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Science knowledge is reflected in mental models that students tend to form when dealing with science
phenomena. One way to identify students’ mental models about scientific concepts is the use of diagnostic
tests (inventories). Even though several statistical approaches and tools intended for the analysis of such
inventories’ results exist in the literature, there are certain inventories for which analysis might require the
development of more convenient tools. Thus, there seems to be no simple way to handle the results of
inventories whose items include different numbers of statements, the number of statements relating to the
same mental model within an item is not fixed, and neutral distractors are possible. This exploratory study
aims at meeting this challenge and suggests a relatively simple statistic F2m for estimating the mental model
state of a subject or a group of subjects in the case of two mental models under consideration, providing a
preliminary estimation of F2m consistency using the results of the sound concept inventory instrument.
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I. INTRODUCTION

There is general agreement today among science
educators that teachers’ deep understanding of their stu-
dents’ knowledge is a necessary key step that might
significantly help them in their efforts to design effec-
tive learning environments [1–6]. This view is expressed
well by Vosniadou, Ioannides, Dimitrakopoulou, and
Papademetriou [7], who write that “teachers need to be
informed about how students see the physical world and
learn to take their points of view into consideration when
they design instruction” (p. 392). Science knowledge is
reflected in mental models that students tend to form
when dealing with science phenomena [8–10]. Mental
models are dynamic structures created on the spot to
provide explanations for these phenomena, make predic-
tions, solve problems, and answer questions. One way
to identify students’ mental models about scientific con-
cepts is by using diagnostic tools (multiple choice tests
or inventories).
Several statistical methods were developed to analyze the

data of diagnostic tools: classical test theory [11,12], item
response theory [11,13], mental model analysis [9], etc.

However, most aimed at analyzing the most modest and
typical type of closed knowledge tests. That is, the
examinee is faced with a certain problem for each test
item, and then, of the usual three to five statements, is
prompted to choose the most correct one [12]. After
completing the test, a researcher can calculate the fre-
quency of each type of answer and thus draw conclusions
about the examinee’s thinking. When the number of
statements in each item is fixed and each item includes
exactly one statement for every mental model, such an
analysis is quite easy. However, the analysis becomes
trickier when the number of statements per item varies,
the number of statements corresponding to a given mental
model varies, neutral distractors (not corresponding to any
mental models under consideration) are present, and the
examinees may choose more than one statement per item
[5,6]. This is done in order to measure more accurately and
in more details the spectrum of students’ ideas. Such an
analysis is not straightforward even in the dichotomous
case of two possible mental models, for instance, materi-
alistic vs process mental models of heat and sound
propagation [14,15], or direct vs emergent views of these
processes on some more advanced levels [6,15].
The professional literature suggests some statistical

approaches to quantify examinees’ responses. In the
classical approach, the researcher usually calculates the
average score of items within the test. The result obtained
can provide us with some information about what the
examinee knows, but nothing about what he does not know.
Yet, when applying diagnostic tools such as the Force
Concept Inventory (FCI) [16], sound concept inventory
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instrument (SCII) [5], simple apparatus-based diagnostic
instrument (SABDI) [6], etc., we are not usually interested
in just grading the examinee but also in gaining some
information about their ways of thinking and on shedding
light on their mental models and misconceptions [12].
The traditional test score lacks this information as we
demonstrate below. In order to probe alternative mental
models of the examinees, the researcher needs to pro-
vide additional calculations, for instance, estimating the
frequencies of responses relating to each model. In the case
of only two possible mental models, the researcher actually
can score model A answers with positive points, while
model B answers with negative ones. This method, how-
ever, also demands more calculations while the output is
not normalized; which makes it to be less convenient. On
the other hand, Bao’s model density matrixes approach [9]
aims at analyzing incorrect mental models as well as correct
answers. This approach applies the mathematical apparatus
of quantum mechanics for data processing and produces a
density matrix on the output. Thus, despite the rich infor-
mational context, this approach may seem quite compli-
cated for use, especially in the case of only two possible
mental models as discussed above.
The current exploratory study suggests a relatively simple

statistical factor intended to analyze multiple choice items in
the case of two target mental models, called F2m (namely,
factor of two models). F2m is a scalar value normalized to
−1 ≤ F2m ≤ 1 whose calculation demands simple arith-
metic calculations. Yet, it can inform the user of the mental
model state of a subject or group of subjects and their
consistency in thinking, as we will explain in the following
sections. To the best of our knowledge, such statistics are
absent in the professional literature. We further demonstrate
the use of F2m by applying it to analyze pre- and post-test
results of SCII [5] conducted in the “Physics of Sound”
course.

II. RESEARCH AIMS

The current study aims at developing a relatively simple
statistic intended for estimating the mental model state of
a subject or a group of subjects from the results of a multiple-
choice knowledge test in the case of two mental models
under consideration, while the test items include different
numbers of statements, the number of statements pertaining
to a certain mental model within an item is not fixed, and
the examinees may choose more than one statement in
each item.

III. DEVELOPING F2m

Let us examine a test of N items and focus on a certain
item i. The item consists of a question and a set of possible
answers as follows: answers reflecting mental model 1;
answers reflecting mental model 2; and neutral answers—
answers that do not relate to either model 1 or 2. The
subject is not limited in the number of answers chosen.

Suppose that a certain examinee selected a answers of
model 1, b answers of model 2, and c neutral answers. We
define Fi

2m for this item as

Fi
2m ¼ ai − bi

ai þ bi þ ci
: ð1Þ

From this definition, Fi
2m is normalized so that −1 ≤

Fi
2m ≤ 1. Furthermore, ifFi

2m > 0, the subject tends to think
in the terms of mental model 1, while Fi

2m < 0 means that
model 2 is dominant in their thinking. jFi

2mj → 1 indicates
that the subject is consistent in their ideas. That is, if the
examinee is fully consistent inmodel 1—chooses answers of
type 1 only, theFi

2m valuewill be equal to 1 nomatter whatai
is (how many answers of model 1 are chosen) since,
Fi
2m ¼ ai−0

aiþ0þ0
¼ 1. If on the contrary, an examinee is fully

consistent inmodel 2,Fi
2m yields theoutput (−1) for anybi as

Fi
2m ¼ 0−bi

0þbiþ0
¼ −1. This mechanism minimizes the bias

which might take place in other ways of analysis due to a
larger amount of answers of a certain type relative to the other
one. On the other hand, jFi

2mj → 0 means that the subject is
not consistent in their ideas. The F2m of the whole inventory
is the average of all Fi

2m. That is,

F2m ¼ 1

N

XN

i¼1

Fi
2m ¼ 1

N

XN

i¼1

ai − bi
ai þ bi þ ci

: ð2Þ

In case all the choices of the items are contradictory (for
instance, a. greater than; b. equal to; c. less than) and there
is no logical possibility for more than one correct answer,
F2m will also work—the values of a and b in Eqs. (1) and
(2) would be simply 0 or 1; however, its application might
seem unnecessarily time consuming.
Eshach’s sound concept inventory instrument [5] mea-

sures middle school students’ understanding of sound. In
particular it deals with the following two ways of thinking:
(a) process—sound is a process of pressure and density
changes propagating in the medium; and (b) materialistic
—sound is a kind of material (e.g., special sound particles
or air molecules) spreading from the source. Thus, the SCII
provides a suitable case for F2m analysis application. Let us
focus, for example, on item 19 in the SCII (p. 010102–13):
19.When you stand behind the door to a room in which

music is playing, you can still hear the music because
i. The sound is made of small particles that can pass

through gaps, like the one between the door and
the floor.

ii. The sound is made of different sized particles. The
smallest ones can get through doors and walls that
are not totally sealed.

iii. The changes in air density formed in the gap
between the door and the floor travel outside.

iv. The sounds in the room cause the wall to vibrate.
The vibrating wall causes the air on the other side to
vibrate and slightly changes the air pressure there.
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v. None of the above choices fits my basic viewpoint.
My basic viewpoint is (please explain your view-
point in the space provided below).

This item includes the following four statements: items
(iii) and (iv) reflect the process model of sound—a; items (i)
and (ii) reflect the materialistic model—b; and the open
option (v) can be materialistic, process, or a neutral model
depending on the examinee’s answer. Now let us examine
three hypothetical examples of students whose answers are
presented in Table I.

IV. ILLUSTRATING THE USE OF F2m AND
PRELIMINARY EXAMINATION OF ITS

CONSISTENCY

F2m is a new statistic. Therefore, as a first step, F2m was
reviewed by three experts, all of whom are professors in the
Graduate Program for Science and Technology Education.
All three agreed that F2m is of a potential to contribute the
examination of students’ concepts and misconceptions
by simplifying the analysis and making the output to be
more vivid and informative. The second step was applying
F2m in analyzing the SCII results. The SCII was run twice
in the acoustics course taught in the Graduate Program
for Science and Technology Education at Ben-Gurion
University of the Negev in 2010 before and after instruction
[14]. The course emphasized the process nature of sound
versus naïve materialistic models according to the recom-
mendations of Chi and colleagues [15].
According to the literature, a minimal sample of 20

or 30 people is usually enough to obtain useful statistics
[17–19]. Thus, a starting sample of 27 students (males and
females) studying the course was considered as being
sufficient for the preliminary analysis. Twenty-five of the
participants had not studied acoustics prior to the course.
As is known from the literature, inexperienced students

tend to mistakenly consider sound as a kind of material
[4–6,14], or tend to be found in a mixed model state (the
term is taken from Bao [9]), considering sound as a material
in some contexts and as a process in others. Therefore,
when running the SCII in this group prior to the course, we

would expect more negative or close to zero values of F2m
than striving for the 1 result. Following the instruction,
when the knowledge constructs are expected to be created
and mental models are expected to change from material-
istic to process models, we would expect to obtain mostly
positive values of F2m that are close to 1. That is, a sta-
tistically significant growth in F2m values after the course
relative to the prior ones might indicate a degree of F2m
consistency. Indeed, the pretest yielded an average score of
58 points (out of 100), while the score went up to 80 points
in the post-test. Moreover, these numbers provide some
indication of students’ prior level of knowledge compared
to after the course; however, they do not fully reflect their
thinking. To explain this point, let us look, for instance, at
the average pretest score—58. Suppose we have the
following two students:

• Student 1 answered 58% of the items correctly (i.e., he
chose the correct process options), while he chose
materialistic distractors in the remaining 42% of
the items.

• Student 2 also answered 58% of the items correctly.
As to the other items, he provided 10% materialistic
and 32% neutral responses.

Without a doubt, the understanding of sound by these
students is quite different. These differences, however,
are not reflected by personal and average scores. Indeed,
students 1 and 2 both achieved the average grade of 58
points. However, student 1 provided twice as many mate-
rialistic responses compared to student 2. This information
is lost when the score is calculated. In a similar manner,
the score does not reflect the information regarding the
incorrect responses of all participants—information that
could be crucial for the research of students’ conceptuali-
zation and conceptual change. F2m might offer an alter-
native way for inventory assessment aimed at preserving
this information and bringing it to the researcher in a
relatively simple and convenient manner. Let us now apply
F2m to the SCII results.
As before, we define ai as the number of answers

reflecting a process model(s) of sound and bi materialistic
views. The SCII results yielded the following average

TABLE I. Three hypothetical examples of responses in item 19, the appropriate F2m values’ calculation, and what kind of mental
model state they reflect.

Student Statements selected F19
2m calculation Conclusion

1 iii a19 ¼ 1 F19
2m ¼ 1−0

1þ0þ0
¼ 1 Consistent process model

b19 ¼ 0
c19 ¼ 0

2 i, ii, iv a19 ¼ 1 F19
2m ¼ 1−2

1þ2þ0
¼ − 1

3
More materialistic than process
thinking, but not consistent.b19 ¼ 2

c19 ¼ 0
3 i, v—I place my ear close

to the door (neutral statement)
a19 ¼ 0 F19

2m ¼ 0−1
0þ1þ1

¼ − 1
2

Materialistic thinking. Neutral answer
decreases the level of consistency.b19 ¼ 1

c19 ¼ 1
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values of F2m for the group: hF2mipre ¼ 0.34 before the
instruction and hF2mipost ¼ 0.8 after, that is, a growth of
ΔhF2mi ¼ 0.44. In addition to calculating hF2mi, we went
one step further and calculated the percentage of students
within the four ranges of F2m, as presented in Fig. 1.
As can be seen in Fig. 1, 18.51% of the participants had a

negative F2m before the course, meaning more materialistic
thinking about sound. The greatest number of students
(40.74%) were found in the 0 < F2m ≤ 0.5 range, meaning
more process than materialistic thinking; however, the
concepts were weak and there was no consistent theory
system. Whereas 88.47% of the students reached 0.5 <
F2m ≤ 1 after the course, i.e., more than a twofold growth
in the number of students possessing consistent process
thinking about sound. As expected, no students had a
negative F2m after the course.
Additional evidence of F2m consistency is provided by a

comparison of F2m values obtained in the test to students’
performance in clinical or focus group interviews [20]. For
instance, students who can explain sound in materialistic

terms are expected to get negative F2m scores; those found
in a mixed model state have close to zero values; while
students who succeed to explain sound as a process should
acquire F2m > 0.5 values. In the first course lesson, the
lecturer inspired a whole class dialogic discussion that
could be regarded as a focus group interview [20] pertain-
ing to the nature of sound. The discussion was provided
before the students underwent the SCII. A total of 77.78%
of the participants failed to explain correctly what sound is.
Some actually related to sound as a kind of material that can
move from point A to point B, while the majority provided
explanations that contained substance-based statements in
addition to process descriptions. This distribution of ideas
reinforces the pre-instruction average value of F2m as 0.34.
To illustrate this point, Table II shows some representa-
tive examples of students’ answers and their analysis. The
appropriate F2m is noted next to each answer.

V. DISCUSSION AND CONCLUSIONS

The current preliminary study aimed at developing a
simple statistic for estimating the mental model state in the
dichotomous case of two possible models, e.g., material-
istic vs process views of heat and sound, direct vs emergent
processes [5,15,22,23], etc. The F2m factor was suggested.
Results obtained in this short study indicate a degree of F2m
consistency and should be considered as being promising
enough to justify a more comprehensive study conducted
on larger samples, as well as on other inventories.
As the SCII analysis example used in this study shows,

F2m should not be considered as an indication as to whether
a subject actually knows the material, but only what kind
of thinking he leans towards. Indeed, some items in the
inventory have more than one process statement—answers
(iii) and (iv) in item 19, for instance. If an examinee
selected only statement (iii), it would result in F2m ¼ 1

FIG. 1. Distribution of F2m before and after the course.

TABLE II. Some examples of students’ explanations of the sound concept, their short analysis, and appropriate F2m values.

Students’ explanations Analysis F2m

Sounds are waves of particles.
When we speak, particles move like
a wave and when we shout, it’s like
a straight line.

Sound is a flux of corporeal particles propagating in wavelike and
straight lines depending on the sound intensity. This explanation fits
well the characteristics of a materialistic model [4,21]

−0.75

I think that sound [propagation] is not
like a wave. It is more like a straight
line. It is like the air pushes the
sound particles.

Sound particles are pushable (by the air), which also fits the substance
schema [21].

−0.19

Sound is energy. Sound is released to
the air and passes to the listener’s
ear through sound waves. Sound
wave is a disturbance of the media.

This answer combines the two models of sound. On the one hand, “sound is
released to the air and passes…” that could be related to a materialistic
view of sound passing from point A to point B according to the substance
schema [21]; while, on the other hand, “sound wave is a disturbance of the
media” that seems to be a process statement.

0.06

Sound is like waves of different
frequencies and phases that
cause different intensities.

This explanation is much more process. Indeed, the participant related sound
in wave terms also later in the interview. However, there is still certain
confusion about physical concepts which obviously reduced his F2m score.

0.56
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according to Eq. (1). This, however, cannot point towards a
full understanding since he has not related to the correct
statement (iv). Moreover, in the cases where there are
several mental models of each type, F2m would reflect
only the type of thinking but not indicate the exact model.
For instance, there are actually three possible mental
models of sound in the materialistic category of thinking:
(a) special sound particles [4]; (b) vibrated air molecules
traveling from the source to the listener [3,6,23,24]; and
(c) sound that travels as air globules of sonic data [14,25].
Similarly, there are two process models of sound: (d) trans-
verse wave; and (e) longitudinal wave [6,24]. In this case,
choosing models (a),(b) or (c) will result in a negative
contribution to F2m as actually reflecting materialistic
thinking, whereas selecting (d) or (e) will move F2m to
positive values reflecting process thinking. Thus, if the
obtained value of F2m for a certain examinee is 1, it only
indicates that they possess a process model of sound but
does not specify which one. Therefore, to gain a more
comprehensive picture of students’ conceptions F2m should

be used in combination with other knowledge analysis
methods.
Another point to be discussed is the possibility of

guessing. In this case, F2m might seem as bias towards
the mental model that contains the most options. For
example, if model a has more relevant options compared
to b, then a randomly answering student will end up with
F2m pointing on model a. One way to minimize the
possibility of incorrect inference based on guessing is
calculating the Cronbach alpha coefficient (0 ≤ α ≤ 1).
Cronbach’s alpha is aimed at indicating a test reliability.
Tests having α ≥ 0.7 are generally considered to be
reliable [11]. Incoherent guesses will make the test results
unreliable, consequently yielding low Cronbach’s alpha
value [12].
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