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Sound educational policy recommendations require valid estimates of causal effects, but observational
studies in physics education research sometimes have loosely specified causal hypotheses. The connections
between the observational data and the explicit or implicit causal conclusions are sometimes misstated. The
link between the causal conclusions reached and the policy recommendations made is also sometimes
loose. Causal graphs are used to illustrate these issues in several papers from Physical Review Physics
Education Research. For example, the core causal conclusion of one paper rests entirely on the choice of a
causal direction although an unstated plausible alternative gives an exactly equal fit to the data.
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I. INTRODUCTION

A central goal of most physics education research (PER)
is to find ways to teach better, i.e., to improve educational
outcomes. That requires determining the probable results of
several possible courses of action, so that value judgments
can be applied to choose the best policies. Problems of the
form “If we do this vs that, what will be the probable
difference in results?” are by definition problems in
counterfactual or potential outcome causation. (See
Ref. [1] for a standard text, or Ref. [2] for an up-to date
technical review.) Techniques for drawing causal conclu-
sions from randomized controlled trials are generally
understood, but the traditional methods for drawing causal
inferences from observational data (e.g., multiple regres-
sion) are often inappropriate or misapplied [1,2]. As PER
has moved to tackle increasingly challenging problems, the
causal inference challenges have grown. “Correlation does
not imply causation” is a truism that is easier to state than to
follow in practice.
The purpose of this paper is to illustrate the need for

better causal analysis in PER by using a few instances of
papers published in this journal in which questionable
procedures were used either to draw causal inferences from
data or to draw policy recommendations from causal
inferences or both. It is motivated by exchanges both with
statisticians discontented with the level of causal reasoning
in many social sciences and with colleagues in PER who
were both uneasy about their lack of familiarity with

modern techniques and curious about how well some
recent PER work would hold up under scrutiny. I’ve
chosen several papers by leaders in PER to illustrate what
are said to be some common issues.
I call attention to these issues because improvement is

possible. In recent decades more valid methods of causal
inference have been developed [1,2] with applications in
epidemiology [2], biology [3], public health [4], economics
[5], psychology [6], sociology [7], political science [8],
education [9], and other fields. Although here I will focus
on instances in which causal conclusions rely on unstated
questionable assumptions, the new methods allow causal
conclusions to be made from complicated data so long as
reasonable explicit assumptions are made [1,2].
I will use only the elementary level of analysis with

which I am familiar. Other than encouraging more study of
causal inference, I will make no educational recommen-
dations, but will suggest an editorial change for the field.
Before presenting an admittedly blunt critique of the

causal reasoning in these PER papers, I should acknowl-
edge that much of the correlational data and analysis
presented in them may well prove useful. My point is that
invalid causal conclusions can be found even in papers
treating correlational results carefully. Some additional
data, ideally obtained by measuring effects of various
interventions, will be needed in order to draw reliable
causal conclusions to be used in making plans.

II. BACKGROUND ON CAUSAL METHODS

Graphical representations of causal patterns [1], devel-
oped especially by Pearl and co-workers, are perhaps the
most accessible of the newer methods and will suffice for
this paper. Graphs are used to represent the most important
feature of causal relations, that changing some quantities
leads to changes in only some others. Graphs called
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directed acyclic graphs (DAGs) represent this one-way
feature by using arrows to show the causal directions [1]. A
change in any variable only affects variables downstream
from it in the DAG, and there are no causal loops. For
physicists, the most familiar such relation is that changes
propagate only forward in time, at least on the classical
macroscale. A DAG itself does not give the functional
form, magnitude, or even sign of the causal effects, but it
does encode conditional independence relations, i.e., which
interventions can have no effect on which other variables.
DAGs are particularly useful for visualizing which varia-
bles should be controlled for, which should not be con-
trolled for, and which create less tractable problems when
estimating causal relations from correlations [1].
A bidirectional arrow is sometimes used as a shorthand

representation of an unmeasured variable with no arrows
going in and arrows going out to two measured variables.
Graphs using that shorthand are called acyclic directed
mixed graphs (ADMGs). Their bidirectional arrows should
not be mistaken for bidirectional causation.
The papers to be discussed here assume that the relations

among the variables can be well approximated as linear.
Then a linear structural equation model (SEM) can explain
the correlations among the variables in terms of the causal
structure expressed in the ADMG [10]. Each causal arrow
gets a coefficient showing the direct effect of changes of the
tail variable on the head variable. The net causal effect of
one variable on another is obtained by summing the
products of the coefficients along each path leading from
the first variable to the second [11].
The directions of the arrows provide essential informa-

tion needed to determine policy choices, since making a
change in some quantity only affects variables downstream
[1]. You can make a dog wag its tail by giving it a treat, but
you cannot put a treat in its mouth by wagging its tail.
Although words like “effect” and “impact” are often used to
describe correlations while suggesting causation, the state-
ments “Giving treats has a tail-wagging effect” and “tail-
wagging has a treat-giving effect” do not mean the same
thing. The difference would appear in the direction of the
arrow between “treat” and “wag.” The choice of graphs has
major practical importance because they capture this causal
distinction.
If the relevant ADMG is not already known, SEMs can

only play a limited role in inferring causation from
correlations [11]. Correlational data can rule out some
ADMGs, e.g., ones with no pathways connecting variables
that are significantly correlated, but that is far short of
determining which ADMG should be used as the frame-
work for the SEM. Often SEMs based on many different
graphs can approximately fit the same dataset.
Furthermore, there are theorems showing that the
ADMGs can be divided into Markov equivalence classes,
each of whose members fit any given data set exactly
equally well, with the same number of adjustable

parameters [1–3,12]. There are known rules for generating
equivalence classes of graphs [1,12]. On their own, SEMs
provide evidence for choosing among equivalence classes
but not for choosing graphs within a class. The choice
among such equivalent graphs should be left open unless
there is other evidence such as time order, other types of
data, or firm knowledge about mechanisms, although
intuition may guide tentative beliefs [11].
In the first two papers described, particular graphs are

chosen as the basis for SEMs but without sufficient reason
to exclude other graphs with very different causal impli-
cations. I will use alternative members of equivalence
classes to illustrate rigorously how big those causal
differences can be, but not to advocate any particular
causal model. A third paper uses SEMs carefully, but then
draws strong causal conclusions about unmeasured varia-
bles outside the range described by its graph.

III. CORRELATIONS DO NOT DETERMINE
CAUSAL GRAPHS

I shall discuss two papers [13,14] that say little about
how the directions of graphical arrows were chosen, and
whose causal conclusions turn out not to be justified
by their data. These papers use SEMs as if they were
a nearly stand-alone method for discovering causal
patterns. [13,14].
These papers [13,14] look at traits like “interest” rather

than events. Gradually developed traits can be unrolled into
functions of time. It is then inappropriate to represent a
snapshot in time of a set of such traits by any ADMG since
effects generally have been flowing both ways between past
values of the traits [2]. (Fortunately, methods have been
developed for inferring causal relations in complicated
time-dependent longitudinal data [2,15].) Thus when I
suggest alternatives to the causal interpretations used in
these papers, I do not mean to imply that these alternatives
are better and certainly not that they are right, since it is
unlikely that any ADMG correctly represents the causal
relations between snapshots of prolonged traits. Although
this is a fundamental problem for the sorts of SEM models
to be discussed, I will confine the discussion to narrower
methodology issues.

A. Gender

One paper [13] relates gender to questionnaire-based
measures of attitudes toward physics, “…to explore which
motivational factors cause changes in other factors…” [13].
The attitudes are grouped into four clusters: “interest,”
“perceived recognition,” “competency belief,” and “physics
person,” with the latter three abbreviated here as recog-
nition, competence, and identity for notation compatible
with [14]. The linear SEM model used [13] is based on the
DAG shown in Fig. 1. Since gender almost always precedes
the attitudes examined, it can be assumed to have no
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incoming arrows. (Selection effects on who gets into the
sample of calculus-based physics students could compli-
cate that relation [16], but I shall not explore such
effects here.)
This graph was chosen by “dropping connections or

variables of low strength” from the saturated model in
which all variables are connected, although the minimum
strength for inclusion is not specified [13]. The two
connections dropped were from gender to competence
and to identity. All six connections between the four core
attitudinal variables are retained.
How the arrow directions were chosen is described only

by “…we only used the suggestions that were theoretically
plausible.” [13] Markov equivalence rules say the arrows
between interest and recognition and between identity and
competence can each independently be assigned either
direction, leaving four equivalent DAGs [1,12]. (Either of
these two arrows could also be replaced by a bidirectional
arrow giving nine equivalent ADMGs [12].)
Theoretical plausibility seems inadequate for deciding

the directions of the arrows, especially between interest and
recognition. Do we really know that students become
interested in areas for which they perceive recognition
more than that they perceive recognition for areas in which
they have been interested? The equivalent graph shown in
Fig. 1 obtained if the arrow from recognition to interest

were reversed would have substantially changed meaning.
The coefficient between interest and recognition would
increase slightly, from 0.64 to 0.67. The coefficient from
gender to interest would increase from 0.16 to 0.33, and the
coefficient from gender to recognition would fall from 0.27
to 0.05. The qualitative impression from this equivalent
graph would then be that gender differences in interests are
most important, rather than gender differences in perceived
recognition. The data do not provide guidance on which
choice is better.
The very small coefficient for the Gender →

Recognition arrow in this equivalent graph raises the
question of whether it would meet the unspecified criteria
for “dropping connections or variables of low strength”,
since it is only one-third as large as the smallest coefficient
included. [13] Based on the sample size of 559, [13] the
95% confidence interval for this coefficient would be
approximately (−0.05, 0.15), so that conventionally one
would expect the coefficient to be dropped from the model
as statistically insignificant. If it were dropped, then in the
resulting new equivalence class all gender effects would be
mediated through interest. This equivalence class also
includes some DAGs for which recognition has no causal
effects on other traits.
The claim of the title of Ref. [13], that females “do not

identify with physics [because] they do not think others see

FIG. 1. The top graph is the DAG from Ref. [13], using abbreviated variable names. The bottom one is the Markov equivalent graph
described in the text. The graphs were drawn using the online DAGitty tool.
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them that way” thus lacks support in the data. The data
shown are exactly as compatible with a very small and
statistically insignificant effect of gender on perceived
recognition as they are with the moderate-size effect
presented. Interpretations in which the gender →
recognition and recognition → identity effects are both
zero are disfavored only by that insignificant coefficient.
One simply cannot tell from these data to what extent the
paper’s causal claims are correct.
The broad policy recommendations, centered on making

the physics classroom gestalt more supportive, did not
require careful identification of causal relations among the
attitudinal variables [13]. An overlapping group of authors
did report that a controlled intervention [17] encouraging
effort when faced with difficulty and facilitating supportive
interactions among students gave important improvements
in physics course performance for females and perhaps also
for nonwhite students, although the effect did not reach
conventional statistical significance for the small nonwhite
sample [17]. It did not include a survey of the traits studied
in Refs. [13,14], so it is hard to tell which, if any, of these
traits were most affected. This experiment serves as a
reminder of how much more straightforward it is to find
out what works from interventions than from static
correlations.

B. Out-of-class activities

The effects of out-class science and engineering activ-
ities (OCSE) on student attitudes were explored in a recent
paper for which “…the primary goal of the current analysis
is determining the impact of OCSE activities on physics
identity”, i.e., estimating a causal effect [14]. The abstract
raises a policy question based on causal effects:
“Understanding the influence of students’ science and
engineering experiences on career choices is critical in
order to improve future efforts…” [14]. The abstract also
reaches a causal conclusion “out-of-class science and
engineering activities have the largest influence on physics
performance/competence beliefs…” [14]. Although at
points noncausal associative wording is used, the body
of the paper is peppered with causal conclusions, e.g.,
“Recognition beliefs, while having the largest impact on
overall identity…” and “…physics identities have less
impact on their career choice… “[14]. In one case a
conclusion is drawn explicitly about the expectation of
what would happen if something is done: “…if perfor-
mance/competence beliefs are developed in isolation from
recognition beliefs and interest, a student is not more likely
to develop an overall physics identity” [14].
The causal conclusions are based on coefficients in an

SEM relating OCSE to the same questionnaire-based
measures of attitudes toward physics used in Ref. [13],
here called interest, recognition, performance or compe-
tence, and physics identity. (I again use competence and
identity as abbreviations for the latter two.) The ADMG

connecting these variables [14] is redrawn in DAG form as
Fig. 2 after converting the double arrow of the original to an
explicit unmeasured variable U.
Reference [14] does not mention any criteria used in its

choice of graphs, but says that the graph is based on prior
work [18]. That work says “we need to caution that the
word effect in the following exploration of the results
cannot imply causality in a strict sense…” and “… it is
important to keep in mind that this study is correlational, so
causality is not certain.” The prior work also does not
explore the class of graphs that are equivalent to the one
they chose [18], which include the same nine ADMGs
connecting interest, recognition, and competence we saw
for Ref. [13].
The graph chosen in Ref. [14] modifies the one in

Ref. [18] by adding OCSE, with three arrows coming out
and none going in. Those directions may not represent
how the world works. If interested students often choose to
do extra science activities, for example, interest may
have more causal effect on OCSE than OCSE has on
interest.
If the causal assumptions implicit in the graph chosen are

correct, then the “primary goal,” “determining the impact of
OCSE activities on physics identity” [14], is simply given
by the unconditional regression coefficient of identity on
OCSE, since no confounders are present [1]. Neither this
simple relation nor the resulting causal coefficient is given
in the results [14].
The quality of the SEM fit to the data is discussed but not

in comparison to fits using other graphs [14]. The graph
choice could not have been based on some standard trade-
off between fit quality and number of parameters, e.g., the
Akaike information criterion [19], because elementary
DAG rules [1] say that reversing the arrow from compe-
tence to OCSE gives a graph in the same equivalence class.
That reversal, however, would make the unconditional
regression of Identity on OCSE not equal to the impact
of OCSE activities on physics identity and thus would
change the implied estimate of “…the primary goal …the

FIG. 2. This is the DAG form of the ADMG used in Ref. [14],
with their bidirectional arrow shown instead as an explicit
unmeasured U. The variable “Physics Career Choice,” connected
only by an arrow from identity, is omitted for simplicity.
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impact of OCSE activities on physics identity”. There may
also be other equivalence classes that fit better [14].
The ADMG bidirectional arrow here has sufficient

properties to allow replacement with either unidirectional
arrow while preserving equivalence [12], giving many
graphs in the same equivalence class. Even if we leave
identity fixed as a child of all but OCSE, there are 24 DAGs
obtained from the permutations of the other labels in the
saturated graph of the other four variables. (In addition,
there are many equivalent ways of substituting one or two
bidirectional arrows for unidirectional ones.) Two of the
equivalent DAGs would have reversed directions of all
three arrows from OCSE. For those equivalent graphs “the
impact of OCSE activities on physics identity” would be
identically zero.
Despite the plethora of equivalent graphs available, there

is one indication that the ADMG chosen does not represent
causality very well. The authors remark upon the “surpris-
ing” negative sign of the regression coefficient for the direct
effect of competence on identity [14]. That interpretation
results from inappropriately treating the negative SEM
coefficient found in a causally unmotivated graph as if it
were a causal coefficient describing what would happen
“…if performance/competence beliefs are developed in
isolation from recognition beliefs and interest….”. As an
association, however, the negative coefficient is not sur-
prising. A student who is confident in their abilities but still
neither has interest in a field nor has sought recognition for
it probably finds that field unattractive for some other
reason and thus does not identify with it.
The surprising negative coefficient provides an example

in which SEM results can help guide the formulation of
causal hypotheses using graphical methods. This verbal
description could be translated to a graph description by a
slight modification of the graph used, which already
includes an unmeasured cause U affecting both interest
and recognition. U could be any number of causes that
would be likely to have the same sign of effect on identity as
on interest and recognition. If there should also be a causal
arrow fromU to identity with the same sign of coefficient as
the arrows fromU to interest and recognition, the regression
coefficient obtained for identity on competence in the graph
without the U → identity arrow would differ from the direct
causal coefficient by an undetermined amount of negative
collider stratification bias, since interest and recognition are
colliders between U and competence [20].
What sort of traits could contribute to the implicit U?

Many factors are believed to affect how attractive a
scientific field is to some student. [21] Anecdotally, it is
easy to think of many friends who were good or even
brilliant physics students but who knew early on that their
strongest interests lay elsewhere. One previous study found
a negative correlation between desiring a career with
interpersonal interactions and identifying as a physics
person [22]. An experimental study from an overlapping

group showed that discussing the underrepresentation of
women in physics leads to more of them expressing interest
in physics careers [23]. Closer integration of such exper-
imental results with attitudinal survey data might produce
clearer and more useful predictions. These informal sug-
gestions are just meant as a reminder that a combination of
explicit prior ideas about causality together with SEM
results can suggest causal models with testable predic-
tions [11].
The paper’s conclusion draws policy recommendations

based on what the effects would be of “Modifying pro-
grammed activities to better support recognition beliefs and
interest…” or “…recognizing students in programmed
OCSE activities …” [14]. The recommendation to “…
[ensure] that activities are not only fun and engaging but
also provide challenge. Students need to be provided with
sufficient guiding support…” is not particularly reliant on
the causal analysis [14].

C. Comparing (a) and (b)

Both studies [13,14] include all six connections among
the four shared core attitudinal variables. One connection is
represented with a unidirectional arrow in one study [13]
and with a bidirectional arrow representing the influence of
an implicit unmeasured variable in the other study [14].
Two connections are represented with arrows pointing
opposite directions in the two studies. Three are repre-
sented with arrows in the same direction in both studies.
One of those three arrows has opposite signs of coefficients
in the two studies. Of the six connections only two are
represented with arrows of the same type with the same
sign of coefficient. It would be hard to argue that the two
graphs representing these variables are close to converg-
ing toward a shared causal picture.
No amount of linear SEM analysis can decide which

causal pattern is best without further inputs. One obvious
type of input would be longitudinal data. It may be that no
ADMG could represent the causal relations among the
traits unless each trait were unrolled into a time series.
Specific interventions in randomized controlled trials
would provide stronger evidence. For example, Ref. [24]
showed that an intervention designed to increase interest in
secondary-school science also led to an increase in actual
performance among the students expected to have the
lowest performance. That is likely to in turn have led to
an increase in the sense of competency measured in these
surveys, consistent with the arrow direction chosen in
Ref. [13] but opposite to that in Ref. [14]. For prolonged
traits both directions can coexist.

IV. CAUSATION WITHIN AND
OUTSIDE A GRAPH

Neither of the papers discussed above adequately con-
sider the variety of different causal relations that might exist
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among the measured traits. I now turn to a paper that uses
SEM analysis properly for the traits measured, but then
draws strong causal conclusions about unmeasured causes
not explored in the SEM analysis [25]. I will illustrate the
inability of the data to support the causal claims by showing
a DAG including those unmeasured causes.
The paper [25] claims that the differences between major

demographic groups in introductory college physics test
scores are due to differences in precourse “preparation.”
The explicit data analysis given shows that when college
exam scores of individuals are predicted from a combina-
tion of precourse scores on math ACT=SAT tests and the
physics “concept inventory” (CI) exams, then the coeffi-
cients of demographic variables included in the predictive
model are not large enough to consider statistically sig-
nificant in this sample, with the possible exception of “first
generation” status. The point estimates of these demo-
graphic coefficients are small for practical purposes. [25]
That shows that the incoming test combination (unlike
either incoming test on its own) is an approximately
unbiased predictor of college physics exam scores with
respect to the demographic variables considered. That
result could be useful in evaluating interventions designed
to reduce demographic disparities, helping in making
comparisons of outcomes in non-randomized comparison
groups.
On the way from this valid result toward policy sugges-

tions, however, the paper makes a clear causal claim about
what the effects of an action would be: “This work shows
that creating instruction that enhances the success of every
student across the full range of incoming preparations is
also the solution to eliminating gaps in the performance
across demographic groups” [25]. That conclusion sounds
reasonable and may be supported by other work, but this
paper itself has no data on different teaching methods, so it
cannot show what their effects would be on different
students.
The main result was interpreted to mean that “prepara-

tion gaps” are responsible for the demographic differences
in college scores [25]. “Preparation” is not defined in the
article, but other traits such as “test anxiety and stereotype
threat” are mentioned as possible alternatives to it, indicat-
ing that preparation is not meant as a catch-all term for all
precourse traits that might affect the test results [25]. If
preparation is nonetheless meant as a catch-all for all traits
that actually reflect facility with the material, then the
description of the results in terms of it is somewhat
tautological. That does not seem to be the meaning
intended in the paper, which describes the precourse tests
as “admittedly crude proxies of incoming preparation”
[25]. Thus, the measured “preparation” accounts for only a
fraction of the individual precourse score variance, with the
rest of the score variance coming from other causes. This
strong meaning, in which preparation is not the only
possible cause but is observed to be the only important

one for demographic differences, was conveyed without
ambiguity in a subsequent editorial entitled “It’s Not
‘Talent,’ it’s ‘Privilege’” by the senior author, explicitly
claiming that Ref. [25] shows that talent plays little role in
the individual score differentials [26].
That stronger version of the interpretation is not

justified by the data. Any fairly stable individual trait
measurable by these exams would give the results
observed, so long as its effects on both the precourse
and college tests were fairly large and about the same in
each demographic group, and other independent traits
were approximately demographically balanced. Talent,
discussed but rejected in the subsequent editorial [26],
or interest, discussed in the papers described above [13,14]
are familiar traits often considered to affect physics
learning but that would not normally be entirely subsumed
under “preparation.”
A key sentence of the paper comes in the discussion:

“We initially expected that it would be differences in what
high school physics courses were taken, but we analyzed
that for HSWC [the highly selective west-coast university],
and we found that all demographic groups at this institution
had the same distribution of taking AP physics, regular
high school physics, and no physics, even though the
groups had different average CI prescores and math SATor
ACT scores” [25]. Thus course work, the main conven-
tional component of preparation, was at least roughly
measured in one college and was nominally the same
for the different groups. That might suggest that preparation
is not the key causal variable that differs. Other factors for
which the precourse tests also serve as crude proxies have
no such measured indicators of being matched between the
different groups.
Realistically, however, courses with the same name can

be radically different in different U.S. schools, and those
differences are likely to show major correlations with racial
or ethnic differences. Therefore, although the results
provide no evidence for the role of preparation as distin-
guished from other causes, they also do not provide
evidence against its role in causing differences between
those groups. For the most part, however, males and
females go to the same schools, so that if they took the
same nominal courses they took the same actual courses.
Thus, the results provide evidence that it is not the most
obvious element of preparation, course work, that accounts
for the male-female differences in both precourse and
college exams. If preparation is taken in a broader sense
to include all sorts of pretest factors, including unequal
treatment of the genders both in and out of class, it becomes
impossible to distinguish from other causes using these
sorts of data.
These relations may again be easier to see with the help

of a diagram. The paper [25] includes several DAGs used
for SEM calculations of the predictive role of math ACTs
and CI tests for different demographic traits. Although the
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paper acknowledges that such SEM analysis “does not test
for causality,” the actual SEMs used can reasonably support
a causal interpretation since the time order is clear:
demography first, then pretests, lastly course tests [25].
Figure 3 here shows a simplified version of that diagram,
but expanded to include the possible causes about which
the paper makes claims. For simplicity I include only
gender as a demographic variable and do not disaggregate
the pretests, whose details are irrelevant here and were
described in the original paper [25]. The problem is not
with inference within the part of the graph shown in the
paper, but rather that the key causal conclusions concerned
potential causes that are not included in that part.

The central observational result is that the sum of the
contributions of any paths from gender to postscores that
bypass prescores is negligible. That result is unrelated to
the causal claim about the differential effects of hypotheti-
cal changes in teaching methods [25], for which there are
no relevant variables in the graph or the data. The causal
claims about preparation concern the paths from gender to
prescores, another region of the graph for which no relevant
data are given. The only reported mediator on that path is
high-school coursework, but since the effect of gender on it
within this limited sample is said to be about zero [25],
gender differences give no information on the effect of this
major type of preparation on downstream variables. Thus,
the data were consistent with erasing the arrow from gender
to HS courses, if we ignore their effects on entry into this
select cohort. All the other features are unmeasured. These
include direct effects of gender on scores, and effects
mediated by other forms of preparation or other experi-
ences. All of these are moderated by the effects of the
gender-asymmetric social environment, including biased
treatment. Inclusion of the pretest variable tells us that some
of these unmeasured variables have fairly long-lasting
effects, but does not identify which variables.
The paper offers some options for specific policy

recommendations. One broad option is to “provide more
resources” [25], which presumably would help regardless
of the specific causes of the individual differences and is
not based on the study’s data. Another option seems quite
compatible with their interpretation of their data: “adding
courses to the sequence to provide a greater range of
students the opportunity to start with a course matched to
their preparation” [25]. That policy has long since been
implemented in some universities, e.g., my own, and it
would be valuable to have studies of how well it works.
The primary option mentioned, however, is “…adjusting

the course level to better match the preparation of the less
prepared students…” This option is the one that the senior
author amplified in his subsequent editorial based on the
paper, advocating “changing the coverage and pace of some
intro courses so they are optimized for the third of the
distribution with the least preparation…” [26]. That policy
recommendation seems less consistent with the preparation
interpretation than with rejected causal interpretations. It
may be a good way to modify some physics courses, but the
data reported in the paper have no implications for that
causal claim.

V. DISCUSSION

We have seen that several papers ignore the variety of
causal possibilities consistent with a given dataset. This
problem includes two familiar issues in causal inference:
that correlations do not give the direction of causation and
that they can be altered by confounding variables. We have
also seen policy recommendations that are at best loosely
connected with the causal interpretations.

FIG. 3. A DAG schematically representing the causal issues
addressed in Ref. [25]. Variables shown by lightly filled ovals are
unmeasured. The combined effects of social variables and gender
are presumably strongly nonlinear, i.e., the effects of gender
depend on social context including bias. Since it happens that in
this sample the variable HS courses is approximately independent
of gender [25], the arrow between them could be erased. The
observational result reported is that no arrow is needed from
gender to postscore. Other demographic variables have similar
diagrams but with poorly measured HS courses.
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Ideally policy recommendations should be based on
reliable estimates of consequences. When the recommen-
dations are instead intuitive guesses unconnected to our
data, we should be open about that. The difficulties in
drawing reliable causal conclusions from observational
data in fields such as education should be taken as a reason
to pay even closer attention to the relation between models
and data than we do in physics, rather than as a reason to
relax that attention. That task requires familiarity with
modern causal inference methods.
The papers discussed here were chosen only to illustrate

some of the pitfalls on the path from data to policy via
causal inference. That it was not hard to find such papers
from leading authors in a leading journal indicates that
there is room for improvement in the editorial process.
Adding some experts in causal inference to the editorial
board of this journal (and others) might be helpful. One
colleague suggested that perhaps a checkbox for referees
indicating whether their reviews included evaluating causal
inference would alert editors to the need for that further step
without sacrificing the current evaluations of other aspects
of the papers.
It might also help to have a causal reasoning primer

specifically for PER, similar to those mentioned for other
areas [3–9]. Its authors should include at least one with
domain-specific PER knowledge and one with solid
grounding in causal inference, both of which I lack. One
referee suggested that a “healthy conversation” on causality
would be good for the field.
Since I have suggested possible treatments it is important

to also suggest how their effects might be evaluated. If an
editorial change is made abruptly, perhaps a regression
discontinuity analysis [27] could indicate whether it suc-
ceeded for the journal, at least if some reliable outcome

measure were found. It would then be interesting to look for
violations of the stable unit treatment value assumption
[28], i.e., whether the level of causal reasoning was
changed in just one journal, or perhaps raised throughout
the field, or whether papers with problematic causal
reasoning just moved to different journals. The effects of
a primer or of some organized conversations would
probably be more gradual and thus somewhat harder to
disentangle from confounders.
In the meantime, readers who wish to do quick checks of

whether reported observations are likely to be causal might
start with the traditional informal criteria developed by Hill
for public health questions [29]. Perhaps the most compact
yet technically sophisticated modern account relevant for
PER practitioners is also from the public health field [4],
which shares many issues with educational research [9]. As
a reader, I have found it useful to sketch a causal graph and
interpret words in a paper as statements about links that are
on the graph or that are omitted. A fuller description of
useful methods and of the many pitfalls (reverse causation,
confounding variables, improper controls eliminating
causal paths, various forms of selection bias, lack of
generalizability, etc.) can be obtained from many texts,
e.g., Refs. [1,2]. That is far beyond the scope of this brief
paper, which is intended only to call attention to the issues.

ACKNOWLEDGMENTS

I thank Carl Wieman for a cordial exchange and Jamie
Robins, Sander Greenland, and Thomas Richardson for
very helpful editorial comments on sections of this paper,
and guidance on some very basic graph algebra. I thank the
PRPER editors and referees for suggesting this project and
major guidance in revisions.

[1] J. Pearl, M. Glymour, and N. P. Jewell, Causal Inference in
Statistics—A Primer (Wiley, Chichester, UK, 2016).

[2] M. A. Hernán and J. M. Robins, Causal Inference: What If
(Chapman & Hall/CRC, Boca Raton, 2020).

[3] C. Glymour, K. Zhang, and P. Spirtes, Review of causal
discovery methods based on graphical models, Front.
Genetics 10, 524 (2019).

[4] T. A. Glass, S. N. Goodman, M. A. Hernán, and J. M.
Samet, Causal inference in public health, Annu. Rev.
Public Health 34, 61 (2013).

[5] H. R. Varian, Causal inference in economics and market-
ing, Proc. Natl. Acad. Sci. U.S.A. 113, 7310 (2016).

[6] E. M. Foster, Causal inference and developmental psychol-
ogy, Dev. Psychol. 46, 1454 (2010).

[7] M. Gangl, Causal inference in sociological research, Annu.
Rev. Sociol. 36, 21 (2010).

[8] L. Keele, The statistics of causal inference: A view from
political methodology, Political Anal. 23, 313 (2015).

[9] R. J. Murnane and J. B. Willett, Methods Matter: Improv-
ing Causal Inference in Educational and Social Science
Research (Oxford University Press, Oxford, UK, 2011).

[10] R. B. Kline, Principles and Practice of Structural Equation
Modeling, 4th ed. (Guilford Publications, New York,
2015).

[11] K. A. Bollen and J. Pearl, in Handbook of Causal Analysis
for Social Research, edited by S. L. Morgan (Springer,
Dordrecht, 2013), Chap. 15, p. 301.

[12] T. Richardson, Markov properties for acyclic directed
mixed graphs, Scandanavian J. Stat. 30, 145 (2003).

[13] Z. Y. Kalender, E. Marshman, C. D. Schunn, T. J. Nokes-
Malach, and C. Singh, Why female science, technology,
engineering, and mathematics majors do not identify with

M. B. WEISSMAN PHYS. REV. PHYS. EDUC. RES. 17, 020118 (2021)

020118-8

https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1146/annurev-publhealth-031811-124606
https://doi.org/10.1146/annurev-publhealth-031811-124606
https://doi.org/10.1073/pnas.1510479113
https://doi.org/10.1037/a0020204
https://doi.org/10.1146/annurev.soc.012809.102702
https://doi.org/10.1146/annurev.soc.012809.102702
https://doi.org/10.1093/pan/mpv007
https://doi.org/10.1111/1467-9469.00323


physics: They do not think others see them that way, Phys.
Rev. Phys. Educ. Res. 15, 020148 (2019).

[14] R. M. Lock, Z. Hazari, and G. Potvin, Impact of out-of-
class science and engineering activities on physics identity
and career intentions, Phys. Rev. Phys. Educ. Res. 15,
020137 (2019).

[15] J. Robins, A new approach to causal inference in mortality
studies with a sustained exposure period—application to
control of the healthy worker survivor effect, Math.
Modelling 7, 1393 (1986).

[16] M. A. Hernán, S. Hernández-Díaz, and J. M. Robins, A
structural approach to selection bias, Epidemiology 15, 615
(2004).

[17] K. R. Binning, N. Kaufmann, E. M. McGreevy, O. Fotuhi,
S. Chen, E. Marshman, Z. Yasemin Kalender, L. Limeri, L.
Betancur, and C. Singh, Changing social contexts to foster
equity in college science courses: An ecological-belonging
intervention, Psychol. Sci. 31, 1059 (2020).

[18] J. D. Cribbs, Z. Hazari, G. Sonnert, and P. M. Sadler,
Establishing an explanatory model for mathematics iden-
tity, Child Development 86, 1048 (2015).

[19] H. Akaike, A new look at the statistical model identifica-
tion, IEEE Trans. Autom. Control 19, 716 (1974).

[20] S. Greenland, Quantifying biases in causal models:
Classical confounding vs collider-stratification bias, Epi-
demiology 14, 300 (2003).

[21] S. Hidi and K. A. Renninger, The four-phase model of
interest development, Educ. Psychol. 41, 111 (2006).

[22] Z. Hazari, G. Sonnert, P. M. Sadler, and M.-C. Shanahan,
Connecting high school physics experiences, outcome
expectations, physics identity, and physics career choice:
A gender study, J. Res. Sci. Teach. 47, 978 (2010).

[23] Z. Hazari, G. Potvin, R. M. Lock, F. Lung, G. Sonnert, and
P. M. Sadler, Factors that affect the physical science career
interest of female students: Testing five common hypoth-
eses, Phys. Rev. ST Phys. Educ. Res. 9, 020115 (2013).

[24] C. S. Hulleman and J. M. Harackiewicz, Promoting interest
and performance in high school science classes, Science
326, 1410 (2009).

[25] S. Salehi, E. Burkholder, G. P. Lepage, Steven Pollock, and
C. Wieman, Demographic gaps or preparation gaps?: The
large impact of incoming preparation on performance of
students in introductory physics, Phys. Rev. Phys. Educ.
Res. 15, 020114 (2019).

[26] C. Wieman, It’s Not “Talent,” it’s “Privilege”, APS News
29, No. 9, 8 (2020).

[27] D. S. Lee and T. Lemieux, Regression discontinuity de-
signs in economics, J. Econ. Lit. 48, 281 (2010).

[28] S. Schwartz, N. M. Gatto, and U. B. Campbell, Extending
the sufficient component cause model to describe the stable
unit treatment value assumption, Epidemiol. Perspect.
Innov. 9, 1 (2012), https://pubmed.ncbi.nlm.nih.gov/
22472125/.

[29] A. B. Hill, The environment and disease: Association or
causation?, Proceedings of the Royal Society of Medicine
58, 295 (1965).

POLICY RECOMMENDATIONS FROM CAUSAL … PHYS. REV. PHYS. EDUC. RES. 17, 020118 (2021)

020118-9

https://doi.org/10.1103/PhysRevPhysEducRes.15.020148
https://doi.org/10.1103/PhysRevPhysEducRes.15.020148
https://doi.org/10.1103/PhysRevPhysEducRes.15.020137
https://doi.org/10.1103/PhysRevPhysEducRes.15.020137
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1097/01.ede.0000135174.63482.43
https://doi.org/10.1097/01.ede.0000135174.63482.43
https://doi.org/10.1177/0956797620929984
https://doi.org/10.1111/cdev.12363
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1097/01.EDE.0000042804.12056.6C
https://doi.org/10.1097/01.EDE.0000042804.12056.6C
https://doi.org/10.1207/s15326985ep4102_4
https://doi.org/10.1002/tea.20363
https://doi.org/10.1103/PhysRevSTPER.9.020115
https://doi.org/10.1126/science.1177067
https://doi.org/10.1126/science.1177067
https://doi.org/10.1103/PhysRevPhysEducRes.15.020114
https://doi.org/10.1103/PhysRevPhysEducRes.15.020114
https://doi.org/10.1257/jel.48.2.281
https://pubmed.ncbi.nlm.nih.gov/22472125/
https://pubmed.ncbi.nlm.nih.gov/22472125/
https://pubmed.ncbi.nlm.nih.gov/22472125/
https://pubmed.ncbi.nlm.nih.gov/22472125/
https://pubmed.ncbi.nlm.nih.gov/22472125/
https://pubmed.ncbi.nlm.nih.gov/22472125/
https://doi.org/10.1177/003591576505800503
https://doi.org/10.1177/003591576505800503

