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As part of ongoing research on student thinking about quantum mechanical concepts and formalism, we
explored how students defined and made sense of expectation values. Previous research has focused on
student difficulties when defining the expectation value for a generic operator and found that students
conflate other quantum mechanical ideas with expectation values. In this study, we analyzed survey data
collected from two universities over a number of years and interviews carried out at two points during the
semester. With a focus on underlying student thinking, we used a concept image perspective to categorize
students’ concept definitions of the expectation values in the context of measuring spin in a spin-1=2
system and in the contexts of measuring energy and position for a particle in an infinite square well
potential. Analysis of interview data showed that students invoke many different ideas when explaining
their reasoning. The two most common definitions for the expectation value were weighted average and
most probable value. In interviews, students’ definitions were influenced by whether the problem context
involves continuous or discrete observables.
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I. INTRODUCTION

Quantum mechanics is a notoriously challenging course
incorporating complex mathematical formalism and stat-
istical calculations that students must interpret in terms of
physics concepts. Quantum mechanical systems are prob-
abilistic in nature. Because of particles existing in super-
position states, observable quantities are often not well
defined, that is, they do not have a single value that would
be measured with 100% probability. In such situations, it is
often useful to use the expectation value, or predicted mean
value. The expectation value is the average value that
results from measuring many identically prepared particles,
an idea which is commonly defined as the ensemble
average. Mathematically, the expectation value is equiv-
alent to an average of the possible measurement values
weighted by the probabilities, making “weighted average”
a suitable definition. In addition to being a useful quantity
to calculate for single-particle systems, it is also an
important statistical quantity when the system consists of
many particles.

Throughout quantum mechanics, students are asked to
solve for and reason about expectation values for both
discrete and continuous observables. Depending on the
system and how information about the system is represented,
there are different mathematical operations that could be
employed to calculate the expectation value: matrix multi-
plication, integration, or summation of values weighted by
probabilities. It is certainly possible to carry out any method
with little attention to the underlying meaning of the expect-
ation value. However, being able to draw on the meaning of
the expectation value is important to determining methods
and interpreting the results of a calculation.
Much prior research has focused on identifying student

difficulties with many quantum mechanical topics (see
Ref. [1] for an overview). Related to the expectation value,
overall findings have indicated that students have difficulty
distinguishing between the measured value, probability,
and expectation value [1,2], and confuse uncertainty,
probability density, and expectation value [3]. Recent work
has shown that as students are constructing and reasoning
about the expressions for expectation values for a generic
operator Q̂, they rarely connect the calculation to the
meaning of the expectation value as the average of many
measurements [1,4,5]. Additional research exploring stu-
dent difficulties with time dependence reported that, often,
students do not recognize the expectation value of energy is
time independent [1,6,7].
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Other researchers have studied students’ work with the
expectation value to look at use of Dirac notations,
matrices, and wave functions [8,9]. Gire and Price note
that some students’ difficulties with quantum mechanical
topics may be due to the notational systems rather than
students not understanding the meaning of the expectation
value. A separate study used the activation, construction,
execution, reflection framework [10] to break down stu-
dents solving an expectation value problem while calculat-
ing the lower bound of ΔAΔB for different operators into
phases of activation, construction, execution, and reflection
[11]. Researchers reported that most students were not cued
toward working with the expectation value and instead tried
to solve the side of the equation involving uncertainty.
As part of our previous investigations into students’

implementation and preferences of the different methods
used to calculate expectation values, we conducted a set of
longitudinal interviews in a spins-first quantum mechanics
course [12]. We found that for a spin state for a spin-1=2
particle, students were more confident in a matrix calcu-
lation as compared with summing the product of eigen-
values and their probabilities. In both the spin context and
the context of continuous wave functions for an infinite
square well potential, the main challenge for students when
implementing the summation method involved identifying
and expressing the quantities within the equation. In some
cases, students would identify the correct components of
the summation expression but were unsure which values to
include.
In this paper, we expand on our preliminary work [13] to

explicitly focus on exploring undergraduate quantum
mechanics students’ underlying conceptual understanding
and definitions of the expectation value. We believe this,
and the corresponding contextual dependence of their
ideas, helps provide useful guidance to future instructional
design and deepens our insights into student thinking in this
topical area. We explore this conceptual understanding in
line with the following research questions:

1. What meaning do students give the expectation
value?

2. What type of values do students think the expect-
ation value can have?

3. How does students’ thinking of the expectation
value depend on the problem context (spin, energy,
position)?

We began our investigation with a survey of three
quantum mechanics courses to determine to what extent
our previous observations were present in these student
populations. By asking students to write the meaning of the
expectation value, we explore how students define the
expectation value in the absence of any problem context.
Motivated by the responses students provided, we con-
ducted interviews to investigate the various meanings
that students attribute to the expectation value as they
are working with different quantum mechanical systems

(i.e., a discrete spin system or a continuous system describe
by a wave function). We organize these data with a concept
image perspective [14], described in Sec. II, with the
purpose of categorizing the different ways students define
and refer to the expectation value. This focus complements
previous literature, which has addressed the expectation
value outside of a problem context or focused on diffi-
culties in problem solving, by providing insight into how
students think about expectation values as they appear in
different quantum systems.

II. METHODOLOGY

For the purposes of this study, we collected data in two
modalities. First, we administered surveys in three quantum
mechanics courses. Based on the results of these surveys,
we designed individual student interviews to further probe
students understanding. This study builds on previous work
that has identified students’ use of different methods to solve
for the expectation value [12,13]. Survey and interview data
were collected at two universities. Both universities are large,
public, Hispanic-serving, primarily undergraduate institu-
tions. Surveys were administered in both position-first and
spins-first quantum mechanics courses. While both courses
cover the same topics, the difference is in the order of
presentation, with position-first quantummechanics courses
introducing quantum mechanics in the context of position
wave functionswhile spins-first begins in the context of spin-
1=2 particles. In this section we describe the design of the
survey and interview questions, detail the data collection and
student populations, and outline our theoretical perspective
for interpreting student responses.

A. Survey

The primary goal of the written survey was to answer
research questions 1 and 2, and to verify our classroom
observations that, while students are often able to calculate
an the expectation value, many students do not correctly
interpret the meaning of this quantity and how it related to
the physical system. In particular, we observed that some
students correctly interpret the expectation value as an
average, while others incorrectly interpret the expectation
value as the most likely outcome.

1. Question design

The survey questions designed for this study are given in
Fig. 1. Question 1 (Q1) is open ended and asks students to
explain what the expectation value of a physical observable
means to them in words. This question is given without a
specific problem context and was asked first, as we did not
want to cue students to think in a particular way. The
second question was more targeted and directly asked
students multiple-choice questions about the types of
values that an expectation value can be. For example,
question 2a (Q2a) asks whether the expectation value is
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always, sometimes, or never equal to the most probable
value or one of the measurement outcomes. The other two
questions ask about whether the expectation value is always
(or sometimes or never) one of the possible measurement
values, and finally, whether the expectation value can be a
negative, zero, or an imaginary number.

2. Data collection and analysis

The survey was administered to a total of 90 students
over three courses in both position-first (PF) and spin-first
(SF) instructional paradigms at two different institutions.
The course identified as PF1 was a senior-level course
sequence (N ¼ 30) at University A using the position-first
textbook “Introduction to Quantum Mechanics” by
Griffiths [15]. Course SF2 was also a senior-level course
at University A (N ¼ 39), but taught using the spins-first
textbook “Quantum Mechanics” by McIntrye [16]. Course
SF3 was a junior–senior-level course at University B
(N ¼ 21), also taught using the spins-first textbook by
McIntyre [16]. All three courses were lecture based and
taught by different instructors. While both SF2 and SF3
were lecture based, each included interactive elements of

clicker questions and used research-based tutorials [17] in
either lecture or recitation sections. In all three courses,
versions of these survey questions were administered on
paper at the end of the course during lecture. PF1
administered Q1 and an alternate version of Q2; SF2
administered Q1; and SF3 administered both questions 1
and 2 as shown in Fig. 1. All students present in class that
day completed the survey (approximately 90% of enrolled
students).
In analyzing these data, we openly coded Q1 for the key

element in each student’s definition of the expectation
value. The data were coded independently by two of us, and
each code was then grouped into one of a small number of
mutually agreed upon categories. As the goal of this survey
is not to quantify different student definitions, we do not
report exact percentages of responses within each category,
but rather provide qualitative examples of the types of
responses student gave. Q2 was primarily used to help
provide additional insight into student responses to Q1.

B. Interviews

In an effort to expand on our findings from the survey
and to answer research question 3, interviews were con-
ducted in the following year in spin-first courses at
University A and B. To investigate the impact of problem
context on students’ definition for the expectation value,
interviews were conducted at two points: first, following
instruction on the expectation value in the spins portion of
the course, and second in the final weeks of the course
following instruction on wave functions.

1. Question design

The state jψ1i in the spins context (see Table I) was given
to students in the first set of interviews conducted approx-
imately halfway through the course. Students were asked to
calculate the expectation value of spin in the y direction for
a state provided in the Sy basis. Once students arrived at an
answer they were asked “Does that answer make sense to
you as an expectation value for this state?” and asked to
elaborate. As part of the interview protocol, students were
also asked whether there were other methods that could be
used to calculate the expectation value. If the answer from
the second calculation was different than the first, students

FIG. 1. Survey questions analyzed as part of this project.
Correct responses to Q2 are circled.

TABLE I. A list of the states or wave functions given to students during the interviews along with the expectation
values they were asked to calculate. The answers for hxi for both wave functions were given to students. ϕn in ψ2

refers to the energy eigenstates for the infinite square well potential. E1 ¼ π2ℏ2=2mL2 was given as part of telling
the students the results of the expectation values of energy.

State or wave function Expectation values asked and answers

Interview set 1 jψ1i ¼ 3ffiffiffiffi
34

p jþiy − 5ffiffi
3

p
4
j−iy hSyi ¼ −8

17
ℏ
2
, hSzi ¼ −60

68
ℏ
2

Interview set 2 ψ2ðxÞ ¼ 3
5
ϕ2 − 4

5
ϕ3 hHi ¼ 7.2E1 ¼ 7.2 π2ℏ2

2mL2, hxi ¼ 0.59L
Interview set 2 ψ3ðxÞ ¼

ffiffiðp
30
L5ÞxðL − xÞ hHi ¼ 1.01E1 ¼ 1.01 π2ℏ2

2mL2, hxi ¼ L
2
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were asked to make sense of the new answer and reconcile
their two results. This protocol was repeated for the
expectation value of spin in the z direction for the same
state jψ1i.
The second set of interviews were conducted in the last

two weeks of the quantum mechanics course and involved
two wave functions, ψ2ðxÞ and ψ3ðxÞ for a particle in an
infinite square well potential (see Table I). Students were
first given ψ2ðxÞ, which is explicitly written as a super-
position of energy eigenstates. They were asked to find the
expectation value of energy and then make sense of their
answer. If a student identified summation or matrix
methods to calculate the expectation value of energy, they
were allowed to carry out the full calculation and were
subsequently asked whether the answer made sense as an
expectation value for this state. If a student only identified
integration as a method, they were only asked to set up the
expression and were provided with the result of the
calculation and asked to make sense of the value. After
answering questions about the expectation value of energy,
students were asked about the expectation value of position
for the same state. The protocol was repeated with ψ3ðxÞ,
which was not given in terms of energy eigenstates but
instead as a parabolic function of x.
Students were not asked to carry out any integration

since the focus of the interviews was on the discussion of
expectation values and not on their ability to carry out
integration. If students began to discuss what the graph of
the wave function looked like, they were asked to try to
sketch it. Regardless of their success in drawing the graph,
they were provided a printed picture of the function
following their attempt (see Fig. 2). Students who did
not graph spontaneously were given the graphical repre-
sentation only after they finished making sense of the
expectation value calculations on their own. Upon receiv-
ing the graph, students were asked whether or not the graph
aligned with how they thought of the expectation value
so far.
In both sets of interviews, students were asked “What is

your definition of the expectation value in the context of
[spin, energy, position]?” This question was asked after
each time they had reasoned about the results of the
calculation in each problem context with the purpose of
getting the student to synthesize their interpretation of the

expectation value and seek consistency with any formal
definition they knew.

2. Data collection and analysis framework

Interviews were conducted at both universities (A and B)
with student volunteers enrolled in spin-first courses in the
year following the survey administration. Interviews
involved additional questions not considered in this study
and ranged from thirty minutes to no more than an hour.
Interviews were videotaped and later transcribed for analy-
sis. We collectively analyzed interview data from both
universities. This was done in part due to the limited
number of students and because the main focus of this
research is on qualitatively identifying students’ definitions
for the expectation value.
The first set of interviews (N ¼ 20) were conducted

during the spins portion of the course after instruction on
expectation values. The second set of interviews (N ¼ 12)
were carried out during the last few weeks of the semester
after students had learned about expectation values of wave
functions in the infinite square well potential. A significant
portion of the students interviewed in the second set of
interviews (10 of the 12) were also interviewed in the
beginning of the semester. The overlap in student partici-
pation means that the data capture several individual
students’ thinking about the expectation value across
problem contexts. For the purposes of tracking and pre-
senting student data across multiple interviews, students
were assigned pseudonyms, each starting with a different
letter of the English alphabet to more easily distin-
guish them.
For the analysis of the interviews, we explore students’

knowledge of the expectation value from a concept image
perspective [14]. This perspective originated in under-
graduate mathematics education research but has more
recently been used in physics education research to
categorize student thinking about vector calculus concepts
in electrodynamics [18–21]. A concept image is a multi-
faceted and dynamic construct. It encapsulates students’
thinking about and ideas associated with a given topic. A
concept image can include equations, graphs, pictures,
definitions, and specific phrases. Taking the expectation
value as an example, a concept image could include (but is
not limited to) histograms, different methods of calcula-
tions, and the definition of the expectation value as an
average. Depending on the particular problem context,
some subset of the concept image is evoked for the purpose
of problem solving, yielding an evoked concept image. A
concept image may even contain contradictory elements
that only create conflict when they are evoked together.
Likewise, a student’s concept image may only contain
fragmented ideas that the student may relate to a topic but
struggle to express coherently.
The way in which a student specifies the meaning of a

topic is referred to as the concept definition. A concept
FIG. 2. Graphs that were provided to students for the wave
functions ψ2ðxÞ and ψ3ðxÞ.
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definition is something personal to a student and may differ
from the formal (textbook) definition of a topic (for
example, a commonly accepted formal definition for an
expectation value is an ensemble average). It is the meaning
a student attributes to a topic and thus can be part of a
student’s evoked concept image. Specifically, Tall and
Vinner describe the concept definition as the explanation
for the evoked concept image [14]. However, it is possible
that the concept definition may be disconnected from the
way the student solves a given problem. A student may
describe an expectation value as being weighted by
probabilities but not connect this to the summation method.
In this case, the definition and summation method could be
seen as disconnected elements of an evoked concept image.
A concept definition can be reconstructed at any time,

just as a concept image can change over time as a student
accrues and incorporates new information. Given the
dynamic nature of the concept image, Tall and Vinner
note that students may develop a restricted concept image
based on an overuse of a formulaic approach, even if the
formal definition is taught. In this case, a concept image is
dominated by a limited set of ideas. As an example, a
student could be taught the definition of the expectation
value along with both the summation and matrix methods
and subsequently go on to spend weeks calculating expect-
ation values without activating the definition as part of their
cognitive structure. Then in a broader problem context or in
an analogous situation, such as defining the expectation
value or deriving the summation method for a superposition
of energy eigenstates, they may draw on different con-
nections rather than on the generalized meaning associated
with the expectation value. Tall and Vinner further add that
students may “even have been taught to respond with the
correct concept definition whilst having an inappropriate
concept image” [14]. Considering expectation values, this
could manifest as a student defining the expectation value
as a weighted average but not connecting the definition to
the physical system or mathematical expression.
In the present study, interviews were conducted to probe

more deeply into students’ ideas of the expectationvalue that
were identified in the surveys. For the interviews, we applied
a concept definitions lens and allowed defined categories to
be emergent from the data. This analytical lens is aligned
with that of phenomenography [22]. Phenomenography is a
qualitative approach that aims to identify and categorize the
variations among individuals’ perception and conceptuali-
zation of phenomena. The resulting categories are based on
students’ descriptions. A set of categories appearing in
multiple situations is considered stable for that student
[22]. Previous research in electricity and magnetism has
used phenomenography to categorize student ideas related to
vector operators [20] and magnetic fields [23].
Both video and transcripts were used to identify specific

concept definitions reflective of ideas expressed by the
students. Analysis specifically focused on responses to two

questions: “How do you make sense of your result as an
expectation value?” and “What is your definition of the
expectation value of [spin, energy, position]?” Student
responses to both questions were collectively coded based
on key phrases. The specific phrases were then labeled with
a particular concept definition.
To be labeled with a specific concept definition, say

weighted average, a student would need to explicitly state
that the expectation value was either a weighted average or
“closer to the higher probability” since the idea of a
weighted average definition is an average weighted by
the probabilities. Concept definitions were defined in our
analysis by directly drawing from student phrases. In many
cases, different students used the same phrasing when
discussing their definition of the expectation value or the
result of their calculation. This meant there was some
prevalence to that concept definition across students. In
specific problem contexts, individual students conveyed
definitions that were not shared with other students. These
definitions were also labeled as concept definitions based
directly on the students’ responses. We report both the
common and unique ideas with the purpose of capturing as
broad a picture of student thinking about the expectation
value as possible.
The resulting list of concept definitions were iterated

over for consistency and subject to discussions within the
research team about what the concept definition meant or
included. We do not claim to have produced a complete list
of concept definitions for every possible problem context.
However, we expect that many responses within new
contexts would fit within our categories.

III. SURVEY RESULTS

The written surveys asked students to explain what the
expectation value means to them using words and explicitly
prompted them to not use equations. Two authors inde-
pendently coded student responses. These codes were then
placed into one of four main categories: average, most
likely, probability related, and other. In all three classes
(PF1, SF2, and SF3), student responses fitting in each of the
first three categories were present with at least 5% of
responses fitting into each. However, while it was possible
to group student responses into these four categories, there
was significant variation in the types of responses.

A. What meaning do students give
the expectation value?

In this section we focus on student responses to Q1, Q2a,
and Q2b. We provide some examples of student responses
to Q1 and connect them with their answers to Q2 whenever
possible. (The text of these questions is provided in Fig. 1.)
A small number of responses were not captured by the three
main categories described below and were coded as “other.”
Repeated responses in this catch-all category provided

IMPACT OF PROBLEM CONTEXT ON STUDENTS’ … PHYS. REV. PHYS. EDUC. RES. 17, 020141 (2021)

020141-5



equations only, indicated the expectation value is the
measurement outcome(s), or left the question blank.

1. Expectation value is the… average

Within the average category, we found a small number of
responses that provided close to what we would consider a
textbook definition. For example,

The average value of that physical observable when it is
measured in many similarly prepared systems. (PF1)

However, this student did not go on to answer all
subsequent questions correctly. In response to Q2a, this
student correctly identified that the expectation value will
only sometimes be the most likely value, but they then
indicated that the expectation value will always be one of
the possible measurement outcomes (Q2b). In their explan-
ation for Q2b, they drew on the example of a spin-1=2
particle where they correctly provided the range for an
expectation value (−ℏ=2 < hSi < ℏ=2), but then wrote “it
has to be at least −ℏ=2 (which is one of the outcomes of a
spin-1=2 measurement). We cannot expect anything
smaller than −ℏ=2.” This student’s explanation seems to
be in contrast to their selected answer.
Another student response that fit into the average category

did not reference ensemble measurements, but did specify
that the average was weighted by the probabilities:

It refers to the overall weighted average of all the
possible physical observable values, which isn’t neces-
sarily possible to be observed itself. (SF3)

This student went on to correctly answer all parts of Q2,
using sketches to explain their answers (see Fig. 3).
There were other students whose responses to Q1 were

much less informative and they simply said something like
“It is the mean (SF3),” or “the expectation value of an
observable is analogous to finding the “average” value in
classical terms (SF2).”

Finally, there were some responses that fell into this
category, but after reviewing their explanations, it was
unclear whether the student really understood the meaning
of the definition they were providing. The following
student explanation illustrates this:

The expectation value of a physical observable is the
average of the values expected, the weighted average of
the eigenvalues (what we can expect to measure). (SF2)

In this example, the first part of the response is correct, but
then it ends with the parenthetical “what we can expect to
measure.” This gives the impression that the student might
think the expectation value is both the average and the most
likely.
In almost all instances, students whose responses fell

into this average category were consistent in their response
to Q2a and indicated that the expectation value is only
sometimes equal to the most likely outcome.

2. Expectation value is… most likely

Other students explained that the expectation value tells
us the most likely measurement outcome. Examples of
student responses are

The expectation value is the value that the observable
would most likely have according to the wave function.
(PF1)
The most expected value of the physical observable
would occur. (PF1)
I think of the expectation value as giving the “most
likely” (or most average) value of whatever your
measuring based on the probabilities of observing that
state; i.e., particle in infinite potential well of length L,
hxi ¼ L=2 exactly half way or most likely position.
(SF2)

Some responses were a little more nuanced. For exam-
ple, consider the following student response:

The expectation value means the region where the
particle is likely to be measured. (SF3)

It clearly states that the expectation value tells us the
most likely measurement, but instead of referring to the
expectation value as providing a single value, the student
indicates that the expectation value indicates the region
where the particle is likely to be found. There were several
responses that referred to the expectation value as providing
a range of values in both this category, as well as in the
probability-related and other categories.
In other instances, the student provided correct (or

partially correct) information about how to calculate the
expectation value, but then referred to it as the most
likely value:

FIG. 3. Student explanations for their responses on questions 2a
and 2b. Student is from class SF3.
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The expectation value is the sum of all probabilities and
so gives the position or state most likely to be found,
depending on what you are observing. (SF2)

As with the responses in the average category, students
were very consistent between their definition and their
answer to Q2a, where almost all of them indicated that the
expectation value is always the most likely value.

3. Expectation value is… probability related

The responses in this category are closely related to those
in the most likely category, however they often speak more
to the probabilities that different values can take rather than
focus on the single most likely result.

It means the probability of a physical observable
occurring. (SF3)
It means how often will I find this particle in some state.
(SF2)
It means the probability of a physical observable
occurring. (PF1)

As with the previous category, there were instances
where students indicated that they knew how to calculate
the quantity, but assigned an incorrect meaning to it:

How probable to get each option.
PðvalueÞ � ðprobÞ

(SF3)

Most of the responses in this category connect the
expectation value to a range of values as opposed to a
single number. Unlike the other two categories where
student responses were very correlated with their answer
to Q2a, students in this category more commonly indicated
that the expectation value is always the most likely value (in
response to Q2b), but there were several instances where
they correctly indicated that this was not always the case.
As we later found in the interview results, these two
categories of most likely and probability related are not
necessarily distinct. In the interview analysis we combine
these two categories in an effort to explore how students
relate the expectation value and probability.

B. What type of values do students
think the expectation value can have?

In the previous section, we identified some of the
common responses when we asked students what the
expectation value meant to them. In Q2, we more directly
asked whether or not students agreed with some common
statements we have heard in our collective experience
teaching quantum mechanics.
In response to Q2a, the most common answer was that

the expectation value is sometimes equal to the most likely
answer, provided by 29 of the 51 students in the combined
PF1 and SF3 datasets. A further 18 (of 51 students)
indicated that it was always the most likely answer.

Results were similar to Q2b with 31=51 correctly
selecting “sometimes” and only 12 selecting “always” as
their answers. As mentioned previously, these answers
correlated with their definitions to Q1 when their defini-
tions fit into the average and most likely categories.
Results to the final question (Q2c) were mostly correct,

with a handful of student indicating that either the expect-
ation value had to be a positive number or that it could be
imaginary. The explanations to this question rarely provided
additional insights as these students often provided incorrect
declarative statements without any additional explanation.
Sample student explanations are provided below.

The expectation value can be a positive real number but
it can also have an imaginary part just like the expect-
ation value of momentum. (PF1)
Prob is always ≥0, but value can be real, imaginary,
positive, or negative. (SF3)

IV. INTERVIEW RESULTS

Analysis of student interviews allowed us to explore how
student understanding of the expectation value changed
across the differing problem contexts of spin, energy, and
position over the semester. In all problem contexts, the
expectation value is formally defined as the average of the
measurements made on many particles with identical states
or as a weighted average. In this section we outline
students’ ways of thinking about expectation values as
they make sense of answers to expectation value problems
and define the meaning of the expectation value.
Analysis of the survey data yielded several categories

related to the meaning students attributed to the expectation
value, with two being the most common: the expectation
value as the “average value” and the expectation value as
the “most probable value.” In analysis of the interview data,
we parse both of these concept definitions into separate
categories depending on how the students articulated their
definition of the expectation value. Variations on the
average value include “ensemble average,” where students
acknowledge that there are many measurements being
taken and can discuss probability of measurements and
weighted average, where students focus on the probabilities
for a state. It is possible for students’ responses to be
labeled with both ensemble average and weight average
concept definitions when they connect an expectation value
to both probabilities and many measurements.
Additionally, there were several other evoked concept

definitions identified that appeared in the associations
students made during the problem-solving interviews
(e.g., the expectation value as the probability of measuring
a value). These definitions, aswell as their dependence on the
problem context, allow us to further explore the probability-
related category. Some definitions only appeared in specific
problem contexts, while not in others. We identify the range
of definitions to shed light on how students make sense of
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expectation values in relation to specific quantum mechani-
cal observables. Table II provides a list of the different
concept definitions and identifies the number of students
labeled with each concept definition in the three expectation
value contexts: spin (hSi), energy (hHi), and position (hxi).
The following sections present students’ concept defi-

nitions in each of the problem contexts and then sub-
sequently discusses how these definitions changed for the
ten students who were interviewed at both points in the
semester. In the discussion of the interview results, we do
not give a detailed description of the methods that students
used for calculating EV as those results are part of another
study [12].

A. Making sense of spin expectation values

In the spins interview, students worked with the state,
jψ1i ¼ 3ffiffiffiffi

34
p jþiy − 5ffiffiffiffi

34
p j−iy, and were asked to calculate

expectation values for the Sy and Sz operators. The hSi
column of Table II enumerates the different evoked concept
definitions related to the expectation value of spin operators.
When asked to define and make sense of their expect-

ation value calculations, 2 of the 20 students’ concept
definitions included many measurements, as exemplified
by the following.

Syd: If we ran it [the experiment] for how many ever
times, … it’s the average value of all the results

Syd’s concept definition for the expectation value in a spin-
1=2 system aligns with the ensemble interpretation that is
part of the formal expectation value definition. Both of the
two student responses discussing many measurements were
labeled with an ensemble average concept definition.

Most commonly, students’ evoked concept image
included elements associated with a weighted average
perspective (13=20). However, only six of the 13 students
explicitly defined the expectation value as a weighted
average, including both students with the ensemble average
concept definition. The remaining students simply defined
the expectation value as the average (7=13) and made sense
of their answer by discussing the differences in the
probabilities. They further included that the expectation
value would be closer to the eigenvalue with the higher
probability, as shown below.

Raife: I have a negative value. So I’m thinking this
[probability of—ℏ=2] would be bigger. The distribution
should be more on the left…When we were doing
expectation value we did graphs [histograms], so the
expectation value is… the average value. So if you’re, I
guess in my case, we’re leaning more toward—ℏ=2.

Raife acknowledges the probability of measuring −ℏ=2 is
higher and the expectation value is closer to the value with
the higher probability (Fig. 4). The other six students
shared similar ideas, explicitly discussing the probability
being “weighted more to the left.” Most of these students
specifically connected their calculation to a histogram
representation that is used frequently in their textbook.
Because all 13 students explicitly related the expectation
value to relative probabilities in this way, their responses
were labeled with a weighted average concept definition for
the purposes of categorization.
Of the students whose responses were labeled with a

weighted average concept definition, roughly half (6=13)
either did not invoke the associated summation method or
identified probabilities or values that were incorrect for a

TABLE II. Concept definitions identified in the responses of all students that were interviewed. An entry of “0” implies that the
concept definition did not appear in that context for any of the interviewed students. Some students were labeled with multiple concept
definitions.

Category Concept definition Meaning hSi N ¼ 20 hHi N ¼ 12 hxi N ¼ 12

Average Ensemble average Average over many measurements of the same state 2 1 1
Weighted average Average is weighted by probabilities 13 6 3
Average of values Unweighted average of the eigenvalues 1 0 0
Ambiguous average Statement of average without further explanation 0 2 0

Probability Probability of value Probability of an eigenvalue 3 2 1
Value you expect Answer tells you what value is more likely 2 1 1
Most probable value Eigenvalue with the highest probability 0 0 4

Other Summation The result of mathematical calculation 0 2 0
Difference in energy
levels

Difference between energy levels in an infinite
square well potential

0 1 1

Related to wavelength Answer tells something about the wavelength
of wave function

0 0 2

Equal area Position where area under the wave function
is equal on both sides

0 0 1
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given calculation. For example, Harper explicitly said that
the expectation value was a weighted average and described
the results accordingly. However, as part of their calcu-
lation, Harper summed the probability amplitudes and
divided by two instead of weighting the values with the
probabilities. Three students not using the summation
method recognized that theirmatrix calculationwas incorrect
after arriving at an expectation value of 0, because 0 meant
the probabilities should be equally weighted, a notion which
was in conflict with the probability amplitudes given in the
problem statement. The absence or misapplication of the
summation method implies a disconnect between students’
concept definition and the evoked concept images related to
procedure. They said the definition, but did not invoke the
equivalent mathematical formalism of an average weighted
by probabilities.
The description of the expectation value as the most

probable value, as shown in the survey data, did not occur
in any interviews in the spins context. However, ideas of
probability were included in students’ concept definitions
in other ways. A few students (3=20) described the result of
their expectation value calculation as the probability of
getting a value. After calculating the expectation value for
spin in the z direction using matrices, Freya arrived at the
answer of − 60

68
ℏ
2
. When asked to discuss the meaning of the

value, she stated the following:

Freya: If you were to get an experiment in this state and
measure it in the Sz you would have a probability of
getting −ℏ=2 of 60

68

We identify this as a “probability of value” concept
definition. This concept definition appeared in two other
interviews where students would take the fraction before
the eigenvalue and claim that was the probability of
measuring the eigenvalue. This is similar to how the
coefficient before a state in a superposition is related to

the measurement probability associated with a given
eigenvalue. Freya was the only one of the three who
checked this line of reasoning by calculating the actual
probability of −ℏ=2. When the probability did not match
her expectation value, she stated the probability description
was incorrect but that she could not come up with an
alternative definition.
In line with the survey data, two students, Keith and

Leanne, described the expectation value in terms of “what
you would expect to measure out of the system” and the
“value you would expect.” Notably, Keith acknowledges
that the expectation value is “related to probability, not just
probability.” For both students, this way of defining the
expectation value came from an attempt at deriving mean-
ing and wasn’t just a statement of saying the most probable
value. Leanne articulated a little beyond this definition to
ease some of her initial discomfort with getting a negative
expectation value in her calculation.

Leanne: Hmm, like it sounds like an overly simplistic
description but “did you get what we would expect to get
out of the measurement.” Like I don’t know how else to
phrase it. It’s just like what we would expect to measure
out of the system
Interviewer: So how do you interpret that definition in
terms of that result [the calculated answer for hSyi]?
Leanne: Well once I put the −ℏ on the outside. That is
helping me a little bit because −ℏ=2 is a totally accepted
value, like that’s not something unusual. It’s just, I don’t
know. It is still strange to me in a sense.

Leanne recognized that −ℏ=2 is a measurement value,
but did not connect this to her definition that the expect-
ation value is “what we would expect to measure.” As both
Keith and Leanne emphasized the idea, we label them with
a value you would expect concept definition. Neither
student expanded on their response, instead they expressed
uncertainty in the conceptual meaning.

B. Making sense of energy expectation
values for wave functions

At the end of the spins-first course, 12 students (10
students identical to those in the spins context) were
interviewed. Students were first asked about methods for
calculating energy and position expectation values for two
wave functions, ψ2ðxÞ ¼ 3

5
ϕ2 − 4

5
ϕ3, where ϕn is the nth

energy eigenstate, and ψ3ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
30=L5

p
xðL − xÞ, for an

infinite square well. Unlike in the spins context, students
were not asked to calculate anything unless they indicated
the possibility of using a summation method or matrix
method. In this section we focus on students’ responses as
they make sense of provided answers for the energy
expectation values of these two functions.
Individual students’ definitions did not change between

the two given wave functions. However, throughout the

FIG. 4. Raife’s depiction of a histogram for spin. He identifies
that an equal probability will yield an expectation value of 0 and a
higher probability of −ℏ=2 will mean the expectation value will
be shifted to the left (thick vertical dash).
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interview, two students indicated multiple definitions or
ways of thinking about the expectation value, and were thus
counted as exhibiting more than one evoked concept image.
The hHi column of Table II enumerates the different
concept definitions for expectation values of energy.
Just one student defined the expectation value as the

“average if you took a bunch of measurements” of energy
in line with the ensemble average concept definition. This
student also had a response consistent with a weighted
average concept definition along with five others. The
weighted average concept definition was the most common
means of discussing the expectation value. Consistent with
responses to spin questions given earlier in the semester, all
6 students defined the expectation value as an average
value, but made sense of their results by discussing the
value as closer to the higher probability (5), as Mark
does below.

Mark: We’re much more likely to get energy 3 [E3]
because the prob of getting it is higher so it makes
sense…this [7.2] is way closer to the 9 then the 4.

Mark connects the answer 7.2E1 to the probabilities of the
different possible energy eigenvalues which he also wrote
in terms of E1: E2 ¼ 4E1 and E3 ¼ 9E1. We identify Mark
and other similar responses with the weighted average
concept definition because of the explicit emphasis on the
answer being closer to the most probable value. For some
students the interview was the first instance they made a
concrete connection between the calculation and the
definition as a weighted average. For example, after
recognizing 7.2E1 fell between E2 and E3 and was closer

to the more probable value, Gil acknowledged that he had
previously “never thought about it that way.”
Two students described the expectation value solely as an

average. They drew on the meaning of average to acknowl-
edge that the expectation value was within an appropriate
range, “somewhere between states 1, 2, and 3.” Since these
students did not include the same weighted average
language of “closer to” or “more toward” that is associated
with attention to the probabilities of the values, even after
further probing from the interviewer, they are just labeled
as having an “ambiguous average” concept definition. This
does not mean that the students would not invoke weighted
average ideas within another problem context, but that in
response to our interview questions, they did not evoke
these ideas.
Wayne, who used weighted average ideas when making

sense of hHi ¼ 1.01E1 for ψ3, was also the only student to
reference the energy expectation value as the “value you
would expect.”

Wayne: Um, well it is the value that we would expect the
energy to be at. Its like the average of what the energy
could be… so since this is so close to 1, that means that
E1 is very heavily weighted and whatever other energy
states are involved are much, much smaller.

Wayne’s explanation when working with hHi includes
contradictory ideas. Expanding on the value we would
expect, which has the connotation of being the most
probable value, Wayne articulates the expectation value
as an average that is closer to the more heavily weighted
value. However, based on his definition, we identify him as
having both the weighted average and value you expect
concept definitions since he included both when making
sense of hHi for ψ2ðxÞ and ψ3ðxÞ.
Two students’ responses were labeled with the proba-

bility of value concept definition. Just as in the spins
context, the value or fraction preceding the eigenvalue was
viewed as the probability for measuring the associated
eigenvalue. This was contradictory for both students
because the given answer was 7.2E1 and the state was
given as a superposition of E2 and E3 eigenstates. Keith
went on to try to synthesize a definition for the expectation
value but did not arrive at one.

Keith: I always think it’s what you’d expect. It’s kind of
like a probability of getting a certain value. Well, I also
know it is not necessarily a probability. We’re dealing
with probability amplitude, but you’re not squaring it.
So it’s almost like a measurement but it’s not necessarily
a measurement.

Keith’s evoked concept image when making sense of
hHi included several different quantum mechanical quan-
tities relevant to the expectation value. While attempting to
articulate a coherent definition Keith introduced and

FIG. 5. A histogram Wayne drew to describe the expectation
value of energy. He labeled the vertical axis using a square of a
function. On the horizontal axis he labeled E2 and E3 and plotted
the probabilities. He then drew a tick mark closer to E3 because
there is a higher probability of measuring E3.
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dismissed connections to probability and measured value
but did not expand upon “it’s what you’d expect.” Both the
statements of Wayne and Keith highlight a struggle for
these students to arrive at a concrete definition of the
expectation value even at the end of a quantum mechanics
course. Much like the students in the spin context, it is
possible that either student was attempting to articulate that
the expectation value reveals which of the possible meas-
urement outcomes is the most probable value. Notably, all
of these students either set up a correct integral or
successfully carried out the summation method. Thus they
are often able to compute, but not explain, what the
computation means.
Two students, Duncan and Leanne, referenced uncer-

tainty in regards to how to make sense of the responses but
defined the expectation value as the “summation of the
probabilities times the values,” evoking a very procedural
response but did not make sense of the actual value beyond
the result of mathematical calculation. Duncan, in addition
to expressing “summation” and “ambiguous average”
concept definitions, also said that the expectation value
of energy “just reveals the gap between each of the energy
planes [levels],” stating that the distance between E2 and E3

on an energy level diagram was given by the expect-
ation value.

C. Making sense of position expectation
values for wave functions

In the same interview where students were asked about
the expectation value of energy, they were also asked to
make sense of the expectation value of position for both
ψ2ðxÞ and ψ3ðxÞ. For some students, the concept definition
changed when transitioning from an expectation value of
energy to an expectation value of position. Three students
were identified with multiple concept definitions for an
expectation value of position, indicating their evoked
concept images included different ideas of how to make
sense of the given values. The hxi column of Table II
summarizes the different concept definitions within this
problem context.
The ensemble average and weighted average concept

definitions were less common than in the previous discrete
contexts. One student, Tristan, indicated both that the
expectation value was the average of many measurements
and that it is closer to the higher probability, as shown below.

Tristan:…more area under the curve on this side,… so
then when you average all the measurements out that
you made, you’re going to find the particle on this side
more often when you do a measurement. So average all
of the measurements out, the position [the expectation
value] is going to be placed more on the side of where
the probability is.

Tristan was labeled with an ensemble average concept
definition as he made sense of the expectation value in
terms of many measurements and the weighted average
concept definition to account for his discussion of
probability.
Two other students defined the expectation value in

terms of an average, but did not invoke the idea of many
measurements. One of these students, Wayne, said average
and the value you would expect, just as he had in the energy
context. For hxi, however, he arrived at the idea that it was
the most likely position, as shown in the pair of excerpts
about ψ2ðxÞ below.

Interviewer: So if you do this out, you get 0.59L. How do
you make sense of that?
Wayne: It means like the average, like. So I don’t know.
It should have some curve, but like, it will probably be
largest around [draws a single peak over the location of
the expectation value]. Maybe not even largest, but it is
going to have like a distribution where this will be the
most heavily weighted spot. but it might not be that. it
might be weird.

Following this discussion, Wayne was provided the graph
for ψ2ðxÞ (Fig. 2). He acknowledged that is was a
combination of the two energy eigenstates, ϕ2 and ϕ3,
for the infinite square-well potential and connected the
negative coefficient associated with ϕ3 to the shape of the
graph. A cursory analysis of the graph reveals that 0.59L is
not near a local maximum or minimum. However, when
asked for his definition for the expectation value of
position, Wayne continued to discuss the expectation value
in terms of the most likely value. This reasoning is
consistent with his drawing of a single peak over the
location of the expectation value when asked to make sense
of the result.

Interviewer: So I asked you about the conceptual
meaning of the expectation value when we were working
with energy. What is the conceptual meaning of it [the
expectation value] in this [position] context? How are
you thinking about it?
Wayne: It is the value we would expect x to be if we
measured it. It is the most likely, just because of the way
the probability density is weighted.
Interviewer: So it is the most likely value?
Wayne: Yeah, but that does not mean that it would be
measured. It is the average.

Transitioning to the position context, Wayne’s concept
definition includes most probable value as a direct exten-
sion of the value we would expect. Even thoughWayne also
includes aspects associated with a weighted average def-
inition, when asked for clarification he reaffirms that it is
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both the most likely value and the average. As such,
Wayne’s response is identified as having three concept
definitions.
The most probable value concept definition was the more

commonly evoked for the expectation value of position. In
total, four students, including Wayne, made a connection
between the expectation value and the most likely or most
probable value. In the following example, Carlos directly
connected the expectation value to the most probable value.

Carlos: The expectation value is the place with the
highest probability of finding the particle.

This kind of response in the interviews is consistent with
the most probable value definition for the expectation value
on the survey given at the end of the semester without any
contextual frame. Since the most probable value concept
definition did not occur in the spins or energy expectation
value, findings suggest that responses of most probable on
the survey were thinking about hxi and continuous wave
functions.
Other concept definitions were only identified in

responses made by individual students. These included
“related to wavelength,” “difference between energy lev-
els,” “probability of finding x,” and “equal area.” The
related to wavelength concept definition appeared as one
student connected the graph of ψ2 to its expectation value
hxi ¼ 0.59L. One student equated the expectation value
with probability, stating the result of calculation was “the
probability of finding x at a certain point within the well,”
which we count toward the probability of value concept
definition and specifically connected the result of calcu-
lation to the area under the curve. This conflation of
probability and the expectation value is consistent with
findings in previous literature [1,2]. Duncan defined the
expectation value of position as the difference between
energy levels, identical to his use of this definition for the
energy expectation value. One student said that the expect-
ation value is the location where the area under each side of
the graph is the same. We label this as the “equal area”
concept definition. This is similar to students’ belief in
classical mechanics that “center of mass” divides an object
into two pieces of equal mass [24].
In a few cases, comparing the graphs of the two functions

(Fig. 2) led students to conclude their definition of most
probable value or related to wavelength did not make sense
and they decided they were unsure of what the expectation
value meant. Leanne articulated a struggle to understand
the conceptual meaning of the expectation value, after she
abandoned an attempt to connect the wave function to a bar
graph representation.

Leanne: I can get answers to problems, but then when I
start to try to explain what it actually means I get a little
bit like lost…

Leanne and one other student attempted to draw a histo-
gram for the wave function, but both students expressed
they were unsure when asked to connect it to the meaning
of the expectation value (Fig. 6).

D. Comparison of concept definitions across contexts

Interviews conducted at two points during a spins-first
course revealed a number of ideas and definitions that
students connected to the expectation value that are similar
across problem contexts. Ten students participated in both
sets of interviews and answered questions about expect-
ation values of spin, energy, and position. While some
students’ concept definition remained consistent across
different problem contexts, other students’ concept defi-
nitions changed as the questions switched from the expect-
ation value of spin to hHi for an infinite square well
potential to hxi for an infinite square well potential. The
different concept definitions identified in responses for the
ten common students are shown in Table III.
Overall, responses for the expectation value of energy

were similar to the responses given in the spin-1=2 context.
For the first state, ψ2ðxÞ, most students read out the
probability amplitudes from the superposition representa-
tion and used weighted average reasoning in a similar
manner to when working with the spin-1=2 system. The
probability of value and value you would expect concept
definitions also reappeared in the energy context when
students made sense of their answers for the superposition
state. These ideas persisted in students’ reasoning about the
expectation value of energy for ψ3ðxÞ, which was asked
later in the interview. Five student responses were labeled
with ensemble average or weighted average concept
definitions for both the energy and spin expectation values.
The sixth student, Duncan (D), who expressed a weighted
average concept definition in the spin context, defined the
energy expectation value as the difference between energy
levels in an infinite square well potential. For hHi, Gil (G)
had initially described hSyi as the probability of getting the
value and only invoked weighted average ideas in the
second interview later in the semester.

FIG. 6. Leanne’s attempt to make sense of the wave function as
a histogram. She draws bars for different points of the wave
function, but is not able to connect this to the expectation value of
position.
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Consistently across all three problem contexts, 3 of the
10 students were identified with ensemble average or
weighted average concept definitions. Two of these stu-
dents were consistent in using only these ideas, while
Wayne also introduced the conflicting idea of most prob-
able value for the expectation value of position. Victoria,
who expressed an ensemble average perspective for hHi
transitioned to thinking about area under the curve of the
wave function. Conversely, Tristan invoked an ensemble
average perspective cued by where a particle would be
more likely to be found during “all the measurements.”
None of the 10 students described the expectation value

as the most probable or most likely value when working
with spin or energy, but several did when considering the
expectation value of position. Three students switched from
only a weighted average concept definition to including a
most probable value concept definition when moving from
the energy to position contexts in the same interview. Two
of these three students did not discuss average at all when
talking about the expectation value of position. This
suggests that the connection between the expectation value
and the most probable value, as seen in the survey data,
could be an artifact of the wave functions context.
Lastly, therewas a greater variety of concept definitions in

responses for the expectation value of position as students
tried to make sense of the given results. This led to 3 students
stating they were unsure of how to define the expectation
value of position, whereas they had previously provided a
response for the expectation value of spin and energy. For
example, Gil initially claimed the expectation value of
position was the most probable value but said he was unsure
after recognizing that response was inconsistent with the
graphs of ψ2ðxÞ and ψ3ðxÞ. Notably, this came after Gil used
weighted average ideas to describe the expectation value of
energy for the same wave functions. The shifts in student
responses to most probable value reasoning and the increase
in students’ uncertainty, suggests that reasoning about
quantum properties for continuous observables is an area
that can be better supported in instruction or curricula.

V. CONCLUSIONS AND DISCUSSION

As part of this research we have investigated how
students defined the concept of expectation values without
a problem context and across several common problem
contexts. Surveys about what meaning students give to the
expectation value without the immediate influence of a
problem context and the types of values that students
associate with expectation values. Interviews extended this
analysis to categorize students’ personal concept defini-
tions they used to make sense of and define expectation
values in the contexts of spins, energy, and position over the
course of a quantum mechanics class.
The focus of this work on students’ concept definitions is

motivated in part by our previous work on student problem
solving methodologies [12], but here we concentrate on
students’ underlying conceptual framing associated with
expectation values. Despite being taught the formal defi-
nition in class, students incorporate a wide range of ideas
when working with expectation values. Furthermore, the
incorporated ideas vary as the physical context evolves
throughout the semester. While some definitions in the
other category were context dependent, the definitions
associated with average and probability were common in
all problem contexts. The identified concept definitions
provide a foundation for both the further exploration of
student problem solving in this arena and for the develop-
ment of targeted instruction and curriculum design.
Surveys found the persistent student idea that the expect-

ation value always returns a possible measurement outcome,
which is consistent with interviews where students defined
the expectation value as the most probable value or would
describe the expectation value as a measurement probability
itself. In response to the survey, it was common in all classes
for students to describe the expectation value either in terms
of an average or as the most likely value. Notably, no student
referred to the expectation value as the most probable value
during interviews dealing with spin or energy expectation
values. However, probability-related definitions did appear.

TABLE III. Concept definitions identified in the responses of the 10 students that were interviewed in both the spin and wave function
contexts. Students are identified by the first letter of their pseudonym. A blank entry implies that the concept definition did not appear for
any of the interviewed students. A “� � �” implies the concept definition was present for some students, but not for the 10 students
analyzed in this section. Note that some student responses were found to have multiple concept definitions within a single question.

Category Concept definition hSyi and hSzi for jψ1i hHi for ψ2ðxÞ and ψ3ðxÞ hxi for ψ2ðxÞ and ψ3ðxÞ
Average Ensemble average � � � V T

Weighted average D, M, P, T, V, W G, M, P, T, V, W M, T, W
Ambiguous average � � � D � � �

Probability Probability of value F, G F, K L
Value you expect K, L W W
Most probable value F, G, W

Other Difference in energy levels D D
Related to wavelength K, P
Equal area V
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A few students did define the expectation value
as the probability of measuring a given value [e.g.,
−ð60=68Þðℏ=2Þ would mean a 60=68 probability of meas-
uring ℏ=2]. In both the spin and energy expectation values
problems, student concept definitions related to ensemble
average and weighted average were common whether or not
students invoked the summation method. In the context of
energy, the use of weighted average ideas supported students
in thinking about energy expectation value, as they were able
to connect the answer to a histogram and have an interpre-
tation for the meaning of the expectation value.
Although the most probable value concept definition did

not appear in the spins or energy contexts interviews, it did
appear relatively frequently when students described the
expectation value of position. In fact, most probable value
was the most common definition that students provided for
the expectation value of position, even though the weighted
average perspective had been the most common for the
energy context in the same set of interviews. Wayne’s
responses are demonstrative of the shift in perspectives.
While he describes the expectation value as the value you
would expect in both situations, such a description was
easier to connect to most probable value when the expect-
ation value is a possible measurement. When students
discussed the expectation value of position, there was a
larger variety in definitions and more mixed responses and
“not sure” responses indicating that students struggled to
articulate a definition.
In many cases in both the survey and in interviews,

students began to define the expectation value as the value
you’d expect, the value you would measure, or the average
you would measure and immediately amended the state-
ment with something contradictory. These responses are
suggestive of a restricted concept image of the expectation
value. Even the use of the word average in a student’s
definition of the expectation value did not guarantee a
concise definition, correct formula, or calculation.
Association between value you would expect and the
expectation value may make sense from a linguistic
perspective. However, since the “value you expect” has
the connotation of being the most probable value, it is a
different statistical quantity than the expectation value.
In many interviews there was a disconnect between the

description of the expectation value and mathematical
calculation. Half of students connecting the expectation
value of a spin operator to the relative weight of the

probabilities did not identify the summation method as a
possible solution pathway. Conversely, other students set
up appropriate calculations but struggled to connect the
expressions for the expectation value to a definition.
Leanne in particular expressed being able to find correct
answers without having a clear sense of what the expect-
ation value meant. An incorrect definition led to a contra-
diction for students like Freya, who correctly used
summation but made sense of the expectation value as
the probability of a value.
The context of a given problem plays a role in what

information is evoked from a students’ concept image.
Consistent with previous literature, the evoked ideas or
definitions can appear differently when different features
are more salient [14,18,19]. This in itself is not surprising
or inherently problematic. However, an instructor wanting
to choose an expectation problem for an exammay just pick a
problem context, thinking students would approach the task
universally. Findings from the interviews, however, reveal
that a shift from discrete superpositions to continuous wave
functions resulted in some students defining the expectation
value differently.Whenworkingwith a superposition of spin
states or energy eigenfunctions, students most often drew
on a weighted average perspective. “Most probable value”
became the predominant definition for position, even for
students setting up the appropriate integral.
Our findings suggest that instruction could benefit

students in drawing the connections between a spin and
wave function context, if more time is spent reinforcing the
definition of the expectation value in terms of continuous
observables. This could include a discussion of the wave
function in terms of “discrete” positions in order to connect
the histogram representation to probabilities of measuring
position. Similarly, the summation method could be con-
nected to the integration method by discussing integration
as a sum over the possible positions weighted by their
probabilities. Such an emphasis would draw on students’
work with discrete systems where they more often dis-
cussed averages connected to higher probabilities of
measurement outcomes.
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