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This paper presents improvements made to a computerized adaptive testing (CAT)-based version of the
FCI (FCI-CAT) in regards to test security and test efficiency. First, we will discuss measures to enhance test
security by controlling for item overexposure, decreasing the risk that respondents may (i) memorize the
content of a pretest for use on the post-test or (ii) share information about the items with their classmates
who take the assessment later. Second, we will discuss measures to enhance test efficiency, so that a shorter
test length can yield a desired accuracy and precision of the measurement. Specifically, we utilized
collateral information in the form of a pretest proficiency estimate of each respondent for selecting items
and estimating respondent proficiency level in the post-test. To shorten the total testing time further, we also
allowed the test lengths to be different for the pre- and post-test. To analyze how these improvements affect
the accuracy and precision (which we measure in terms of root-mean-square error) of Cohen’s d, we
conducted a Monte Carlo simulation and a post hoc simulation. Then, we calculated the minimal test length
of the FCI-CATwhose accuracy and precision are equivalent to that of the paper-and-pencil version of the
FCI. Consequently, we obtained the following three findings: (i) By using collateral information, we can
achieve the accuracy and precision of the full-length FCI with fewer items via the FCI-CAT. (ii) For a class
size of 40, we can control for test security while still reducing the sum of the pre- and post-test lengths of
the FCI-CAT to a total of 33 items (17 items on the pretest and 16 items on the post-test), thereby reducing
the testing time to 55%. (iii) If one’s goal is to maximize test efficiency, the pretest length should be slightly
larger than the post-test length. On the other hand, if the goal is to maximize test security, the pretest length
should be smaller and the post-test length should be larger. If one desires a balance of these two goals, it
would be reasonable to choose equal pre- and post-test lengths.
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I. INTRODUCTION

Research-based assessments play an important role
in informing physics teachers and education researchers
about what students learn in physics courses. One of the
most widely used research-based assessments is the Force
Concept Inventory (FCI) [1]. The FCI probes student
conceptual understanding of Newtonian mechanics, par-
ticularly regarding the concept of force. The test has
30 items with five choices, and students typically take

20–30 min to complete the test. The FCI has undergone a
rigorous validation process [2–11] and is used internation-
ally with a wide variety of students [12–15]. As such, it
allows for a standardized comparison of student under-
standing on the concept of force. By administering the FCI
both before and after instruction, we can measure the
effects of that instruction in terms of improvement of
students’ scores [16–23].
Many instructors feel pressure to cover a demanding

expanse of content by the end of the semester, and they are
likely to be reluctant to carve time out of their crowded
schedules to administer the assessment [24]. To reduce the
test time, Han et al. [25] divided the FCI into two half-
length tests which contain different subsets of the original
FCI. To avoid using class time for assessments, some
instructors administer the assessment via online platforms
which enables students to complete the assessment outside
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of class [24,26–30]. Although this preserves in-class time,
it does not solve the problem of consuming student time,
time that students could otherwise spend doing additional
homework or independent study. Moreover, administering
an ungraded survey online outside of class can decrease
response rate and compromise test security [31–33].
Recently, we [34] suggested the use of computerized

adaptive testing (CAT) to reduce the test time. CAT is the
practice of using a computer to administer successive
items in the test to match the current estimate of the
student’s proficiency. In one popular model of CAT, if a
student answers an item correctly, the student will next
need to answer a more difficult item. On the other hand, if
a student answers an item incorrectly, the student next
answers an easier item. In this way, high (low) proficiency
students do not need to answer items that are too easy
(difficult) for them; thereby, the test length can be
significantly shortened in comparison to standard test
administration in comparison to standard test administra-
tion [35,36]. Because of its efficiency, CAT is becoming
widely used, for example, with the Graduate Record Exam
(GRE) [37], with PISA [38], and, recently, in science
education research [39–41].
When developing a computerized adaptive test version

of the FCI (FCI-CAT), one of the key questions is how
much can we shorten the test length without excessively
compromising the accuracy and precision of the instru-
ment? (Accuracy is the level of agreement between a
measured value and a true value, and precision is the level
of agreement between measured values obtained by rep-
licate measurements on similar objects under specified
conditions [42].) This question can be rephrased as “how
efficient is the FCI-CAT?”, where test efficiency is defined
by the minimal test length yielding a desired accuracy and
precision of the measurement [35] (the shorter the test
length, the more efficient it is).
Previously, we [34] focused on the accuracy and pre-

cision of the standardized mean difference [43], a statistic
to quantify the pre- and post-group difference. Our work
focuses on the group difference in keeping with the
previous study by Han et al. [25]. Whereas they used
the average normalized gain as a metric, we [34] use the
standardized mean difference to check for consistency
with the analysis of Demars [44], who analyzed accuracy
and precision in the context of item response theory. (For
details, see the introduction of Ref. [34].) Based on
simulation studies, we found that the test length of the
FCI-CAT may be reduced to 15–19 items with an accom-
panying decrease in accuracy and precision of 5%–10%
from what is obtained with the full length FCI.
The FCI-CAT can be validated and improved in various

means, for example, in terms of test security [45], which are
commonly considered in developing CAT [36,46]. When
students complete an assessment at different points in time,
there is a risk that respondents may memorize the content

and share it with their classmates who take the assessment
later. Furthermore, when students take the same assessment
as a post-test, memorization of the material from the pretest
may result in inflated improvement that does not reflect
actual learning. It was shown that the test-retest memory
effect of the FCI is negligible after 3 weeks [47]; however,
if researchers want to study shorter-term learning gains to
analyze learning progressions [48–50], for example, via the
microgenetic approach [51], it is necessary to address this
issue carefully. Han et al. [25] accounted for the test-retest
memorization effect by dividing the FCI into two half-
length tests that had only three items in common (for test
equating). However, since the tests are linear (question 2
always comes after question 1, etc.), all items are exposed
to all respondents, and so there remains the risk of class-
mates leaking information about the items to their peers.
In CAT, item exposure is controlled by the testing algorithm
(for example, randomizing the item selection at the early
stages of CAT), several candidates for which we con-
sider below.
Test security is an important aspect of instrument

validity; however, implementing an algorithm taking into
account this issue may come at a cost in terms of test
efficiency [52]. When test security is not controlled for,
CAT generally begins with the more informative items,
where “informative” means that a greater precision of the
proficiency estimate will be obtained (see technical descrip-
tion below). Although this improves the test efficiency,
these items become overexposed, and it increases the
chance that these items will be memorized and shared
with other respondents prior to taking the assessment.
When an algorithm to reduce overexposure is implemented,
these informative items are less likely to be selected, and
this results in a slowing of the convergence of proficiency
estimates: longer test lengths become necessary.
In order to compensate for this decrease in test efficiency,

we can utilize collateral information [35,53–55]. Collateral
information is the relevant empirical information on the
respondents, for example, age, grade, or previous test
scores. This information can be used to select the first
item in CAT and to specify the prior distribution for the
proficiency estimation based on the Bayesian method [56].
In so doing, we can accelerate the convergence of the
estimates during the test administration, hence improving
test efficiency [35]. Specifically, as we describe below, we
use the pretest proficiency estimate of each respondent for
selecting items and estimating respondent proficiency level
in the post-test (Fig. 1). There is a second benefit to the use
of collateral information. If the first item is selected based
on collateral information, it results in a variable entry point
to the item pool, and hence offers a more even exposure of
assessment items [35], which improves test security (details
are described below).
To explore the possibility of improving test efficiency

and/or security further, we considered the case when the
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test length is different for the pre- and post-test. As we will
show below, having asymmetric test lengths like this allows
us to further reduce the sum of the pre- and post-test lengths
without compromising the accuracy and precision.
The objective of this paper is to significantly improve the

FCI-CAT by addressing the above-mentioned issues of test
security and test efficiency so as to find the optimal test
length of the FCI-CAT. Specifically, our research questions
are the following: (i) How much do test security algorithms
decrease item exposure of the FCI-CAT? (ii) How much
do test security algorithms compromise the accuracy and
precision for a given FCI-CAT length? (iii) How much does
collateral information improve test efficiency of the FCI-
CAT? (iv) Using collateral information, what is the minimal
test length of the FCI-CAT whose accuracy and precision
are equivalent to that of the full length FCI? (v) What is the
optimal test length of the FCI-CAT considering both test
security and test efficiency?
The remainder of this paper is organized as follows. In

Sec. II, we describe the mathematical model we employed
in the FCI-CAT, our CAT settings, our approach to analyze
the security and efficiency, and the simulation procedures.
In Sec. III, we present the results of our analysis. Finally, in
Sec. IV, we summarize this study and discuss the limi-
tations of our research and future prospects for it.
All of our analyses were conducted using R [57]. In

addition to the basic package of R, the item parameters of
the FCI were calibrated using the package MIRT [58] and
the simulations of the FCI-CAT were conducted using the
package CATR [59,60].

II. METHODOLOGY

A. Item response theory

1. Model

CAT employs item response theory (IRT) as the
psychometric model. Models of IRT describe the relation-
ship between the latent trait measured by the instrument
and the response to an individual item [61]. Although
there are various IRT models to choose from, we used the
three-parameter logistic (3PL) model to facilitate com-
parison with our previous study [34]. In the model, the
probability of a correct response of the ith respondent on
item j is given by

PjðθiÞ ¼ gj þ
1 − gj

1þ exp½−ajðθi − bjÞ�
; ð1Þ

where θi is the parameter representing the proficiency
of the ith respondent. The proficiency distribution in a
reference population is standardized; namely, the esti-
mated mean of θi is set to 0 and the estimated standard
deviation of θi is set to 1. In Eq. (1), bj is the difficulty
parameter, and aj is the discrimination parameter of
item j. The items with higher aj can better distinguish
respondents who have different levels of proficiency. The
third parameter gj represents the probability that a
respondent would answer an item correctly by guessing.

2. Calibration and model validation

We use the item parameter estimates for aj, bj, and gj
calibrated in our previous study [34]. In this calibration
process, we administered the full-length paper-and-pencil
(in-class) FCI to 2882 Japanese university students from
April 2015 to April 2018. The respondents were students at
the beginning of introductory physics courses at one public
university and four private universities. All five of these
schools are middle-rank universities in Japan. From this
dataset, we removed aberrant responses to be left with 2712
valid responses. Most of the respondents were first-year
students of the department of science or the department
of technology from a mix of calculus-based and algebra-
based courses. We confirmed that the standard errors of
the parameter estimates are not significant (see Table III
in Ref. [34]).
In order to validate the model, we confirmed in our

previous study [34] that the assumptions of unidimension-
ality, overall local independence, and goodness of fit are
satisfied for the 3PL model. Specifically, we examined the
unidimensionality of the FCI via a principal component
analysis with the tetra-choric correlation matrix [61], we
evaluated the local independence assumption by using
Yen’s Q3 statistic [62], and we evaluated the goodness
of fit of the 3PL model to the response data with the
standardized root mean square residual (SRMSR) [63].

B. Testing process

We model our survey respondents as having a true
proficiency level. In CAT, the testing algorithm estimates
this proficiency level based upon the respondent’s answers
to prior items, and this estimate is updated with each item
responded to. The next item administered is based upon this
estimated proficiency and the calibrated item parameters of
the items available. This process can be conceptualized as
consisting of four successive steps [36]: (i) initial step,
(ii) test step, (iii) stopping step, and (iv) final step. Our
settings for the four steps follow.

(i) Initial step.—In this step, the first item is selected
and administered to a respondent. The most

FIG. 1. Illustration of the use of collateral information for
proficiency estimation on the post-test.
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commonly used criterion to select the first item is the
maximum Fisher information (MFI) criterion [36].
The MFI criterion calls for selecting the most
informative item (the item with the largest Fisher
information) for the respondent based upon the
current estimate of the proficiency. When nothing
is known about the respondent (as is often the case
when the first item is chosen), the Fisher information
of the item is calculated using the mean proficiency
value of the prior population. In the pretest, as is
commonly done [36], we set the prior population
mean proficiency value to be zero to have the scale
be centered on respondents. In the post-test, as we
describe below, there is an option to use collateral
information in the form of the pretest proficiency
estimate of a student as the empirical prior to
calculate the Fisher information of the item. When
considering test security, instead of the MFI cri-
terion, we used other methods to select the first item,
as we describe below.

(ii) Test step.—In this step, the proficiency of the
respondent is estimated using the current set of item
responses and the next item is selected to be
administered. As in our previous study [34], we
used the expected a posteriori (EAP) method to
estimate the proficiency and the MFI criterion to
select the next item. At this stage, test security can be
controlled using the appropriate test algorithms, and,
in the post-test, collateral information in the form of
the pretest proficiency estimate of a student can be
used as the empirical prior to estimate the profi-
ciency of the respondent (see below for description).

(iii) Stopping step.—This is the step where the test
checks that a certain criterion has been met and
the test ends. We chose length to be the stopping
criterion, such that the FCI-CAT stops after a
predetermined number of items have been admin-
istered, ranging from 1 to 30. As we mentioned
above, we considered also cases in which the pretest
length and the post-test length differ.

(iv) Final step.—The final step involves the calculation
of the final estimate of the respondent’s proficiency
level. As in the test step, we chose the EAP method
to estimate the proficiency. One can use collateral
information for the final proficiency estimation in
the post-test as in the test step.

In our analysis, we implemented content balancing
for the FCI-CAT as in our previous study [64]. Content
balancing is ensuring that the same set of concepts assessed
in the original test is covered in the CAT administration for
each respondent. To balance content in CAT, the percentage
of items to be administered from each subgroup is defined
in advance [36] (for example, to be the same as what is
found in the FCI itself). Doing so ensures that items from
each subgroup are administered. Various algorithms exist to
control for content balancing, but the CATR package [36]

allows use only of the simplest option, the constrained
content balancing method [45], and so we chose this
method.

C. Test security

1. Metrics

The risks of item exposure are classified into two
categories: test-retest exposure and peer-to-peer exposure
[45,65]. Test-retest exposure is the risk that respondents
memorize the items of the pretest, and that they utilize this
knowledge on the post-test. Peer-to-peer exposure is the
risk that respondents share the items of a test with future
respondents. Different statistics are used to evaluate each of
these risks. Chang and Asley [65] calculated the magnitude
of the risk from test-retest exposure by averaging the
percentage of items that overlapped between two CAT-
based administrations of the same assessment given back-
to-back to respondents of a given proficiency. Such an
approach can be used to measure the risk over a very short
time span. We, on the other hand, are interested in
evaluating the risk of test-retest memorization between
administrations of the FCI where learning may have
occurred between the two administrations. Therefore, we
evaluated the risk of test-retest memorization by averaging
the proportion of items administered both pre- and post-test
to a given respondent with different pre- and post-
proficiency estimates. Our metric differs from that of
Chan and Asley, because they calculated the rate of
overlapped items on subsequent administrations when
proficiency estimate for a given respondent is kept fixed.
The respondents in our study, on the other hand, generally
have different pre- and post-proficiency estimates. In order
to distinguish our metric from that of Chan and Asley, we
call our metric as pre-post overlap rate. Specifically, we
calculate the pre-post overlap rate by dividing the average
number of overlapping items by the total number of items
administered on the post-test.
The risk of sharing the items between respondents is

evaluated by the peer-to-peer overlap rate (or simply,
the overlap rate as in Ref. [52]), which is defined as the
average proportion of items that are shared by two
randomly selected respondents. For both of these statistics
(pre-post overlap rate and peer-to-peer overlap rate), higher
test security is indicated by lower values.
As an example of the calculation of these statistics, let us

consider the two half-length FCI (HFCI) assessments of
Han et al. [25]. Since their two HFCI assessments both
have 14 items, and 3 of those items overlap, the pre-post
overlap rate is calculated as 21.4%. Since their HFCIs are
linear, the peer-to-peer overlap rate is 100% for both
assessments. We will compare these values to our results
in the following analysis. Note that our analysis is different
from that of Han et al. in many ways: using Monte Carlo
simulation, calculating Cohen’s d, analyzing the class size
dependence, and so on. As such, we do not aim to conclude
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whether our method is more secure and efficient than that
of Han et al.; rather, we use the results of Han et al. as a
benchmark to clarify the advantages and issues of the
FCI-CAT.

2. Algorithms

We utilized algorithms to enhance test security when the
item to be administered is selected, both in the initial step
and in the test step. Out of the various methods to control
test security, we utilized the two algorithms considered by
Barrada et al. [52] which are available in the package CATR:
the progressive (PG) method and the proportional (PP)
method. Similar to Barrada et al., we compared these two
algorithms with the maximum likelihood weighted infor-
mation (MLWI) criterion, the posterior Kullback-Leibler
(KLP) criterion, and the MFI criterion to examine effects
on test efficiency. We found that there is no significant
difference between the results of MLWI, KLP, and MFI;
therefore, in this paper, we describe the results of PG, PP,
and MFI.
The progressive (PG) method [66,67] is a method to

decrease item overexposure at the early stages of CAT. The
PG method, like the MFI criterion, chooses as the next item
the one which maximizes the objective function. In the case
of MFI, this objective function is just the Fisher informa-
tion function. In the case of the PG method, the objective
function for the jth item is the weighted sum of a random
component Rj and an information component Ij based on
the Fisher information, in the form ð1 −WÞRj þWIj,
where W is the weight function. At the beginning of the
test, W is close to zero and the random component
dominates: the selection of items is close to random. As
the number of items administered increases,W increases to
one and the information component dominates: the selec-
tion of items closely resembles the MFI criterion. The
increase of the weight function is controlled by the
acceleration parameter, which marks the speed at which
the weight of the random component is reduced and, thus,
the speed at which the importance of item information
increases. We selected the value of the acceleration param-
eter as 1, since literature has described this value as
resulting in marked improvement in security with minimal
detriment to accuracy [52].
The proportional method [67,68] is also a method to

decrease item overexposure at the early stages of CAT. In
this method, an objective function is not used to order the
items; instead, the probability of selecting a given item is
calculated as a function of the Fisher information function.
Specifically, Pj, the probability of selecting item j, is
determined by the Fisher information Ij raised to a given
power H, in the form Pj ∝ IHj , where H is equal to 0 at the
beginning of the test and increases as the test advances.
This means that the test starts with completely random
selection (Pj is same for all items) and becomes similar to

MFI at the end of the test. The increase of the power is
controlled by the acceleration parameter which plays a
similar role as in the PG method. We selected the value of
the PG acceleration parameter to also be 1, as it is the
default value of the package CATR.

D. Test efficiency

Generally, introducing an algorithm to enhance test
security comes at a cost to test efficiency, resulting in
longer test lengths. We can more than compensate for this,
however, by utilizing collateral information pertaining to
the respondents’ proficiency level obtained before the test
administration.

1. Metrics

As we described above, test efficiency is defined by the
minimal test length yielding a desired accuracy and
precision of the measurement. To calculate the accuracy
and precision, the metric we use is the standardized mean
difference, Cohen’s d in particular, as in our previous
study [34].
The population parameter of Cohen’s d is given by [43]

d ¼ μpost − μpre
σ

; ð2Þ

where μpre and μpost are the population means for the pretest
and post-test, respectively, and σ is the standard deviation
of either pre- or postpopulation (we assume that the two
population standard deviations are the same, as is done in
most parametric data analysis techniques [43]).
We represent the pair of the pre- and post-test lengths

as the vector l ¼ ðlpre; lpostÞ, and express the estimator
for d of the test length l as d̂l. From within the family of
estimators for d, we use the following definition for
repeated measures [43],

d̂l ¼
θ̄lpost − θ̄lpre

sl
; ð3Þ

where θ̄lpre and θ̄lpost are the means of the final estimated
proficiencies of the l-length pre- and post-test, respectively.
[The superscript l takes lpre (lpost) for the subscript pre
(post).] sl is the pooled standard deviation for dependent
(paired) data defined as,

s2l ¼
ðslpreÞ2 þ ðslpostÞ2 − 2rlslpreslpost

2ð1 − rlÞ
; ð4Þ

where slpre and slpost are the standard deviations of the final
estimated proficiencies of the l-length pre- and post-test,
respectively, and rl is the Pearson correlation coefficient.
We represent the accuracy and precision by the

bias and standard error (the correspondence is reciprocal,
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respectively). Then, we summarize these measures in terms
of the root-mean-square error (RMSE). The RMSE at test
length l is defined by the following equation [69], which
equals the square root of the sum of the squared bias and
squared standard error,

RMSEl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðd̂l − dÞ2�
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
l þ SE2

l

q

; ð5Þ

where EðxÞ is the expected value of x. The bias Bl is
defined by,

Bl ¼ Eðd̂lÞ − d: ð6Þ

The standard error SEl is given by

SEl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ef½d̂l − Eðd̂lÞ�2g
q

: ð7Þ

As the desired accuracy and precision, we used the value
of RMSEl, which is obtained when the full-length FCI is
administered as a paper-and-pencil test: the test length
of the pre- and post-test are both 30 and the collateral
information (CI) is not used. That is, we define test
efficiency by the minimal value of the sum of the elements
of the vector l, which satisfies

RMSEwith CI
l ≤ RMSEwithout CI

ðlpre¼lpost¼30Þ: ð8Þ

In our Monte Carlo study (described below), we gen-
erated pre- and postresponses to the FCI-CAT and calcu-
lated d̂l 10 000 times for each l to analyze the sampling
distribution of d̂l. For example, Eðd̂lÞ in Eq. (6) is estimated
by taking the average of 10 000 samples of d̂l.

2. Algorithms

There are three stages where we can utilize collateral
information: the initial step, the test step, and the final step
of the testing process. In what follows, we explain how we
implemented collateral information for each stage.
Initial step.—In this step, the first item is selected and

administered to a respondent, as we described above. For
example, when the MFI criterion is used, the simulation
selects the item with the largest Fisher information for
the current estimate of the respondent’s proficiency. At the
beginning of the pretest, when we know nothing about the
respondents, the Fisher information of the candidate items
is calculated using the mean proficiency value of the prior
population. This value is commonly set to be zero to have
the scale be centered on respondents [36], as we described
above. At the beginning of the post-test, when calculating
the Fisher information, we can utilize the pretest profi-
ciency estimate of a given student as collateral information
to improve the test efficiency for that student. Generally,
the farther the initial proficiency estimate is from true

proficiency of the respondent, the slower the algorithm
converges [53]. To decrease this gap, there are two methods
utilizing collateral information. One possibility is to
directly use a given student’s proficiency estimate from
the pretest as the initial proficiency estimate of the post-test
[55]. The other possibility is predicting the initial profi-
ciency estimate of the post-test by a regression model fit to
previous paired pre- and post-proficiency estimates [53]. In
principle, this second method could be used if much pre-
and post-test data had formerly been collected for a given
instructional approach for a given instructor. The FCI,
however, is generally used to measure the effectiveness of
new teaching approaches, and so these data would not be
available. Therefore, we use the first approach, namely,
directly using the pretest proficiency estimate of each
respondent to calculate the Fisher information and thereby
determine the first item on the post-test.
Test step.—CAT selects the next item based upon the

estimated proficiency level of the respondent at that point in
the assessment. We estimated the proficiency level using
the EAP estimator, which is based upon the Bayesian
posterior distribution. The posterior distribution in turn is
proportional to the product of the likelihood function and a
prior distribution of the proficiency gðθiÞ for an ith
respondent [36]. We consider the model with normal
distribution, thereby we represent gðθiÞ ∼N ðμi; σiÞ, with
a mean of μi and a standard deviation of σi (assuming a
normal distribution is common in proficiency estimation
using Bayesian item response modeling [36]). On the
pretest, when we know nothing about the respondents
beforehand, a common choice of the prior distribution is
the standard normal distribution, with μi ¼ 0 and σi ¼ 1,
namely, gðθiÞ ∼N ð0; 1Þ [36]. On the post-test, we can
utilize the pretest proficiency estimate of an ith respondent,
θ̂ipre as collateral information for the prior distribution.
Specifically, we chose the prior distribution as the normal
distribution, with μi ¼ θ̂ipre. If, in the initial step, a regres-
sion is made between pre- and post-proficiency estimates
(method 2 above), then σi can be estimated [53]. However,
in the model directly using the proficiency estimate
(method 1 above), the standard deviation of the prior
distribution cannot be estimated. Generally, unless reliable
collateral information about the examinee is available, the
prior distribution should be chosen to be low informative
(namely, with a relatively large standard deviation) [35].
Therefore, as in Ref. [54], we set σi ¼ 1, which is the same
value used when no collateral information is available.
Final step.—We used collateral information also for the

final proficiency estimation using the EAP method as just
described for the test step.

E. Procedure of simulation study

To analyze the security and efficiency of the FCI-CAT,
we conducted two simulations that are commonly used in
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CAT development, a Monte Carlo simulation and a post hoc
simulation [46]. Monte Carlo simulations generate
responses with pseudorandom numbers, while post hoc
simulations utilize empirical data. To ensure that the
simulated data are compatible with actual data one might
obtain from a real classroom, we examined the consistency
of the results of these simulations.

1. Monte Carlo study

In this simulation, we followed a two-step process to
generate paired pre- and post-responses similar to our
previous study [34]. In the first step, we generated a pair
of true proficiencies for a given simulee, one corresponding
to the pretest and one corresponding to the post-test.
For both pre- and post-tests, true proficiencies were
generated from the bivariate normal population distribu-
tions with designated population parameters. We chose
these parameters such that the estimates by the simulation
for the 30-item length test are as close as possible to the
statistics calculated with our empirical data previously
obtained (for details of the empirical data, see the descrip-
tion of dataset β in Ref. [34]). These parameters were
pretest true proficiency mean ¼ 0.44, post-test true profi-
ciency mean ¼ 0.75, standard deviation for both sets of true
proficiency ¼ 0.82, and correlation ¼ 0.98. From these
parameters, we generated a pair of pre- and post-true
proficiencies for each of 100 000 simulees.
In the second step, we generated the responses for the

FCI-CAT. As discussed above, the EAP method was used
to estimate the proficiency for the respondent, the item
selection method (e.g., the MFI criterion) was then used to
choose the next item based upon that estimated proficiency,
and the process repeated until reaching the predetermined
test length. This was done for the simulee both on the
pretest and on the post-test. In this manner, we generated
paired pre- and postresponses and estimated proficiencies
for 100 000 simulees for each vector l of the FCI-CAT.
Finally, for each vector l of the FCI-CAT, from the

100 000 paired pre- and postresponses, we resampled with
replacement, 10 000 paired responses for each simulee in
various class sizes (40, 60, 80, 100). For example, in the
case with class size of 100, we resampled 10 000 times 100
paired responses with replacement from the 100 000 paired
responses. Then, we calculated the estimate d̂l and the
corresponding RMSEl.

2. post hoc study

Since the responses generated via the Monte Carlo
simulation are just imaginary responses, we conducted
another simulation using empirical responses (that is, a
“post hoc simulation”). post hoc simulations are commonly
used to determine how short a CAT-based assessment can
be without excessively sacrificing accuracy and precision
[46,60]. In a post hoc simulation, a CAT-based assessment

is simulated for each respondent based upon their actual
responses to the full-length assessment. For example, if the
CAT simulation for a given respondent determines that the
respondent should next be administered item 8, the sim-
ulation algorithm would look up and utilize the actual
answer of the respondent to item 8. In this way, although
examinees have not taken the FCI-CAT, we can simulate
their testing experience as if they had. In the post hoc
simulation, we used the same empirical responses as our
above Monte Carlo study (dataset β) and examined the
consistency of the results.
We confirmed that the results of the Monte Carlo study

and the post hoc simulation were consistent. In particular,
all of the absolute differences between the estimates in the
post hoc simulation and the expected values Eðd̂lÞ calcu-
lated with the Monte Carlo simulation are less than the
standard errors of Eðd̂lÞ, with the exception of the
extremely short post-test length (lpost ¼ 1). (Details of this
comparison are reported in Ref. [34] for the specific case of
using the MFI criterion without collateral information or
content balancing.) This consistency supports the adequacy
of our Monte Carlo study and its relevance in terms of
administering the FCI-CAT in real classrooms.

III. RESULTS

A. Effects of test security algorithms on RMSE

Figure 2 shows the relationship between the test length
and the RMSE of Cohen’s d when test security algorithms
are implemented with the FCI-CAT. The test length of the
pre- and post-test is fixed to be the same and the class size is
set to 40. [We begin the discussion of our results with a
class size of 40, as (i) it is a typical lower bound for the
university classes from which our empirical data originates
and (ii) it is large enough to stay clear of small sample
effects.] We also compared the effect of content balancing.
The plus symbol shows the result with content balancing
(CB) and the circle symbol shows the result without content
balancing. For the following explanation, we represent the
test length as lð¼ lpre ¼ lpostÞ. If only one item is admin-
istered (l ¼ 1), the item is selected randomly in the PG and
PP methods, thereby the values of RMSE of both methods
are almost the same as each other and much larger than that
of the MFI criterion. If additional items are administered
(l ≥ 2), the RMSE of the PP method is smaller than that of
the PG method. This result indicates that the PP method
switches from selecting items at random to selecting items
based on the information function at an earlier point than
the PG method. This is further illustrated by the fact that the
gap between with and without content balancing appears
earlier for the PP method (In the PG method, the gap
appears when l ≥ 9 but in the PP method, the gap appears
when l ≥ 3). Since content balancing interferes with
selecting informative items in the MFI criterion in the
early stage [64] (which can be seen from the red curve in
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Fig. 2), appearance of the gap between with and without
content balancing in the green and blue curves indicates
that it switches from selecting items at random to selecting
items based on the information function. These results may
vary with the value of the acceleration parameter, which we
set to be 1 in both methods as we described above. Finally,
at l ¼ 30 the RMSE in both test security methods reaches
that of the MFI criterion. Although we described the results
of the case when the class size is 40 students, we found
the results to be similar for the cases of class size equal to
60, 80, and 100.

B. Effects of test efficiency algorithms on RMSE

Figure 3 shows the effects of introducing collateral
information (CI) into each test security algorithm when
content is balanced and the class size isN ¼ 40. This figure
demonstrates the possibility of allowing the pretest and
post-test to vary in length. Each graph in Fig. 3 shows how
RMSE depends upon pretest length and post-test length. In
the graphs, the light (dark) color indicates a low (high)
value of RMSE with a bin width of 0.02 (except for the
highest bin, where RMSE > 0.26). For comparison with
MFI with collateral information (upper right), a plot of MFI
without collateral information (upper left) is also included.
Overall, we can see that RMSE has decreased with the
introduction of collateral information. In particular, the
decrease is large in the region where the post-test length is
small (the lower-right corner of the upper-right graph is
brighter than that in the upper-left graph). This result
follows from the fact that the post-test initial proficiency

estimate was, in most cases, closer to the true proficiency,
as a result of using collateral information. A more accurate
starting point results in a smaller bias and hence
smaller RMSE.
In Fig. 3, we can compare the two test security

algorithms: progressive (lower-left) and proportional
(lower-right) methods with MFI (upper-right) when col-
lateral information is introduced. Overall, we can see that
the RMSE of PG and PP methods are larger than that of
MFI. The increase is particularly large when the pretest
length or post-test length is small. This is because in the PG
method and PP method the items are selected somewhat
randomly for small test lengths, as we described above.
As shown in the graphs, in all three methods, if the

asymmetry of the pre- and post-test lengths is large, RMSE
becomes large. In other words, RMSE is small if both tests
are long or if both tests are short. This trend is explained
as follows. The bias of Cohen’s d can be written as
B ¼ Bpost − Bpre, where Bpost is the bias of the means of
the estimated proficiencies of the post-test divided by the
standard deviation and Bpre is the term calculated for the
pretest in the same way. We found that both Bpost and Bpre

are negative for any test length and become smaller (larger
in magnitude) when the test length becomes smaller. For a
post-test length much smaller than a pretest length, the
magnitude of Bpost is much larger than that of Bpre.
(Similarly, for a pretest length much smaller than a post-
test length, the magnitude of Bpre is much larger than that of
Bpost). In this case, the magnitude of B and RMSE becomes
large. When the pre- and post-test lengths are close to each
other, the values of Bpost and Bpre are also close to each
other and the difference, B, becomes small. The depend-
ence of the standard error on the test length is sufficiently
small to have a negligible impact on this effect.

C. Calculating test efficiency of the FCI-CAT

Following the definition of test efficiency in Eq. (8), we
calculated the minimal test length of the FCI-CAT yielding
the RMSE as what is obtained when the full-length FCI is
administered as a paper-and-pencil test: the test length of
the pre- and post-test are both 30 and the collateral
information is not used. In this case, the RMSE is
calculated as 0.10 for a class size of 40 (see Fig. 2).
Having determined this reference value, we find the l vector
(lmin) for which the RMSE is less than that value (0.10 for
N ¼ 40) and the total number of items is minimized. For
PP with N ¼ 40, this approach results in several possible
combinations of lpre and lpost with the same minimal values
of ltotal. In such a case, we chose the combination which
minimizes the RMSE. The result for each item selection
method for a class size of 40 was lmin ¼ ð16; 13Þ in MFI,
lmin ¼ ð21; 15Þ in PG, and lmin ¼ ð17; 16Þ in PP.
We can interpret these results with the help of Fig. 3. The

total number of items is given by ltotal in the expression
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FIG. 2. Comparison of the effects of test security algorithms on
RMSE (maximum Fisher information, red; progressive, green;
proportional, blue). The class size is 40 and the test length of the
pre- and post-test is fixed to be the same. The plus symbol shows
the result with content balancing and the circle symbol shows the
result without content balancing.
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ltotal ¼ lpre þ lpost. This expression can be represented as a
line in the graphs above: lpost ¼ ltotal − lpre, which has a
slope of −1 and y intercept of ltotal. We increase the y
intercept (ltotal) until the line first passes through the area
RMSE < 0.1 in Fig. 3. For example, in MFI with collateral
information, we found that the line first passes through the
area when ltotal ¼ 29. As in Fig. 4, this line lpost ¼ 29 − lpre
passes through the area RMSE < 0.1 at lpre ¼ 16 and
lpost ¼ 13, which gives the minimal test length.
For the other class sizes, the reference values of RMSE

were somewhat different than with N ¼ 40 (the reference
values are 0.083, 0.074, and 0.067 for class size of 60, 80,
and 100, respectively), but lmin was otherwise calculated in
the same manner. The results are shown in Table I.
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CI OFF (MFI) CI ON  (MFI)
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FIG. 3. Comparison of the effects of collateral information on RMSE for each test security algorithm (maximum Fisher information,
progressive, and proportional). The x (y) axis is the pre- (post-) test length. The class size is 40. The results show the case with content
balancing. The light (dark) color indicates a low (high) value of RMSE, the bin width of the RMSE is set to 0.02 (except for the highest
bin, where RMSE > 0.26).

FIG. 4. The line lpost ¼ 29 − lpre passing through the area
RMSE < 0.1 in MFI with CI (Fig. 3, upper right). This derives
the minimal test length as lpre ¼ 16 and lpost ¼ 13 (ltotal ¼ 29).
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Note that in all of these combinations, the post-test length
is less than that of the pretest. This trend is explained
as follows. As we explained above, RMSE is minimized
when B ¼ Bpost − Bpre ∼ 0. The magnitude of BpreðBpostÞ
decreases when the pre (post-) test length increases. For a
given pretest length, Bpost is able to equal Bpre with a smaller
post-test length due to the use of collateral information. Note
also that as the class size is increased, the minimal test length
decreases. This is because the RMSE converges (comes
close to the RMSE value for l ¼ 30) faster for larger class
sizes, as we found in Ref. [34].
As we described above, we found that the accuracy and

precision of the full-length FCI can be attained with a
smaller test length when FCI-CAT is used. This finding
resolves an issue of our previous study [34]. In the
previous study, we examined the minimal test length of
the FCI-CAT without “excessively” compromising

accuracy and precision; however, since the criterion of
the “excessiveness” (say, 5% or 10%) is arbitrary, we could
not specify a definite minimal test length. In the present
study, there is no such arbitrariness: we have clearly defined
the minimal test length for a given class size and item
selecting algorithm.

D. Evaluation of test security of the FCI-CAT

We evaluated the risk of test-retest exposure by the pre-
post overlap rate, and we evaluated the risk of peer-to-peer
exposure by the peer-to-peer overlap rate. As we described
above, for both of these statistics, higher test security is
indicated by lower values. Table II shows the results of
calculating the pre-post overlap rate and the peer-to-peer
overlap rate for each item selection method. In the top and
middle of the table, we present the results of N ¼ 40
without and with collateral information. In the bottom of
the table, we present the rates at the minimal test lengths
(lmin) shown in Table I for each class size (N ¼ 40, 60, 80,
100). Five major observations on test security can be made
from the table. First, both the pre-post overlap rate and the
peer-to-peer overlap rate of the PG method are smallest for
a given l: the PG method is the most secure of the three
methods for a given test length. This is a natural conse-
quence, since, as discussed above, the PG method is closer
to random selection than the other methods. Second, the

TABLE I. Dependence of minimal test length (lpre, lpost) on
class size.

Class size (N) MFI PG PP

40 (16, 13) (21, 15) (17, 16)
60 (13, 10) (17, 15) (15, 13)
80 (13, 9) (15, 14) (15, 11)
100 (11, 9) (15, 12) (12, 10)

TABLE II. Pre-post overlap rate and peer-to-peer overlap rate of various test lengths for three item selection methods. In the top and
middle of the table, we present the results of N ¼ 40 without and with collateral information. In the bottom of the table, we present the
rates at the minimal test lengths (lmin) shown in Table I for each class size (N ¼ 40, 60, 80, 100).

MFI PG PP

lpre lpost Peer-to-peer Pre-post Peer-to-peer Pre-post Peer-to-peer Pre-post

CI OFF 10 10 67.9 83.4 34.9 35.2 43.6 47.4
10 15 67.9 60.2 34.9 34.9 43.6 44.2
10 20 67.9 47.9 34.9 34.7 43.6 40.3
15 10 77.9 90.0 55.3 52.5 65.5 66.7
15 15 77.9 87.1 55.3 56.8 65.5 69.7
15 20 77.9 70.6 55.3 55.7 65.5 63.0
20 10 86.0 96.0 74.1 69.6 79.5 81.1
20 15 86.0 94.1 74.1 74.4 79.5 84.3
20 20 86.0 92.0 74.1 76.1 79.5 83.1

CI ON 10 10 67.9 77.7 34.9 35.1 43.5 47.0
10 15 67.9 57.9 34.9 34.8 43.5 43.8
10 20 67.9 46.7 34.9 34.6 43.5 40.1
15 10 77.9 89.0 55.3 52.5 65.3 66.8
15 15 77.9 84.5 55.3 56.7 65.3 69.3
15 20 77.9 69.4 55.3 55.6 65.3 62.7
20 10 86.0 95.5 74.1 69.8 79.4 81.6
20 15 86.0 94.0 74.1 74.5 79.4 84.3
20 20 86.0 90.6 74.1 76.0 79.4 82.8

CI ON lminðN ¼ 40Þ 82.2 88.5 74.1 74.5 71.4 75.1
lminðN ¼ 60Þ 70.9 84.3 63.4 63.8 65.4 69.2
lminðN ¼ 80Þ 72.2 83.0 55.3 55.9 60.6 63.7
lminðN ¼ 100Þ 67.9 81.5 55.3 53.7 52.4 54.6
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pre-post overlap rate and the peer-to-peer overlap rate
increase with pretest length. This result indicates that,
from the point of view of test security, it is preferable that
the pretest length be smaller. Third, when collateral
information is used, the pre-post overlap rate slightly
decreases for the MFI algorithm. However, it hardly
changes for the PG and PP methods because the items
are selected almost randomly in the early stage of these
methods already, and so the personalized entry point
obtained with the use of collateral information is redundant.
Fourth, at the minimal test length, the pre-post overlap rate
and the peer-to-peer overlap rate of the PG and PP methods
take similar values. Since the minimal test length is less for
the PP method (see Table I), it may be preferable to use the
PP method when considering both test efficiency and test
security. Fifth, for all of the item selection methods at the
minimal test length, the pre-post overlap rate is more than
two times larger than that of the HFCI (21.4%) and the
peer-to-peer overlap rate is much smaller than that of
the HFCI (100%). As we expected, the FCI-CAT mitigates
the risk of the peer-to-peer exposure compared to the HFCI.
On the other hand, even when an algorithm for test security
is utilized, the risk from test-retest exposure of the FCI-
CAT is much larger than that of the HFCI.
Our results in Sec. III C are that if one intends to

maximize test efficiency, the pretest length should be
slightly larger than the post-test length. On the other hand,
our results in this section are that if one intends to maximize
test security, the pretest length should be smaller and the
post-test length should be larger. These results illustrate a
tradeoff that must be considered when determining the test
length in the administration of the FCI-CAT. Overall, if one
desires a balance of these two goals, it would be reasonable
to choose equal pretest and post-test lengths.

IV. DISCUSSION

A. Summary

We improved a computerized adaptive testing (CAT)-
based version of the FCI considering test security and test
efficiency. First, we implemented algorithms for test security
to reduce item overexposure. Second, we improved test
efficiency by utilizing the pretest proficiency estimate of
each respondent for selecting items and estimating respond-
ent proficiency level in the post-test. To shorten the test
length further, we also examined the case when the test
length is different for the pre- and post-test. We conducted a
Monte Carlo simulation to analyze how implementing these
algorithms affects the accuracy and precision of Cohen’s d
and calculated the minimal test length of the FCI-CATwhose
accuracy and precision are equivalent to that of the full-
length FCI. Consequently, we obtained the following three
findings: (i) By using collateral information, the accuracy
and precision of the full-length FCI can be achieved with
fewer items via the FCI-CAT. (ii) For a class size of 40, we

can also control for test security with pre- and post-test
lengths of the FCI-CAT totaling 33 items (17 items on the
pretest and 16 items on the post-test), thereby reducing the
testing time to 55%. (iii) If one’s goal is to maximize test
efficiency, the pretest length should be slightly larger than
the post-test length. On the other hand, if the goal is to
maximize test security, the pretest length should be smaller
and the post-test length should be larger. If one desires a
balance of these two goals, it would be reasonable to choose
equal pretest and post-test lengths.
The results of the Monte Carlo study and the post hoc

study were consistent, which supports the adequacy of our
Monte Carlo study and its relevance in terms of conducting
the FCI-CAT in real classrooms.

B. Limitations and future work

1. Population dependence

It is important to note that our findings stem from
simulations which were specific to a given value of
true Cohen’s d determined from our empirical data.
Specifically, in our empirical data, as discussed in
Sec. II E, the pretest true proficiency mean ¼ 0.44 and
post-test true proficiency mean ¼ 0.75, both positive
values. In cases where the pretest mean is negative and
the post-test mean is positive, it remains an open question
of whether collateral information actually improves the
test efficiency (in comparison to the default of assuming a
prior population mean proficiency value of zero).
Furthermore, our data consist exclusively of responses
from Japanese students. The estimates for the item
parameters of the FCI vary, depending on the students
taking the FCI. Item parameters might be different for
students in different countries, might be gender depen-
dent, might be different for students in calculus-based
physics courses vs algebra-based courses, and so on.
Additional research is necessary to see how results are
different for other student populations. Concretely, for a
given population, empirical data from the FCI should be
accumulated to investigate the typical range of the mean,
standard deviation, and correlation of the pre- and post-
tests. These values should then be used to conduct
simulation studies with that population that are similar
to what we have presented in this paper.

2. Improving test security

As we described in Sec. III D, we compared test security
of the FCI-CAT to that of the HFCI and found that for all of
the item selection methods at the minimal test length, the
pre-post overlap rate is three times larger than that of
the HFCI. In order to reduce the pre-post overlap rate, one
could use an algorithm in the post-test to administer the
items which were not administered in the pretest as in
Ref. [45], though it would compromise test efficiency. One
of the other approaches to reduce the pre-post overlap rate
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is to enlarge the item pool to choose from, namely, to add
new items to the FCI. To do this, for example, one could
include the items of other versions of the FCI [70–73] to the
item pool of the FCI-CAT or one could create new items
following the original approach. Doing so would require
the process of validating the items and then equating them
to the original items.

3. Validating the FCI-CAT

The FCI-CAT can be validated and improved in means
other than test security as well. Regarding validity of the
computer based test form itself, Nissen et al. [74] showed
that student performance on the FCI is equivalent for the
online linear CBT (computer-based test administered out-
of-class, non-CAT) test form and for the paper-and-pencil
(in-class) test form. Future work should attend to showing
that the FCI-CBT and FCI-CAT are measuring the same
constructs. Then, by a “chain of validity,” we can expect
the FCI-CAT and the paper-and-pencil administrations to
also be measuring the same constructs. One of the
differences of the FCI-CBT and FCI-CAT is ordering of
the questions. In IRT, the effects of item ordering is
examined by evaluating local independence. We found
that our FCI dataset has sufficient local independence at
the whole test level [34]; therefore, we expect the effect of
item ordering to not be large. However, it is meaningful to
confirm the validity of the CAT test form by administering
the FCI-CAT in real classes and comparing the result to
that of the FCI-CBT. It would also be helpful to examine
the reliability of the FCI-CAT via test-retest studies in real
classes as described in Ref. [39]. This could further assess
the unidimensionality assumed in our analysis of the FCI-
CAT [75]. If a test is demotivating, students may put less
thought into later items than into earlier items. Such an
effect is typically indicated by a low test reliability. It is
necessary to check that such an effect is not occurring for
the FCI-CAT in real classes.

4. How to further improve the FCI administration

In addition to the methods we used in this study, there
are many options to explore that may further improve
the efficiency of the FCI-CAT. As we described above,
the closer the initial proficiency estimate is from the true
proficiency, the faster the algorithm converges. Therefore,
when we use the pretest proficiency estimate as collateral
information for the post-test, if the respondent’s true
proficiency gain is small, fewer items are necessary to

achieve a required accuracy and precision. In our study,
we used the length criterion as the stopping step. An
alternative is to use the precision criterion as the stopping
step. This criterion administers as many items as necessary
until a prespecified accuracy and precision are obtained
[36]. Improvement might also be found by using other
models in IRT (e.g., partial credit grading model [76] and
multidimensional models [77–79]). Finally, although
we assumed a normal distribution in the algorithm of
the post-test proficiency estimation, future work could
attend to investigating other prior distributions that corre-
spond more closely to authentic learning progressions.
Future work should investigate these alternative criteria
andmodels because it may allow for a further shortening of
the test. The FCI-CAT can be improved in other means as
well. For example, one may wish to remove gender unfair
items [8,80–82] or to drop one item from each locally
dependent pair [83]. Another possibility is using multi-
stage testing [36] instead of CAT, which allows respon-
dents to review their item responses within each module
[84]. As future work is done to further improve the FCI-
CAT, the results we have presented in this paper can serve
as reference values for comparison with the results
obtained from studies focusing on these other aspects of
instrument validity.

5. Deploying the improved FCI-CAT

Concurrently with the analyses we reported here, we
have conducted a trial administration of the FCI-CAT. In
the deployment of the FCI-CAT, we utilized the Concerto
platform [85], which is an open source online adaptive
testing platform. Students used their smart phones to take
the FCI-CAT, enabling them to take the survey in the
classroom instead of moving to a place where there are
computers (computer room or their home, etc.). This
allows for a greater concentration of students, since
instructors can monitor the students during the test. We
next plan to administer the FCI-CAT both pre- and
postsemester to analyze the effect size distribution. We
will compare these results with what we discussed above
from our simulations.
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