of reasoning necessary for understand-
ing the physical world as they allow for predictions,
inferences, and explanations in cyclic inquiry processes.

Kuhn’s work emphasizes the multivariable nature of causal
relations embedded within a variety of reasoning contexts
and has demonstrated a lack of effective multivariable
reasoning among children and post-college adults in
coordinating evidence with explanations [42,48].
Klahr’s research emphasizes the role of prior knowledge

in scientific reasoning and provides a theoretical frame-
work, the SDDS, for capturing and interpreting human
behavior in a reasoning task [41]. The SDDS framework
involves a hypothesis (theory) space, an experiment (data)
space, and a set of possibilities for how the search in these
two spaces are coordinated through evidence evaluation.
The framework allows for movement back and forth
between the hypothesis and experiment spaces based on
students’ prior knowledge, strategic preferences, evidence
generated, and so on. In this way, the framework portrays
the cognitive and developmental processes that scientists
engage in for the purposes of generating new scientific
knowledge, a process which is highly complex and does not
necessarily proceed in a straightforward way.
The models proposed by Kuhn and Klahr provide

important theoretical work for modeling scientific reason-
ing. Their work can be synthesized and combined with
Lawson’s research on subskills of scientific reasoning to
form an operational framework for guiding the teaching
and assessment of scientific reasoning. Here, we provide an
example for how these ideas can be synthesized. Given a
multivariable causal reasoning task, such as those found in
Kuhn’s study [42], students can begin their investigation
from the theoretical side and identify possible explanations
(hypothesized causal relations) with provided evidence.
They can also approach their investigation from the
experimental side based on a set of possible explanations
to evaluate the consistencies between the evidence and
explanations. Outcomes can then be used to propose new
experiments or explanations through predictions and infer-
ences. These pathways of exploration and discovery
represent typical processes discussed in Klahr’s SDDS
framework [46], which also resonate with the hypothetico-
deductive reasoning and inquiry activities emphasized in
Lawson’s learning cycles [44]. Regardless of where the
process starts, which may include simultaneous thoughts
from both sides, students need proficiency in moving
between sides and in synthesizing all possible explanations
and evidence to decide the best coordination outcome as
their new understanding, which is the central element in
Kuhn’s work on theory-evidence coordination [42]. This
process usually proceeds in multiple cyclic pathways that
become the reasoning basis for what is commonly empha-
sized as the inquiry learning process. Subsequently, this
process depends heavily on students’ abilities associated
with control of variables, data analytics, and causal
decision-making. Building from these existing models,
our work proposes an operationally defined framework
of skills for the purposes of developing instruction and an
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assessment instrument for scientific reasoning. The next
section lays the foundation of this framework.

III. DEVELOPMENT OF A COMPREHENSIVE
MODELING FRAMEWORK FOR SCIENTIFIC

REASONING

From the existing literature on modeling scientific
reasoning, there are several cognitive entities that are much
related to and even entangled with the definition of
scientific reasoning. These include scientific knowledge,
scientific inquiry, and causal reasoning. The relations
among these can be interpreted where scientific inquiry
is a cognitive process supported by scientific reasoning to
generate scientific knowledge which builds on causal
relations. Therefore, both knowledge acquisition and rea-
soning have strong interactions in the cyclic process of
inquiry.
Within the broadly defined scientific reasoning, causal

reasoning appears to be a common and key element
emphasized within existing models. However, causal rea-
soning has not been explicitly targeted in many studies on
scientific reasoning, despite that most of the reasoning tasks
on hypothesis testing in the related studies involve deter-
mining if an evidence-based causal relation exists in a
multivariable setting [48,49]. As a result, the finer attributes
of causal relations have not been explicitly addressed or
integrated within current scientific reasoning models.
Rather, studies on causal and scientific reasoning are
somewhat developed as two independent tracks of work
[47]. In addition, the causal reasoning involved is often
broadly defined without attention to its specific properties
and without explicit connections to scientific reasoning
features and processes. Meanwhile, causal reasoning itself
has been extensively studied in philosophy and cognitive
science, generating a large body of work on its definitions
and constructs. Since causal and scientific reasoning have
substantial overlap for their functions and properties but
have not been well connected in previous research, the
following section takes on the important task of clearly
identifying the roles and connections among the two
schools of thinking. The section also integrates the research
of causal reasoning with scientific reasoning studies.

A. Connections between causal and scientific reasoning

The relation between cause and effect is often considered
the most fundamental component of thinking and reasoning
for knowledge generation, especially in the science
domains [50–54]. For example, conceptual knowledge is
interpreted as an understanding of the essential parts and
cause-effect relationships within a system [55] (p. 289). In
addition, causal understanding is considered a reasoning
primitive necessary for the development of naïve theories
of physics, which enable very young children to understand

the world around them [56,57]. Causality is thus integral to
the development of knowledge in general.

1. Definition of causal relation

The definition of causality has a long history [58,50]. In
more recent studies, three elements are explicitly empha-
sized for establishing a causal relation [51,59–63]. These
include (i) the element of time order of potential cause and
effect, where a cause must necessarily precede an effect
temporally, (ii) the covariation element, which describes the
quantitative covariation relations between variables of
cause and effect that are typically established based on
experimental observations of events, and (iii) the mecha-
nism element. The latter refers to mechanistic understand-
ings or models of processes linking a cause to its effect,
often at a smaller scale or deeper level of a theory. Together,
these three elements, which are explicitly defined and
investigated in two recent studies [62,63], form the basis
of causal reasoning. Typically, the time element is the
a priori condition for a causal relation and is moderately
established among college students [62,63]. In this paper,
the focus is on the covariation and mechanism elements of
reasoning given that a complete understanding of a causal
relation is best established with both. However, in the
process of scientific inquiry, it is common for covariation
(experimental evidence) or mechanism (conceptual theo-
rization) to take a temporary lead in the progression of
knowledge development.
From the philosophical and epistemological perspective,

humans are observers and make observation-based infer-
ences on how certain events may be explained and
predicted [62]. Such explanations and predictions are
constructed with understanding of the underlying causal
and noncausal relations. In general, the temporal element of
causality is the foundation in defining a causal relation,
which gives rise to the time-evolution covariations of
temporal events. The understanding of a covariation proc-
ess often starts with observing the initial and final states of
the process and the changes between the states. Based on
these observations, consistent trends and patterns are
identified to form covariation relations, which can be
further generalized to make inferences on the possible
mechanistic processes underlying the changes. In knowl-
edge formation, the observations of the changes between
the initial and final states produce the understanding of
covariation relations, while the inferences on the mecha-
nistic processes lead to the understanding of mechanisms
causing the covariations.
Figure 1 illustrates the three elements and the related

processes involved in developing a causal understanding.
Typically, people start the learning process by observing
time-ordered events occurring in multivariable contexts.
The observations produce descriptive data of the covaria-
tion behaviors, which can be further processed to extract

LEI BAO et al. PHYS. REV. PHYS. EDUC. RES. 18, 010115 (2022)

010115-4



specific data patterns based on experimental conditions,
such as control of variables. Valid covariation data can then
be used to make inferences on the underlying mathematical
and logical relations as well as possible mechanisms that
can be used to explain the covariation data patterns and to
make predictions on outcomes in extended contexts.
Meanwhile, if the events and contexts are familiar, they
can also activate a learner’s prior knowledge for explaining
the observations or cue additional processing when revi-
sions of certain understandings are needed. Then, through
cycles of coordination and integration of both covariation
data and mechanistic explanations, a synthesized under-
standing of causality of the targeted events can be produced
and integrated into one’s knowledge system.
Regarding the connections between causal and scientific

reasoning, the existing models on scientific reasoning often
make emphasis on covariation evidence in determining a
causal relation [64,38], where evidence-based justifications
are considered superior to theory-based justifications.
Meanwhile, the importance of reasoning in causal mecha-
nism has also been considered and studied [65], where
learners were thought to incorporate information about
both covariation and causal mechanism in their reasoning.
In the work described in this paper, the integration of
scientific and causal reasoning will emphasize both cova-
riation and mechanism as a common foundation for
modeling causal reasoning.
Synthesizing the literature and discussion here, the

concept of causality can be operationally defined in terms
of three essential components, including time order, data
covariation, and mechanism. Regarding causal reasoning,
once a temporal process is established, causal relations can
be explored and determined through two reasoning path-
ways. One path goes through analyzing covariation data
patterns to determine the data-covariation relations (DCR).
The other explores mechanism-based explanations that
connect cause and effect through a set of hypothetical

conceptual (theoretical) claims and mathematical logical
relations. These are referred to as mechanistic causal
relations (MCR). DCRs provide the covariation patterns
to imply or justify causality among concerned variables but
do not (or lack the needed mechanistic understanding to)
explain why and how certain causes may lead to the
observed effects. The latter is the function of MCRs. In
causal reasoning, DCRs provide the evidence for validating
a hypothetical mechanism of a causal relation. Meanwhile,
MCRs provide the explanatory mechanisms for how and
why certain variables cause outcomes under certain con-
ditions. The mechanisms can be purely hypothetical without
any existing data-covariation evidence, such as a proposed
new theory. On the other hand, they can be generalized and
tested based on collections of data-covariation evidence,
which is the process of inductive theorization and exper-
imental testing of a theory or hypothesis.

2. Inquiry-based knowledge generation through scientific
and causal reasoning

In the scientific inquiry process of knowledge gener-
ation, DCRs constitute most of the experimental evidence,
while MCRs establish the basic components of the theo-
retical (conceptual) understanding. From the epistemologi-
cal perspective, a DCR is an observation-based description
of a possible causal phenomenon, while an MCR is a
hypothetical mechanistic explanation of the underlying
causal mechanism. The two processes and their outcomes
are coordinated by learners to validate, revise, and develop
each other in order to advance both experimental and
theoretical understandings of a specific knowledge domain.
A complete understanding of a causal relation for a specific
topic would require both data-covariation evidence and
mechanistic explanations, which provide the basic con-
structs of scientific knowledge. In most scientific areas,
however, this kind of understanding is a moving

Causal Relation and Knowledge  
as Integrated DCR and MCR 

Observed  
Data-Covariation 

Hypothesized 
Mechanism 

Time Ordered Events in 
Multivariable Contexts 

Applying control 
of variables, data 
analytics, and 
conditional rules.   

Applying causal 
inferences, linking 
other theories and 
conditions.   

Causal 
Reasoning 

DCR MCR 
Observation and Activation 

Explains 
Mechanism 

Describes 
Covariation 

FIG. 1. Essential elements and processes contributing to developing an understanding of a causal relation, which describes the process
underlying time ordered events. Through observation, covariation data patterns can be generalized to provide empirical evidence of
causation in terms of the covariation attributes. Meanwhile, the hypothesized mechanism can provide mechanistic explanations of why
and how the causal relation and the covariation may exist. Both are needed to form a complete understanding of a causal relation.
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progression such that both experimental and theoretical
studies develop simultaneously but in intertwined pathways
advancing one after the other.
There are a few unique features contrasting the roles and

functions of the two aspects of causal relations in knowl-
edge development. DCRs are based on data patterns
without explanatory understanding. Therefore, in their
original forms they require a large amount of memory to
store the wide-ranging patterns manifested by the causal
relation in different conditions and contexts. As a result, it
is typically inefficient to recall and transfer such knowledge
and understanding. It is also difficult to predict outcomes in
conditions and contexts out of the range of experimentally
confirmed domains. In contrast, an MCR is often encoded
with a simple explanatory rule, which is generalized based
on many experimentally confirmed DCRs. For example, in
the case of forces between electric charges, many experi-
ments have been conducted to determine the DCRs at
different conditions, including types of charges and dis-
tances between charges. The collection of DCRs are later
generalized into a hypothetical relation, F ¼ kq1q2=r2,
which is explained with a mechanistic understanding,
claiming that interaction forces exist between two charges
and their magnitudes follow this simple relation. The
equation and its mechanistic explanation form the MCR
for forces between charges. This MCR can then be applied
to a wide range of conditions and contexts involving
multiple charges and distances for accurate predictions
or calculations of forces, most of which may have never
been experimentally measured.
Obviously, generalization of DCRs to form MCRs

significantly reduces the cognitive resources needed to
encode such relations and allows this type of knowledge to
be easily stored and readily transferred and applied to
extended domains of contexts. In education, an MCR is
also easier to be taught and learned between people and
documented for future generations’ learning. Therefore,
much of what is typically defined as scientific knowledge,
which is accumulated from prior scientific development,
has its basis in the form of MCRs. Meanwhile, DCRs
provide the experimental (observational) evidence to con-
firm hypothetical MCRs (hypotheses), to revise and further
validate existing MCRs, and to generalize new MCRs as
improved or new knowledge. Here, it is important to note
that an MCR can include generalized mathematical and
logical relations as well as the mechanisms that explain the
mechanistic origins of the relations. There can also be
situations in which ideas on mechanism and mathematical
and logical relations exist before observable DCRs are
available. These ideas represent hypothetical MCRs, which
are commonly referred to as theoretical hypotheses and need
to be validated by experiments to obtain related DCRs.
In developing DCRs, covariation data can also be

processed and generalized to yield mathematical relations
using analytic and modeling algorithms. Therefore, both

MCRs and DCRs can include mathematical and logical
relations, and containing them is not a feature that dis-
tinguishes between DCRs and MCRs. However, it is also
helpful to compare the differences between DCR-based and
MCR-based mathematical and logical relations. Those that
are DCR-based typically represent local computation
modeling (e.g., regression) outcomes of specific DCRs,
which cannot be generalized beyond the specific context
domain. In addition, these relations are not backed by
mechanistic explanations, which further limit their general
application. Because of the lack of supporting mechanism,
DCR-based mathematical and logical relations are not
mechanistically meaningful, making them difficult to be
theoretically manipulated. Through accumulation of DCRs
from a wide range of contexts, the involved mathematical
and logical relations can be further validated and syn-
thesized with mechanistic hypothesis to develop MCRs.
When the DCRs and MCRs are validated to be in agree-
ment, the mathematical and logical relations developed
based on DCRs can be transformed into those that are MCR
based, which are mechanistically explained and can be
theoretically manipulated and generally applied as laws and
principles.

3. A new comprehensive framework for modeling
scientific reasoning

In the inquiry process of learning, both DCRs and MCRs
are important building blocks for knowledge formation. As
a result, the generation of knowledge can be modeled as a
process for coordinating the DCRs and MCRs to construct
understanding that is experimentally validated and mecha-
nistically plausible. This process has a number of aspects as
it often involves contexts with multiple variables and
coordination processes between DCRs and MCRs to form
a more consistent and synthesized causal understanding.
Moving forward, this reasoning and knowledge formation
process will be referred to as the data-covariation and
mechanistic causal reasoning (DMCR) framework, which
is based on a synthesis of the work described earlier. Since
the DMCR process coordinates between DCRs and MCRs,
it can be considered as a dual-pathway process for
operationally modeling the reasoning involved in causal
decision making and knowledge formation. From this
perspective, the DMCR framework resonates with both
Klahr’s SDDS framework and Kuhn’s theory-evidence
coordination model. However, in the DMCR framework,
constructs and functional processes of causal relations and
causal reasoning are explicitly and operationally defined. In
particular, reasoning is considered a process that directly
targets a variety of types of relations in knowledge
development, which will be discussed in detail in the
following sections.
Putting all components together, Fig. 2 shows a sche-

matic of a multivariable causal network and the associated
reasoning processes for causal decision making and
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knowledge generation. The figure illustrates the relations
among scientific knowledge, scientific inquiry, and causal
relations and reasoning. In this representation of the DMCR
framework, the notion of scientific reasoning can be
interpreted as an umbrella definition which encapsulates
all of the functions and processes that support causal
reasoning, inquiry, and knowledge formation.
Since causal reasoning plays an essential role in inquiry

and knowledge development, the framework gives explicit
attention to its structures and processes, which are shown as
a causal network in Fig. 2. The causal network represents
generic time ordered causal events, which are described
with an initial state, a final state, and processes connecting
the initial and final states. The initial state contains the
variables that constitute possible causal and noncausal
factors, while the final state contains variables representing
the outcomes of causal and noncausal processes. The
processes connecting the initial and final state describe
the mechanistic interactions and conditions that determine
the possible causal and noncausal dynamics. Within the
causal network illustrated in Fig. 2, variables in the initial
state can be causal and noncausal, while variables in the
final state can be consequential and nonconsequential.
There are typically other variables involved in the process

that are controlled, undetermined, and or hidden. In
addition, the sets of variables describing the initial and
final states are not necessarily identical due to conditions
and constraints on measurements and environmental
influences.
From the initial to the final state, collected data that

describe the states and their changes under controlled
conditions can be analyzed to identify DCRs. Here,
DCRs are determined based on data that describe the
covariation of variables from the initial state to the final
state. However, DCRs do not describe the processes linking
the initial and final state. These processes, which explain
how and why the variables may covary, are described and
explained by MCRs with causal mechanisms. Using the
model of the casual relations shown in Fig. 2, theory and
hypothesis can be considered as mechanism-based claims.
This is because they mechanistically explain the structural
and temporal network of causal relations connecting the
concerned variables, which can be experimentally observed
and quantitatively described in terms of DCRs. A complete
causal theory is best supported with both DCRs and MCRs
in integrated networks of variables and relations, which are
referred to as DMCRs and are developed through causal
reasoning processes for coordinating and restructuring the
DCRs and MCRs. DMCRs represent fully developed
causal relations that constitute the basis of a theory or a
piece of established scientific knowledge in a specific
content domain. For cross-cutting concepts and theories
that span multiple knowledge domains, these often estab-
lish as integrated networks of multidomain DMCRs.
For example, the classical theory of gravitational forces

involves several variables including two objects with mass,
the distance between the two objects, and the observed
outcomes of the gravitational interaction between the two
objects in terms of forces. The covariation relations among
the three variables can be experimentally determined as
DCRs and generalized to form a mathematical relation,
F ¼ Gm1m2=r2, which is mechanistically explained
(MCR) such that the gravitational interaction between
masses forms the origin of the observed forces. Taken
together, the DCR and MCR form a complete descriptive
and explanatory framework for the classical theory of
gravity.
For scientific knowledge, most of the existing theories

and hypotheses can be broken down into networks of
causal relations among involved variables. Being a theory,
it would involve causal mechanisms to explain the nature of
the covariation relations (DCRs). For the example of
gravity, the mechanism assumes that the gravitational
interaction between masses leads to the presence of
gravitational forces. However, it is still at best an obser-
vation-based hypothetical inference for which the actual
deeper level mechanism is still not understood. From a
philosophical point of view, the ultimate mechanism may
never be understood or reached by an observer.

DMCR 
Processes for 

Scientific Inquiry Mechanism 
(MCRs)

Data Covariation
(DCRs)

Variable A

Variable B

Other 
Variables

Variable A

Variable C

Other 
Variables

Variable D

Initial State Final State
Causal and noncausal interactions 

Scientific 
Knowledge

FIG. 2. Schematic of the DMCR framework for scientific
reasoning to support causal decision making and knowledge
formation. The variables are illustrative and do not represent any
specific examples. Variable A represents features that exist in
both initial and final states, which may have changed. Variable B
exists only in the initial state, while variables C and D appear only
in the final state. Other variables include those that are either
controlled, ignored, or hidden (unknown). The solid arrows
connecting the variables in the initial and final states represent
the possible known and unknown temporal evolution and con-
textual interactions of the variables. The dashed arrows represent
observations that contribute to developing MCRs and DCRs.
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It is worth noting that in most cases DCRs are deter-
mined with covariation changes between the initial and
final states, while MCRs explain the mechanistic processes
that transform the system from the initial state to the final
state. However, it is possible that in certain situations DCRs
may be identified to describe the quantitative distributions
of the processes connecting the initial and final states.
Similarly, MCRs may also be established as the mecha-
nisms underlying the identified variables of the initial and
final states. These additional properties are considered
when the causal network of a particular domain needs to
be fundamentally restructured or extended to other net-
works, which is beyond the scope of this paper. Here, the
focus of the discussion is on the primary functions of DCRs
and MCRs in an established causal network of a specific
knowledge domain.
The multivariate causal network in Fig. 2 also resembles

the structure of aBayesian network,which is commonly used
in determining the probabilistic features of causal attribu-
tions. In quantitative causal decision making, Bayesian
probabilities play a central role in drawing evidence-based
conclusions. Therefore, understanding and reasoning with
multivariate causal networks and Bayesian probabilities are
included as key skills in the assessment of scientific reason-
ing, which will be discussed later in this paper.
In the following sections, a number of fundamental

processes and elements that support the DCR and MCR
reasoning pathways will be defined. Together, these form the
theoretical basis of the DMCR framework for modeling
scientific reasoning and knowledge development. This level
of finer detail is necessary for the creation of an assessment
framework to inform the related assessment design.

B. Complexity of causal networks
and data-covariation relations

The complexity of a causal relation must be clearly
mapped out to operationally support the development of an
effective assessment. Using the causal network representa-
tion, the complexity of a causal relation can be modeled
with the structure of its causal network. For a network of
variables and connecting relations, two types of complexity
can be considered. The first type is due to the network’s
structure, which primarily describes features of DCRs.
Here, the complexity typically increases with the number of
variables’ interconnections.
The second type is the conceptual and computational

complexity of individual variables and interactions within a
network, which represent features of MCRs. For example,
relations between two variables can be certain or uncertain.
The involved mathematical nature can be simple, such as
linear relations, moderately complex, such as quadratic and
other nonlinear functions, or complex, such as recursive
and noncontinuous. For a specific example in physics,
consider the MCR of mechanical energy conservation. In
classical mechanics, conservation of mechanical energy is

expressed as a simple summation of classically defined
kinetic and potential energies, while in quantum mechanics
it is expressed within the Schrödinger equation applied to a
wave function that describes the probabilistic nature of
reality. The conceptual and computational complexities of
the two explanatory mechanisms are vastly different,
although the general ideas of the two are analogous within
their respective domains.
In addition, the explicitness of variables and relations

also plays an important role. Reasoning tasks with implicit
(or hidden) variables and relations are usually more
difficult than tasks in which all variables are explicitly
provided with relations obviously indicated. The identi-
fication of explicit or implicit variables will typically
involve both DCR and MCR types of reasoning. The
implication on a possible variable often requires a hypo-
thetical idea of mechanism for why and how such a variable
may contribute to the outcome, as well as some existing or
predicted covariation phenomenon that can be used to test the
hypothesis. Therefore, in assessment design, manipulating
the explicitness of variables and relations in a task can help to
meaningfully control the difficulty level of test items. The
design of items using hidden variables and mechanisms can
provide a useful method to assess students’ comprehensive
reasoning that requires both MCRs and DCRs.
For our purposes, both types of complexity will be used

in assessment design, which will be discussed in detail in
the assessment section of this paper. The DCR-based
complexity is manipulated by varying the structures of
multivariable causal networks, while the MCR-based
complexity is manipulated by involving different configu-
rations of hidden variables and mechanisms as well as
conditional settings in causal tasks. To help illustrate the
complexity of causal relations, examples of typical causal
network structures are reviewed next.
From simple to complex, the structure of a causal

network can be represented in terms of different numbers
and types of connections between covariation variables. A
representative list may include (i) bivariate relation,
(ii) multivariate relations, (iii) multivariate relational net-
work (various levels as well), and (iv) complex systems of
connected networks with complex coupling and feedback,
in which nonlinear dynamics and uncertain phenomenon
such as chaotic behaviors may exist in certain conditions.
Several generic examples of these different types of causal
networks are shown in Fig. 3.
In a research design to measure covariation data for DCR

analysis, the common categories of variables often include
independent variables (IV), dependent variables (DV),
controlled variables (CV), mediating or intervening vari-
ables (MV), and environmental variables (EV) that are not
controlled and can contribute to the covariation outcomes.
In a specific design, these variables can also be explicit or
implicit (hidden) with known or unknown mechanisms
and/or covariations (or correlations).
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For a DCR type covariation causal relation, IVs are
typically studied as the hypothetical causes while DVs are
the outcomes of the causes. A well-established IV can be
manipulated to change in specific patterns, which may
cause the DV to co-vary accordingly to form a covariation
relation. Here, a necessary condition for covariation is the
control of variables, without which the co-varying data
pattern can only be interpreted as correlation instead of
covariation [see Fig. 3(e) as an example]. Ideally, an IV
should not be the DV of deeper unknown variables.
However, this assumption usually cannot be achieved from
the philosophical perspective but can be operationally
controlled such that no known variables become the
obvious causing variable of the IV.
Controlled variables can impact the DV and, therefore,

should be held constant when the IV is varied. This is an
essential concept in constructing covariation experiments.
A typical flaw in drawing conclusions for covariation
relations is the confusion between covariation and corre-
lation [see Figs. 3(a) and 3(e) for a comparison of
covariation and correlation]. Correlation is a covarying
relation between two DVs with known or unknown IVs or
between an IVand a DV without control of variables when
additional variables may be contributing. A correlation
cannot be interpreted as covariation and does not imply a
causal relation. Simply being covarying does not warrant a
covariation relation. To establish a covariation situation,
the experiment must include designs with control of
variables, with IVs being manipulated, and with DVs
covaried. When the conditions are all satisfied, the
covarying data patterns can then be validated as DCRs
between IVs and DVs [see Fig. 3(b) for a simple multi-
variable situation].
For more complex situations [Fig. 3(c)], there can exist

mediating or intervening variables acting as a middle layer

linking the IVs and DVs. These MVs can also be latent and
unmeasurable with the given technology. In addition, there
can also be a range of extraneous variables innate to the
experimental environment, which cannot be controlled but
can influence various variables in the design. It is typical
that this influence be kept at a small level or accounted for
in the analysis in order to establish the validity of the
measured covariation relations. Since these variables con-
tribute to the variation of many involved variables, they are
referred to as environmental contributing variables.
The most complex causal network is a system of inter-

connected networkswith recursive feedback [Fig. 3(d)]. This
kind of structure forms a complex system that can exhibit
nonlinear or even chaotic behaviors. Within the complex
system, each connected network maintains its relational
patterns, which are also influenced by the inputs and outputs
of other connected networks that can exist in multiple
temporal recursive forms. In this situation, microscopic
and macroscopic behaviors are often related in complex
interactions that cannot be readily predicted or inferred.

C. Complexity of causal reasoning processes

When faced with a task for determining causal relations,
a student’s reasoning can occur through simple to complex
processes. The initial simple reasoning often starts with
identifying the relevant variables based on the features of
the context. Relations among the variables are then devel-
oped by recalling similar existing understandings or gen-
erating hypothetical ones based on cued domain-relevant
understandings. The relations exist from simple bivariate to
complex multivariate forms and can be causal and non-
causal, but in this work the causal relations are emphasized.
Typically, bivariate relations are developed first as these are
simple to validate. Next, a cluster of relevant bivariate

(a) (b)

Controlled 
Effect

CV

IV* DV*

Bivariate 
Covariation

Controlled 
Effect

CV

IV1* DV1*

One-level Multivariate 
Covariation

IV2*

IV3*
DV2*

(c)

Controlled Effect
CV

IV1* DV*

Multilevel Multivariate 
Covariation

IV2* MV*

EV*
Contributing Effect

(d)

Multinetwork 
Complex System

IV1*
DV1*

DV2*

(e)

Correlation

FIG. 3. Causal networks for relations among different variables. Variables marked with an asterisk (*) represent the ones that are varied
and may exhibit covariation or correlation relations. The solid lines represent covariation relations and dashed lines represent controlled
effects that do not impact the covariation. (a) bivariate relational network, (b) one-level multivariate relational network, (c) multilevel
multivariate relational network, (d) a complex system of multiple interconnected networks with cross-coupling and recursive feedback.
Note that (e) is a special case representing a correlation between DV1 and DV2.
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relations can be integrated to develop multivariate relations
among multiple variables (IV=MV=CV) and outcomes
(DV=MV). Further, multivariate relations can be integrated
to construct networks of relations connecting multiple sets
of multivariate relations and cross domain networks to form
an increasingly complex web of relational networks [see,
e.g., Fig. 3(d)], which can eventually evolve into a non-
linearly coupled complex system. Summarizing the rea-
soning processes and the corresponding structures of the
causal networks, five general levels of complexity can be
defined, as shown in Fig. 4.
The levels of reasoning complexity resonate with the

theories in knowledge development, especially the knowl-
edge integration models on learning domain-specific con-
tent [63,66,67]. For example, the taxonomy of structure of
the observed learning outcomes (SOLO) [66] models a
student’s knowledge structure in five progression levels of
complexity of connections including prestructural, uni-
structural, multistructural, relational, and extended abstract,
all of which share structural similarities with the complex-
ity levels discussed above. This model provides a broadly
defined progression on the structure of learners’ knowledge
without attention to specific reasoning details. In our work,
emphasis is placed on the specific reasoning skills that
underlie knowledge development, which will also be
applied to designing an assessment of the reasoning skills.
It is also important to note that the different levels

illustrated in Fig. 4 do not represent a strict progression of
development. In learning and problem solving, the actual
reasoning processes often occur in parallel at multiple
levels with substantial interactions in between. Regarding
the learning of a specific content topic, student reasoning
may behave with a trend of development from simple to
more complex levels. However, branching out and recur-
sive processes are common. For example, the very process
of identifying variables will cue and interact in parallel with
the relevant relations associated with the concerned

variables. When the identified variables and relations do
not form a satisfactory understanding or explanation for the
task context, additional cycles of identification and evalu-
ation will be conducted to achieve a better match between
the constructed understanding and the task goal. Therefore,
this kind of reasoning often occurs in multiple recursive
loops at all levels of knowledge construction.

D. Operational processes of reasoning
for knowledge generation

This section discusses the fine-grained operational rea-
soning functions necessary for problem solving and sci-
entific inquiry, where different reasoning processes in the
DMCR framework provide the fundamental cognitive
support for knowledge development. For example, the
hypothetico-deductive model [68,69], which describes
similar reasoning processes, is widely accepted as being
central to scientific inquiry and learning. In order to
operationally model the reasoning underlying the DMCR
framework, five general processes and operations are
defined, including “I-process,” “D-process,” “evaluation-
analysis,” and “loop.” Together, these form a concrete,
functional basis for performing DMCR reasoning in
specific tasks, such as those shown in Figs. 2 and 3.
This level of detail is necessary to support the development
of an assessment framework for scientific reasoning.
The I-process represents generalized inductive type

reasoning such as the functions to induce, infer, imply,
identify, etc. It is a process of creating or searching for new
elements to be added to the current reasoning. The results
of the I-process include a wide range of constructs, such as
possible variables, relations, and mechanisms (MCR
hypotheses), which are often new or unknown to the
learner and can even be non-existing (new to the world).
The validity, plausibility, and usefulness of the products of
an I-process are often uncertain and need to be evaluated or
validated through other processes.
The D-process represents generalized deductive type

reasoning, such as the functions to deduce, derive, deploy,
etc. It is a process that incorporates (plugs in) the contextual
features (variables) into a given (existing) set of rules or
functions to generate defined outcomes. Results of the D-
process are often “determined.” That is, although a result
could be unknown to an individual, it is conceptually,
mathematically, and logically warranted based on the given
rules or functions.
In inquiry-based learning, the D-process usually operates

with the elements created by the I-process to derive new
predicted results, which can be further processed to
evaluate the validity of the I-process outcomes. The
evaluation-analysis (EA) processes serve to analyze and
compare the outcomes of the I- and D-process in the
context of the task and generate evidence-based decisions
for the agreement between the outcomes and task goals.
This kind of process typically goes through multiple cyclic

Identify Variables 

Develop Bivariate Relations 

Develop Multivariate Relations

Construct Multivariate Relational 
Networks 

Integrate into a Web of Relational 
Networks as a Complex System Complex

Simple

FIG. 4. Complexity of causal reasoning processes.
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loops. Thus, the complete process can be operationally
understood as cycles of the inductive-deductive-evaluative-
analytic-loop, which will be referred to as the IDEA-Loop
model of reasoning moving forward in this paper.
Figure 5 shows a schematic diagram of the IDEA-Loop

model of reasoning functions. The tasks, contexts, created
elements, and outcomes of IDEA-Loop can be components
or processes in all levels of cognitive operation. At the
neural computing level, these can represent activation of
clusters of neural networks and their inputs and outputs. At
the behavioral level, these can represent observable cog-
nitive states such as proposed hypotheses and predicted or
derived outcomes from applying certain rules and princi-
ples in contexts.
In practical applications, certain parts of IDEA-Loop

may serve as the primary function. For example, in problem
solving that involves simple plug and chug, the D-process
is often the primary operation followed with EAvalidation.
However, when a task involves the I-process, the whole
chain of IDEA-Loop is typically activated for the purpose
of validating the I-process outcomes. That is, since the
I-process create new elements, it naturally activates the
D-process to apply the new elements to generate predicted
outcomes, which then go through the EA process for
validation of the newly created elements based on compar-
isons between predicted and observed or expected
outcomes. If revisions are needed, further cycles of
IDEA-Loop will be activated.
In teaching and learning, it is also possible to design

tasks, in which parts of the DEA processes can be
specifically inhibited. For example, a task focusing on
the I-process may ask students to analyze a problem
without solving it to search for a related principle as a
proposed problem-solving strategy. It can be argued,
however, that while conducting the inductive search and
formulation, the student may still engage in some level of
IDEA-Loop either explicitly or implicitly. This is because
one would need to look for something that is plausible in a
search, which means the DEA processes would be engaged

throughout one’s reasoning for validation and decision of
outcomes from a search, creation, or prediction. In addition,
the results of the I- and D-process can be in all forms of
cognitive constructs at all levels, such as variables, rela-
tions, theories, hypotheses, new contexts, new knowledge
domains, etc. Therefore, IDEA-Loop would occur among
all levels of reasoning on elements with wide ranging
complexity and abstraction.
At the behavioral level, the IDEA-Loop model of

reasoning can be compared with several related models
including hypothetico-deductive reasoning [68,69], theory-
evidence coordination [42], and SDDS [46]. For the most
part, the existing models bear much similarity on the
general processes of reasoning and their cognitive products,
such as determining valid evidence and testing a hypoth-
esis. On the other hand, the IDEA-Loop model provides
operational definitions of the related reasoning with finer
elemental functions, which can directly inform the design
of assessment and instruction. In our work, these functional
elements will be extracted as assessment attributes for
measurement of scientific reasoning skills, which are
discussed later. The connections between IDEA-Loop
and the existing models are discussed next.
The notion of hypothetico-deductive reasoning is a

proposed description of scientific method in an inquiry
process that proceeds by formulating a hypothesis in a form
that can be tested based on observable data [68]. The
reasoning aspects of this model have been studied by
Lawson in terms of a set of scientific reasoning skills
required for hypothesis testing. In assessment of these
skills, students are often given experimental data with the
task goal to identify a hypothetical causal mechanism that
can produce outcomes consistent with the data (e.g., see
questions 21–24 in the LCTSR). In this case, the I-process
is primarily inductive thinking to identify or form a
hypothesis based on given contexts and conditions. The
identified hypothesis is then applied through the D-process
to generate predicted data, which is further compared with
the given data in the task for evaluation and analysis of the
validity of the hypothesis.
Here, the hypothesis generation-identification (hypotheti-

cal part) can be considered as a special case of the I-process
for producing a hypothesis, while the deductive reasoning
can be considered as a special case of the D-process for
producing a prediction. The comparison and validation are
part of the EA processes. Therefore, the hypothetico-deduc-
tive reasoning can be represented as special-case processes of
the IDEA-Loop model [Fig. 6(a)]. Comparing the two
models, the IDEA-Loop model is more general and flexible
than the hypothetico-deductive model. The I-process repre-
sents a generic creative process targeting many types of
constructs rather than being limited to the hypothetical
explanations in the hypothetico-deductive model. In addi-
tion, the IDEA-Loop model provides concrete definitions of

Given Information,
Task and Context

I-process

New or 
Unknown 
Elements

Derived 
Outcomes

D-process

Evaluation-Analysis

IDEA-Loop

FIG. 5. A conceptual diagram of the IDEA-Loop model of
reasoning functions.
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all the involved functions and processes, which are not
explicitly defined in the hypothetico-deductive model.
For the theory-evidence coordination model, the central

process is to achieve consistency between evidence (in
terms of given or collected data) and a hypothesis or theory.
The task usually involves matching datasets to given
hypotheses or developing or revising a hypothesis to match
data. These processes are similar to those in hypothetico-
deductive reasoning, and therefore, can also be represented
with IDEA-Loop as various types of contextualized appli-
cations, but may involve multiple cycles of IDEA-Loop at
different processing levels depending on the tasks and
contexts [Fig. 6(a)].
The SDDS model can be considered as another variation

with the emphasis on reasoning occurring in both the
experimental and theoretical pathways, and therefore, has a
dual-space structure. The primary process is to search in
both spaces to identify a consistent match between data and
theory. This is also similar to theory-evidence coordination
and hypothetico-deductive reasoning such that possible
theories (MCRs) are identified through the I-process and
applied through the D-process to produce outcomes com-
parable to experimental data. Meanwhile, the relevant data-
covariation relations are also searched through a parallel
I-process in the experimental space and compared with the
predicted outcomes from the identified hypothesis in
the theoretical space. Evaluation and analysis processes
are conducted to determine whether the theory and/or the
experimental data are consistent and if further cycles are
needed. A unique emphasis in SDDS is that the searches in
experimental and theoretical spaces often occur in multiple
cycles, which can be represented with multiple parallel
processes of IDEA-Loop [see Fig. 6(b)].

In summary, the DMCR model of scientific reasoning
integrates causal reasoning by defining DCRs andMCRs as
the causal basis for developing scientific knowledge, which
is functionally modeled with the IDEA-Loop processes.
Together, these can provide an operational framework with
concretely defined functions to represent the existing
models of scientific reasoning including the hypothetico-
deductive, theory-evidence coordination, and SDDS mod-
els. The operational definitions of the specific scientific
reasoning skills and functions can provide further utility on
guiding assessment design.

E. Developmental progression of reasoning and
knowledge formation

One of the challenges in developing an assessment
framework of scientific reasoning is understanding what
to include based on the level of students described by the
framework, which for our purposes includes high school
and college students. This section provides possible explan-
ations for some of the difficulties in reasoning observed in
high school and college students, while also providing
justification for which reasoning tasks to include on an
assessment of scientific reasoning.
Based on the work in developmental psychology [39], in

early stages of development, children observe the environ-
ment around them and develop an understanding of the
world. This knowledge is primarily in the form of observed
data along with simple generalizations of covariation
patterns of objects and events. Therefore, at this stage of
development, knowledge and the associated reasoning are
mostly in the form of data-covariation casual relations of
basic daily life events and phenomena. As children’s
language develops, linguistic descriptions and explanations
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ResultsIDEA-Loop
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FIG. 6. Special cases of the IDEA-Loop reasoning model. (a) IDEA-Loop for hypothetical deductive reasoning and theory-evidence
coordination. (b) SDDS as multiple parallel nested IDEA-Loop cycles. Double-headed arrows represent the interconnected dual-space
cyclic pathways, which occur in both directions.
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of mechanistic causal relations start to develop and can also
be directly taught to children without the need for them to
make their own observation and generalization. This can
provide efficiency in learning established knowledge,
especially on things that cannot be conveniently experi-
enced or observed. At this stage, the development of
knowledge and reasoning mostly involves learning
MCRs. The variables and relational networks of domain-
specific knowledge are often memorized as facts, and
children’s reasoning is trained to process and validate
the logical and computational consistency of the involved
relations. Some of the reasoning functions are domain
general and can be applied in other domains to form
different sets of domain-specific knowledge.
As children grow with more experience from their real-

world environment, as well as formal and informal learn-
ing, they also develop their own versions of MCRs about
the world. For instance, most students develop their own
conceptions in physics, such as believing a force is needed
to maintain motion. These naïve conceptions are developed
intuitively from experience of the physical world (which
creates DCRs) and attempts to explain the experience
(which create MCRs). For example, a common miscon-
ception on force and motion attributes an applied force as
the cause of an object’s motion. It provides satisfactory
explanations in the world with friction, which is often a
latent mediating factor not explicitly or correctly inter-
preted by most non-Newtonian thinkers. Without explicitly
including friction, the force-motion relation is difficult to be
generalized into the Newtonian understanding. This exam-
ple shows that learners naturally develop both DCRs and

MCRs as part of their knowledge system and they tend to
generalize their own MCRs, which become a meaningful
part of their understanding of the real world. As develop-
ment continues, these DCRs and MCRs can be further
integrated to form more complex networks of casual
understanding (DMCR Net).
Meanwhile, in the current formal education system,

students obtain a large portion of their knowledge of
science through formal education, in which the teaching
and learning focuses on delivering established scientific
knowledge (i.e., scientifically validated MCRs). Through
many years of such schooling, many students learn to rely
on memorization, with reasoning skills trained primarily as
incorporating, manipulating, and evaluating the computa-
tional and logical relations provided within the MCRs.
Many students rarely experience the inquiry type of
learning that requires them making their own observations
to develop DCRs from data, generalizing DCRs to form
hypotheses (MCRs), and evaluating the DCRs with the
MCRs to test hypotheses. This is likely an important factor
that leads students to inappropriately use prior knowledge
or belief biases, instead of drawing evidence-based con-
clusions from data, on inquiry-based learning tasks. In a
way, the traditional education strategies train students to
learn in modes involving passively receiving and memo-
rizing information. This can lead them away from the
natural curiosity of young children who would otherwise
observe the world and develop their own observation-based
conceptual understanding.
In Fig. 7, a flowchart is shown to depict the represen-

tative features of the developmental pathways of
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FIG. 7. The development of knowledge and reasoning in formal and informal education settings within a specific content domain. A
learner at a specific age (with some variations) can be in different stages for different content domains, while learners at different ages
can also be in similar or different stages for the same or different content domains.

THEORETICAL MODEL AND QUANTITATIVE … PHYS. REV. PHYS. EDUC. RES. 18, 010115 (2022)

010115-13



knowledge and reasoning in formal and informal education
settings. The process starts from observing the world and
forming DCRs at a young age, which can be further
generalized by the learners to form intuitive concepts
and understandings (naïve versions of MCRs, DMCRs,
and networks of DMCRs). As language develops and
communication increases, especially in formal education
settings, learning and reasoning often transition to learning
MCR-type knowledge during most years in school.
Students’ reasoning capability in forming DCRs and
integrating them with scientific concepts becomes limited
due to a lack of persistent training. As a result, many
students have limited ability in asking researchable ques-
tions, designing controlled experiments, processing, and
analyzing data, and drawing evidence-based conclusions,
all of which are crucial skills needed in scientific inquiry.
Many learners stay at this stage well into adulthood.
Students in advanced academic tracks, who receive further
research training, may eventually develop the needed
scientific reasoning abilities and achieve integrated net-
works of scientifically based causal understandings. These
learners are capable of constructing scientifically sound
understanding through inquiry-based learning and inves-
tigation. However, as shown by several studies, a signifi-
cant portion of college students are still lacking the
necessary skills in conducting effective scientific inquiry
and integrating DCRs with MCRs to construct scientific
concepts [29,70,71,33]. In response to the underdeveloped
reasoning skills among students, the assessment of scien-
tific reasoning should emphasize skills in developing and
coordinating DCRs and MCRs, which will be dis-
cussed next.

IV. iSTAR ASSESSMENT FRAMEWORK AND
INSTRUMENT

In this section, a new assessment instrument on scientific
reasoning is introduced, which is referred to as Inquiry in
Scientific Thinking, Analytics, and Reasoning (iSTAR).
The term inquiry is used here to indicate that iSTAR’s main
purpose is to support inquiry learning as it provides an
operational framework for learning objectives and assess-
ment. The framework can be used to guide the development
and evaluation of inquiry-based instruction designed to
foster skills in scientific thinking and reasoning. This
assessment framework is based on the DMCR model of
scientific reasoning and the IDEA-Loop processes previ-
ously discussed.

A. Defining an operational assessment framework
and skill dimensions

From the developmental progression of learning and
reasoning discussed in Fig. 7, students going through
formal education often lack proper training on the reason-
ing skills necessary to develop DCRs and to integrate

DCRs with MCRs to draw evidence-based causal con-
clusions. Therefore, the assessment framework of scientific
reasoning is designed to emphasize these skills. For
example, the related skills for developing DCRs are
measured through evaluation of students’ ability to conduct
effective data analysis in simple to complex settings (see,
e.g., Figs. 3 and 4). Meanwhile, reasoning skills for
developing MCRs are assessed based on students’ ability
to handle biases from prior knowledge as well as their
ability to identify possible mechanisms with explicit and
implicit variables in simple to complex contexts. The
complexity of these assessment tasks can be manipulated
using different numbers of variables, types of relations,
causal conditions, and so on. Additionally, given that it is
essential for effectively coordinating theory and evidence to
draw valid causal conclusions, the ability to integrate DCRs
and MCRs for evaluation and analysis of the relations
between evidence and hypothesis is also emphasized in the
assessment framework. These abilities are measured
through data-analytic and causal decision making tasks.
Aligned with the DMCR model of scientific reasoning,

the iSTAR assessment framework is established with three
primary dimensions of reasoning skills and processes,
where each involves multiple subskills. The three main
dimensions include control of variables, data analytics
(DA), and causal decision making (CDM). The framework
is illustrated in Fig. 8. A list of subskills and developed test
items is shown in Table I and will be discussed in the next
section. This list represents the core skills in the DMCR
processes using control of variables to design covariation
experiments, data analytics to identify valid DCRs, and
causal decision making to coordinate DCRs and MCRs for
drawing valid conclusions and developing new knowledge.
In this way, the identification of these subskills operation-
ally defines how DMCR is functionally carried out to
support scientific reasoning.
In modeling the scientific reasoning skills and processes,

it is useful to clarify the relations among the three modeling
frameworks discussed earlier. The DMCR framework

Causal Decision 
Making on MCRs 

(CDM)

Data Analytics 
(DA)

Establish 
Covariation 
Condition

Control of Variable 
(COV)

Identify 
Valid 

Evidence
DMCR 

supported with 
IDEA-Loop

Coordinate 
Covariation Data 
Patterns (DCRs)

Covariation
Mechanism 
Causal Relation

Multivariable
Conditional 
Probabilistic 

FIG. 8. iSTAR assessment framework of scientific reasoning.
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provides the fundamental concept that scientific knowl-
edge is developed through scientific inquiry using scien-
tific and causal reasoning (see Fig. 1). Meanwhile, the
IDEA-Loop model shown in Fig. 5 describes the functions
of scientific and causal reasoning in dynamic cycles of
scientific inquiry. Finally, the iSTAR assessment frame-
work shown in Fig. 8 outlines the structural components
and interactive relations among the different areas of
reasoning skills that can be isolated and measured. These
models together provide a complete theoretical framework
for describing, modeling, and measuring scientific rea-
soning skills.
Among these skills, control of variables is the funda-

mental first step in setting up controlled experiments so that
covariation data and DCRs between independent and
dependent variables can be obtained (see Fig. 3). Ample
research has studied COV, which has informed the estab-
lishment of its subskills and item designs [49,72]. As
described earlier, the complexity of COV assessment tasks
can be controlled through manipulating the familiarity of
contexts, number of variables, data representation, and
relations among variables [72].
The dimension on data analytics is a broad category

including a wide range of data analysis and interpretation
skills, which enable students to identify meaningful data
patterns and trends and evaluate their validity in order to
develop and validate DCRs among variables. In addition,
evaluation of conditional probability is particularly empha-
sized since it is considered a key factor in causal decision
making [73]. Overall, the subskills in the data analytics
category consist of a wide range of computational and

analytic skills including the evaluation and interpretation of
proportion, correlation, covariation data patterns, condi-
tional probabilities, and Bayesian probabilities. These skills
support the I, D, and EA processes in the IDEA-Loop
model for identifying, deriving, and evaluating valid
evidence as well as conditional constraints of hypotheses
for coordination between theory (MCRs) and evidence
(DCRs) (see, e.g., Figs. 5 and 6).
Causal decision making is another broad category

focusing on the ability to comprehensively analyze
DCRs and MCRs by applying results from the COV and
DA processes for determining valid causal relations. This is
the key step in DMCR reasoning, as it integrates the results
from the previous two (COV and DA) to carry out causal
coordination between DCRs and MCRs.
Within causal decision making, four subcategories of

skills can be defined. The first is the ability to distinguish
between covariation and correlation, which students often
have difficulty with as they tend to interpret correlation
results as covariations to draw causal conclusions [74,75].
This ability is typically measured using tasks showing
correlations without proper COV setups. The contexts may
also involve hidden variables and other confounding factors
and relations, which may be ignored by students.
The second subcategory involves a range of conditional

and Bayesian probability evaluation skills that are fre-
quently employed in both DCR and MCR tasks.
Conceptual understanding and computational manipulation
of these probabilities are essential in correctly predicting a
probabilistic outcome, inferring a possible cause or con-
tributing factor, and determining causal relations.

TABLE I. iSTAR assessment dimensions, contexts of subskills, and question distribution.

Skill dimensions Contexts of subskills Questions

Control of variables • Identify or design COV conditions with
multiple testable and untestable variables

9 COV questions:
1, 4, 5, 10, 21, 24, 28, 29, 30

• Real life and STEM contexts
• With or without experimental data
• Simple to complex relations
• Extension to DA and CDM dimensions

Data analytics • Multivariable linear proportion 15 DA questions:
2, 3, 6, 7, 8, 13, 14, 22, 23, 25, 26, 27, 32, 33, 35• Combinations

• Conditional probabilities (wide variety)
• Multivariable correlation and covariation
• Fundamental statistics such as weighted
average and random sampling concept

• Bayesian probability

Causal decision making • Prior knowledge and bias in causal decision 11 CDM questions:
9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 31, 34• Correlation and covariation causal decision

• Bayesian inference and causal decision
• Conditional rules for causal decision
• Conditional probability and basic statistics
for causal decision
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The third subcategory includes the conditional and
logical rules in determining causal relations. These are
often common in MCR tasks in which certain causal
premises and outcomes are given or assumed, and students
need to apply the conditional logic rules in order to
determine the evidence that would correctly match the
claims. Examples of these rules include those handling
conditions that are sufficient, necessary, contributing (nei-
ther sufficient nor necessary), and unrelated. The skills also
include the abilities to translate these rules in both forward
causal prediction, such as in a D-process with given cause
to derive or predict effect, and backward causal inference,
such as in an I-process with observed effect to infer
possible causes. For example, if A is the sufficient con-
dition of B, the forward logic can be described as “if A
exists then B exists.” The corresponding reverse logic
warrants that “if B doesn’t exist then A cannot exist either.”
These conditional rules are important logical reasoning
skills that students need to know and apply properly in the
IDEA-Loop process to identify the correct causal relations
in multivariable settings.
The fourth subcategory includes the reasoning skills in

manipulating MCRs, which are typically domain-specific
knowledge. In assessment, mechanism-based reasoning
skills can be measured through two types of subskills.
The first is the students’ ability in evaluating the consis-
tency between a hypothetical claim and its supporting
evidence, i.e., the ability to synthesize DCRs and MCRs for
causal decisions. For example, LCTSR includes four
questions measuring hypothetical deductive reasoning,
which is along the same line of mechanism-based causal
reasoning. To answer these questions, students need to
either produce consistent predictions (mostly through the
D-process) on the outcomes of differently conditioned
experiments based on a given hypothesis or identify
experimental outcomes through cycles of IDEA-Loop for
validation of certain hypotheses. The second type of
subskill for handling causal mechanisms focuses on stu-
dents’ ability in understanding and handling covariation
situations under the influence of their prior knowledge and
beliefs, which may bias their reasoning in processing
DCRs. Students with underdeveloped understanding and
ability in reasoning with DCRs may rely primarily on
mechanism-based knowledge, rather than covariation data,
as evidence to support a claim. For example, in the
correlation questions (mice questions) of the LCTSR,
students are expected to explain the correlation based on
analytic skills to evaluate the number of mice having
different features. However, students lacking the needed
data analysis skills may answer with a mechanism-based
belief: “there may be a genetic link between mouse size and
tail color” (LCTSR Q20), claiming that a genetic mecha-
nism can be the cause for having darker tails, which is not
supported by the data presented.

It is expected that in completing reasoning tasks, many of
these skills may be used in combination to support multiple
pathways of IDEA-Loop. The interactive relations among
the three main categories of reasoning skills are also
illustrated in Fig. 8, which shows the primary functions of
different reasoning in supporting the IDEA-Loop for co-
ordination between DCRs and MCRs. For example, in a
typical task, the control of variables skills are applied to
establish controlled trial conditions as the experimental basis
for collecting covariation data. These conditions are evalu-
ated by the causal decisionmaking skills for their covariation
or correlation nature and the outcomes are used as part of the
evidence for causal decision making. Based on the estab-
lished control of variables conditions, the data analytics skills
can be used to analyze the collected data to identify unique
covariation patterns that can be used as evidence in causal
decision making. Working together, these skills serve to
generate, evaluate, and synthesize both DCRs and MCRs to
determine the validity of a causal claim. For question design
considerations, the difficulty of a causal reasoning task can
be manipulated with the complexity of the underlying causal
network. The causal network can range from simple few-
variable systems to complex many-variable systems, while
the embedded relations can be simple linear, conditional, and
complex probabilistic (see Figs. 3 and 4).
When working with complex reasoning tasks, the three

areas of reasoning shown in Fig. 8 often feed into each
other in dynamic cycles of IDEA-Loop. For example, when
a satisfactory conclusion is not reached, the tentative
outcomes of the causal decision making process can
reinitiate or manipulate the control of variables process
to modify the experimental conditions. Such modifications
often include controlling or changing different or additional
variables in order to obtain a specific measurement setting
or to modify the current covariation condition. The causal
decision making outcomes can also provide cues to guide
the data analytics process to identify new or alternative data
patterns and relations or to use a different set of data
analytic algorithms. Results of the data analytics process
can then feed into the control of variables operation for
purposes such as altering the covariation conditions and
improving the reliability of observed data patterns. The
fundamental reasoning elements supporting these functions
and processes go through multiple IDEA-Loop cycles at
different levels of complexity and abstraction in both
inductive and deductive pathways. Together, these func-
tions and processes provide a theoretically based opera-
tional framework that can concretely model and assess
scientific and causal reasoning.

B. Development of an assessment instrument on
scientific reasoning

Following the creation of the iSTAR assessment frame-
work, an assessment instrument on scientific reasoning was
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developed, which is referred to as the iSTAR test. The
current version contains 35 multiple choice questions
populated over the three main skill dimensions, including
control of variables, data analytics, and causal decision
making. In order to facilitate the implementation of the test,
a study is underway to split the full length iSTAR test into
two short parallel tests that each contain approximately 20
questions. The idea is that the short versions can be
randomly delivered to a population to generate outcomes
equivalent to the full-length test. The measured skill
dimensions, subskills, and question distributions of the
iSTAR test are summarized in Table I.
The subskills in control of variables form a progression

from simple identification and design of valid COVexperi-
ments to more complex situations in which experimental
data is given and students are asked to determine if certain
variables are causally influential [72]. Additional contex-
tual features such as real-life and STEM based contexts are
also blended into the question design to control the task
difficulty. A total of nine questions are included to assess
the COV dimension and its subskills.
Data analytics contains the largest number of subskills,

which are measured with 15 questions. These subskills
have more independence from each other and were not
designed in any order of progression. As evident from
Table I, the DA skills have a focus on a variety of
probability concepts and evaluation skills. In particular,
conditional probability and Bayesian probability are
heavily emphasized, since these often play an essential
role at both the conceptual level for understanding the
needs and purposes of probability conditions and at the
operational level for calculating the quantitative weighing
in causal decision making [73].
As discussed earlier, causal decision making is a key

ability in drawing valid conclusions based on evidence and
hypothesis. Five subskills are included and assessed with
11 questions, among which the correlation versus cova-
riation and causal conditional rules are most emphasized.
Ample research has shown that students often treat corre-
lation as covariation-based causal relation [74,75].
Developing abilities in this area will improve students’
ability for making valid interpretations of data from not
only scientific experiments but also reports in public media.
Meanwhile, causal conditional rules provide the logical
computing functions that appropriately link evidence,
claims, and conditions in reasoning to identify consistent
and logically cohesive causal relations. These are essential
skills that enable students to correctly align (or coordinate)
claims with evidence under different conditions.

C. Sample questions from iSTAR test

1. Questions on control of variables

Reasoning skills in control of variables are likely the
most studied area in scientific reasoning [49,72]. On the
LCTSR, six questions (of 24) were designed to measure

COV skills. However, a recent study reveals that four of the
six COV questions appear to have design issues [37].
Together, these research outcomes have informed the
development of the iSTAR questions for COV.
The iSTAR test includes nine questions to measure

abilities in COV, out of which three have been adapted
from LCTSR for equating between iSTAR and LCTSR
results. These revised versions are based on the outcomes
of the validity evaluation [37]. For example, Fig. 9 shows
the modified version of the fruit fly questions from the
LCTSR, with three main changes from Lawson’s version.
First, the original pictures show tubes covered by over-
lapping black dots, which have been replaced with smooth
black covers in the new version. From students’ comments
during interviews, the black dots in the original pictures
were often misinterpreted as flies rather than black paper: “I
thought the black dots on the tubes were a mass of flies.”
After changing the figure to that shown in Fig. 9, these
comments did not come up in later interviews.
Second, the layout of the four tubes in the original

version sometimes confused students as if all four tubes
were placed horizontally on a table: “I didn’t realize tubes I
and III were vertical. I thought they were all lying flat on
the table.” In addition, the arrows representing incoming
light in the original version misled some students to think
that light only came from directions along the arrows: “I
thought those arrows were the light beams, and the flies fly
towards the light in tubes I and III.” To remedy these issue,
the new version makes use of a transparent horizontal table
to more clearly show the spatial positions of the four tubes.
The arrows representing the light have been removed, and a
note has been added stating that the light comes from all
directions. After these revisions, students did not report any
issues in subsequent interviews.
Third, the original version of this question only labels the

number of flies in the noncovered portion of the tubes.
Based on a suggestion from a middle school teacher, this
may cause students with weak math skills to make a
mistake when interpreting the numbers. Therefore, to avoid
miscalculation of the number of flies, the new version
clearly labels the numbers of flies in both the covered and
noncovered parts to help students make explicit compar-
isons of the conditions and results without the need to do a
calculation. Several wording clarifications have also been
made in the new version.
In addition, the questions in LCTSR were designed with

a two-tier structure, such that the first question in a two-
question group asks for a relation-based conclusion, and the
second question asks for the reasoning that explains the
answer to the first question. The four fly questions on
LCTSR were designed in two two-tier sets. Since the two
LCTSR questions asking for reasoning were found to be
unclear and sometimes misleading for students in a
previous study [37], the iSTAR test does not include them.
Rather, the contexts of the LCTSR fly questions were
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altered using a staggered two-tier structure such that the
second question still builds from the first one, but instead of
explaining the answer to the first question, the second
question extends the reasoning to identify additional COV
strategies for generating appropriate covariation evidence
that can support a possible DCR claim (see Fig. 9). That is,
in the new version, the answer choices were redesigned to
target explicit comparisons among different COV condi-
tions and outcomes, allowing them to directly measure the
core process of COV reasoning.
For example, for the first fly question shown in Fig. 9,

many students at the college level were able to select the
correct answer (choice b). However, a significant fraction
of the students did not know how to compare the results of

the different tubes [37]. Among the students who answered
incorrectly, they tended to focus on tube I in their
comparisons. These students compared Tubes I and II
and concluded that flies respond to the red light since the
majority of the flies were in the unshaded part. For the
effect of gravity, many of these students made comparisons
using tubes I and III, but their conclusions on the influence
of gravity were split between effective and noneffective.
Some considered that flies going against gravity to the top
of the tube was a sign of responding to the effect of gravity
and picked choice c. Meanwhile others considered that flies
going with the gravity to the bottom of the tube was a sign
of responding to the effect of gravity and picked choice a.
In both cases the students appeared to base their responses

(Fly1) Four glass tubes that each contain twenty fruit flies are sealed shut. Half of Tubes I and II 
are covered with black paint including the end; Tubes III and IV are not covered. These tubes are 
placed on a clear horizontal glass table with tubes I and III standing up on their ends and tubes II 
and IV lying flat as shown. For five minutes the tubes are exposed to red light coming from all 
directions. At the end of the five minutes, the number of flies in the covered and uncovered parts 
of each tube are counted as shown below. Note that a total of 20 fruit flies are still in each tube. 

This experiment shows that flies respond to (“respond to” means move towards or away from): 
a. red light but not gravity 
b. gravity but not red light 
c. both red light and gravity 
d. neither red light nor gravity 
e. cannot be determined from the information given 

(Fly2) In a second experiment, blue light and a different kind of fly is used. The results are 
shown in the diagram. 

Results from which tube(s) are needed to determine whether or not these flies respond to blue 
light?  

a. Tube I or tube II f. Both tubes II and IV     
b. Both tubes I and II g. Both tubes III and IV
c. Both tubes I and III h. Tubes I, II, and III
d. Both tubes I and IV i. All four tubes 
e. Both tubes II and III j. None of the above 

% A B C D E F G H I J 
Fly1 18.7 48.0* 21.3 4.8 7.2      
Fly2 6.0 20.8 4.1 1.7 2.6 32.8* 0.8 6.7 22.5 2.0 

18 

11 1 10 

19 

10 

I II III IV 

9 2 

Red light comes from all directions. Table is made of clear glass. 

19 

18 2 10 10 

18 

Blue light comes from all directions. Table is made of clear glass. 

2 1 

I II III IV

FIG. 9. Modified versions of the fruit fly questions from LCTSR, both of which were adapted for iSTAR. The percentage distribution
of answers are based on the college population discussed in the next section. The correct answer is marked with an asterisk (*).
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on prior beliefs or knowledge rather than the data patterns
and COV conditions. In addition, in their comparisons to
determine the effect of a variable, they tended to focus only
on the cases in which the concerned variable varied but
often ignored the need for controlling the possible con-
founding variable. Therefore, for the effect of red light,
these students compared tubes I and II. For the effect of
gravity, they compared tubes I and III. Such reasoning
clearly demonstrates a lack of basic understanding for the
need for COV in creating a covariation measurement.
The second fly question builds on the first question to

explicitly target how students make comparisons in a
slightly varied situation. Since this question targets the
explicit comparison process in COV reasoning, it is
expected to be harder than the first fly question where
students may have a “gut feeling” of the answer but are not
able to explain it clearly. The correct answer for the second
fly question involves the comparison of tubes II and IV
(choice f), in which gravity is controlled. As expected,
fewer students picked the correct answer, and many
selected either choice b or choice i. Similar to the first
fly question, students who picked choice b tended to focus
on the condition in which the concerned variable varied but
ignored the need for controlling the possible confounding
variable. Meanwhile, choice i was included as a general
distractor to identify students with little understanding of
the purpose of COV.
As shown in Table II, which has been provided at the end

of this section to map the selected iSTAR questions into the
assessment framework, both fly questions target the COV
subskill in a causal DCR setting. In addition, the reasoning
task is to identify valid DCRs, which in this case include
2-variable simple relations (i.e., simple effects of light and
gravity). To identify and validate the relations, students need
to engage in inductive reasoning (I-process) to identify
possible causes and then apply the hypothesis to generate
an outcome using deductive reasoning (D-process), which
guides the selection of a possible choice. Simple processes
for evaluation and analysis (EA-processes) are also engaged

to compare the outcomes of the deductive reasoning with the
choices of a question to determine or validate an answer.
Since these simple EA processes are not the essential part of
the reasoning here, they are not listed in Table II as the main
targeted skills of the COV questions.
In this section, the fly questions were used to demon-

strate the process of question development and revision,
both of which depended, in part, on the use of student
interviews and teacher feedback. These questions went
through several iterations to eliminate possible design
issues. In addition, six other COV questions are included
in the iSTAR test. All six are new designs that are not based
on the LCTSR. They involve both real life and STEM
contexts. The validation of these other six questions has
been reported elsewhere, and they have been shown to
follow a progression of COV skills [72]. In the remaining
discussions, the development process of the questions will
not be detailed, but rather emphasis will be placed on
introducing the new features of the iSTAR test.

2. Questions on data analytics

Data analytics is an extended category including a wide
range of computational and analytic skills. The basic set of
skills overlaps with the ones measured in the LCTSR,
including simple probability, proportion, and correlation.
Extending the basic skill set, data analytics in iSTAR also
targets more advanced computation and reasoning. These
include combination, conditional probability, multivariable
correlation and covariation, fundamental statistics such as
weighted average and random sampling concept, and
Bayesian probability. These latter skills are important for
students to analyze data and identify valid evidence, which
can be further applied in causal decision making.
The iSTAR test includes 15 questions to measure data

analytics subskills. For equating purposes, one of the
LCTSR questions on correlation (LCTSR Q19) has been
adapted for the iSTAR test. The remaining 14 questions are
new designs that measure the range of data analytics
subskills listed in Table I. Two examples are given in

TABLE II. Designs of assessment questions on their targeted skills mapped to the modeling and assessment frameworks. The six
example questions were designed to probe three main areas of skills for COV, DA, and CDM with emphasis on different causal
reasoning components (DCRs and/or MCRs) and IDEA-Loop processes. Mapping to specific casual relations and the complexity of
related reasoning processes defined in Figs. 3 and 4 is also included.

Questions
iSTAR reasoning

subskills
IDEA-Loop

reasoning processes
DMCR components
(DCR and MCR)

Causal networks
(Fig. 3)

Complexity of reasoning
processes (Fig. 4)

Fly 1 (Fig. 9) COV ID DCR COV condition Two-variable simple relation
Fly 2 (Fig. 9) COV ID DCR COV condition Two-variable simple relation
Dice (Fig. 10) DA EA DCR Bayesian probability Bayesian complex relation
Market share
(Fig. 10)

DA EA DCR Conditional probability Conditional complex relation

Giraffe (Fig. 11) CDM IDEA-Loop DMCR Hidden mechanism Hidden complex relation
Card (Fig. 11) CDM IDEA-Loop DMCR Conditional logic link Complex conditional logic
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Fig. 10. The first question measures students’ understand-
ing of Bayesian probability, and the second question
measures reasoning with conditional probabilities.
Through interviews conducted in the development of
iSTAR, it has been found that college level students have
sufficient understanding of the concept of independence
and equal probability in uniform random processes with
cases such as coin flipping and die tossing. However, a
weakness has also been identified such that students tend to
overextend this uniform (or equal) probability to all random
processes, including nonuniform conditions. The concept
that probabilities are conditional, such that probabilistic
states may not always be evenly distributed, is not well
established among students. In real world situations,
conditional and nonuniform random processes are
common, and therefore, it is important to assess whether
or not students can understand and reason with conditional
and nonuniform probabilities.
The first question in Fig. 10 targets Bayesian probability,

which measures if students can handle nonuniform random
processes based on observation outcomes. The six-sided
cube used in the question is not a perfect die and may
generate uneven probabilities for showing the different
faces. The reasoning, which uses observed data to make an
inference of the die’s intrinsic feature and probability in
turning up certain faces, is a Bayesian type decision

process. From interview and open-ended survey results,
many students appeared to understand the randomness and
independence idea such that each toss of the die is a random
event independent of other tosses. However, students’
thinking seemed to be dominated by the randomness
and/or the equal probability idea, and they applied this
reasoning indiscriminately to this possible nonuniform
situation. As a result, these students typically chose choice
b for uniform probability or choice c for indicting that each
tossing event is independent of previous results.
The second question measures students’ understandings

of base rate in a conditional probability situation. The
market share of product A is not given and the statistical
outcome of defects from the market sampling depends on
both the defect rate and market share. Therefore, the results
cannot be extended to estimate the actual defect rate as a
quality index of product A without knowing the market
share. Results from student interviews and quantitative
responses show that many students cannot properly analyze
this type of probability. They often selected choices a, b,
or c, or their combinations, suggesting a lack of proper
understanding of the concept of base rate in conditional
probability.
The skills targeted by these two questions are also

mapped to the components and processes of the modeling
and assessment frameworks shown in Table II. As

(Dice) One day, while travelling in another country, you observed a group of people engaged in a 
game tossing a six-sided die. The die was hand carved into a rough six-sided cube that has three 
sides painted black and the other three painted white. You counted that when the die was tossed 
1000 times, white sides turned up 720 times and black sides turned up 280 times. If the die was 
tossed another 100 times, about how many times would white sides most likely turn up? 

a. about 30 times 
b. about 50 times 
c. about 70 times 
d. There is no way to know the number because it is an uncertain event. The die will turn up 

either white or black randomly. 
e. None of the above 

(Market Share) A recent report about the quality of a type of product shows that 80% of 
confirmed poor quality issues are from products made by company A. Based on this result, 
which of the following statements can be concluded?   

a. When a customer buys this type of product made by company A, the customer is likely to 
encounter poor quality issues. 

b. This type of product made by company A is more likely to have poor quality issues than 
those made by other companies. 

c. The data shows that 80% of this type of product on the market may have quality issues.   
d. a and b  
e. a and c 
f. b and c 
g. a, b, and c  
h. None of the above can be concluded based on the report. 

% A B C D E F G H 
Dice 7.2 16.8 43.2* 31.3 1.4 

Market Share 17.3 24.1 4.9 26.9 13.8 1.6 6.1 5.4* 

FIG. 10. Example questions on data analytics in iSTAR. The percentage distribution of answers are based on the college population
discussed in the next section. The correct answer is marked with an asterisk (*).
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discussed above, both questions emphasize the EA proc-
esses for evaluation and analysis of observed probabilistic
data, which represent DCR based causal understanding. In
particular, reasoning skills on manipulating and conceptu-
alizing Bayesian and conditional probabilities at varying
complexities are the main targeted areas of these two
questions.
Compared to the related questions in LCTSR, which

involve only three subskills on proportion, simple proba-
bility, and correlation, the iSTAR questions cover a much
wider range of data analytics subskills. More importantly,
the data analytics skills on iSTAR are designed based on the
new modeling framework so that they serve explicit
purposes for connecting COV skills to form valid evidence
that support causal decision making. On the technical side,
the LCTSR questions appear to be relatively easy for senior
high school and college students, which can lead to
significant ceiling effect when testing these students
[37]. In contrast, the difficulty levels of the iSTAR ques-
tions are designed to distribute over a wide range. The goal
is to make the test effective at measuring broad student
populations from middle school to graduate levels. The
validation of the test with middle school and high school
populations is underway and will be presented in future
publications.

3. Questions on causal decision making

In the iSTAR assessment framework, causal decision
making represents a core step for drawing valid evidence-
based conclusions in a reasoning task. For example, in a
task to test a hypothesis, a learner needs to use control of
variables and data analytics skills to establish valid cova-
riation conditions and identify DCRs and MCRs that are
computationally and logically sound and mechanistically
plausible. The evidence and hypothetical causal claims
are then evaluated for their consistencies and conditional
validities, which are incorporated into a series of decision-
making processes to determine the most probable con-
clusion regarding the validity and confidence of both the
involved theoretical claims and evidence.
For LCTSR, the skill dimension for hypothetical-

deductive reasoning is comparable to the CDM subskills
assessed in the iSTAR test. However, the CDM skill
dimension involves an extensive set of explicitly defined
subskills, while the hypothetico-deductive assessment ques-
tions in LCTSR focus primarily on evaluating the consis-
tency between evidence and predicted outcomes based on a
given hypothesis. The designs of the hypothetico-deductive
questions in LCTSR have also been critiqued for their
content validity due to the involvement of implausible
assumptions [37]. Because of the validity issues of the

(Giraffe) A visitor traveled to Africa to tour the natural breeding environment of giraffes. While 
there, the visitor noticed a type of tall tree that grew fruit only at the top of the tree. The visitor 
also noticed that giraffes that frequently ate this fruit appeared to be stronger and taller than those 
that could not reach the fruit. Based on these observations, which of the following statements can 
be concluded? 

a. When a giraffe frequently eats this fruit, it grows stronger and taller.
b. The nutrients in the fruit can help the giraffe grow stronger and taller.
c. Both choices a and b above.
d. The result cannot be used to show that eating the fruit causes a giraffe to grow stronger 

and taller.
e. The result doesn’t matter. The height of a giraffe is determined by its genes.
f. None of the above is a good conclusion.

(Card) Albert is playing a new card game with his friend Jon. Each card contains a number on 
one side and is either white or gray on the other side. After a while, Jon makes a claim: “If a card 
has an even number on one side, then it is gray on the other side.” 
Four cards are picked and presented to Albert as shown below.  
Which card or cards, when turned over, are useful to determine whether Jon’s claim is false?   

a. the 3 card only
b. the 8 card only
c. the 3 card and the white card
d. the 3 card and the gray card
e. the 8 card and the white card
f. the 8 card and the gray card
g. all four cards
h. none of the above

% A B C D E F G H 
Giraffe 2.2 5.7 19.6 42.8* 18.9 10.8 
Card 1.0 7.9 3.3 2.4 3.9* 32.5 47.6 1.3 

3 8 

FIG. 11. Example questions on causal decision making in iSTAR. The percentage distribution of answers are based on the college
population discussed in the next section. The correct answer is marked with an asterisk (*).
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hypothetico-deductive questions in LCTSR, all of the 11
CDM questions in the iSTAR test are new designs. Two
examples are shown in Fig. 11.
The first question in Fig. 11 measures students’ reason-

ing in distinguishing between correlation and causation in
CDM processes. The scenario of this question is similar to
many real-world examples such as whether a specific eating
habit can be correlated with certain health conditions. In
these cases, there are often confounding factors that lead to
the observation of correlated outcomes, which warrants a
correlation but not causation. Similarly, in this question the
given observation shows a correlation between the height
and strength of a giraffe and whether it eats a type of fruit.
However, this data does not form a valid covariation design
due to a lack of control of variables, since only the tall
giraffes can reach and eat the fruit, which is the con-
founding factor given semiexplicitly in the question.
Therefore, choice d gives the correct answer, which
indicates that a covariation based causal relation cannot
be concluded. Choices a, b, and c represent the tendency in
reasoning that treats correlation as causation without
understanding the needed conditions for a valid covariation.
Choice e represents the influence on reasoning from
mechanism-based prior knowledge such that the observed
data are ignored or disregarded without explanation, and
the decision is made purely based on an existing belief or
prior knowledge. This type of reasoning indicates the lack
of understanding and synthesis between DCRs and MCRs
and suggests a reliance on prior knowledge in causal
decisions.
The second question in Fig. 11 is based on the Watson’s

selection task [76], which measures reasoning with condi-
tional logic rules in determining consistency between
evidence and claim. The hypothetical claim in the question
represents a sufficient condition of “if…then” relation; that
is, if the front side of a card has an even number, the back
side of the card must be gray. In order to show that the claim
can be false, there are two logical pathways that need to be
tested. One is forward pathway to test the deductive “if …
then” relation by turning over the even-numbered cards to
check their back side colors. The other is the backward
pathway to test the reverse logic. Since the even number is a
sufficient condition for its back to be gray, if the back of a
card is not gray (hence it is white), the card cannot have an
even number (must have an odd number). Therefore, to test
the hypothesis given in the question, the card with an even
number and the card with a white back should be turned
over (choice e). The results of the other cards do not
provide any useful information for evaluating the validity of
the hypothesis. From student interviews and test results, it
appears that students have a tendency to focus on evidence
following the forward deductive reasoning path (a con-
firmation type reasoning), which leads to the selection of
the even numbered card and the gray card (choices b and f).
In addition, many students simply wanted to use all cards

without seeing their roles in the conditional logic. These
outcomes suggest that most college level students lack a
sufficient understanding of the conditional logic in causal
decision making.
In the existing literature, reasoning on the coordination

between theory and evidence has been well studied [38].
The CDM questions are designed to specifically target the
essential reasoning skills that support the operation of
theory evidence coordination, such as the skills needed to
evaluate valid covariation relations and form consistent
alignment between DCR-based evidence and MCR-based
theory. As summarized in Table II, the two CDM questions
will each engage the complete IDEA-Loop cycle for
coordinating between DCRs and MCRs to form an inte-
grated DMCR type of causal understanding. Subskills,
such as identifying hidden variables and relations and
handling conditional rules, are targeted in these two
questions for evaluation of students’ levels of reasoning
in terms of the structures and complexity of the involved
causal relations.

V. iSTAR ASSESSMENT VALIDITY AND
RELIABILITY

For a little over a decade, the iSTAR assessment has been
gradually developed through extensive qualitative and
quantitative research and evaluation. The development
and validation of the assessment have been an on-going
process that continuously refines the instrument and the
modeling framework of scientific reasoning. The current
version discussed here reflects a stable release completed in
2018, which can be accessed and used in practice through
an online delivery system described in the Appendix. Item-
level descriptive statistics are also provided in Table VII in
the Appendix. The following sections will focus on
establishing the basic assessment attributes and validity
of the iSTAR test.

A. iSTAR assessment properties
and comparison with lctsr

In this section, descriptive statistics of iSTAR with
different populations will be introduced to establish the
baseline of assessment outcomes. The results will be
compared with measures of LCTSR as a reference to
existing results established in the current literature, since
LCTSR is the most widely used assessment instrument on
scientific reasoning with a large user base and data library.
The comparison will also help in interpreting the similar-
ities and differences between the two assessments.
As discussed in the previous section, iSTAR contains

three general skill dimensions that each include multiple
subskills at different levels of complexity. Meanwhile,
LCTSR contains six narrowly defined skills dimensions.
All of the LCTSR skills can be mapped onto the iSTAR
dimensions except for the dimension on conservation of
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matter, which is too simple for students in middle school
and above and is not included in iSTAR [37]. The skill
dimensions and the corresponding questions are listed in
Table III.
To compare the baseline assessment features of iSTAR

and LCTSR, randomized A-B testing was conducted with
high school students from a Midwestern suburban high
school as well as college and graduate students from a
Midwestern comprehensive university. The college stu-
dents were freshmen from a first-semester calculus-based
introductory physics course. The graduate students were in
the second year of their physics Ph.D. program. During the
testing at the high school and college, students were
randomly given the iSTAR and LCTSR, and they each
completed only one test. The graduate students were tested
with a different procedure, where the testing of iSTAR and
LCTSR was conducted during two separate times in the
same week, and the order of the two tests was randomized
for each student. The average scores of iSTAR and LCTSR
are listed in Table IV.
The results show that the LCTSR scores are consistently

higher than the iSTAR scores for all grade levels, revealing
that iSTAR is more difficult than LCTSR. This improves
the concerns regarding the ceiling effect of LCTSR when
testing college level students [37]. The difference is largest
for the first-year college students, which is likely the result
of both the development of skills at this age and the
population differences (i.e., college vs high school).
Meanwhile, the smaller difference at the graduate student
level is likely due to the ceiling effect in both tests. The
scales of the mean scores at different grade levels suggest
that the skills measured in iSTAR start to get more

developed in college and graduate levels, while skills tested
in LCTSR appear to have been mostly developed during
high school to early college years.
To compare students’ performances on the two tests

within a grade level, the score distributions of the college
students listed in Table IVare plotted in Fig. 12. The results
show that the iSTAR scores are centered around 50%with a
near normal distribution. Meanwhile, the LCTSR scores are
centered around 80%, and the distribution is skewed to the
high end with obvious ceiling effect.
For the same group of college students, their dimensional

scores on iSTAR and LCTSR are also calculated and
compared in Fig. 13. The results show that on the three
common dimensions, the dimensional scores of LCTSR are
significantly higher than those of iSTAR (p < 0.001). For
LCTSR, scores on the conservation dimension are nearly
90%, which confirms that this dimension is too easy for
college level students. On the three common dimensions,
iSTAR demonstrates a consistent increase of difficulty from
COV to DA and to CDM, which confirms the expected
design with COV for setting the foundation of covariation,
DA for the intermediate processing and analytics, and
CDM for the advanced synthesis and causal decision
making. In comparison, LCTSR also has its CDM ques-
tions being the most difficult with an average score at 60%,
however, the COV and DA questions appear to be on the
easier side for college students with average scores close to
80%. In particular, the DA questions are at a similar level as
the COV questions, indicating that some advanced DA
skills are lacking in LCTSR.
Summarizing the descriptive statistics and comparisons,

the assessment features of iSTAR appear to properly target

TABLE III. Cross references of skills dimensions and questions in iSTAR and LCTSR.

iSTAR skill dimensions and questions LCTSR skill dimensions and questions

Control of variables 1, 4, 5, 10, 21, 24, 28, 29, 30 Control of variables 9, 10, 11, 12, 13, 14
Data analytics 2, 3, 6, 7, 8, 13, 14, 22, 23, 25, 26, 27, 32, 33, 35 Proportion 5, 6, 7, 8,

Probability 15, 16, 17, 18,
Correlation 19, 20

Causal decision making 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 31, 34 Hypothetico-Deductive 21, 22, 23, 24
Conservation 1, 2, 3, 4

TABLE IV. Comparison of iSTAR and LCTSR total scores from randomized A-B testing.

iSTAR LCTSR t test

Grade N Mean SD N Mean SD Difference p value Effect size

9 88 0.315 0.156 88 0.393 0.142 0.078 0.016 0.520
10 110 0.396 0.171 89 0.485 0.242 0.089 0.004 0.428
13 187 0.516 0.170 96 0.766 0.156 0.250 <0.001 1.507
18 20 0.848 0.087 20 0.921 0.073 0.073 0.007 0.891
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college level students. Students’ performances on the three
skill dimensions also demonstrate a desired progression of
difficulty levels that consistently follow the expected
designs based on the DMCRmodel outlined in the previous
sections. In the next section, additional analysis will be
discussed to evaluate the validity and reliability of iSTAR.

B. Validity evaluation of iSTAR

In education research, typical forms of validity evidence
include content, criterion, and construct validity [77,78].
Content validity is established by ensuring the assessment
adequately and properly covers the targeted content, which
can be qualitatively judged by a group of experts in the field
and quantitatively evaluated based on responses from
expert level test takers. Criterion-related validity examines
the consistency between a new assessment and an estab-
lished similar measure, which is often evaluated based on
the correlation between the two tests. Construct validity
refers to how well an assessment measures the subject
matter in terms of categories of targeted abilities (or latent
traits) defined in a theoretical framework underpinning the

cognitive attributes of the assessment. For iSTAR, the
ability constructs include the three skill dimensions of
COV, DA, and CDM, as defined in the iSTAR assessment
framework. The construct validity can be established with a
number of methods, such as the traditional approaches of
factor analysis [79,78] and the Rasch model based
approaches [77,80]. In this study, the Rasch model analysis
will be used.

1. iSTAR content validity

In the development process, all items in iSTAR were
examined by a team of experts who were science education
researchers and teachers. Pilot versions of the test were also
given to students in think-aloud interviews to collect
detailed information on students’ reasoning. The interview
results and the designs of the items were evaluated by the
expert team in group meetings to analyze students’ under-
standing and refine question designs. This development
process went through a large number of cycles of piloting
and revision until all researchers in the expert team agreed
that the instrument was properly and effectively designed to
probe the targeted scientific reasoning skills.
As a part of the evaluation on content validity, another

group of 30 graduate students from the same Midwestern
university was used as an external expert group to examine
if their answers agreed with the intended designs of the
iSTAR questions. This group involved 3rd or 4th year
physics Ph.D. graduate students, whose scores on iSTAR
and its subskills are shown in Fig. 14, along with scores
from undergraduate students for comparison, with the latter
taken from Table IV.
As shown in Fig. 14, the trend of the relative difficulty

among the subskills is similar for both the graduate and
undergraduate students, with the graduate students reaching
the ceiling. The results demonstrate that the expert-level
students’ understandings of the subskills agree with that of
the design team. The difference in performance between

0.0

0.1

0.2

0.3

0.4
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iSTAR LCTSR

FIG. 12. Score distributions of college students on iSTAR and
LCTSR.

Total COV DA CDM Consv.

iSTAR 0.516 0.605 0.487 0.388

LCTSR 0.766 0.729 0.773 0.602 0.891
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0.4

0.6

0.8
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FIG. 13. College students’ dimensional scores on iSTAR and
LCTSR.

Total COV DA CDM

Graduate 0.876 0.933 0.900 0.737

College 0.516 0.605 0.487 0.388

0.0
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0.4

0.6

0.8

1.0

FIG. 14. Scores on iSTAR and its subskills for graduate and
undergraduate students. The error bars reflect standard errors.

LEI BAO et al. PHYS. REV. PHYS. EDUC. RES. 18, 010115 (2022)

010115-24



undergraduate students and graduate students further indi-
cates that as learning progresses, students’ abilities on the
subskills converge towards expertlike states. Therefore, the
results in Fig. 14 can provide additional quantitative
evidence to demonstrate the content validity of iSTAR.

2. iSTAR criterion validity

In existing research, LCTSR has long been used as a
standard assessment for scientific reasoning [36].
Therefore, in this study, the evidence of criterion-related
validity is evaluated based on the correlations between
scores on iSTAR and LCTSR.
The results from the college students shown in Table IV

were taken during the fourth week of their first semester
introductory physics course. Among the 283 students,
about one-third (96) took the LCTSR and the remaining
students took the iSTAR. The uneven number of test
subjects was due to the design of a parallel study conducted
with the same population. Each student randomly took one
of the two tests, which are referred to as LCTSR-4 and
iSTAR-4 to label their time of testing. For all students, they
were also given iSTAR during the first week of the course,
which is labeled as iSTAR-1. With this design, correlations
between iSTAR-1 and LCTSR-4 and between iSTAR-1 and
iSTAR-4 could be obtained. Although there were three
weeks of time between the week-1 and week-4 testing, the
differences in students’ scientific reasoning skills were not
expected to change significantly [20].
Using the test results, Pearson correlations between

students’ scores were calculated, which show a moderate
correlation of 0.589 (p < 0.001) between iSTAR-1 and
LCTSR-4 and a moderately strong correlation of 0.680
(p < 0.001) between iSTAR-1 and iSTAR-4. As expected,
the correlation between repeated iSTAR testing is stronger
than the correlation between iSTAR and LCTSR. The
results demonstrate good consistency of repeated testing
and moderately good agreement between iSTAR and
LCTSR. In addition, the graduate students listed in
Table IValso took both iSTAR and LCTSR. The correlation
between their scores on the two tests is 0.750 (p ¼ 0.002),
which is slightly higher than the correlation measured with
the college students. The higher correlation from graduate
students further confirms that performance on the two tests
would converge as students approach the expert level.
To examine the agreement between measurements of

skill dimensions of the two tests, correlations on the three
common skill categories between iSTAR-1 and LCTSR-4
were also calculated and are listed in Table V. The results
show a moderate correlation on COV, a low correlation on
CDM, and a minimal correlation on DA. As indicated by
the correlations, COV skills are more consistently mea-
sured by the two tests compared to other skills. On the other
hand, measurements involving the DA skills are designed
quite differently between the two tests. LCTSR only
involves a few simplistic DA skills on proportion and

basic probability, while iSTAR is designed with 15 items on
a wide range of simple to complex DA skills. Similarly, the
designs of the CDM measures are also quite different
between the two tests. Nevertheless, the moderate overall
correlation of the total scores demonstrates good agreement
between the two tests for measuring the projections of the
three skills onto a unidimensional trait of scientific
reasoning.

3. iSTAR construct validity

As discussed earlier, iSTAR test is designed with three
areas of reasoning skills on COV, DA, and CDM. The
design is hypothesized to have a progression of increasing
difficulty from COV to DA and to CDM. The evaluation of
construct validity will then focus on analyzing whether the
iSTAR data reveals a three-dimensional construct and
whether the difficulty levels of the three categories of
reasoning skills follow the designed progression.
First, the hypothesized three-dimensional construct

model of iSTAR is examined by comparing it with an
alternative unidimensional construct model. To do this, the
iSTAR data is fitted to both a three-dimensional and a
unidimensional Rasch model separately. The goodness of
fit is then compared between the two models using the
likelihood ratio test. If the result of this test is in favor
of the three-dimensional model, the hypothesized three-
dimensional construct is then confirmed and validated.
Second, the progression of the difficulty of the three

reasoning skills can be evaluated based on students’ mean
abilities on the three skills. If the design is valid, students
should demonstrate high abilities on COV, intermediate
abilities on DA, and low abilities on CDM. Using Rasch
analysis, students’ mean abilities on the three skill dimen-
sions were calculated and compared. In addition, the
person-item map (Wright map) was used to show the
distributions of person ability and item difficulty on a
common vertical logit scale (Bond and Fox [80]) to
compare if the distributions spanned properly over a wide
range of ability and difficulty scales. A proper distribution
indicates an appropriate discrimination for students from
various performance levels.
For this part of the Rasch analysis, iSTAR data were

collected with another larger group of 378 college students
from the same college population listed in Table IV. In this
section, the main outcomes of Rasch modeling are

TABLE V. Correlations of students’ skill dimension scores
between iSTAR and LCTSR. All correlations are statistically
significant at p < 0.01 level except for r ¼ 0.172 (p ¼ 0.093).

iSTAR-LCTSR COV DA CDM

COV 0.597 0.288 0.467
DA 0.298 0.293 0.262
CDM 0.354 0.172 0.317
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summarized, while additional details of Rasch model fitting
are provided in Table VIII in the Appendix. First, the data
were fitted with a one-dimensional and a three-dimensional
Rasch model. A comparison between the two models
shows that the model fit parameters are in favor of the
three-dimensional mode. Likelihood ratio tests indicate that
the three-dimensional model shows statistically significant
improvement in model deviance compared to the one-
dimensional model (χ2 ¼ 65.793, df ¼ 5, p < 0.001). The
results suggest that the construct design of the three skill
dimensions in iSTAR is consistent with the Rasch analysis
of the assessment data.
Next, the means of students’ estimated abilities on the

three skill dimensions were calculated and are listed in
Table VI, along with measures on reliability, which will be
discussed in the next section. The results agree well with the
prediction that students would demonstrate high to low
abilities on COV, DA, and CDM, and the differences are
statistically significant [tCOV−DAð377Þ¼15.421, p < 0.001,
d¼ 0.793; tCOV−CDMð377Þ¼34.943, p<0.001, d ¼ 1.797;
tDA−CDMð377Þ ¼ 26.759, p < 0.001, d ¼ 1.376].
In addition, the Wright map of iSTAR is also plotted in

Fig. 15 in the Appendix, which shows that the items span a
wide range of difficulty levels across the entire logit scale
(−3.428 to 3.045). The students’ estimated abilities on the
three skills are also well spanned with near-normal dis-
tributions across a wide range of logit scale. The results
suggest that iSTAR establishes an appropriate discrimina-
tion on each of the three skill dimensions for students from
various performance levels. Altogether, the results of Rasch
analysis demonstrate that the three-dimensional construct
design of iSTAR is well established, and that the test items
present good coverage on the range of students’ ability
regarding the three skill dimensions.

C. Reliability evaluation of iSTAR

Reliability is the consistency of an assessment such that
repeated applications of the instrument on similar popula-
tions should produce similar results [77]. In classical test
theory (CCT), the reliability coefficient is defined as the
correlation between scores on two equivalent forms of an
instrument. Practically, the concept is extended to consider
every item of an instrument as an equivalent form, which
leads to using the Cronbach’s α coefficient of internal

consistency as a measure of reliability. With the iSTAR data
from college students used in Rasch modeling discussed
above, the Cronbach’s α is measured to be 0.737, which is
adequate for acceptable reliability (>0.7) for the entire test.
Additionally, the Rasch model, as well as other models

of the item response theory family, addresses the basic issue
of reliability using information functions [81]. These
functions indicate the precision with which the observed
performance can be used to estimate the value of a latent
trait for each student on a single item or the test as a whole
[82]. Using this approach with Rasch modeling, indices
analogous to traditional reliability coefficients can be
estimated from the item information functions and distri-
butions of the latent trait in a population. For this
evaluation, the ratio of expected-a-posteriori over plau-
sible-value (EAP=PV) reliability is used to measure the
reliabilities of the three subscales, which are listed in
Table VI along with the latent correlations among the
three dimensions.
As shown in Table VI, the EAP=PV reliabilities for the

three skill dimensions are 0.770 for COV, 0.720 for data
analytics, and 0.697 for causal decision making. Typically,
a reliability of 0.65–0.70 is considered “minimally accept-
able”, and a reliability between 0.70 and 0.85 is “respect-
able” for research purposes [83]. The results suggest that
the reliabilities of the three skill dimensions are adequate,
especially when considering the complex nature of the
latent traits and the small number of items per dimension.
Combining the results of Cronbach’s α and the Rasch
analysis, the reliability of iSTAR can be established at both
the instrument level and the skill dimension level.
Additionally, the latent correlations between the three
dimensions range from 0.794 to 0.819, indicating strong
correlations between the skill dimensions, which together
contribute to a common basis of the overall scientific
reasoning ability.
In summary, the evaluations of validity and reliability

have demonstrated that iSTAR is a valid and reliable
instrument for assessing scientific reasoning at the college
student level. However, due to the complexity of the
instrument, which is designed with multiple subskills
and wide-ranging item difficulties, further research is
warranted for establishing the validity and reliability for
different student populations. Nevertheless, the results from
this study should provide sufficient evidence for the
validity of using iSTAR in the assessment of scientific
reasoning for populations similar to entry level college
students.

VI. SUMMARY AND DISCUSSION

Scientific reasoning is emphasized as a core ability in
21st century education and has been extensively
researched. However, the existing literature lacks a con-
sensus on a coherent model of scientific reasoning that can
guide instruction and assessment, which is particularly

TABLE VI. Students’ ability means, reliability, and correlation
matrix for the dimensions of the three-dimensional Rasch model.
Diagonal values are EAP=PV reliabilities. Values below the
diagonal are latent correlations.

Subskills Mean SD COV DA CDM

Control of variables 0.658 1.337 (0.770)
Data analytics −0.042 0.687 0.807 (0.720)
Causal decision making −0.815 0.963 0.794 0.819 (0.697)
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important for initiatives such as the NGSS or College Board
Standards for College Success in Science. In addition, there
are no existing instruments that measure scientific reason-
ing skills at a fine-grained level based on a coherent
modeling and assessment framework. This gap in the
literature can significantly limit the development, imple-
mentation, and evaluation of educational practices for
effectively advancing scientific reasoning abilities among
students.
Grounded in the literature, this paper presents a model-

ing framework (DMCR) that integrates scientific reasoning
with causal reasoning and operationally defines scientific
reasoning in terms of skills needed to process and coor-
dinate data-covariation and mechanistic causal relations
(i.e., DCRs and MCRs). Building from the DMCR model-
ing framework, three areas of reasoning skills, which
include control of variables, data analytics, and causal
decision making, have been defined to form the funda-
mental skill sets of an assessment framework of scientific
reasoning, where the COV and DA skills provide the basis
to develop DCRs, and the DA and CDM skills serve to
coordinate DCRs with MCRs to form appropriate causal
understandings. Guided by the assessment framework, an
assessment instrument for scientific reasoning (i.e., iSTAR)
has been developed, which targets a wide range of skills
and subskills for COV, DA, and CDM. Through large scale
testing, the assessment features of iSTAR have been
examined and compared with the popular LCTSR. The
results reveal that iSTAR provides consistent measurement
of three areas of reasoning skills and demonstrates a
progression of difficulty from COV to DA and to CDM,
which confirms the design based on the assessment
framework. In addition, the validity and reliability of
iSTAR have been evaluated using classical statistics and
Rasch analysis, indicating that iSTAR is valid and reliable
to measure scientific reasoning abilities of college level
students.
This research contributes to the literature in several ways.

On the theoretical side, two schools of work on scientific
reasoning and causal reasoning in the existing literature
have been conducted rather independently in parallel with
different definitions and emphases [47]. However, both
types of reasoning are the essential elements in knowledge
formation and have strong overlap among their goals and
processes as well as specific reasoning skills. Therefore,
connecting these two reasoning frameworks provides a
synthesis for how different models of reasoning and
learning are related. The integration of these models can
form a more comprehensive view on the relations among
constructs and processes that underlie reasoning and
knowledge development.
In addition, the existing work on scientific reasoning

often overwhelmingly emphasizes the data-covariation
relation in evidence-based hypothesis-testing. However,
as also suggested by a number researchers, the mechanism

side of causal reasoning should be included as another core
element of scientific reasoning. With the integration of
causal reasoning, the involvement of mechanism becomes
natural, since mechanism is one of the two fundamental
elements of causal reasoning, i.e., covariation and mecha-
nism. Building on the existing work in the literature on
causal reasoning, the DMCR model explicitly defines two
fundamental elements of causal reasoning, the data-
covariation causal relation and the mechanistic causal
relation, along with a number of reasoning processes that
operate within and between these elements. Using these
new definitions, causal reasoning and scientific reasoning
can then be integrated into a single framework that is also
operational for guiding assessment and instruction.
On the operational side, definitions of scientific reason-

ing skills in many existing studies are often broadly defined
based on descriptions of the general processes and products
of the reasoning. Examples of such definitions include
“coordinate between theory and evidence,” “identify a
hypothesis,” “search for appropriate evidence or alternative
hypotheses,” etc. These definitions lack the concrete opera-
tional constructs that constitute the targeted reasoning
processes. In this research, the DMCR modeling frame-
work explicitly defines the actual constructs, relations, and
processes as well as a coherent theoretical model and
concrete operations that are needed to understand, manipu-
late, and evaluate the constructs, relations, and processes.
These together form the concrete building blocks and
structures to operationally define the various skills involved
in scientific and causal reasoning. This modeling frame-
work can then provide explicit guidance on the develop-
ment and implementation of instruction and assessment to
promote specific skills involved in scientific and causal
reasoning. The integration of scientific and causal reason-
ing in a single modeling framework provides a needed
advancement in the research literature towards a better
understanding of reasoning and knowledge development,
while opening new venues for additional theoretical and
empirical studies.
Synthesizing the theoretical work in this study, a

comprehensive definition of scientific reasoning can be
developed. In the existing literature, scientific reasoning is
often broadly and implicitly defined as skills to support a
range of learning activities involved in scientific inquiry,
which can be considered as a type of behavioral definition.
Based on the modeling framework developed in this study,
the definition of scientific reasoning can now be extended
with a conceptual component and an operational compo-
nent. Together, these three components provide a more
complete definition of scientific reasoning, including:

• Behavioral definition: the ability to support the
activities and processes in scientific inquiry, which
often involve efforts to systematically analyze a
problem, identify researchable questions, formulate
and evaluate hypotheses, make predictions, design
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and evaluate experiments, analyze data, identify evi-
dence, validate hypotheses, and make decisions based
on evidence.

• Conceptual definition: a cognitive process that devel-
ops and manipulates data-covariation and mechanistic
causal relations in knowledge formation and revision.

• Operational definition: the specific reasoning skills
needed for control of variables, data analytics, and
causal decision making.

This research also contributes to the literature on assess-
ment of scientific reasoning. The existing assessment tools
have been designed to measure a limited number of loosely
connected skills that lack a coherent theoretical base, which
limits the interpretation of the assessment outcomes. In
comparison, the iSTAR assessment instrument has been
specifically designed based on the DMCR modeling
framework to measure a progressive set of skills that are
defined as the essential constructs of scientific and causal
reasoning. The validation study suggests that the assess-
ment can provide well-targeted diagnostics of wide-ranging
skills and subskills that are explicitly and operationally
defined based on the modeling framework. Therefore, the
results of the assessment can be directly mapped to specific
skill sets and linked to components of the DMCR model,
which facilitate the interpretation of the outcomes and
provide meaningful insights on students’ reasoning abilities.
Such understanding can then directly guide instruction to
address the teaching and learningof the targeted skills and the
associated learning difficulties. In addition, the validity and
reliability of the iSTAR instrument have been solidly
established with a college population, such that the instru-
ment can be readily implemented in research and teaching.
Because of the limited scope of a single study, this

research has a number of limitations. The development of a
modeling framework to integrate scientific and causal
reasoning cannot be completed in one study and will need
additional work for its validation and further refinement.
The DMCR model proposed in this paper is based on an
integrative synthesis of the existing models, all of which are
supported with their own empirical studies. Therefore the
validation of the new model is currently established in part
by the existing empirical studies, which support the various
components of the previous models that have been inte-
grated into the new model. In addition, the assessment
instrument and outcomes provide tangible manifestations
of the model’s concepts and ideas, which can be evaluated
to indicate the validity of the model itself. In this research,
the assessment results are in agreement with the model’s
expectation, which can provide additional evidence to
support the validity of the DMCR model. Therefore, based
on the literature and assessment outcomes, it is reasonable
to consider that the new model has sufficient validation for
its initial introduction.
Nevertheless, this research only provides an initial

glimpse of what can be further developed and has a narrow

focus on developing the operational definitions of skill sets
that can provide a model-based framework to guide assess-
ment design. In future studies, research is needed to further
update the model to make connections to a much wider
range of existing theoretical and empirical work in the
literature. Additional research is also needed to establish
detailed connections to knowledge development and inquiry
learning, which are the learning goals supported by scientific
and causal reasoning. Connections of the model to educa-
tional practices in developing skills and abilities in scientific
and causal reasoning, as well as additional assessment
studies, are also warranted. In particular, the validity and
reliability of the iSTAR assessment need to be further
established with additional populations from different age
groups and education backgrounds.
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APPENDIX: STATISTICAL EVALUATIONS
OF THE iSTAR TEST

1. Access to the iSTAR test

The iSTAR test can be accessed and delivered though
an online testing system at https://istartest.com/home.
For inquiries regarding using the test, please contact the
corresponding author for more information.

2. Statistical analysis results

Table VII provides the classical descriptive statistics of
iSTAR items, which includes the classical item difficulty
(fraction of correct answers), item discrimination (score
difference between upper 30% and lower 30% of students),
and point biserial correlation ðrpbÞ between an item’s score
and the total score of the test (item-total correlation). The
results are calculated with the same dataset used in the
Rasch analysis for the evaluation of the construct validity.
The test reliability of the iSTAR is evaluated by the
Cronbach’s α, which is found to be 0.737 with all 35
items included. Two of the items (30 and 33) have
insignificant item-total correlations with this college pop-
ulation. If the two items are removed, the Cronbach’s α
becomes 0.750. The analysis indicates that iSTAR has
adequate acceptable reliability. The two items are kept in
the test because different populations may respond differ-
ently, and the two items are part of item groups needed for
the completeness of the related context scenarios.

LEI BAO et al. PHYS. REV. PHYS. EDUC. RES. 18, 010115 (2022)

010115-28

https://istartest.com/home
https://istartest.com/home


3. Rasch analysis

To investigate whether the three subskills represent
distinct dimensions of students’ scientific thinking and
reasoning, a three-dimensional model was compared to a
one-dimensional model, assuming only one latent construct
underlying the data (namely scientific thinking and reason-
ing as a whole). A comparison between the two models
shows that the model fit parameters are in favor of the three-
dimensional model. Likelihood ratio tests indicate that the

three-dimensional model shows statistically significant
improvement in model deviance compared to the one-
dimensional model (χ2 ¼ 65.793, df ¼ 5, p < 0.001).
The model parameters for the three-dimensional model

were further explored to substantiate the above results on
mode fit. Here, the weighted and unweighted mean square
residuals (MNSQ), which are listed in Table VIII, were
used to examine the extent to which students’ response to
iSTAR fit with the Rasch model at the item level. As shown

TABLE VII. Basic descriptive statistics of iSTAR (N ¼ 378).

Item Difficulty Discrimination rpb Item Difficulty Discrimination rpb

1 0.889 0.177 0.226 18 0.862 0.191 0.213
2 0.441 0.481 0.346 19 and 20 0.352 0.665 0.505
3 0.243 0.405 0.399 21 0.238 0.627 0.601
4 0.476 0.575 0.434 22 0.960 0.085 0.211
5 0.331 0.575 0.498 23 0.902 0.177 0.241
6 0.770 0.245 0.197 24 0.294 0.686 0.594
7 0.799 0.335 0.330 25 0.870 0.224 0.232
8 0.578 0.509 0.411 26 0.296 0.321 0.283
9 0.439 0.351 0.320 27 0.204 0.343 0.346
10 0.947 0.092 0.180 28 0.791 0.352 0.349
11 0.320 0.392 0.378 29 0.643 0.450 0.385
12 0.037 0.044 0.128 30 0.035 0.040 0.035
13 0.426 0.259 0.219 31 0.194 0.431 0.451
14 0.053 0.127 0.276 32 0.143 0.162 0.179
15 0.032 0.063 0.135 33 0.067 0.044 0.067
16 0.854 0.290 0.333 34 0.457 0.596 0.481
17 0.259 0.368 0.361 35 0.100 0.181 0.303

Average 0.462 0.313 0.309

TABLE VIII. Measures of item difficulty, and fit statistics (infit and outfit MNSQ) estimated by Rasch model for
iSTAR. Note that the average item difficulty is constrained to be zero. An asterisk (*) next to a parameter estimate
indicates that it is constrained. Items 30 and 33 were not included in this model fitting analysis due to insignificant
item-total score correlations.

Item
Item

difficulty
Unweighted
MNSQ

Weighted
MNSQ Item

Item
difficulty

Unweighted
MNSQ

Weighted
MNSQ

1 −1.998 1.16 1.12 17 0.397 1.18 1.03
2 0.213 1.01 1.02 18 −2.944 1.09 0.98
3 1.192 1.01 0.97 19 and 20 −0.118 0.94 0.96
4 0.723 1.11 1.06 21 2.145 0.65 0.80
5 1.538 1.02 1.04 22 −3.428 0.80 0.97
6 −1.370 1.12 1.05 23 −2.436 0.94 0.97
7 −1.555 0.88 0.94 24 1.776 0.73 0.82
8 −0.400 0.94 0.95 25 −2.109 0.90 0.97
9 −0.551 1.13 1.08 26 0.898 1.10 1.02
10 −2.898 1.42 1.06 27 1.440 0.99 1.00
11 0.050 1.02 1.00 28 −1.110 0.96 1.03
12 2.836 1.30 1.08 29 −0.176* 1.02 1.04
13 0.275 1.09 1.08 31 0.832 0.94 0.94
14 3.045 1.22 1.02 32 1.900 1.08 1.08
15 3.003 1.70 1.09 34 −0.632* 0.94 0.96
16 −2.872 0.95 0.94 35 2.334* 0.99 1.00
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in Table VIII, all items of iSTAR, except items 10, 12,
and 15, appear to meet the standards for item fit (0.7 <
MNSQ < 1.3). For items 10, 12, and 15, while the
Unweighted MNSQ slightly exceed the suggested range,
the weighted MNSQ meets the standards well. Hence,
items 10, 12, and 15 are not removed from the following
analysis. Based on the three-dimensional model, a Wright
map is plotted in Fig. 15.
Results in Table VIII reveal that the measures of item

difficulty cover a sufficiently broad range from −3.428
(easy) to þ3.045 (hard). The Wright map shown in Fig. 15

provides further details for how the item difficulty is
distributed among items of the three skill sets. A Wright
map shows the ability measures of individual students and
the difficulty measures of individual items on the same logit
scale to allow clear mapping between item difficulty and
student performance. The iSTAR data were analyzed with a
three-dimensional Rasch model, which measures student
abilities alone the three skill sets including control of
variables, data analytics, and causal decision making. As
shown in Fig. 15, item difficulties are broadly distributed
across the three skill dimensions, which provide good

FIG. 15. Wright map of iSTAR.
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coverage on the different skills. The measures of student
abilities also show desired near-normal distributions in all
three skill dimensions with sufficiently wide spans on the
ability scale. The centers of the ability distributions on the
three skill dimensions also demonstrate the expected diffi-
culty progression with COV being the easiest (highest

average student ability), DA being the intermediate, and
CDM being the hardest (lowest average student ability).
Overall, the results shown in theWright map suggest that the
iSTAR test has a satisfactory coverage of the three skill
dimensions and provides measurement outcomes in agree-
ment with the expectations of the design.

[1] United States Chamber of Commerce, Bridging the Soft
Skills Gap: How the Business and Education Sectors are
Partnering to Prepare Students for the 21st Century Work-
force, Center for Education and Workforce (U.S. Chamber
of Commerce Foundation, Washington, DC, 2017).

[2] NGSS Lead States, Next Generation Science Standards:
For States, By States (The National Academies Press,
Washington, DC, 2013).

[3] Science Standards Advisory Committee, College Board
Standards for College Success: Science (College Board,
New York, 2009).

[4] National Research Council, Assessing 21st Century Skills:
Summary of a Workshop (National Academies Press,
Washington, DC, 2011).

[5] National Research Council, A Framework for K-12 Science
Education: Practices, Crosscutting Concepts, and Core
Ideas (National Academies Press, Washington, DC, 2012).

[6] National Research Council, Education for Life and Work:
Developing Transferable Knowledge and Skills in the 21st
Century (NationalAcademies Press,Washington,DC, 2012).

[7] National Science and Technology Council, Charting a
Course for Success: America’s Strategy for STEM
Education (Office of Science and Technology Policy,
Washington, DC, 2018).

[8] P. A. Facione, Critical Thinking: A Statement of Expert
Consensus for Purposes of Educational Assessment and
Instruction—The Delphi report (California Academic
Press, Millbrae, CA, 1990).

[9] A. Fisher, Critical Thinking: An Introduction (Cambridge
University Press, Cambridge, England, 2001).

[10] M. Lipman, Thinking in Education, 2nd ed. (Cambridge
University Press, Cambridge, England, 2003).

[11] M. Binkley, O. Erstad, J. Herman, S. Raizen, M. Ripley,
and M. Rumble, Draft White Paper Defining 21st Century
Skills (ACTS, Melbourne, 2010).

[12] E. M. Glaser, An Experiment in the Development of
Critical Thinking (Teachers College, Columbia University,
New York, 1941).

[13] R. H. Johnson and B. Hamby, A meta-level approach to the
problem of defining ‘critical thinking’, Argumentation 29,
417 (2015).

[14] P. A. Facione and C. A. Gittens, Think Critically, 3rd ed.
(Pearson, Boston, 2016).

[15] D. F. Halpern, Critical Thinking Across The Curriculum:
A Brief Edition of Thought & Knowledge (Routledge,
London, 2014).

[16] R. H. Ennis, Critical thinking: A streamlined conception,The
Palgrave Handbook of Critical Thinking in Higher Educa-
tion (Palgrave Macmillan, New York, 2015), pp. 31–47.

[17] H. Siegel, Educating Reason: Rationality, Critical Think-
ing and Education (Routledge, New York, 1988).

[18] R. Paul, Critical Thinking: What Every Person Needs to
Survive in a Rapidly Changing World (Center for Critical
Thinking and Moral Critique, Rohnert Park, CA, 1990).

[19] C. Zimmerman, The development of scientific reasoning
skills, Dev. Rev. 20, 99 (2000).

[20] L. Bao, T. Cai, K. Koenig, K. Fang, J. Han, J. Wang, Q.
Liu, L. Ding, L. Cui, Y. Luo, Y. Wang, L. Li, and N. Wu,
Learning and scientific reasoning, Science 323, 586
(2009).

[21] M. A. Johnson and A. E. Lawson, What are the relative
effects of reasoning ability and prior knowledge on biology
achievement in expository and inquiry classes?, J. Res. Sci.
Teach. 35, 89 (1998).

[22] A. M. L. Cavallo, M. Rozman, J. Blickenstaff, and N.
Walker, Learning, reasoning, motivation, and epistemo-
logical beliefs: Differing approaches in college science
courses, J. Coll. Sci. Teach. 33, 18 (2003), https://my.nsta
.org/resource/6003.

[23] S. T. Kalinowski and S. Willoughby, Development and
validation of a scientific (formal) reasoning test for college
students, J. Res Sci Teach. 56, 1269 (2019).

[24] V. P. Coletta and J. A. Phillips, Interpreting FCI scores:
Normalized gain, preinstruction scores, and scientific
reasoning ability, Am. J. Phys. 73, 1172 (2005).

[25] H. She and Y. Liao, Bridging scientific reasoning and
conceptual change through adaptive web-based learning, J.
Res Sci Teach. 47, 91 (2010).

[26] M. S. Cracolice, J. C. Deming, and B. Ehlert, Concept
learning versus problem solving: A cognitive difference, J.
Chem. Educ. 85, 873 (2008).

[27] S. Ates and E. Cataloglu, The effects of students’ reasoning
abilities on conceptual understandings and problem-solv-
ing skills in introductory mechanics, Eur. J. Phys. 28, 1161
(2007).

[28] J. L. Jensen and A. E. Lawson, Effects of collaborative
group composition and inquiry instruction on reasoning
gains and achievement in undergraduate biology, CBE Life
Sci. Educ. 10, 64 (2011).

[29] A. E. Lawson, The development of reasoning among
college biology students—a review of research, J. Coll.
Sci. Teach. 21, 338 (1992).

THEORETICAL MODEL AND QUANTITATIVE … PHYS. REV. PHYS. EDUC. RES. 18, 010115 (2022)

010115-31

https://doi.org/10.1007/s10503-015-9356-4
https://doi.org/10.1007/s10503-015-9356-4
https://doi.org/10.1006/drev.1999.0497
https://doi.org/10.1126/science.1167740
https://doi.org/10.1126/science.1167740
https://doi.org/10.1002/(SICI)1098-2736(199801)35:1%3C89::AID-TEA6%3E3.0.CO;2-J
https://doi.org/10.1002/(SICI)1098-2736(199801)35:1%3C89::AID-TEA6%3E3.0.CO;2-J
https://my.nsta.org/resource/6003
https://my.nsta.org/resource/6003
https://my.nsta.org/resource/6003
https://doi.org/10.1002/tea.21555
https://doi.org/10.1119/1.2117109
https://doi.org/10.1002/tea.20309
https://doi.org/10.1002/tea.20309
https://doi.org/10.1021/ed085p873
https://doi.org/10.1021/ed085p873
https://doi.org/10.1088/0143-0807/28/6/013
https://doi.org/10.1088/0143-0807/28/6/013
https://doi.org/10.1187/cbe.10-07-0089
https://doi.org/10.1187/cbe.10-07-0089


[30] D. Kuhn, Thinking as argument, Harv. Educ. Rev. 62, 155
(1992).

[31] V. F. Shaw, The cognitive processes in informal reasoning,
Think. Reas. 2, 51 (1996).

[32] A. Zeineddin and F. Abd-El-Khalick, Scientific reasoning
and epistemological commitments: Coordination of theory
and evidence among college science students, J. Res. Sci.
Teach. 47, 1064 (2010).

[33] K. Koenig, K. E. Wood, L. J. Bortner, and L. Bao,
Modifying traditional labs to target scientific reasoning,
J. Coll. Sci. Teach. 48, 28 (2019), https://my.nsta.org/
resource/117343.

[34] J. Osborne, S. Rafanelli, and P. Kind, Toward a more
coherent model for science education than the crosscutting
concepts of the next generation science standards: The
affordances of styles of reasoning, J. Res. Sci. Teach. 55,
962 (2018).

[35] T.-R. Sikorski and D. Hammer, Looking for coherence in
science curriculum, Sci. Educ. 101, 929 (2017).

[36] A. E. Lawson, Lawson Classroom Test of Scientific
Reasoning (2000), http://www.public.asu.edu/∼anton1/
AssessArticles/Assessments/Mathematics Assessments/
Scientific Reasoning Test.pdf.

[37] L. Bao, Y. Xiao, K. Koenig, and J. Han, Validity evaluation
of the Lawson classroom test of scientific reasoning, Phys.
Rev. Phys. Educ. Res. 14, 020106 (2018).

[38] C. Zimmerman, The development of scientific thinking
skills in elementary and middle school, Dev.Rev. 27, 172
(2007).

[39] J. Piaget, Construction of Reality in the Child (Routledge,
London, 1954).

[40] A. E. Lawson, The nature and development of scientific
reasoning: A synthetic view, Int. J. Sci. Math. Educ. 2, 307
(2004).

[41] D. Klahr, Exploring Science: The Cognition and Develop-
ment of Discovery Processes (MIT Press, Cambridge, MA,
2002).

[42] D. Kuhn, M. Pease, Wirkala, and Clarice, Coordinating the
effects of multiple variables: A skill fundamental to
scientific thinking, J. Exp. Child Psychol. 103, 268 (2009).

[43] A. E. Lawson,Development and validation of the classroom
test of formal reasoning, J. Res. Sci. Teach. 15, 11 (1978).

[44] A. E. Lawson, Science Teaching and the Development of
Thinking (Watsworth Publishing Company, Belmont, CA,
1995).

[45] A. E. Lawson, Using the learning cycle to teach biology
concepts and reasoning patterns, J. Biol. Educ. 35, 165
(2001).

[46] D. Klahr and K. Dunbar, Dual space search during
scientific reasoning, Cogn. Sci. 12, 1 (1988).

[47] D. Kuhn and D. J. Dean, Connecting scientific reasoning
and causal inference, J. Cognit. Dev. 5, 261 (2004).

[48] D. Kuhn, S. Ramsey, and T. S. Arvidsson, Developing
multivariable thinkers, Cognit. Dev. 35, 92 (2015).

[49] Z. Chen and D. Klahr, All other things being equal:
Acquisition and transfer of the control of variables strategy,
Child Development 70, 1098 (1999).

[50] M. Bunge, Causality. The Place of the Causal Principle in
Modern Science (Harvard University Press, Cambridge,
MA, 1959).
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[52] J. Piaget, Causalité et opérations, Les explications causales
(PUF, Paris, 1971).
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