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In quantum mechanics courses, students are often asked to solve bound and scattering state problems.
The use of an ordinary differential equation is a standard technique to solve these questions. Here, we
investigated students’ problem-solving processes for two typical problems of a single particle in one spatial
dimension: a bound state problem and a scattering state problem. We analyzed students’ solutions to written
exams and utilized think-aloud interviews using a framework that includes four stages: activation,
construction, execution, and reflection. We found that the students encountered various difficulties when
they solved the ordinary differential equations to obtain the properties of bound or scattering states.
Common difficulties included recognizing when the time-dependent Schrödinger equation is the
appropriate model; selecting a range of the energy constants that satisfies the bound or scattering state;
justifying when to use a superposition form of the wave functions; grasping the physical definition of
scattering coefficients; and using an effective checking method for their solutions. In addition, we observed
qualitatively different difficulties in students’ solutions to the two problems and discussed possible
explanations for the underlying reasoning mechanisms that cause these difficulties. Finally, we discussed
the potential implications of our findings for instruction.
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I. INTRODUCTION

Bound and scattering states are two fundamental con-
cepts in quantum mechanics. When the energy of a particle
is less than the potential energy at infinity, the particle is in
a bound state. Otherwise, it is in a scattering state. Different
shapes between the bound and scattering state wave
functions give rise to measurable differences in the exper-
imental results. One canonical example is the quantum
tunneling effect. When a particle scatters on a barrier, its
wave function can be described as incident, reflected, and
transmitted waves, resulting in measurable reflection and
transmission probabilities. As a case where quantum
mechanics is very different from classical mechanics and
has a wide range of applications, the quantum tunneling
effect and associated scattering states are an important part
of any quantum mechanics course. Therefore, a solid
understanding of the bound and scattering states is a key
element in mastering the fundamental content of quantum
mechanics.
The study of students’ difficulties in learning quantum

mechanics is an active area of upper-division physics

education research [1–32]. Most of the literature has
focused on students’ difficulties in understanding the basic
concepts and formulas of quantum mechanics. Some of
these efforts examined how students conceptually under-
stand bound and scattering states. Zhu and Singh [5]
investigated students’ ability to understand the basic con-
cepts of quantum mechanics for a particle in a one-
dimensional potential. In particular, they examined student
ability to distinguish the properties of bound and scattering
states when given the potential. The results showed that
many students confuse the bound and scattering states and
have difficulty reasoning about the corresponding physical
properties. McKagan et al. [3] identified student difficulties
with scattering states for particle tunneling through a
barrier. Some of the tasks they used prompted students
to predict experimental outcomes for the quantum tunnel-
ing effect under various conditions. They found that many
students have difficulty relating the models of wave
functions and energy to real-world quantum phenomena.
In the context of quantum mechanics, students are often

asked to combine abstract concepts and sophisticated
mathematical calculations to solve problems. For example,
how to solve the problems of a particle in a one-dimen-
sional potential is an important topic in quantummechanics
curricula. Students need to combine the physical concepts
of bound and scattering states with the mathematical
technique of ordinary differential equations (ODEs) to
solve these problems. There are several investigations on
students’ difficulties in understanding the concepts of
bound and scattering states [3,5]. However, we are not
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aware of any studies that specifically probed students’
difficulties in relating the concepts of bound and scattering
states to the ODE tools to solve problems.
In the present work, we investigate students’ problem-

solving skills when using the ODE tools in the context
of bound and scattering states. Students in the School of
Physics at the University of Science and Technology of
China (USTC) have used the ODE tools several times in
their physics courses, for example, for solving the motion
equation of a particle in the context of classical mechanics.
Despite previous experience, some students still encounter
difficulties when using the ODE tools to solve problems in
the context of quantum mechanics. Although a certain
mathematical tool such as the ODE technique is general,
how this tool is used when solving physics problems is
highly dependent on the specific physics context [32–36].
Therefore, when students apply a certain mathematical tool
to solve a physics problem, they encounter various diffi-
culties in the problem-solving process, especially in how to
integrate the physics content with the mathematical tool.
For these reasons, more work is needed to investigate the
students’ difficulties in using the ODE tools in the context
of quantum mechanics. These investigations have the
potential to provide more insights into how students
understand quantum physics concepts and use the corre-
sponding mathematical tools.
Here, we focus on two typical cases of a particle

interacting with a one-dimensional potential: a bound state
problem, and a scattering state problem. They offer
important context regarding the wave mechanics part of
the quantum mechanics course. The two types of problems
ask for the energy eigenvalues or the scattering coefficients
of a particle. Students need to distinguish between bound
and scattering states and manipulate the corresponding
ODEs. The study presented here can provide a sampling of
students’ difficulties when they understand quantum phys-
ics concepts and use the ODE tools for problem solving.
In this paper, we analyze investigation data through the

activation, construction, execution, reflection (ACER)
framework. This analytical framework was originally
developed in the analysis of students’ use of mathematical
tools in physics problem solving [33]. In Sec. II, we provide
an overview of the related literature on students’ difficulties
with bound and scattering states. In Sec. III, we describe the
ACER framework and its operationalization structure for
our investigations. In Sec. IV, we describe the data sources
and offer details regarding the design of the interviews
conducted in our study. Then, in Secs. Vand VI, we present
our findings and analysis of students’ difficulties when
solving a bound state problem and a scattering state
problem, respectively. Finally, in Sec. VII, we discuss
the similarities and differences between our findings and
those of previous studies on bound and scattering states in
detail. We also briefly discuss the implications of the
present work for instruction, as well as future work.

II. REVIEW OF THE LITERATURE AND
RESEARCH QUESTIONS

A. Student difficulties regarding
bound and scattering states

Most studies have focused on students’ difficulties in
understanding the basic quantum concepts. For example,
physics education research in this area has found that
students have various difficulties in explaining quantum
interference phenomena [17–19], in determining the time
development of a wave function [9,12,21,26], in obtaining
the measurement outcomes of various physical observ-
ables [6,7,11], in using different quantum notations (e.g.,
Dirac notation, algebraic wave-function notation, and
matrix notation) and in translating between them
[13,22,25,30].
Zhu and Singh explored students’ difficulties with the

quantum mechanics of a particle in one spatial dimension
[5]. They developed a conceptual survey and administered
it to students. This survey consisted of a series of multiple-
choice questions to probe students’ understanding and
mastery of various concepts, including wave functions,
Hamiltonians, quantum measurements, and bound and
scattering states. For a particle in the energy eigenstate,
there are two cases: a bound state has an energy less than
the potential energy at infinity, and its wave function can
always be normalized; a scattering state has an energy
larger than the potential energy at infinity, and its wave
function cannot be normalized. Research has identified
several sets of conceptual difficulties with bound and
scattering states [5]: (i) Students had difficulties with
understanding the aspects of the bound and scattering state
wave functions. For example, many students did not
recognize that the scattering states have a continuous
energy spectrum and mistakenly claimed that the scattering
state wave functions are normalizable. (ii) Students had
great difficulties judging whether a given potential energy
allows for bound states or scattering states. For example,
many students thought that any potential energy that has a
well shape would allow for bound states. (iii) Students had
a common difficulty claiming that a particle may be in a
bound or a scattering state depending on its location. For
example, some students incorrectly claimed that when a
particle is in the classically allowed region, it is in a bound
state, while when it is in the classically forbidden region, it
is in a scattering state.
McKagan et al. studied student learning of quantum

tunneling in modern physics courses [3]. The quantum
tunneling effect is a special case of scattering states. The
researchers collected data that consisted of student
responses and interviews related to the quantum mechanics
conceptual survey (QMCS) [4]. Research has identified
many difficulties in student understanding of quantum
tunneling [3]. These issues include (1) difficulties with
drawing wave functions for particle tunneling through a
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barrier; (2) difficulties with energy loss in tunneling;
(3) difficulties with understanding the physical meaning
of potential energy; (4) difficulties with the physical
meaning of plane waves; and (5) difficulties with repre-
sentations of complex wave functions. Research also
unraveled several reasons why students may think that
energy is lost in tunneling: regarding the energy and wave
function as interchangeable, invoking dissipation, treating
the total energy as a local characteristic of a wave
function, etc.
There have been several investigations on the difficulties

students have in solving ordinary differential equations
(ODEs) in undergraduate mathematics courses. For exam-
ple, the Refs. [37–39] investigated how students use
graphical techniques to solve first-order ODEs. These
articles investigated how students come to reason concep-
tually about a rate of change equation. They also inves-
tigated students’ abilities converting symbolic information
into graphical ones. Reference [40] investigated how
students use numerical methods to solve ODEs that cannot
be solved analytically.

B. Research questions

These previous studies focused on students’ difficulties
when dealing with nonalgorithmic problems in bound and
scattering states. However, there is little research on
students’ problem-solving skills in the context of quantum
mechanics [32,41–43]. Learning quantum mechanics is
challenging, not only because the concepts of quantum
physics are very different from those of classical physics,
but also because students struggle with how to build models
and how to relate these models to mathematical calcula-
tions. An important context of bound and scattering states
is solving algorithmic problems, such as solving the time-
independent Schrödinger equation for a particle within a
one-dimensional complicated potential energy (i.e., solving
a typical ODE). We are not aware of any studies that target
students’ skills to relate the understanding of bound and
scattering states to the use of the ODE tools to solve
problems.
Students at the University of Science and Technology of

China (USTC) were first exposed to the ODE in their
mathematics courses. They had much experience with
using the ODE tools in the context of classical mechanics
before they took a quantum mechanics course. Although
the ODE technique is general, the way students use the
ODE tools to solve a physics problem is highly dependent
on the specific content of the problem [32–36]. To solve a
long and complex problem, students need to go back and
forth between physics and mathematics many times:
representing physical situations as mathematical equations,
performing sophisticated mathematical calculations, and
understanding the physical meaning of the mathematical
results. Thus, it can be expected that students will encoun-
ter various difficulties when using the ODE tools in

quantum physics content, especially when determining
how to map abstract quantum concepts to the ODE
procedure step by step.
For these reasons, additional work is valuable to study

students’ difficulties when using the ODE tools in the
context of quantum mechanics, such as in the context of
bound and scattering states. Given the previous work that
has been done [3,5] and our focus on student problem-
solving skills, we are interested in three research questions:
(1) To what extent can students integrate the concepts of

bound and scattering states with the ODE tools? That is, to
what extent can students correctly relate the elements of the
problem-solving procedure in the context of bound and
scattering states?
(2) What are the common difficulties students have when

solving ODEs in the context of bound and scattering states?
Can we classify these difficulties? What are the possible
reasons for these difficulties?
(3) What difficulties are similar and what difficulties are

different compared to previous studies?

III. THEORETICAL FRAMEWORK

A. Context for research

Two of the research tasks used to probe student ability to
calculate the analytical solutions of the bound and scatter-
ing states are shown in Figs. 1 and 2. In problem 1, students
are given a particle interacting with a one-dimensional well
potential. Students are asked to determine the possible
energies of the bound states. In problem 2, students are
given a particle approaching a one-dimensional barrier
potential. Students are asked to determine the scattering
coefficients of the particle.

FIG. 1. An example of the exam problem about the bound state.
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B. Analytical framework and its operationalization

In an upper-division physics course, the problem-solving
procedure is long and complex. Students encounter various
difficulties and make various errors at different steps of the
problem-solving process. To address this complexity, we
use an analytical framework known as the activation,
construction, execution, reflection framework to guide
our investigations of students’ work [33]. The ACER
framework organizes the problem-solving process into four
general components:

(i) Activation stage: recognize the related mathemati-
cal tools.

(ii) Construction stage: set up the corresponding equa-
tions and conditions for the physics problem.

(iii) Execution stage: calculate the solutions to the
equations and conditions.

(iv) Reflection stage: check the final answers.
The ACER framework was initially developed for the

analysis of experts’ problem-solving processes and was
explicitly based on the resources theory of the nature of
learning [33]. Then, this framework was applied to study
student difficulties in solving various physics problems
[32,34–36].
The use of mathematical tools is highly context depen-

dent; thus, the ACER framework is designed to be
operationalized for a specific physics topic. The operation-
alization of the ACER framework for the bound and
scattering state problems (Figs. 1 and 2) is discussed in
the following. One of us worked through these problems,
documented the complete steps of solving the problems,
and carefully classified these steps into the four stages of
the ACER framework. All of us discussed and refined the
outline until we agreed that the key elements of solving the
problems had been accounted for according to the ACER
framework. Then, this expert-designed outline was used as
a coding scheme to analyze students’ work. A summary of

the operationalized framework is listed below. A detailed
description can be found in the Appendix.
(i) Activation of the relevant tools: The activation stage

identifies appropriate tools to solve the bound and scatter-
ing state problems. Activation is influenced by the prompt
text for a given problem. Considering a particle interacting
with a one-dimensional potential, one needs to solve the
one-dimensional time-independent Schrödinger equation,
which is an ODE, to obtain the wave function of the
particle. We found that this kind of prompt A1 in the
question text can motivate students to use relevant tools,
i.e., to solve the ODE to obtain the results.

• A1: The question provides a potential VðxÞ in one
spatial dimension and asks for the wave functions or
related quantities (e.g., energy eigenvalues for the
bound state problem and reflection and transmission
coefficients for the scattering state problem).

(ii) Construction of the physical equations: The
construction stage maps the specific physical situations
to the corresponding ODEs and boundary conditions. We
operationalized the construction stage into four elements.
The numbering of these elements indicates the order of the
problem-solving process.

• C1: Set up the relevant ODEs in different regions for
the problem (i.e., time-independent Schrödinger equa-
tions in different regions).

• C2: Determine the ranges of energy constants in the
ODEs that are appropriate for the bound state or the
scattering state.

• C3: Build up the boundary conditions to determine all
unknown constants in the general solutions to
the ODEs.

• C4: Give the expression for the final answer (e.g.,
using the wave function to give the reflection coef-
ficient for the scattering state problem).

(iii) Execution of the mathematical calculations: This
stage performs the corresponding mathematical calcula-
tions to solve the equations built in the construction stage.
We operationalized the execution stage into two elements.
The numbering of these elements also indicates the order of
the problem-solving process.

• E1: Look up the general solutions to the ODEs in
different regions.

• E2: Calculate the values for the unknown constants in
the general solutions and organize the expression for
the final answer.

(iv) Reflection on the solutions: The final stage reflects
on the results to ensure consistency. We found that there are
several ways for an expert to check whether his or her
solution to the present problem is correct. The numbering
of these elements is for labeling purposes only and
indicates that there are multiple options.

• R1: Check whether the wave functions satisfy the
ODEs in different regions.

FIG. 2. An example of the exam problem about the scattering
state.
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• R2: Check whether the wave functions match the
boundary conditions.

• R3: Check whether the units of the final answers are
consistent.

• R4: Check whether the reflection coefficient R and
transmission coefficient T satisfy the conditions of
0 ≤ R; T ≤ 1 and Rþ T ¼ 1.

In the following sections, we apply this coding scheme to
study the students’ efforts related to the bound state
problem and to the scattering state problem.

IV. RESEARCH METHOD

A. Data sources

The research on student difficulties in this study uses both
quantitative and qualitative methodologies. We collected
data from the senior-level quantum mechanics course at
USTC. This course is a one-semester course that covers
Chaps. 1–12 of Zeng’s book [44] or Chaps. 1–10 of
Griffiths’s book [45]. The student population is composed
of upper-division students in the school of physics, with a
typical class size of 60–100 students. There are two distinct
data sources for this study: students’solutions to questions on
traditional midterm exams and “think-aloud” interviews for
problem-solving. For the quantitative data, we analyzed
students’ written solutions on exams to identify their
common difficulties. Then, for the qualitative data, we
investigated students’ responses in the individual interviews
to gain deeper insight into the nature of these difficulties.

B. Written exams

We all taught the quantum mechanics course at USTC.
We collected exam data from different semesters over six
years for this study. All of us codesigned the questions on
these exams through several discussions. For each exam,
the students were asked to solve a bound state question or a
scattering state question, and we collected six sets of exam
data. One question in our data provided the students with a
well potential and asked them to find the possible energies
(i.e., problem 1 in Fig. 1). We collected Nt ¼ 388 solutions
from three sets of exam data. The other question provided
students with a barrier potential and asked them to find the
reflection and transmission coefficients (i.e., problem 2 in
Fig. 2). We collected Nt ¼ 406 solutions from another
three sets of exam data.
The students’ written solutions were then analyzed.

Student ideas and difficulties were identified by coding
their written responses that appeared in each element of the
operationalized ACER framework. Finally, we formulated
the results to characterize the patterns of student problem
solving that emerged from the data.

C. Design the interviews

To gain insight into students’ difficulties with problem
solving and to unravel the possible underlying reasoning

mechanisms, we relied further on qualitative data from
interviews. For this study, we conducted think-aloud inter-
views [46] in six sets, each performed after the mid-exam.
Three sets of interviews included one question on calculat-
ing the bound state energies for a particle in a well (i.e.,
problem 1 in Fig. 1), and we collected N ¼ 24 responses.
The other three sets of interviews included one question on
calculating the scattering coefficients for a particle
approaching a barrier (i.e., problem 2 in Fig. 2), and we
collected N ¼ 30 responses.
Interviewees were volunteers who responded to a request

for research participants. The total number of interviews
was smaller than the total number of students who attended
the classroom written exams. The exam grades of the
interviewed students mostly ranged from 50 to 80, who
made various errors in solving the exam questions. We
chose these students because we wanted to investigate the
mistakes they made on the exams in more depth.
Usually the interviews were scheduled within a week of

the exams. Because of the short interval, students who
participated in the interviews could still remember how they
solved the same problem when they took the exams. We
noticed that the solutions they gave in the interviews were
very similar to the ones they gave in the exams. In other
words, if theymade an error on the exams, they still made the
same error in the interviews. This allowed us to investigate
the possible reasons why they made this mistake.
Interviews were conducted individually outside of the

classroom. Each interview lasted approximately 1 h. If the
interviews took too long, the students would become tired.
At the beginning of each interview, we told the students that
“This is only a think-aloud interview. You can explain your
thinking aloud while you work through the question. Don’t
be nervous since it will not be counted for one test grade. It
is simply because we are interested in your problem-
solving process.” None of the interviewed students agreed
to a video or audio recording because that would make
them nervous. Thus, all interviews for this study were
transcribed verbatim. For consistency, all interviews were
conducted by one author, T. T.
The interviews were designed using the semistructured,

think-aloud protocol. The interviewed students were given
problems similar to those on the written exams because we
wanted to probe certain aspects of their problem-solving
strategies and difficulties that were not assessed by the
written exams. Analysis of students’ written solutions can
offer information on the pattern and frequency of student
difficulties. However, it provides little insight into the
thinking mechanism underlying students’ problem-solving
processes. Therefore, we had a list of questions to ask;
hence, these interviews were semistructured. In the inter-
views, we first asked students to formulate and articulate
their thought processes by themselves. After the students
articulated their thoughts as clearly as possible, we asked
them the questions on our list.
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Many questions were designed to target the elements of
the ACER framework. To probe the activation elements, we
asked the students what prompted them to use the related
resources to solve the problems. Then, to probe the
construction elements, we asked questions to understand
how students modeled the relevant equations. The students
were asked to explain what each expression represented
and/or how they made sense of these expressions. For
example, “what does this equation represent?”, “can you
give an interpretation of this expression?”, and “what
would you call this quantity in the expression?”. To probe
the execution elements, we asked the students how they
performed the corresponding mathematical calculations.
For example, from the written exams, we found that
students had difficulties calculating the general solutions
to the ODEs. We wanted to know if these errors were
caused by simple calculation errors or by other mecha-
nisms. Last, when students solved the problem in the
allotted time, we asked whether and how they checked their
solutions. Note that from written solutions, it is difficult to
determine whether students perform the reflection task.
Thus, we designed the questions to target the reflection
elements in the interviews. These interview questions
clearly addressed all aspects of the ACER framework.
After the students verbalized their thoughts, if they had

not mentioned them, we asked them several questions for
clarification. Based on a particular student’s response, we
designed additional questions or provided new information
on the spot to explore his or her thought process more
deeply. In some interviews, we asked students about
broader issues, such as what are the main difficulties in
learning quantum mechanics in their opinion. We did not
interrupt students while they talked about their thoughts
and answered questions because we wanted them to do
their best when talking. If students were quiet for a long
time, we would remind them to continue to talk. For a
detailed description of the interview protocol, please see the
Supplemental Material [47].

V. FINDINGS ON STUDENTS’ DIFFICULTIES
WHENADDRESSING A BOUND STATE PROBLEM

In this section, we use the stages of the ACER framework
to classify and identify common student difficulties in
solving a bound state problem with a one-dimensional
potential (problem 1 in Fig. 1).

A. Activation of the tools

The boundary state problem in exams explicitly provides
an expression of the one-dimensional potential VðxÞ, which
could prompt students to activate tools to solve the
corresponding ordinary differential equations. There were
N ¼ 388 students who took the exams for the bound state
problem. Among them, N ¼ 378 students presented a
differential equation form of the Schrödinger equation

[e.g., ½−ðℏ2=2mÞd2=dx2 þ VðxÞ�φðxÞ ¼ EφðxÞ]. The
remaining N ¼ 10 students wrote the Hamiltonian operator
Ĥ and attempted to make some transformations while not
mentioning the differential equation. These students had
difficulty utilizing resources related to the differential
equation form of the Schrödinger equation in the position
representation.
In the interviews, one student wrote a Hamiltonian

operator in the Dirac notation and tried to perform some
transformations. For example, he wrote down the expres-
sion hψ jĤjψi ¼ E. When he was asked why he used this
method, he explained, “I remembered that in the quantum
mechanics course, I learned two types of formulas, one with
wave functions and one with Dirac notation. The teacher
emphasized that they are equivalent, and it is more
convenient to use the latter one. So I used the Dirac
notation to solve the problem. I believe this problem can be
solved with some operator transformations in Dirac nota-
tion representation.” This result suggests that some students
overfocused on the operator method in the abstract for-
mulas of quantummechanics, which may have discouraged
them from activating resources to solve a differential
equation in the position representation.

B. Construction of the equations

Step C1: In this stage, the students mapped the physical
quantities onto a series of mathematical equations. Step C1
constructs a basic equation that the quantities can satisfy.
For the present bound state problem, this step provides the
ODEs or the time-independent Schrödinger equations in
different regions [i.e., −ðℏ2=2mÞd2φðxÞ=dx2 ¼ EφðxÞ for
0 < x < a; ½−ðℏ2=2mÞd2=dx2 þ V0�φðxÞ ¼ EφðxÞ for
x > a]. There were N ¼ 378 solutions that included a
differential equation, and among them, N ¼ 364 solutions
provided the correct expression. In the remaining N ¼ 14
solutions, the students set up a time-dependent Schrödinger
equation but could not reduce it to the time-independent
Schrödinger equation or made other errors (e.g., adding an
inappropriate i factor; adding or omitting a constant factor).
The most common difficulty with this step is an overfocus

on the time-dependent Schrödinger equation. For instance, in
the interviews, one student wrote down a time-dependent
Schrödinger equation iℏ∂ψðx;tÞ=∂t¼ ½−ðℏ2=2mÞ∂2=∂x2þ
VðxÞ�ψðx;tÞ and tried to reduce it to the time-independent
Schrödinger equation ½−ðℏ2=2mÞd2=dx2 þ VðxÞ�φðxÞ ¼
EφðxÞ. He spent much time because he needed to use the
separation of variables method to complete the process, but
he ultimately failed. When he was asked why he made so
much effort to solve the time-dependent Schrödinger equa-
tion, he explained, “The time-dependent Schrödinger equa-
tion is the fundamental equation of quantum mechanics, so
we should start from this fundamental equation to solve any
problem.”While this is true, for a stationary state problem, it
is more convenient to begin with the time-independent
Schrödinger equation. Distinguishing between the different
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application scenarios of the time-dependent and time-inde-
pendent Schrödinger equations is therefore a difficulty for
some students.
Step C2: In step C2, the students determined the range of

values for the energy constant or compared the energy
constant with the potential energy in different regions.
Using this strategy, they determined the corresponding
signs of the ODEs in different regions. There wereN ¼ 364
solutions that started from the exact time-independent
Schrödinger equation, and among them, N ¼ 278 solutions
commented that 0 < E < V0 such that the resulting two
ODEs have different signs in different regions [i.e.,
d2φ=dx2 ¼ −k2φ with k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
in the region

0 < x < a; d2φ=dx2 ¼ λ2φ with λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV0 − EÞ=ℏ2

p
in the region x > a]. The common errors in the remaining
N ¼ 86 solutions included inappropriate consideration of
two cases E > V0 and E < V0 or an incorrect discussion
of E < 0.
The interviews provided additional insight into students’

difficulties in determining the energy constant. In the
interviews, fifteen students commented on the value of
the energy constant and obtained the correct expression of
the ODEs as 0 < E < V0. Then, they were asked why they
determined such values of the energy constant. The full
answer is as follows: (i) In quantum mechanics, when the
energy of a particle is less than the potential energy at
infinity (i.e., E < V0 in the present problem), the particle is
in a bound state. Otherwise, it is in a scattering state. (ii) In
addition, the energy E must exceed the minimum value of
the potential energy (i.e., E > 0 in the present problem) for
every physically acceptable solution to the time-indepen-
dent Schrödinger equation. Approximately half of the
students correctly answered the first point about how to
judge whether a given potential energy allows for bound
states or scattering states. Only four students successfully
interpreted the second point that when the energy is less
than the minimum value of the potential energy E < 0,
there is no acceptable solution to the time-independent
Schrödinger equation for the present potential; thus, this
fact requires that E > 0. Other students could not explain
these points at all. This result suggests that many students
have difficulties truly understanding the physical properties
of bound states in quantum mechanics.
Three interviewed students explicitly considered two

situations: E > V0 and E < V0. When they were asked
why they studied these two cases, one of the three students
stated, “We have encountered similar problems in the
course and in homework. When we solved these problems,
we always needed to consider two cases since the energy
constant can be greater or less than the potential energy.”
The other two students gave similar responses. Then, they
were asked what states these two situations correspond to.
For the present problem, the correct answer is E < V0 ⇒
bound states and E > V0 ⇒ scattering states. However,
they appeared confused and were unable to answer.

Therefore, the interviews indicate that some students
remembered only similar problems for the exams, but they
did not understand when and how to distinguish between
bound and scattering states.
Two interviewed students selected an energy constant

smaller than zero. Then, they found that these ODEs have
no acceptable solutions to meet the boundary conditions.
They were confused and did not know how to continue.
When they were asked why they made this choice, one of
them answered, “There is a similar problem in the textbook,
where a particle interacts with a square potential. I
remember the criteria: when the particle has an energy
less than zero, the particle is in a bound state. Otherwise, if
the particle’s energy is larger than zero, it is in a scattering
state. So I determined that E < 0.” The other student gave a
similar response. Actually, the correct criteria are: E <
Vð∞Þ ⇒ bound states and E > Vð∞Þ ⇒ scattering states.
In some situations, such as the example in the textbook, the
potential goes to zero at infinity, and the criteria simplify to
E < 0 ⇒ bound states and E > 0 ⇒ scattering states. We
speculate that some students simply remembered the
criteria only for the special case and directly applied this
formula to the exam and were not able to make corre-
sponding modifications to the new case. It is obvious that
they ignored the fact that in the present problem, the
potential energy at infinity is V0 instead of zero.
Step C3: When the students worked through step E1 to

obtain the general solutions, they applied boundary con-
ditions to construct equations to determine the unknown
constants in the general solutions. There were N ¼ 262
solutions that included the general solutions of the ODEs in
different regions, and among them, N ¼ 236 solutions built
accurate equations to match the boundary conditions. The
common mistakes in the remaining N ¼ 26 solutions
included inappropriately setting up an expression for the
superposition states or other errors (e.g., not using the
boundary condition at infinity; not using the continuity of
derivatives of the wave functions; missing or adding a
factor or sign).
The most common difficulty identified in this step is

inappropriately using an expression for the superposition
state. In the interviews, two students included a super-
position of the energy eigenstates, e.g., Ψ ¼ P

n cnφn.
Then, they tried to determine the values of the coefficients
cn; however, they failed. When they were asked why they
used the expression for the superposition state, one of the
participants stated, “In quantum mechanics, an arbitrary
state can be expressed as a superposition of energy
eigenstates. Thus, the general solutions of the ODEs
should be a superposition of the energy eigenfunctions.”
In general, for a time-independent Schrödinger equation
Hφ ¼ Eφ, we have a series of energy eigenstates φn. A
possible state of the particle can be expressed as Ψ ¼P

n cnφn, which results in HΨ ¼ P
n cnEnφn ≠ EΨ.

Therefore, it is incorrect to introduce a superposition
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state to match the time-independent Schrödinger equation.
Researchers pointed out that HΨ ¼ EΨ is not true for a
linear superposition of the energy eigenstates and asked
the students to explicitly write down and derive these
equations. They were shocked by this fact. One student
excitedly stated, “I believed that the time-independent
Schrödinger equation HΨ ¼ EΨ holds for any wave
function. This notion is actually wrong! I never recog-
nized this before!” Thus, some students did not under-
stand the fact that a linear superposition state does not
satisfy the time-independent Schrödinger equation, which
may lead to their difficulties in determining possible wave
functions for a given system.

C. Execution of the calculations

Step E1: In the execution stage, the students worked
through themathematical procedure of the equations set up in
the construction stage. Step E1 attempts to solve the ODEs in
different regions built in step C2 (i.e., d2φ=dx2 ¼ −k2φ in
the region 0 < x < a; d2φ=dx2 ¼ λ2φ in the region x > a).
There were N ¼ 278 solutions that included the proper
ODEs, and among them, N ¼ 262 solutions provided the
correct general solutions of the two ODEs. The remaining
N ¼ 16 solutions included the incorrect exponential func-
tional form of the general solutions (e.g., obtaining e�kx

instead of e�ikx for d2φ=dx2 ¼ −k2φ; obtaining e�iλx

instead of e�λx for d2φ=dx2 ¼ λ2φ) or other errors (e.g.,
dropping or adding a factor to the expressions).
In the interviews, most participants directly wrote down

the solutions. We observed that these students did not write
out a detailed mathematical derivation, nor did they
substitute these solutions into the ODEs to check whether
their solutions satisfy the ODEs. When these students were
asked how they provided their solutions, they all claimed
that they remembered the solutions to these ODEs. These
ODEs are usually taught in mathematical courses, but in
upper-division physics courses, the solutions of these
ODEs are typically introduced directly and their derivation
is rarely shown. Thus, we assume that many students
solved these ODEs by remembering the solutions rather
than by executing the mathematical procedure. If their
memories were wrong, their answers were wrong too.
Step E2: This step determines the values of the unknown

constants in the general solutions through mathematical
calculations. There were N ¼ 236 solutions that contained
the correct equations for unknown constants, and among
them, N ¼ 233 solutions yielded the correct results. In
addition, there were a few mathematical mistakes (N ¼ 3
solutions): losing or adding a constant factor or sign or not
compiling a final expression.
In the interviews, the participants who progressed to this

step could manipulate the unknown constants to match the
boundary conditions without any difficulty. Since the
mathematical procedure in this step was mainly algebraic,

solving these unknown constants was not a barrier to the
students’ success.

D. Reflection on the solutions

The reflection stage checks the final expressions.
However, we cannot know whether the students conducted
the reflection since they did not write down the reflection
process explicitly in their exam solutions. To target this
stage, in the interviews, we directly asked participants
whether and how they reflected on their solutions. For
example, one of them answered, “I carefully checked my
calculation process step by step and found no errors.” Other
participants gave similar responses.
Another interviewed student obtained the wrong answer

and only corrected it after he checked the solution steps
from beginning to end. We pointed out that he could have
found the error in his final answer rather straightforwardly
because the units on the left and right sides of the
expression did not agree. He answered, “I have rarely
applied this check method: to check if the units of the final
expression are consistent. When doing homework and
taking exams, I used to check the problem-solving process
step by step.” In summary, our students often attempted to
check their solutions from the first expression to the last
expression.

E. Overview of students’ performance

There were Nt ¼ 388 students who took the exams and
were required to solve the bound state problem. For clarity,
in Fig. 3, we show a Sankey diagram of students’
performance as they progressed through this problem. In
the Sankey diagram, the flow is shown as the proceeding
from a set of sources (in the left column) to a set of
destinations (in the right column). The left column repre-
sents the total number of students who took the exams, and
the right column indicates the pathways of students’
solutions that they had difficulties or made errors at a
certain step. The width of the arrows are proportional to the
number of solutions in each pathway. Ultimately, approx-
imately 60% (N ¼ 233 of 388) successfully worked
through the six steps of the problem and obtained the
correct final results. As shown in Fig. 3, the number of
incorrect solutions are considerably large in steps C1, C2,
and C3, indicating that the students experienced many
difficulties in the construction stage. The number of
incorrect solutions is very noticeably in step C2, which
means that determining the range of the energy constant
was a significant barrier to our students’ success.

VI. FINDINGS ON STUDENTS’ DIFFICULTIES
WHEN ADDRESSING A SCATTERING

STATE PROBLEM

In this section, we provide our investigations of students’
difficulties when dealing with a scattering state problem
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(problem 2 in Fig. 2). The data and analysis are organized
according to the ACER framework utilized in Sec. III.

A. Activation of the tools

There were N ¼ 406 students who took the exams for
the scattering state problem. Among them, N ¼ 396
students utilized the differential equation method. The
remaining N ¼ 10 students directly used a transmission
coefficient formula without showing their work.
The interviews provided additional insight into how the

students activated related resources for the scattering state
problem. One student provided a transmission coefficient
formula in the form T ¼ exp½− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðV0 − EÞp
a�. Then, he

commented, “This is a quantum tunneling problem. I
remember there is a formula in the textbook about the
probability of quantum tunneling. But I can’t remember the
full expression, so I have to write it as this.”We pointed out
that in the particular case of a square potential barrier
between 0 < x < a, one can solve the scattering state
problem to obtain an approximate formula for the quantum
tunneling effect, i.e., T ¼ exp½− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðV0 − EÞp
a=ℏ�. He

responded, “That’s the formula I’m talking about. I
remember this formula for the exam. But I really can’t
remember how to derive this formula.” This result suggests
that some students remembered only the simple expression
of the quantum tunneling effect for a specific case, which
may have discouraged them from solving the Schrödinger
equation for the scattering state questions.

B. Construction of the equations

Step C1: The construction stage maps a physics problem
to a mathematical model. Step C1 establishes the basic
equation (i.e., a time-independent Schrödinger equation) in
different regions. There were N ¼ 396 students that used
the ODE method, and among them, N ¼ 376 students
provided the correct expressions for a time-independent
Schrödinger equation. The remaining N ¼ 20 students
directly wrote down the time-dependent Schrödinger equa-
tion but failed to obtain a time-independent Schrödinger
equation or committed other errors (e.g., missing or adding
a constant factor or sign).
In the interviews, one participant wrote down a time-

dependent Schrödinger equation instead of a time-inde-
pendent Schrödinger equation. He explained, “We are
solving the problem of a particle scattered by a potential
barrier, which is a dynamical problem. It is obvious that we
should use the time-dependent Schrödinger equation to
solve the dynamical problem.” Then, we asked him why the
scattering state problem is a dynamical problem. He drew a
diagram on paper: “A small dot represents a particle, and a
rectangle represents a potential barrier; the particle moves
forward and hits this potential barrier.”We then pointed out
that this is an image of particle motion in classical
mechanics. He argued, “The scattering state problem is a
dynamical process both in classical mechanics and in
quantum mechanics. In classical mechanics, the scattering
dynamics of a particle are described by the Newton
equation; whereas in quantum mechanics, the scattering

FIG. 3. Sankey diagram depicting the pathways of students’ solutions as they progressed through the bound state problem. The
diagram shows the flow from the beginning to the different types of solutions that have difficulties at a particular step, where the width of
the arrows are proportional to the number of solutions in each flow.
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dynamics of a particle are described by the time-dependent
Schrödinger equation.” We hypothesize that some students
used the picture of classical motion to guide their problem-
solving for the scattering state problem in quantum
mechanics.
Step C2: This step determines the possible values for the

energy constant. TherewereN ¼ 376 solutions that included
the exact ODEs, and among them, N ¼ 278 solutions
explicitly treated two cases: E > V0 and E < V0.
Common errors in the remainingN ¼ 98 solutions included
discussing only one case: either E > V0 or E < V0.
The interview results provide insights into these find-

ings. In the interviews, two students commented only on
the case of E > V0. When they were asked why they
considered only this case, one of them claimed, “For one-
dimensional potential problems, it is often necessary to
distinguish between two cases, the bound states and the
scattering states. Specifically, in this problem, when the
energy of a particle is greater than the height of the potential,
it is in the scattering state. Therefore, we can determine
E > V0.” Actually, the criteria are E < Vð∞Þ ⇒ bound
states and E > Vð∞Þ ⇒ scattering states. Therefore, the
correct criteria shouldbe to compare the energyof the particle
with the potential energy at infinity, not with the potential
energy at the highest point. When we pointed out the correct
criteria, they admitted that they had misremembered. This
result suggests that some students did not develop a func-
tional understanding of the criteria to distinguish between
bound and scattering states.
Another two students considered only the case ofE < V0.

When theywere askedwhy they discussed only this case, one
of them stated, “This is a quantum tunneling process. The
quantum tunneling effect means that when the energy of a
particle is less than the height of the barrier, it can still tunnel
through the barrier. This is a typical quantum mechanical
effect, which is not possible in classical mechanics. We are
now solving the quantum tunneling problem, so we should
choose the case ofE < V0.” The other student gave a similar
response. For the present problem, the correct answer is as
follows: E > 0 ⇒ scattering states; furthermore, the wave
functions of scattering states inside the barrier are different in
the two cases E < V0 and E > V0. Therefore, the quantum
tunneling process with E < V0 is just one of the two cases.
The student’s statement about the quantum tunneling effect
was correct. However, because they overfocused on the
quantum tunneling effect, they could not consider other
possibilities for scattering states.
Step C3: This step combines a general solution with the

boundary conditions to set up the equations to determine
the unknown constants. There were N ¼ 263 solutions that
exploited the correct general solution, and among them,
N ¼ 236 solutions provided the correct equations to match
the boundary conditions. The common mistakes in the
remaining N ¼ 27 solutions included not using the con-
dition that the transmitted waves come in from one side

only, using a superposition state, or other errors (e.g., not
including the continuity of derivatives of the wave func-
tions; missing or adding a factor or sign).
In the interviews, two participants tried to utilize a

superposition state but failed. Then, they were asked
why they chose this superposition state, and their responses
were similar to the research findings for the bound state
problem (step C3 in Sec. V. B.). Therefore, we hypothesize
that whether it is a scattering state or a bound state, some
students have the incorrect belief that the equation HΨ ¼
EΨ is always true for any possible state of the system. This
can lead to difficulties for students in solving energy
eigenstate problems.
Another interviewed student wrote down the expression

φðxÞ ¼ Ceikx þDe−ikx for the wave function in the region
x > 0. Then, he tried to determine the amplitude D and
failed. He showed confusion when we told him that the
amplitude D was 0. We then explained that the exponential
function eikx represents a traveling wave, with the wave
number k and the traveling direction along the x direction.
Since the transmitted wave comes in from one side only, the
wave amplitude is D ¼ 0 in this context. He answered,
“This is the first time I recognize the physical meaning of
the exponential function form. Previously, I just thought of
this exponential function as a solution of the ODE and
never considered such an intuitive physical meaning of the
exponential function.” Thus, the interview findings suggest
that some students did not master the mathematical
expression and corresponding physical picture of traveling
waves.
Step C4: This step sets up the expressions for the

reflection and transmission coefficients, expressed as the
ratios of the probability currents (i.e., R ¼ Jr=Ji and
T ¼ Jt=Ji, where Ji, Jr, and Jt are the probability currents
of the incident, reflected, and transmitted waves, respec-
tively). There were N ¼ 236 students that obtained the
expressions of the reflected and transmitted waves, and
among them, N ¼ 191 students wrote down the correct
expressions of R and T. The common errors in the
remaining N ¼ 45 solutions included incorrectly express-
ing the coefficients as ratios of the amplitudes of the wave
functions R ¼ jBj2=jAj2 and T ¼ jCj2=jAj2 or other errors
(e.g., adding or missing a factor or sign).
In the interviews, two students directly wrote down the

expressions R ¼ jBj2=jAj2 and T ¼ jCj2=jAj2. They were
asked how to define the reflection and transmission coef-
ficients, and one of them replied, “I remember that the
reflection and transmission coefficients are associated with
the amplitudes of the wave functions, so they should be
expressed as such.” Actually, for the present question, the
correct answer is as follows: (1) the reflection coefficient is
given by R¼Jr=Ji¼ðℏk=mjBj2Þ=ðℏk=mjAj2Þ¼jBj2=jAj2;
(2) the transmission coefficient is given by T ¼ Jt=Ji ¼
ðℏl=mjCj2Þ=ðℏk=mjAj2Þ ¼ ljCj2=kjAj2 for one case and
T ¼ Jt=Ji ¼ 0 for the other case. Here, the amplitudes of
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the incident, reflected, and transmittedwaves areA,B, andC,
respectively; thewave numbers of the incident, reflected, and
transmitted waves are k, k, and l, respectively. Thus, the
reflection coefficient happens tobe the ratio of the amplitudes
of thewave functionsR ¼ jBj2=jAj2 since thewave numbers
cancel each other out. However, the expression for the
transmission coefficient T ¼ jCj2=jAj2 is wrong because
the wave numbers are not accounted for or the probability
current of the transmitted wave could be zero for some
situations. In general, the expression for the transmission
coefficient T ¼ jCj2=jAj2 is wrong for any other situation in
which thepotential is different for the incident and transmitted
waves. Then, we reminded them that the reflection and
transmission coefficients are defined by the ratios of the
probability currents. One student responded, “I remember
that the concept of the probability current was introduced at
thebeginningof the textbook, but itwas rarely used in the later
contents. Thus, I didn’t remember that these coefficients are
defined by the probability currents.” We assume that some
students did not know the relationship between the definition
of the scattering coefficient and the probability current.

C. Execution of the calculations

Step E1: This step yields general solutions for the ODEs
that are established in step C2. There were N ¼ 278
solutions that used the correct ODEs, and among them,
N ¼ 263 solutions obtained the correct solutions to the
ODEs. The remaining N ¼ 15 solutions included obtaining
e�iλx instead of e�λx for the ODE d2φ=dx2 ¼ λ2φ or other
errors (e.g., omitting or adding a constant factor).

The interviews provided similar insight as those for the
bound state problem (step E1 in Sec. V.C.). For example,
one student provided a solution e�iλx for the ODE
d2φ=dx2 ¼ λ2φ. Then, he thought for a moment, modified
this term with his pen, and wrote down a solution e�λx.
When he was asked why he did it, he explained, “I
remember that the general solution for the ODE d2φ=dx2 ¼
λ2φ is e�λx, while the general solution for the ODE
d2φ=dx2 ¼ −λ2φ is e�iλx. The two expressions are so
similar that I often confuse them.” Therefore, we assume
that students usually memorized the general solutions of
these ODEs instead of solving them.
Step E2: There were N ¼ 191 students that built the

correct expressions of the reflection and transmission
coefficients. The next step E2 uses mathematical calcu-
lations to solve these equations to obtain the final answer.
Among them, N ¼ 187 students successfully completed
this step. The remaining N ¼ 4 solutions included drop-
ping or gaining constant factors or not giving a final
expression. Since the calculations in this step are algebraic,
both exam solutions and the interviews suggest that the
mathematical manipulations in step E2 did not constitute a
main difficulty to student performance in the scattering
state problem.

D. Reflection on the solutions

Students’ difficulties in the reflection stage were probed
in the interviews. When students were asked how they
might check if their solutions were correct, they gave
responses similar to those for the bound state problem

FIG. 4. Sankey diagram depicting the pathways of students’ solutions as they progressed through the scattering state problem. The
meaning of this Sankey diagram is similar to that of Fig. 3.
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shown in Sec. IV. D. In addition, an element of the
reflection stage (i.e., checking whether the reflection
coefficient R and transmission coefficient T satisfy the
condition Rþ T ¼ 1) is specific to scattering state prob-
lems. In the interviews, approximately a quarter of the
participants, after they calculated the reflection coefficient
R, directly used T ¼ 1 − R to obtain the transmission
coefficient T. This means that they knew and utilized this
physical relationship Rþ T ¼ 1. On the other hand, one
student obtained the results for the reflection and trans-
mission coefficients separately; however, the sum of the
two clearly did not satisfy Rþ T ¼ 1. We asked him to
examine whether these expressions made sense without
going through the calculation. He was surprised and did not
know how to proceed. Then, we prompted him to examine
whether the results satisfy Rþ T ¼ 1. He responded, “I
know that the sum of the reflection and transmission
coefficients must be 1, which is required for the conserva-
tion of probability. But I didn’t spontaneously apply this
rule to check my calculations without any prompt.” Thus,
we may include that our students rarely used effective
reflective methods such as checking the physical relation-
ship Rþ T ¼ 1.

E. Overview of students’ performance

There were Nt ¼ 406 students who took the exams and
were asked to solve the scattering state problem. In Fig. 4,
we illustrate the pathways of students’ solutions as a
Sankey diagram. The Sankey diagram shows the flow of
students’ solutions that end up with different difficulties at a
certain step. The width of the arrows are proportional to the
number of solutions in each pathway. In the end, approx-
imately 46% (N ¼ 187 of 406) successfully passed seven
steps of the problem and provided the correct final answers.
As shown in the figure, students had few difficulties in the
activation stage and in the execution stage, while they
struggled with various difficulties in the construction stage.
In particular, step C2, which requires determining the range
of energy constants, and step C4, which requires under-
standing the definition of scattering coefficients, were the
main stumbling blocks for our students.

VII. DISCUSSIONS AND CONCLUSIONS

A. Findings regarding the bound
and scattering state problems

It is often assumed that after students have learned how
to solve an example problem in a certain context, they are
able to transfer their knowledge and skills from the example
problem to solve a new problem. However, this did not
happen in our study. To be precise, in the traditional
quantum mechanics curriculum at USTC, students are
often exposed to a typical example problem: the bound
and scattering states in a finite square potential well. Much
time is devoted to this topic, with 4 sessions of 50 min each.

Despite the effort expended on this example problem,
students still did not achieve enough mastery of the relevant
physics concepts and mathematical techniques to solve new
problems on the exams.
When students used the ordinary differential equation

method to solve bound and scattering state problems in the
context of quantummechanics, theymade a variety of errors.
In this work, we studied students’ difficulties by analyzing
their solutions to exams and conducting think-aloud inter-
views. Then, we followed the ACER framework to analyze
the data and identified four broad categories of reasoning
difficulties within the problem-solving procedure.
We summarize the primary difficulties and possible

reasons evident in students’ responses to the bound state
problem (Table I) and to the scattering state problem
(Table II), respectively. Here, primary difficulties refer to
the errors made by multiple students (typically >20
students) in each stage of the ACER framework.

B. Similarities and differences between the bound state
and scattering state problems

The previous Secs. IV and V presented our findings on
students’ difficulties in the context of bound states and
scattering states. It is interesting to compare students’
difficulties in different contexts to see what the similarities
and differences are.
(i) Activation stage: In both the bound and scattering

state cases, we found that some students were less
successful in recognizing the ordinary differential equation
as the appropriate mathematical technique to solve these
problems. However, the students made different errors in
the two cases. In the case of bound states, some students
inappropriately activated the resource of the operator
method. In contrast, in the case of scattering states, some
students used the approximate formula for quantum tun-
neling, where it is not applicable.
(ii) Construction stage:We found that a main issue was

that students selected incorrect values for the energy
constants in the case of bound states. This difficulty also
appeared in the students’ work in the case of scattering
states. However, the possible explanations of student
difficulties in the two cases are largely different (see the
summary tables in Sec. VI). These results imply that many
students did not develop a functional understanding of the
criteria to distinguish between bound and scattering states.
Moreover, in the case of bound states, one issue is not

setting up the time-independent Schrödinger equation
directly for these eigenfunction problems. This may be
due to the students’ tendency to use the time-dependent
Schrödinger equation as a starting point. This difficulty was
also observed in the students’ efforts to solve the scattering
state problems. In contrast, a potential explanation of this
issue is that some students used the classical picture to
approach scattering state problems.
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TABLE II. Primary difficulties of students in solving scattering state problems and the possible reasons for these difficulties.

Stages Primary difficulties Possible reasons
Evidence in

previous studies

Activation Directly using the approximate formula
for quantum tunneling

Remembering the approximate formula for
quantum tunneling while not knowing
the explicit procedure to derive it

Novel

Construction Not setting up the time-independent
Schrödinger equation directly for the
scattering state problem

Inappropriately applying the classical physics
picture to the scattering state problem
and considering the problem as a dynamical
process

Novel

Selecting energy constants
with incorrect values

(1) Not developing a functional understanding
of the criteria for bound and scattering states

Partially discussed
in Ref. [5]

(2) Too much focus on the quantum tunneling
effect to consider other possibilities
of scattering states

Novel

Inappropriately setting up a
superposition state expression

Incorrect belief that HΨ ¼ EΨ holds
for any possible wave function Ψ

Novel

Not using the condition that the
transmitted waves come in from
one side only

Not relating the mathematical
expressions of traveling
waves to their physical meaning

Partially discussed
in Ref. [3]

Incorrectly expressing the scattering
coefficients as ratios of the amplitudes
of the wave functions

Not knowing the definition
of scattering coefficients

Partially discussed
in Ref. [3]

Execution Obtaining incorrect general solutions
to the ODEs

Remembering only the general solutions
to the ODEs instead of actually
solving them

Novel

Reflection Rarely using effective check methods
such as probability conservation
properties to detect errors

Developing a habit of checking
the solutions step by step over the
years and rarely being taught
effective reflection methods

Novel

TABLE I. Primary difficulties of students in solving bound state problems and the possible reasons for these difficulties.

Stages Primary difficulties Possible reasons
Evidence in

previous studies

Activation Inappropriately using the Hamiltonian
operator transformation
method

Too much focus on the abstract formalism in quantum
mechanics to motivate use of the ODE tools for
solving the Schrödinger equation in position
representation

Novel

Construction Not setting up the time-independent
Schrödinger equation directly
for the eigenfunction problem

Overemphasizing the time-dependent Schrödinger
equation in the context of quantum mechanics

Partially discussed
in Ref. [9]

Selecting energy constants
with incorrect values

(1) Remembering an algorithm for similar problems
but not understanding the distinction between
bound and scattering states

Partially discussed
in Ref. [5]

(2) Remembering the criteria only for the special case
but failing to adjust to new cases

Partially discussed
in Ref. [5]

Inappropriately setting up
a superposition state
expression

Incorrect belief that HΨ ¼ EΨ holds for any possible
wave function Ψ

Novel

Execution Obtaining incorrect general
solutions to the ODEs

Remembering only the general solutions to the
ODEs instead of actually solving them

Novel

Reflection Rarely using effective
check methods to
detect errors

Developing a habit of checking the solutions
step by step over the years and rarely being
taught effective reflection methods

Novel
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In particular, a main difficulty related to scattering state
problems is that some students incorrectly believed that the
scattering coefficients are defined by the ratios of the
amplitudes of the wave functions. This difficulty is unique
to the context of scattering states.
(iii) Execution stage: In this stage, we found that the

process of manipulating ODEs was a barrier for some
students, which is largely content independent. The inter-
view results suggest that the students memorized the
general solutions to the ODEs rather than actually calcu-
lating them.
(iv) Reflection stage: We found that students usually

checked their solutions step by step while rarely using
effective checking methods. In particular, in the case of
scattering states, although students knew some simple
formulas, such as the conservation of probability
Rþ T ¼ 1, they didnot use them to reflect on their solutions.
In summary, in the construction stage, to solve a bound

state or a scattering state problem, the students faced
several difficulties. Students struggled with these signifi-
cant difficulties since in this stage, they were required to
convert a physical situation into a mathematical expression
(e.g., set up the ODEs in different regions) or explain the
physical meaning of a mathematical expression (e.g., select
ranges of energy constants). The interview results indicate
that the students had not developed a functional under-
standing of relevant concepts (e.g., the criteria to distin-
guish between bound and scattering states, the definition of
scattering coefficients using probability currents) for solv-
ing these quantum mechanics problems. The differences
between bound states and scattering states are understand-
able since the construction stage of the problem-solving
process is highly dependent on the specific physical context
of what the problem describes.

C. Comparison with previous studies
on bound and scattering states

As mentioned in the literature overview, there are several
studies [3,5] on students’ difficulties with the concepts of
bound and scattering states. It is important to compare our
study with previous studies to see which previously
existing difficulties are persistent and which difficulties
are emerging. We follow the ACER framework to compare
these results.
(i) Activation stage: We found that students suffered

from interference from other concepts, such as Hamiltonian
operator transformations, when applying the concepts of
bound and scattering states to solve problems. This is a
previously unidentified student difficulty. The word “inter-
ference” refers to the cognitive process in which the
memories and thoughts of one context have a negative
influence on comprehending a similar context.
(ii) Construction stage: In a previous study [6], the

researchers found that some students believed that the time-
independent Schröinger equation is the most fundamental

equation of quantum mechanics. This belief is conceptually
incorrect. This incorrect belief results in students struggling
with the time dependence of a wave function. Our findings
present an interesting flip on this common misconception.
In our study, we found that some students overemphasized
that the time-dependent Schröinger equation is the funda-
mental equation of quantum mechanics. This belief is
conceptually correct, but it is inconvenient for problem
solving. This correct belief results in students beginning
with the time-dependent Schröinger equation to solve the
stationary state problems. This requires them to reduce the
time-dependent Schröinger equation to the time-indepen-
dent Schröinger equation using the complicated separation
of variables method. They usually failed in this derivation
process, leading to a failure of the final solutions.
A previous study [5] found that students had great

difficulty in determining whether a particle is in bound
states or in scattering states for a given potential energy. For
example, one question in the quantum conceptual survey
showed four different potential energy wells. Many stu-
dents thought that a particle is always in the bound states
for any potential energy with a well shape. This primary
difficulty also appeared in our study, which manifested in
the students’ errors in determining the range of energy
constants. In fact, in our study, we found that this difficulty
appeared in more aspects of the students’ problem-solving
process: students have difficulties not only with how to
distinguish between bound and scattering states but also
with how to consider the multiple possible cases for
scattering states. Thus, our study indicates that the diffi-
culties identified in previous studies not only affect
students’ conceptual understanding of bound and scattered
states but also affect how they translate these concepts into
the procedure of ODE calculations.
Another previous study [3] found that students struggled

with a common issue: confusion regarding the physical
meaning of plane waves. For example, students found plane
waves to be less intuitive and preferred the wave packet
representation over the plane wave representation. This
difficulty also appeared in our study, but from a different
perspective: students were not sure how the physical
meaning of plane waves relates to its mathematical expres-
sion eikx and were particularly confused regarding the fact
that the transmitted waves come in from one side only.
Another issue regarding planewaves in the previous study

[3] is that students believed that the probability of a plane
wave is related to its amplitude. This difficulty is related to
students’ difficulty with scattering coefficients in our study.
For the case in our study, the incident, reflected, and
transmitted waves are expressed as Aeikx, Be−ikx, and
Ceilx, respectively. Since a plane wave function eikx is not
normalizable, one cannot calculate the reflection and trans-
mission probabilities, as one would naively expect R ¼
jBe−ikxj2=jAeikxj2 ¼ jBj2=jAj2 and T ¼ jCeilxj2=jAeikxj2 ¼
jCj2=jAj2. Therefore, the correct way to obtain the reflection
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and transmission coefficients for plane waves should be to
calculate the probability current. However, we noticed that
some students assumed that the scattering coefficients are
given by the relative amplitudes as R ¼ jBj2=jAj2 and
T ¼ jCj2=jAj2. The students’ responses in the interviews
suggest that they could not explain why it is necessary to
introduce the concept of probability current here.
In our study, we found that students tended to build an

expression of the superposition state whether they were
dealing with bound or scattering states. It is a misconcep-
tion that all wave functions, especially superposition states,
satisfy the time-independent Schrödinger equation. This
leads to new difficulties for students in solving the
eigenstate problem in quantum mechanics, when the differ-
ential equation that students are asked to solve is the time-
independent Schrödinger equation.
Previous studies [3,5] found that students often incor-

rectly assuming that a particle will lose energy when it
tunnels through a barrier. This difficulty did not appear in
our study. We do not want to say that our students have a
solid understanding of the nature of the scattering state, but
at least it suggests that the students know that the energy is
a constant when the particle is in an energy eigenstate (e.g.,
a scattering state).
(iii) Execution stage: In our study, one issue is to

calculate a certain ODE to obtain its general solutions.
However, as students were typically not required to perform
calculations for multiple-choice questions in the quantum
mechanics conceptual survey, this difficulty was not
observed in previous studies [3,5].
(iv) Reflection stage: In previous studies [3,5], there was

no specific research on whether students checked their
solutions when dealing with problems. In contrast, we
explicitly probed this issue in the interviews. We found that
students usually reflected on their solutions step by step
despite rarely using effective checking methods.
In summary, the difficulties in distinguishing bound and

scattering states and dealing with plane wave functions
seem to be persistent in student reasoning for solving both
nonalgorithmic problems (as documented in previous
studies [3,5]) and algorithmic problems (as documented
in the present paper). In addition, some new difficulties in
students’ problem-solving processes were identified in
our study.

D. General topics on student difficulties

From a general point of view, there has been a great deal
of research about students relying on previous example
problems in introductory physics courses [9]. In our study,
we found such pattern and nature of difficulties which are
analogous to those observed in introductory physics
courses. Students often do not have functional understand-
ing of the example problems, but only memorize them.
Then they use their memorized concepts and algorithms
to solve new problems. In this way, they tend to

overgeneralize concepts and algorithms learned in one
situation to another in which they are not applicable. For
example, students just memorize the algorithm for example
problems without really understanding the difference
between bound and scattering states, leading them to have
a difficulty in choosing values of the energy constants for a
new potential.
In a previous study [48], researchers have found that

students’ conceptual difficulties with force and motion can
arise from their use and interpretation of the language
involved. Students’ confusion is a struggle to distinguish
between the everyday language and the physical meaning
of the terms “force” and “motion.”
Interestingly, some similar evidence was found in our

study that language may play a role in students’ difficulties
with quantum concepts. The term “scattering” in everyday
language has the meaning of dynamics. When students are
exposed to the term scattering, they often have a picture of
classical motion, such as a particle hitting a barrier and
being bounced off. This can lead students to think of the
scattering state in quantum mechanics using a picture of
classical motion. This example has been observed in our
study (see Sec. VI.B). The term “bound” in everyday
language has the meaning of being confined to a region. We
speculate that when students are exposed to the term bound,
they assume that the energy of the particle is smaller than
the value of the external potential. This may be the reason
why they choose the wrong values of the energy constants.
Of course this is only our hypothesis and needs to be further
studied in future work.

E. Implications for instruction

Our investigation of students’ common difficulties can
provide several implications for instruction on bound and
scattering states in quantum mechanics.
First, students had difficulties determining whether a

particle is in a bound state or in a scattering state for a given
potential energy. In the traditional quantum mechanics
curriculum at USTC, students were often exposed to simple
examples, such as bound and scattering states in a square
potential well. Students often only remembered these
particular examples and then used pattern matching to
solve the bound and scattering state problems on the exams.
We suggest that several variations of these examples can
encourage students to grasp general criteria to distinguish
the bound and scattering states. For instance, providing a
complex potential instead of a simple square well potential
can force students to attempt applying the criteria rather
than simply using pattern matching with previous similar
questions. It also provides an opportunity for students to
realize the fact that the wave function can have different
functional forms in different regions (e.g., a complex
function eikx or a real function ekx). In this way, they
can achieve a more intuitive understanding of the general
solutions of the ODEs in different regions.
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Second, students had difficulty giving the correct expres-
sions of reflection and transmission coefficients. In a
textbook [44] often used in the quantum mechanics course
at USTC, these coefficients are calculated directly by the
probability current with no explanation of where the
formulas come from. In some textbooks, the transmission
coefficient is simply given as T ¼ jCj2=jAj2 with no
mention that this formula applies only to the special case
inwhich the transmittedwave and the incidentwave have the
same wave numbers. We suggest that the teaching of this
context should focus on explaining why it is necessary to
introduce the concept of the probability current here to define
the reflection and transmission coefficients. We can advise
students to calculate the reflection and transmission coef-
ficients with the formula of the probability current and ask
them further to verify that Rþ T ¼ 1. This approach may
lead them to gain a deeper understanding of the conservation
of probability. For example, in the interviews, we explained
that the probability of finding a particle in a specified range is
P ¼ R

b
a jΨj2dx; thus, the change in the probability is given

by dP=dt ¼ JðaÞ − JðbÞ, where JðxÞ is the probability
current at the point x. This equation gives the rate at which
probability is flowing past a specified location. One student
responded, “I know the principle of the statistical interpre-
tation of wave functions, and I’m used to calculating the
probability by integration. I never realized the probability
could be represented in such an intuitive form.”
Third, students had difficulty determining when to use a

linear superposition form of the eigenstates. We suggest
asking the students to try the following two approaches: for
an energy eigenvalue problem, a single eigenstate state
φnðxÞ is used to satisfy the time-independent Schrödinger
equation; for an evolution problem, a linear superposition
of energy eigenstates

P
n cnðtÞφnðxÞ is used to satisfy the

time-dependent Schrödinger equation.
In conclusion, we utilized the ACER framework to

analyze the student problem-solving process in the context
of bound and scattering states in quantum mechanics. We
investigated how students’ understanding of the concepts of
bound and scattering states affected their performance in
solving the corresponding time-independent Schrödinger
equation. Compared to previous studies in the context of
bound and scattering states, our study demonstrated that
some students’ difficulties can be perpetuated and that new
difficulties can occur. The ACER framework can be used to
study the student problem-solving process in other contexts
of quantum mechanics. Additional studies could provide a
broader perspective on students’ problem-solving proc-
esses, help identify possible patterns in student reasoning,
and allow for the development of instructional strategies to
address difficulties in student understanding and reasoning.
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APPENDIX A: OPERATIONALIZATION OF THE
ACER FRAMEWORK FOR A BOUND

STATE QUESTION

In the following we provide the summary of the process
to solve the bound state problem (problem 1 in Fig. 1)
according to the ACER framework.

• Step A—The basic equation is the time-independent
Schrödinger equation in a one-dimensional potential,
which can be solved by the ordinary differential
equation (ODE) method.

• Step C1—Express the basic equation (i.e., the time-
independent Schrödinger equation) in different
regions:

−
ℏ2

2m
d2

dx2
φðxÞ¼EφðxÞintheregion0<x<a;

�
−
ℏ2

2m
d2

dx2
þV0

�
φðxÞ¼EφðxÞintheregionx>a:

• Step C2—Choose the range of the energy constant:
When the energyE is less than the potential energy at

both plus and minus infinity, the particle is in a bound
state. In addition, the energy E must exceed the
minimum value of the potential energy, for every
physically admissible solution to the time-independent
Schrödinger equation. Thus we have 0 < E < V0, and
the ODEs read

d2φ
dx2

¼ −k2φ in the region 0 < x < a;

d2φ
dx2

¼ l2φ in the region x > a;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
and l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV0 − EÞ=ℏ2

p
are

real and positive.
• Step E1—Provide the general solutions to the ODEs:

The above ODEs have the general solutions as

φðxÞ ¼ A sin kxþ B cos kx in the region 0 < x < a;

φðxÞ ¼ Ce−lx þDelx in the region x > a;

where A, B, C, and D are the unknown constants.
• Step C3—Setup the equations for all unknown
constants:
The second term in the general solution φðxÞ ¼

Ce−lx þDelx blows up as x → ∞, so we are left with
φðxÞ ¼ Ce−lx. Then we impose boundary conditions:

TU, LI, XU, and GUO PHYS. REV. PHYS. EDUC. RES. 17, 020142 (2021)

020142-16



φ continuous at x ¼ 0, φ and dφ=dx continuous at
x ¼ a. We find that

B ¼ 0;

A sin ka ¼ Ce−la;

kA cos ka ¼ −lCe−la:

• Step E2—Determine the energy eigenvalues:
Using algebraic calculations, we obtain

cot ka ¼ −
l
k
:

This is the equation for the allowed energies of the
bound states, where k and l are functions of the
energy E.

• Step R—Use the specific reflection methods to check
the solution: checking units; checking the transcen-
dental equation that could be solved only for discrete
values of the energy resulting in discrete energy
eigenvalues.

APPENDIX B: OPERATIONALIZATION OF THE
ACER FRAMEWORK FOR A SCATTERING

STATE QUESTION

Following the ACER framework, a summary of the
process to calculate the scattering state problem (problem 2
in Fig. 2) is shown here.

• Step A—The basic equation is the time-independent
Schrödinger equation in a one-dimensional potential,
which prompts the application of the ordinary differ-
ential equation method.

• Step C1—Express the basic equation (i.e., the time-
independent Schrödinger equation) in different regions:

−
ℏ2

2m
d2

dx2
φðxÞ ¼ EφðxÞ in the region x < 0;

�
−
ℏ2

2m
d2

dx2
þ V0

�
φðxÞ ¼ EφðxÞ in the region x > 0:

• Step C2—Choose the range of the energy constant:
When the energy E is larger than the potential

energy at both plus and minus infinity, the particle is in
a scattering state. Here we consider two cases and treat
them separately.
Case I: When E > V0, the ODEs read

d2φ
dx2

¼ −k2φ in the region x < 0;

d2φ
dx2

¼ −l2φ in the region x > 0;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
and l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE − V0Þ=ℏ2

p
are

real and positive.

Case II: When E < V0, the ODEs read

d2φ
dx2

¼ −k2φ in the region x < 0;

d2φ
dx2

¼ λ2φ in the region x > 0;

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mE=ℏ2

p
and λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV0 − EÞ=ℏ2

p
are

real and positive.
• Step E1—Provide the general solutions to the ODEs:

Case I: When E > V0, the general solutions are

φðxÞ ¼ Aeikx þ Be−ikx in the region x < 0;

φðxÞ ¼ Ceilx þDe−ilx in the region x > 0;

where A, B, C, and D are the unknown constants.
Case II: When E < V0, the general solutions are

φðxÞ ¼ Aeikx þ Be−ikx in the region x < 0;

φðxÞ ¼ Ce−λx þDeλx in the region x > 0;

where A, B, C, and D are the unknown constants.
• Step C3—Setup the equations for all unknown
constants:
Case I: When E > V0, to the right, assuming there

is no incoming wave in this region, we have D ¼ 0.
Continuity of φ and dφ

dx at x ¼ a gives

Aþ B ¼ C;

ikðA − BÞ ¼ ilC:

Case II: When E < V0, the second term in the general
solution in the right region blows up as x → ∞, so we
have D ¼ 0. Continuity of φ and dφ=dx at x ¼ a
yields

Aþ B ¼ C;

ikðA − BÞ ¼ −λC:

• Step C4—Setup the expressions for the transimission
coefficient T and the reflection coefficient R:
For a particle with a wave function φðxÞ, the

probability current J is defined as

J ¼ iℏ
2m

�
φ
∂φ�

∂x − φ� ∂φ
∂x

�
:

We have the incident probability current Ji, the
reflected probability current Jr, and the transmitted
probability current Jt. Therefore, the transmission
coefficient and the reflection coefficient are defined as

T ¼ Jt
Ji
; R ¼ Jt

Ji
:
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• Step E2—Determine the final answer:
Case I: Using algebraic calculations, we find that

Ji ¼ ℏk
m jAj2, Jr ¼ ℏk

m jBj2, and Jt ¼ ℏl
m jCj2. Then we

obtain

T ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE − V0Þ

p
ð ffiffiffiffi

E
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − V0

p Þ2 ;

R ¼ 1 −
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðE − V0Þ

p
ð ffiffiffiffi

E
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − V0

p Þ2 :

Case II: Similarly, we find that Ji ¼ ℏk
m jAj2,

Jr ¼ ℏk
m jBj2, and Jt ¼ 0. Then we obtain

T ¼ 0; R ¼ 1:
.

• Step R—Apply the specific reflection methods to
check the solution: checking units; checking limiting
cases when energy is very large or is just above the
barrier; checking whether the reflection coefficient R
and transmission coefficient T satisfy the conditions
of 0 ≤ R; T ≤ 1 and Rþ T ¼ 1.
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