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Students’motivational beliefs about physics can influence their learning outcomes as well as retention in
their majors and career choices. Moreover, due to societal stereotypes and biases about who belongs in
physics and can succeed in physics, women often have lower motivational beliefs about physics than men.
The expectancy-value theory emphasizes the importance of self-efficacy and value in predicting students’
short- and long-term academic and professional outcomes, but there are few studies focusing on how the
learning environment shapes these motivational beliefs of women and men. Investigating how the
perception of learning environment in introductory physics courses for the engineering, physical science,
and mathematics majors in their first year of college predicts the motivational beliefs of women and men
can be useful in making the learning environments equitable and inclusive so that the underrepresented
students, e.g., women, are not disadvantaged. In this study, we adapt prior identity framework to investigate
how the learning environment (including sense of belonging, perceived peer interaction, and perceived
recognition) predicts students’ physics self-efficacy, interest, and identity by controlling for their self-
efficacy and interest at the beginning of a calculus-based introductory physics course. We surveyed 1203
students, 35% of whom identified as women. We found signatures of inequitable and noninclusive learning
environment in that not only were female students’ physics self-efficacy and interest lower than male
students’ at the beginning of the course, but the gender gaps in these motivational constructs became even
larger by the end of the course. Analysis revealed that the decrease in students’ physics self-efficacy and
interest were mediated by the learning environment and predicted students’ physics identity. We find that
the perceived recognition played a major role in predicting students’ physics identity, and students’ sense of
belonging in physics played an important role in explaining the change in students’ physics self-efficacy.
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I. INTRODUCTION AND
THEORETICAL FRAMEWORK

Several prior studies have focused on underrepresented
groups such as women in science, technology, engineering,
and mathematics (STEM) courses, majors and careers [1–
20]. Prior research suggests that individuals’ career enroll-
ment and achievement in STEM can be influenced by their
domain specific motivational beliefs such as self-efficacy,
interest, and identity [1–3,11,21–36]. For students from
underrepresented groups, these motivational characteristics
might be undermined due to lack of encouragement,
negative stereotypes, and inadequate prior preparation,
leading to withdrawal from STEM fields [37–47].
Hence, investigating students’ motivational characteristics
is critical to understanding and addressing diversity, equity,
and inclusion in STEM disciplines.

Prior research suggests that self-efficacy is an important
motivational characteristic of students in order for them to
excel in a domain [4,11,13,32]. In particular, self-efficacy is
the belief in one’s capability to be successful in a particular
task, course, or subject area [48,49], and it has been shown to
influence students’ engagement and performance in a given
domain [27,28,30,50,51]. Studentswith high self-efficacy in
a domain often enroll in more difficult courses in that
domain than those with low self-efficacy because they
perceive difficult tasks as challenges rather than threats [29].
Another motivational characteristic is interest, which is

defined by positive emotions accompanied by curiosity and
engagement in a particular discipline [52,53]. Studies have
shown that interest can also influence students’ learning
[26,27,53–55]. For example, one study shows that making
science courses more relevant to students’ lives and trans-
forming curricula to promote interest in learning can
improve students’ achievement [56]. In addition, studies
have shown that students’ interest is not independent from
self-efficacy [27,57].
According to Eccles’ expectancy-value theory (EVT)

[57,58], interest is paired well with self-efficacy as con-
nected constructs that predict students’ academic outcome
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expectations and career aspirations. In this theory, students’
persistence and engagement in a task or field can be
influenced by their expectancy of success and by their
estimation of the task’s value. The expectancy here refers to
learners’ belief in their ability to succeed in the given task
[57], which is closely related to self-efficacy. Value in this
theory includes four components: intrinsic value, attain-
ment value, utility value, and cost [57]. Intrinsic value
represents students’ personal interest in the task or field.
Attainment value refers to how important students them-
selves feel it is for them to develop mastery and do a good
job in the field [57]. Utility value pertains to whether this
task can help them succeed in various fields [57]. The last
value component is cost, which corresponds to the negative
aspect of engagement such as the amount of anxiety or
opportunity cost due to the time spent on the task [57]. In
the expectancy-value theory, people’s learning goal, aca-
demic performance, and persistence in the field are
impacted by their expectancy and the four components
of value [57].
Science identity is another important motivational char-

acteristic that influences students’ career decisions and
outcome expectations [1–3,59–63]. Students’ identity in a
specific field such as physics is related to whether they see
themselves as a physics person [1–3,59,60,63]. Some
studies have found that female students are less likely to
see themselves as a physics person than male students
[2,64]. In prior research, in general, the challenges women
face in developing physics identity are related to societal
biases and stereotypes [65–67]. For example, negative
societal stereotypes and generalizations about who can
succeed in physics and other STEM disciplines can lower
women’s sense of belonging and undermine their experi-
ences, so that they often have lower STEM identity than
men [37,68,69]. Thus, studying STEM identity may help us
to understand the gender difference in participation in
STEM. The well-known science identity framework devel-
oped by Carlone and Johnson [1] includes three dimen-
sions: competence (“I think I can”), performance (“I am
able to do”), and recognition (“I am recognized by others”).
Hazari et al. adapted this model to physics and added
interest to this model [3]. They investigated whether the
relation between gender and physics identity was mediated
by interest, competency belief, and perceived recognition
from other people [70,71]. These two studies reveal that
individuals’ internal identity in science is not only impacted
by their own motivational characteristics but also by their
perceived recognition from others.
Several studies have shown that female students did not

feel that they were recognized appropriately even before
they entered college [65,72,73]. We have conducted inter-
views with women in physics courses and it is clear from
these interviews that they felt that in general men were
recognized more by the instructors than women and it
impacted their self-efficacy, interest, and identity as a

physics person [74,75]. One of the stereotypical views
of science is that it is for high achievers or naturally gifted
students [65]. In general, due to societal stereotypes, being
a genius or exceptionally smart is associated with boys
[76]. In one investigation, boys and girls were externally
exposed to these fixed intelligence views starting from
early ages, which influenced the development of their
science identity [73]. In addition, one study indicated that
elementary and high school boys and girls interested in
science were treated differently by parents, teachers, and
friends. While boys received admiration and encourage-
ment for their interests, responses to girls were often
characterized by ambivalence, lack of encouragement, or
suggestions that their goals were inappropriate [77].
Studies showed that these stereotypes and biases also exist
in university context [78,79]. For example, one study found
that science faculty members in biological and physical
sciences exhibit biases against female students by rating
male students significantly more competent [78]. Our prior
study also found that in introductory physics course, there
is a significant gender difference in perceived recognition
from TAs and instructors [79,80]. There is often a feedback
loop, e.g., between recognition and identity. For example,
the experiences of not being recognized as a science person
may further increase the stereotype threat, and these
gender-based biases may accumulate over time and become
a detriment to female students’ science identity.
Moreover, students’ interest and self-efficacy have also

been found to be connected to their interaction with other
people and recognition by them [49,53]. In Hidi and
Renninger’s four stages model of interest development
[53,54,81], people’s interest in a field is triggered and
maintained by external factors first and then becomes an
individual interest. In addition, according to Bandura’s
social cognitive theory, individual’s self-efficacy can be
shaped by verbal encouragement from others [82,83].
Kalender et al.’s physics identity framework [79] showed
that students’ perceived recognition not only strongly
predicts their physics identity, but also predicts their
physics interest and self-efficacy, which suggests that the
gender difference in students’ perceived classroom expe-
rience may partially explain the gender differences in
students’ physics self-efficacy, interest, and identity at
the end of the course. However, it is not clear how much
of self-efficacy and interest changed from the beginning to
the end of the course, and what role was played by
perception of learning environment in this change.
In addition to perceived recognition, some studies have

shown that students’ sense of belonging and their inter-
action with peers are also important constructs of learning
environment [7,68,69,84–87]. For example, if students feel
more secure in their belonging in school, they may
approach others in the academic environment more and
with more positive attitudes, building better interaction and
higher perceived recognition [88]. However, there are very
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few quantitative studies about the effect of learning
environment on students’ motivational beliefs and what
role is played by each factor in the learning environment.
To better understand how the learning environment
influences students’ motivational outcomes and how to
develop an inclusive and equitable learning environment,
further study is needed.
Our conceptualization of inclusive excellence and equity

in learning includes three pillars: equitable access and
opportunity to learn, equitable and inclusive learning
environment, and equitable outcomes. Thus, by inclusive
excellence and equity in learning, we mean that not only
should all students have equitable opportunities and access
to resources, they should also have an equitable and
inclusive learning environment with appropriate support
and mentoring so that they can engage in learning in a
meaningful and enjoyable manner and the learning out-
comes should be equitable. By equitable learning out-
comes, we mean that students from all demographic groups
(e.g., regardless of their gender identity or race or ethnicity)
who have the pre-requisites to enroll in courses have
comparable learning outcomes. This conceptualization of
equitable outcome is consistent with Rodriguez et al.’s
equity of parity model [89]. The learning outcomes include
student performance in courses as well as evolution in their
motivational beliefs such as self-efficacy, etc., because
regardless of performance, students’ motivational beliefs
can influence their short- and long-term retention in their
major and careers. In other words, an equitable and
inclusive learning environment should provide guidance,
support, and mentoring to all students as appropriate and
ensure that students from all demographic groups have
equal sense of belonging regardless of their prior prepa-
ration so long as they have the prerequisite basic knowledge
and skills. An equitable and inclusive learning environment

would also ensure that students from all demographic
groups and prior preparation embrace challenges as learn-
ing opportunity instead of being threatened by them and
enjoy learning. Equitable learning outcomes also include
the ability of the courses to empower students from all
demographic groups and make them passionate to pursue
further learning and careers in related areas. We note that
equitable access and opportunity to learn, equitable and
inclusive learning environment, and equitable outcomes are
strongly entangled with each other. For example, if the
learning environment is not equitable and inclusive in a
particular course, the learning outcomes are unlikely to be
equitable.
To improve equity and inclusion in physics classes, we

conducted a study to investigate the effect of the perception
of learning environment (including sense of belonging,
perceived peer interaction, and perceived recognition) on
students’ self-efficacy, interest and identity by controlling
for students’ gender and their self-efficacy and interest at
the beginning of a calculus-based introductory physics
course. We note that the learning environment mentioned
here is not necessarily the classroom environment: it also
includes students’ experiences outside the class. For
example, students may work together on their homework
after class, and they could also ask for help during
instructors’ office hours. As shown in Fig. 1, the total
nine constructs are divided into three groups: what we
control for, perception of learning environment, and out-
comes. Students’ gender, pre-self-efficacy (Pre SE) and
pre-interest measured at the beginning of the course are
constructs that we control for, which are related to students’
beliefs about physics based on their prior experience.
Outcomes include students’ physics post-self-efficacy
(Post SE), post-interest, and identity at the end of the
course. Perceived recognition (Perceived Recog), perceived

FIG. 1. Schematic representation of the theoretical framework regarding physics identity. From left to right, all possible regression
paths were considered, but only some of the paths are shown here.
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peer interaction (Peer Int) and sense of belonging
(Belonging) constitute the perception of learning environ-
ment. For convenience, perceived peer interaction is
shortened to peer interaction in the rest of the paper. We
note that out of the three components of the pre-physics
identity, pre-self-efficacy, and pre-interest have been con-
trolled for. However, perceived recognition is part of the
perception of learning environment and thus is not con-
trolled for at the beginning of the course (i.e., students have
no experience interacting with their instructors and TAs).
In our study, peer interaction, perceived recognition, and

sense of belonging were measured at the end of the course.
This is because only after the course can students answer
these survey questions based on their real experience in the
course such as their interaction with peers, TAs, and
instructors. Because pre- and post-responses are actually
students’ responses to the same questions at two different
time points, it is not surprising if students’ pre-self-efficacy
and pre-interest partially predict their post-self-efficacy and
postinterest. However, if students’ self-efficacy and interest
changed from pre to post, we want to study whether the
perception of learning environment helps to explain
the changes and what role is played by each construct in
the perception of learning environment.
In this study, we first calculated female and male

students’ mean scores for each motivational construct.
Then we studied how much of students’ self-efficacy
and interest changed from pre- to post- and how much
of these changes can be explained by the perception of
learning environment. We used structural equation model-
ing (SEM) to study the effect of learning environment on
students’ post-self-efficacy, interest, and identity by con-
trolling for gender and their pre-self-efficacy and interest.
To better understand the role played by each perception of
learning environment construct, we first considered a
model with perceived recognition as the only perception
of learning environment construct to see how much
variance in students’ self-efficacy, interest and identity
was explained by the model. Then, we added peer
interaction and sense of belonging into this model one
by one to see whether the adding constructs help to explain
extra variance in students’ motivational outcomes.

II. RESEARCH QUESTIONS

Our research questions regarding the calculus-based
introductory physics course 1 at a large state-related
university are as follows. This course is generally taken
by engineering, physical science, and mathematics majors
in the first year of undergraduate studies.
RQ1. Are there gender differences in students’ motiva-

tional characteristics and do they change from the begin-
ning to the end of the course (i.e., from pre to post)?
RQ2. How do the components of the perception of

learning environment (including sense of belonging, peer
interaction, and perceived recognition) predict students’

physics identity as well as post-self-efficacy and post-
interest controlling their gender, pre-self-efficacy, and
pre-interest?
RQ3. Does gender moderate the relationship between

any two constructs in the model? (i.e., Does the strength of
relationship given by the standardized regression coeffi-
cient between any two constructs in the model differ for
women and men?)
RQ4. If gender does not moderate any path in the model,

how does gender mediate
a. the factors that were controlled for?
b. the perception of learning environment after control-

ling for pre-self-efficacy and pre-interest?
c. the motivational outcomes after controlling for every-

thing in the model?
RQ5. What unique role is played by each of the three

components we have included in the learning environment
in predicting students’ motivational outcomes?
RQ6. Based on the aspects of the perception of learning

environment that explain most of the variance in the
outcomes, which model is most productive for creating
the inclusive environment?

III. METHODOLOGY

A. Participants

In this study, we collected motivational survey data at the
beginning and end of the semester from students who took
the introductory calculus-based physics 1 course in two
consecutive fall semesters. This course is taken mostly by
students majoring in engineering, physical science, and
mathematics. This course is a traditional lecture-based
course (4 h per week) with recitations (1 h per week) in
which students typically work collaboratively on physics
problems. The paper surveys were handed out and collected
by TAs in the first and last recitation class of a semester.
Course instructors were encouraged to give students course
credit or extra credit for completing the survey, and the
completion rates are typically 80%–90%. We named the
data collected at the beginning of the semester as predata
and that collected at the end of the semester as postdata.
Finally, we combined the two semesters’ data and put them
into two categories, pre and post. The demographic data of
students—such as gender—were provided by the univer-
sity. Students’ names and IDs were de-identified by an
honest broker who provided each student with a unique
new ID (which connected students’ survey responses with
their demographic information). Thus, researchers could
analyze students’ data without having access to students’
identifying information.
There were 1364 students participating in the presurvey

and 1219 students participating in the postsurvey. There
were 1052 students participating both pre- and postsurvey.
Students may miss the first or the last recitation class for
many possible reasons. In this study, we only considered
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students who are in our postdataset even though some of
them might not take the presurvey. This is because our
focus is on students’ motivational outcomes at the end of
the course, and what role is played by the perception of
learning environment in predicting students’ motivational
outcomes by controlling for their premotivational scores. In
addition, SEM can provide a better estimation with the
more completed outcome data [90]. Thus, it is reasonable to
keep students’ response to the postsurvey rather than the
presurvey. To handle the missing data, we used the full
information maximum likelihood method to estimate the
model by using all available information [91]. In this
method, the population parameters are estimated that would
most likely produce the estimates from the sample data that
is analyzed [91].
In all, there were 1219 students participating in the

postsurvey including both semesters. In our final dataset,
we kept 1203 students (including 427 female students and
776 male students) because the other 16 students did not
provide their gender information. We recognize that gender
identity is not a binary construct. However, because
students’ gender information was collected by the

university which offered binary options, we did the analysis
with the binary gender data in this study. 1.3% of the
students who did not provide this information were not
included in this analysis.

B. Survey instruments

In this study, our analysis includes six motivational
constructs—physics self-efficacy, interest, peer interaction,
perceived recognition, sense of belonging, and identity. The
questions for each construct are listed in Table I. The survey
questions were adapted from the existing motivational
research [92–98] and were revalidated in our prior work
[11,99–102]. The validation and refinement of the survey
involved use of one-on-one student interviews with both
introductory and advanced students [11,74,102,103],
exploratory and confirmatory factor analyses (EFA and
CFA) [104], Pearson correlation between different con-
structs, and Cronbach’s alpha [105,106]. The peer inter-
action scale was added later, and therefore additional
validation (CFA and Cronbach’s alpha results) for that
scale is reported in Table I.

TABLE I. Survey items for each of the motivational scales. The Cronbach’s alpha and CFA item loadings (Lambda and p values of the
significance test for each item loading) shown here were calculated with the postdata. † The response options for this question are
“Never, once a month, once a week, every day”. ‡ The response options for this question are “Very boring, boring, interesting, very
interesting.”

Construct and item Lambda p value

Physics identity
I see myself as physics person. 1.000 < 0.001
Physics self-efficacy (Cronbach’s α ¼ 0.80)
I am able to help my classmates with physics in the laboratory or in recitation. 0.722 < 0.001
I understand concepts I have studied in physics. 0.726 < 0.001
If I study, I will do well on a physics test. 0.727 < 0.001
If I encounter a setback in a physics exam, I can overcome it. 0.669 <0.001
Physics interest (Cronbach’s α ¼ 0.82)
I wonder about how physics works† 0.664 <0.001
In general, I find physics‡ 0.795 <0.001
I want to know everything I can about physics. 0.796 <0.001
I am curious about recent physics discoveries. 0.693 <0.001
Physics perceived recognition (Cronbach’s α ¼ 0.86)
My family sees me as physics person. 0.902 <0.001
My friends see me as physics person. 0.899 <0.001
My physics TA and/or instructor see me as physics person. 0.693 <0.001
Physics sense of belonging (Cronbach’s α ¼ 0.86)
I feel like I belong in this class. 0.831 <0.001
I feel like an outsider in this class. 0.697 <0.001
I feel comfortable in this class. 0.830 <0.001
I feel like I can be myself in this class. 0.616 <0.001
Sometimes I worry that I do not belong in this physics class. 0.712 <0.001
Physics peer interaction (Cronbach’s α ¼ 0.91)
My experience and interaction with other students in this class…
made me feel more relaxed about learning physics. 0.717 <0.001
increased my confidence in my ability to do physics. 0.910 <0.001
increased my confidence that I can succeed in physics. 0.928 <0.001
increased my confidence in my ability to handle difficult physics problems. 0.846 <0.001

EFFECT OF GENDER, SELF-EFFICACY, … PHYS. REV. PHYS. EDUC. RES. 17, 010143 (2021)

010143-5



Physics self-efficacy represents students’ belief about
whether they can excel in physics. In our survey, we had
four items for self-efficacy (Cronbach’s alpha ¼ 0.69 for
pre-self-efficacy and Cronbach’s alpha ¼ 0.8 for the post-
self-efficacy [105]). These items had response scale of
“NO!, no, yes, YES!”, which is a 4-point Likert scale (1–4).
We also had four items for physics interest (Cronbach’s
alpha ¼ 0.75 for the pre-interest, Cronbach’s alpha ¼ 0.82
for the postinterest). The question “I wonder about how
physics works” had temporal response options: “Never,
once a month, once a week, every day.” whereas the
question “In general, I find physics:” had response options
“Very boring, boring, interesting, very interesting”. The
remaining two items were answered on the “NO!, no, yes,
YES!” scale. By choosing the four options, students will
get score from 1 to 4 accordingly. For example, if a student
finds physics very boring, they will get one point for this
item. And the more interest a student has in physics, the
higher score the student will get for this item. It is
noteworthy that Cronbach’s alpha is always higher in
our postdata than in the predata. This may be because
students had a clearer judgment about their self-efficacy
and interest after one semester of learning so that they could
answer those questions in a more consistent way at the end
of the semester than at the beginning of the semester.
There is one item for physics identity in this survey (I see

myself a physics person). Physics identity corresponds to
students’ belief about whether they designate themselves as
a physics person [3]. This item involved a four-point Likert
response on the scale: “strongly disagree, disagree, agree,
and strongly agree” and they correspond to 1 to 4
points [107].
In addition, perceived recognition, peer interaction, and

sense of belonging are the other three motivational con-
structs in our study. Unlike self-efficacy, interest and
identity, these three constructs are directly related to
students’ experience in the course. Perceived recognition
included three items which represent whether a student
thinks other people see them as a physics person [2,3,59]
(Cronbach’s alpha ¼ 0.86). Peer interaction including
four items represents whether students have a productive
and enjoyable experience when working with peers
(Cronbach’s alpha ¼ 0.91). Sense of belonging is about

students’ feelings of whether they belonged in the physics
class [86], and it included five items that were scored
on a 5-point Likert scale: “not at all true, a little true,
somewhat true, mostly true and completely true”
(Cronbach alpha ¼ 0.86). Two sense of belonging items
(“I feel like an outsider in this class” and “Sometimes I
worry that I do not belong in this physics class”) were
reverse coded, which means that a higher score in these
two items represents a lower sense of belonging. Students’
score of each construct is the average score of all items in
this construct.

C. Quantitative analysis of survey data

First, we calculated the mean score for each construct for
each student. Then we used a regular two-sample t-test
[108,109] to compare students’ pre and postscore and to
compare responses for female and male students. Finally,
we used structural equation modeling (SEM) [110] to study
the effect of the perception of learning environment on
students’ motivational outcomes by controlling for gender
and their pre-self-efficacy and interest. The SEM includes
two parts: confirmatory factor analysis (CFA) and path
analysis.
To validate the items on our survey, we performed

the CFA for each construct. The model fit is good if the
fit parameters are above certain thresholds. In CFA,
comparative fit index ðCFIÞ > 0.9, Tucker-Lewis index
ðTLIÞ > 0.9, root mean square error of approximation
ðRMSEAÞ < 0.08, and standardized root mean square
residual ðSRMRÞ < 0.08 are considered as acceptable
and RMSEA < 0.06 and SRMA < 0.06 are considered
as a good fit [90]. In our study, CFI ¼ 0.943, TLI ¼ 0.934,
RMSEA ¼ 0.05, and SRMR ¼ 0.041 which represents a
good fit. Thus, there is additional quantitative support for
dividing the constructs as proposed. In addition, as show in
Table I, all of the CFA item loadings are above 0.5 and most
of them are above 0.7, which means that our constructs
extract sufficient variance from the items [111]. The CFA
results allowed us to perform the path analysis.
Before performing the path analysis, we calculated the

Pearson correlation coefficients pairwise between each two
constructs [106]. As shown in Table II, even though these
constructs have strong correlations with each other, the

TABLE II. Zeroth order correlation coefficients of the constructs in the mediation model.

Observed variable 1 2 3 4 5 6 7 8

1. Physics identity � � � � � � � � � � � � � � � � � � � � � � � �
2. Pre-self-efficacy 0.55 � � � � � � � � � � � � � � � � � � � � �
3. Pre-interest 0.60 0.66 � � � � � � � � � � � � � � � � � �
4. Post-self-efficacy 0.68 0.61 0.45 � � � � � � � � � � � � � � �
5. Postinterest 0.70 0.49 0.87 0.63 � � � � � � � � � � � �
6. Perceived recognition 0.84 0.46 0.59 0.70 0.68 � � � � � � � � �
7. Peer interaction 0.51 0.37 0.31 0.67 0.47 0.49 � � � � � �
8. Sense of belonging 0.62 0.46 0.38 0.83 0.55 0.63 0.68 � � �
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correlations are not so high that the constructs could not be
separately examined in SEM [112]. It is noteworthy that in
Table II there are three very strong correlations. The
correlation coefficient between the pre-interest and post-
interest is 0.87, which means that students’ interest at the
end of the course is highly related to their interest at the
beginning of the course. The correlation coefficient
between physics identity and perceived recognition is
0.84, which is consistent with Godwin et al. and
Kalender et al.’s prior work [63,79] finding that perceived
recognition is the largest predictor of physics identity.
Another large coefficient is between students’ post-self-
efficacy and sense of belonging. According to prior work
done by Kalender et al., these two constructs are indeed
strongly correlated with each other [72].
To analyze the relations among the constructs, we

performed the full SEM. Apart from CFA, the path analysis
in SEM gives regression coefficients β for paths between
each pair of constructs and the value of each β is a measure
of the strength of that relationship. Compared with a
multiple regression model, the advantage of SEM is that
we can estimate all of the regression links for multiple
outcomes and factor loadings for items simultaneously,
which improves the statistical power. The level of SEM
model fit can also be represented by CFI, TLI, RMSEA,
and SRMR. We first analyzed the saturated SEM model
that includes all of the possible links between different
constructs, and then we used the modification indices to
improve the model fit. We kept path links which were
statistically significant in SEM path analysis. Before
performing gender mediation analysis, we first tested the
gender moderation relations between each pair of con-
structs using multigroup SEM (to investigate any inter-
action effects with gender), which includes testing of factor
loadings, indicator intercepts, residual variances, and
regression coefficients. Results showed that in all of our
models strong measurement invariance holds and there is
no difference in any regression coefficients by gender,
which allowed us to perform the gender mediation analysis
using SEM (see the Appendix A for detailed multigroup
SEM analysis results).
One advantage of SEM is that it shows not only the direct

regression relation between two constructs but also all of
the indirect relations mediated though other constructs,

which allowed us to calculate the total regression effect by
adding the direct and indirect regression coefficients up. In
this study, we first considered a model with perceived
recognition as the only perception of learning environment
construct to see how students’ physics self-efficacy, inter-
est, and identity were predicted by it. Then, we added peer
interaction or sense of belonging as additional constructs in
the perception of learning environment. Finally, our model
included all of the perception of learning environment
constructs. We analyzed the variance in each motivational
outcome denoting students’ motivational characteristics
explained by each model to understand the unique role
played by each perception of learning environment com-
ponent and to determine if all three perception of learning
environment components are productive.

IV. RESULTS

A. Gender differences in motivational characteristics

The results of the regular two-sample t test are shown in
Tables III and IV. We also used a paired sample t test for
matched pairs to compare students’ pre- and post-self-
efficacy and interest, and the results are similar to those
using the regular t test (see Appendix B for results of the
paired-sample t test for matched pairs of pre- and post-
responses). As shown in Table III, female students had
significantly lower average interest and self-efficacy scores
in both pre- and postsurvey than male students, and these
gender differences increased by the end of the semester.
The effect size given by Cohen’s d [109] of gender
difference in physics interest increased from 0.54 to
0.60, and the effect size of gender difference in self-efficacy
increased from 0.32 to 0.53. In addition, even though
students’ interest and self-efficacy dropped generally from
pre to post (see Table III), female students’ interest and self-
efficacy dropped (d ¼ 0.52 for self-efficacy and d ¼ 0.30
for interest) even more than male students’ (d ¼ 0.27 for
self-efficacy and d ¼ 0.19 for interest). Table IV shows the
average scores on the other constructs (perception of peer
interaction, perceived recognition, sense of belonging and
identity) in the postsurvey. As shown in Table IV, female
students also had significantly lower average scores in all of
the four constructs than male students, and the effect sizes
are all in the medium range [109].

TABLE III. Descriptive statistics of pre- and post-self-efficacy and interest for female and male students.

Pre-interest Postinterest Pre-SE Post-SE

(1–4) (1–4) Statistics (1–4) (1–4) Statistics

Gender Mean Mean p value Cohen’s d Mean Mean p value Cohen’s d

Male 3.19 3.08 <0.001 0.19 3.12 2.98 <0.001 0.27
Female 2.89 2.70 <0.001 0.30 2.96 2.68 <0.001 0.52
p value <0.001 <0.001 <0.001 <0.001
Cohen’s d 0.54 0.60 0.32 0.53
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B. Perception of learning
environment mediation models

In this section, we will show the predictive relationships
among the constructs using SEM models. Because many
studies have shown that perceived recognition is a strong
predictor of students’ motivational beliefs and identity
[79,113–115], all of the models shown in the main text
of this paper include perceived recognition as one of the
perception of learning environment constructs (see
Appendix C for results of other SEM models). First,
perceived recognition was the only perception of learning
environment construct in the model. Then we added peer
interaction or sense of belonging to the perception of
learning environment one by one to analyze how each
helped to predict students’ identity, post-self-efficacy, and
interest. Finally, we included all of the three constructs in
our model and studied how these constructs mediated the
outcomes together and what role was played by each
of them.
Figure 2 shows the path analysis results of the SEM

model in which perceived recognition is the only

perception of learning environment construct. The model
fit indices suggest a good fit to the data: CFI ¼ 0.939
(>0.90), TLI ¼ 0.927 (>0.90), RMSEA ¼ 0.055 (<0.08),
and SRME ¼ 0.043 (<0.08). The solid lines represent
regression paths, and the numbers on the lines are regres-
sion coefficients (β values), which represent the strength of
the regression relations. As we can see in Fig. 2., there are
two paths going from pre-self-efficacy to post-self-efficacy.
One path goes from pre to post directly, and the other path
goes through the perceived recognition. The regression
coefficient of the direct path from pre-self-efficacy to post-
self-efficacy is 0.35. The regression coefficient of the
indirect path can be calculated by multiplying the regres-
sion coefficients from pre-self-efficacy to perceived rec-
ognition (β ¼ 0.28) and the regression coefficient from
perceived recognition to post-self-efficacy (β ¼ 0.50),
which gives us 0.28 × 0.50 ¼ 0.14. Similarly, the direct
effect from pre-interest to postinterest is β ¼ 0.72, and the
indirect effect is 0.42 × 0.25 ¼ 0.11.
We then added peer interaction to the model. The results

of the SEM model are presented visually in Fig. 3. This
model also fit the data very well. CFI ¼ 0.951 (>0.90),
TLI ¼ 0.943 (>0.90), RMSEA ¼ 0.048 (<0.08), and
SRMR ¼ 0.040 (<0.08). The results show that peer inter-
action directly predicts post-self-efficacy and interest. By
comparing this model with the one only including per-
ceived recognition, we can see that after adding peer
interaction to the model, the direct effect of pre-self-
efficacy on post-self-efficacy became weaker (the direct
β value dropped from 0.35 to 0.29). In addition, the direct
effect of perceived recognition on post-self-efficacy also
decreased (the β value from perceived recognition to post-
self-efficacy dropped from 0.50 to 0.35). This is due to the
shared variance between peer interaction and the other

TABLE IV. Descriptive statistics of peer interaction, perceived
recognition, sense of belonging, and identity for female and male
students.

Post-peer
Int

Post-perceived
recog

Postsense of
belonging

Post-
identity

Gender (1–4) (1–4) (1–5) (1–4)
Male 2.97 2.60 3.73 2.63
Female 2.68 2.24 3.33 2.17
p value <0.001 <0.001 <0.001 <0.001
Cohen’s d 0.44 0.49 0.46 0.56

FIG. 2. Schematic diagram of the path analysis part of the structural equation modeling between gender and being a physics person
through self-efficacy, interest, and perceived recognition. The solid lines represent regression paths, and the dashed lines represent
residual covariances. The regression line thickness corresponds to the magnitude of β value (standardized regression coefficient). All β
values are significant with p < 0.001.
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direct predictors (pre-self-efficacy and perceived recogni-
tion) of post-self-efficacy. The regression coefficient from a
predictor to an outcome represents the expected changes in
the outcome as a result of changes in the predictor in
standardized deviation units while controlling for the
correlated effects of other predictors [116]. When peer
interaction was added to the model, the direct effect of
pre-self-efficacy and perceived recognition on post-self-
efficacy decreased because more correlated effect
had been controlled for. Similarly, the direct effect of
pre-interest and perceived recognition on postinterest also
decreased because the effect that correlated with peer
interaction had been controlled for. It is noteworthy that
the direct effect of perceived recognition, postinterest and

post-self-efficacy on identity did not change after adding
peer interaction. This is because peer interaction does not
predict identity directly.
Then, we analyzed a SEM model which only includes

perceived recognition and sense of belonging as shown in
Fig. 4. The model also fits the data well [CFI ¼ 0.930
(>0.90), TLI ¼ 0.919 (>0.90), RMSEA ¼ 0.054 (<0.08)
and SRMR ¼ 0.043 (<0.08)]. Figure 4 shows that sense
of belonging is predicted by pre-self-efficacy and interest,
and it directly predicts post-self-efficacy and interest. In
addition, there is a strong correlation between sense of
belonging and perceived recognition. Thus, there is more
correlated effect being controlled for when estimating the
regression coefficients from the predictors to the outcomes.

FIG. 3. Schematic diagram of the path analysis part of the structural equation modeling between gender and being a physics person
through self-efficacy, interest, perceived recognition, and peer interaction. The solid lines represent regression paths, and the dashed
lines represent residual covariances. The regression line thickness corresponds to the magnitude of β value (standardized regression
coefficient) with 0.01 < p < 0.05 indicated by *. Other regression lines show relations with p < 0.001.

FIG. 4. Schematicdiagramof thepathanalysispartof thestructuralequationmodelingbetweengenderandbeingaphysicsperson through
self-efficacy, interest, perceived recognition, and peer interaction. The solid lines represent regression paths, and the dashed lines represent
residual covariances. The regression line thickness corresponds to the magnitude of the β value (standardized regression coefficient) with
0.01 < p < 0.05 indicated by * and 0.001 < p < 0.01 indicated by **. Other regression lines show relations with p < 0.001.
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For example, compared to the model only including
perceived recognition (Fig. 2), adding sense of belonging
decreased the direct regression coefficients from pre-self-
efficacy, pre-interest, and perceived recognition to post-
self-efficacy and postinterest. It is noteworthy that even
though pre-self-efficacy directly predicts identity in this
model as shown in Fig. 4, because the regression coefficient
of this path is very small (β ¼ 0.06), the regression
coefficients from post-self-efficacy, postinterest, and per-
ceived recognition to identity are still almost the same as in
the first two models discussed earlier.
Finally, we analyzed a SEM model which includes all of

the three perception of learning environment constructs.
Figure 5 shows the results visually. This model also fits the
data very well [CFI ¼ 0.941 (>0.90), TLI ¼ 0.932
(>0.90), RMSEA ¼ 0.049 (<0.08) and SRMR ¼ 0.042
(<0.08)]. As shown in Fig. 5, all three perception of
learning environment constructs directly predict post-self-
efficacy and postinterest, and the direct effect from pre-self-
efficacy to post-self-efficacy and from pre-interest to
postinterest are weaker than any models discussed earlier.
In other words, as we added more constructs to the
perception of learning environment, the strength of the
direct paths from pre to post decreased. This result indicates
that the perception of learning environment is mediating the
effect of students’ pre-self-efficacy and pre-interest on their
motivational outcomes. Because there is no other construct
predicting identity directly apart from perceived recogni-
tion, post-self-efficacy and postinterest, the regression
coefficients from the three predictors to identity are almost
the same in all of the above models. This result is consistent
with Godwin et al. and Kalender et al.’ prior work on
physics identity framework [63,79]. In addition, as shown
in Fig. 2–5, as more perception of learning environment

constructs are added, the residual covariance between post-
self-efficacy and postinterest decreases while the residual
covariance between pre-self-efficacy and pre-interest
almost stays the same. This is because the residual
covariance represents covariance between the constructs
that is not explained by their predictors. This means that as
we added more perception of learning environment con-
structs, more variance in post-self-efficacy and postinterest
was explained.
Figure 5 shows that gender not only directly predicts the

three perception of learning environment constructs but
also indirectly predicts them through pre-self-efficacy and
pre-interest. For example, the direct effect of gender on peer
interaction is 0.15. The indirect effect can be calculated by
multiplying the coefficient 0.22 (gender → pre-self-
efficacy) and coefficient 0.35 (pre-self-efficacy → peer
interaction). Thus, the total effect of gender on peer
interaction is 0.15þ 0.22 × 0.35 ¼ 0.23. Similarly, the
total effect of gender on perceived recognition is
0.06þ 0.22 × 0.32þ 0.31 × 0.35 ¼ 0.24, and the total
effect of gender on sense of belonging is 0.14þ 0.22×
0.45 ¼ 0.24. These results are consistent with the descrip-
tive statistics shown in Table IV, which shows that there are
statistically significant gender differences in all three
perception of learning environment constructs and the
effect sizes are all in the medium range [109].
Although there were large gender differences in students’

pre- and post-self-efficacy and interest, Fig. 5 shows gender
mediation and clarifies that gender only directly predicts
pre-self-efficacy, pre-interest, and the three learning envi-
ronment constructs. Thus, Fig. 5 reveals that the gender
differences in students’ post-self-efficacy, postinterest, and
identity shown in Table III were mediated by the different
components of the perception of the learning environment.

FIG. 5. Schematic diagram of the path analysis part of the structural equation modeling between gender and being a physics person
through self-efficacy, interest, perceived recognition, peer interaction, and sense of belonging. The solid lines represent regression paths,
and the dashed lines represent residual covariances. The regression line thickness corresponds to the magnitude of the β value
(standardized regression coefficient) with 0.01 < p < 0.05 indicated by * and 0.001 < p < 0.01 indicated by **. Other regression lines
show relations with p < 0.001.
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We note that due to reasons such as societal stereotypes and
biases about who belongs in physics and can excel in it,
women already had lower self-efficacy and interest at the
beginning of the course. Moreover, Table III shows that the
gender differences in students’ self-efficacy and interest
actually increased from the beginning to the end of the
course. Thus, our results indicate that the current learning
environment disadvantages female students more than male
students and is not equitable and inclusive.
In this study, we investigated how students’ perception of

learning environment predicts their motivational outcomes
by controlling for gender, self-efficacy, and interest at the
beginning of the course. Even though two out of the three
components of pre-identity (pre-self-efficacy and pre-inter-
est) have already been controlled for, it would still be
helpful to check the model in which pre-identity is also
controlled for. However, because the identity construct was
added to our survey at the end of the first fall semester we
studied, we do not have the pre-identity data for that
semester. Thus, we checked the model including pre-
identity with only the second fall semester’s data (see
Appendix D for results of the path analysis part of this SEM
model). We find that the direct effect from pre-identity to
postidentity is very small and there are no qualitative
changes with regard to how the perception of learning
environment predicts outcomes compared with the model
without pre-identity.
To summarize how the outcome constructs were pre-

dicted through both direct and indirect paths, we calculated
the regression coefficient for each path in the model that
includes all three learning environment constructs
(Table V). The indirect effect of pre-self-efficacy on
students’ post-self-efficacy is 0.34 which is even larger
than the direct effect 0.23. This means that most effects of

pre-self-efficacy on post-self-efficacy were mediated by the
perception of learning environment. It is noteworthy that
the effect of students’ sense of belonging on post-self-
efficacy (β ¼ 0.51) is almost the same as the effect of pre-
self-efficacy on post-self-efficacy (β ¼ 0.57). Unlike
post-self-efficacy, students’ postinterest is mainly predicted
by their pre-interest directly, and the effect of perception of
learning environment constructs is small. In addition, we
found that self-efficacy, interest, and perceived recognition
are the three main predictors of identity, and perceived
recognition is the major predictor, which is consistent with
prior studies about physics identity [3,63,79].
Table V shows that the perception of learning environ-

ment is mediating the effect of students’ pre-self-efficacy
and pre-interest on their motivational outcomes. To further
understand the role played by each learning environment
construct, we calculated the coefficients of determination
R2 (fraction of variance explained) for each construct in
seven different SEMmodels with different combinations of
components of the perception of learning environment
(Table VI). We found in all models, input constructs have
very small R2 (R2 for pre-self-efficacy is 0.05 and R2 for
pre-interest is 0.10). This is because they are input con-
structs that we are controlling for, which are only explained
by gender. The three perception of learning environment
constructs are not only explained by gender but also by pre-
self-efficacy and pre-interest. In all models, the variance in
peer interaction is explained 17%, the variance in perceived
recognition is explained 39%, and the variance in sense of
belonging is explained around 24%.
R2 for all outcome constructs are pretty high, which

means that our models have explained most variance in
them. It is noteworthy that R2 values for postinterest are
around 0.79 in all of the models, which means that the

TABLE V. Regression coefficients (β) of direct and indirect paths for three outcomes predicted by various
predictors in the model which includes perception of learning environment (sense of belonging, peer interaction, and
perceived recognition).

Predictor Outcome Direct Indirect Total (Direct þ Indirect)

Pre-SE Post-SE 0.23 0.34 0.57
Pre-SE Postinterest 0.00 0.15 0.15
Pre-SE Identity 0.00 0.29 0.29
Pre-Interest Post-SE 0.00 0.06 0.06
Pre-Interest Postinterest 0.68 0.05 0.73
Pre-Interest Identity 0.00 0.17 0.17
Peer Int Post-SE 0.15 0.00 0.15
Peer Int Postinterest 0.10 0.00 0.10
Peer Int Identity 0.00 0.04 0.04
Perceived Recog Post-SE 0.18 0.00 0.18
Perceived Recog Postinterest 0.15 0.00 0.15
Perceived Recog Identity 0.58 0.06 0.64
Sense of Belonging Post-SE 0.51 0.00 0.51
Sense of Belonging Postinterest 0.15 0.00 0.15
Sense of Belonging Identity 0.00 0.11 0.11
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models which include any of the three learning environ-
ment constructs can explain 79% of the variance of
postinterest. However, there is 75% of the variance of
post-self-efficacy explained by the model which only
includes sense of belonging, which is larger than that
explained by the other two single construct models and is
very close to that explained by the model including all of
the three perception of learning environment constructs. In
addition, we found that the models including sense of
belonging always explain more variance in post-self-effi-
cacy than the models without sense of belonging. For
example, the model including perceived recognition and
sense of belonging explains 77% of variance of post-self-
efficacy, and the model including peer interaction and sense
of belonging also explains 77% of variance of post-self-
efficacy; however, the combination of peer interaction and
perceived recognition only explains 68% of variance of
post-self-efficacy. Similarly, the model that only includes
perceived recognition explains 74% of the variance of
identity, and adding peer interaction or sense of belonging
does not help explain the variance in identity further.
Table VI shows that both sense of belonging and perceived
recognition play unique roles in the perception of learning
environment in explaining students’ motivational out-
comes. However, peer interaction covaries with a sense
of belonging and perceived recognition and uniquely
explains very small percentages of the variance in the
outcomes. However, this does not mean that peer inter-
action is not important. In contrast, the covariation actually
suggests a possibility that students’ sense of belonging and
perceived recognition can potentially be shaped by helping
students interact meaningfully with peers (which in turn
can improve their motivational outcomes). Thus, we
believe the model including all of the three perception
of learning environment constructs is productive.

V. SUMMARY AND DISCUSSION

We studied students’ physics motivational beliefs in a
calculus-based introductory physics course. In particular,
we studied how the perception of learning environment—

including peer interaction, perceived recognition, and sense
of belonging—predicts students’ physics self-efficacy,
interest, and identity at the end of the course by controlling
for their gender as well as their self-efficacy and interest at
the beginning of the course.
We found that both male and female students’ self-

efficacy and interest dropped from pre to post but female
students’ dropped even more than male students’
(Table III). In addition, we found significant gender
differences disadvantaging female students in all motiva-
tional constructs in our models with the effect sizes for all
of them in the medium range (Table V) [109]. The gender
differences in students’ perception of learning environment
may partially explain the finding that the gender differences
in students’ self-efficacy and interest increased by the end
of the course. These results show that the current learning
environment influenced students’ motivational belief in a
negative way and was even more detrimental to female
students’ feelings.
To further understand how the perception of learning

environment predicts students’ motivational outcomes, we
performed structural equation modeling to analyze predic-
tive relationships among the constructs. Our results show
that the perception of learning environment constructs
directly predict students’ motivational outcomes even after
controlling for students’ gender, pre-self-efficacy, and pre-
interest. In particular, we found that in the learning
environment, students’ sense of belonging is the major
predictor of their post-self-efficacy, and students’ perceived
recognition is the major predictor of their physics iden-
tity (Fig. 5).
Finally, we studied the role played by each of the three

perception of learning environment components in explain-
ing students’ motivational outcomes. By comparing the
fraction of variance in motivational outcomes explained by
each model, we found that perceived recognition uniquely
contributed most in explaining identity, and sense of
belonging uniquely contributed most in explaining post-
self-efficacy. Our results are consistent with Kalender
et al.’s prior work [72,79], which showed that perceived
recognition is the major predictor of identity and there is a

TABLE VI. Coefficient of determination (R2) for various constructs in different models for impact of the perception of learning
environment. All R2 values are significant and p values <0.001.

Models

Construct Recog Peer Bel Peer þ Recog Peer þ Bel Recogþ Bel Peer þ Recogþ Bel

Pre-SE 0.05 0.04 0.04 0.05 0.05 0.05 0.05
Pre-Interest 0.11 0.10 0.10 0.10 0.09 0.10 0.10
Peer Int � � � 0.17 � � � 0.17 0.17 � � � 0.17
Recog 0.39 � � � � � � 0.39 � � � 0.39 0.38
Belonging � � � � � � 0.24 � � � 0.25 0.24 0.25
Post-SE 0.56 0.61 0.75 0.68 0.77 0.77 0.79
Post-Interest 0.79 0.77 0.78 0.80 0.78 0.80 0.80
Identity 0.74 0.61 0.61 0.74 0.61 0.75 0.75
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strong correlation between students’ sense of belonging and
self-efficacy. However, they did not take into account
students’ motivational characteristics at the beginning of
the course. In our study, we found that even after control-
ling for students’ gender, pre-interest, and pre-self-efficacy,
the perception of learning environment still plays a very
important role in predicting students’ motivational out-
comes. We note that even though peer interaction covaries
with sense of belonging and perceived recognition and
uniquely explains very small percentages of the variance in
the outcomes, this does not mean that peer interaction is not
important. Many instructors may not know how to imple-
ment strategies to improve students’ sense of belonging.
The covariation suggests a possibility that students’ sense
of belonging and perceived recognition may possibly be
shaped by helping students interact meaningfully with
peers (which in turn can improve their learning outcomes).
Thus, we believe the model including all of the three
learning environment constructs is productive.
In this study, we found that students’ postinterest was

mainly predicted by their pre-interest and the perception of
learning environment predicted only a small amount. This
means that our current learning environment barely helped
students build their physics interest. Actually, both male
and female students’ interest in physics dropped by the end
of the course. Even though our results show that the
perception of learning environment had a large effect on
students’ post-self-efficacy, the drop in students’ average
self-efficacy scores after instruction shows that this overall
effect of the current learning environment in introductory
physics is actually negative.
Another important finding is that even though there are

significant gender differences in students’ post-self-effi-
cacy, interest, and identity, gender does not directly predict
them. This means that all of the gender differences in
students’ motivational outcomes can be explained by the
gender differences in the predictors. This finding indicates
that we may be able to bridge the gender gap in students’
self-efficacy, interest and identity by developing an inclu-
sive and equitable learning environment. Unfortunately, our
results show that the current learning environment did not
bridge the gap and actually enlarged it. Because of reasons
such as societal stereotypes and biases about who belongs
in physics and can excel in it, women already had lower
self-efficacy and interest at the beginning of the course. The
current learning environment disadvantaging female stu-
dents may further impact their motivational beliefs.
Our findings suggest that an inclusive and equitable

learning environment is very important for helping students
improve their motivational belief in physics. An ideal
situation would be that all students get full scores in
self-efficacy, interest, and identity after the course; how-
ever, this also means that there would be no variance in
these motivational outcomes at all and the effect of the
perception of learning environment would also be zero. A

more realistic situation is that we improve the learning
environment so that everyone develops a significantly
higher self-efficacy, interest, and identity at the end of
the course. As we found, the perception of learning
environment directly predicts students’ motivational out-
comes at the end of the course (as shown in Fig. 5), so it is
reasonable to expect that we can enlarge this effect (which
means the regression coefficients from the perception of
learning environment to students’ post-self-efficacy, inter-
est, and identity could be even larger). In addition, we
should try to reduce the effect of gender, pre-self-efficacy,
and interest on the perception of learning environment.
Thus, students can equally benefit from the inclusive and
equitable learning environment regardless of the gender
and what their motivational beliefs were at the beginning of
the course. We note that even though we find that the
perception of learning environment did not explain stu-
dents’ interest much, this does not mean that interest cannot
be changed. People’s interest can be trigged and maintained
by external factors [81]. For example, effective evidence-
based instructional conditions or learning environments
that include group work, puzzles, computers, and so on
have been found to trigger situational interest [117–122].
Thus, it is important for instructors and researchers to
develop an engaging evidence-based learning environment
in which students can develop their interest in physics.
This investigation was conducted in a traditionally taught

lecture-based course. It would definitely help to incorporate
more research-validated active engagement pedagogies, but
that is not enough. For example, according to prior studies
[123,124], active engagement in an inequitable learning
environment actually can increase the gender gap in
students’ performance because the stereotyped group
(e.g., women) may not feel safe to participate without
feeling judged or anxious if the environment is not
equitable and inclusive. Instructors will need to create an
equitable and inclusive learning environment keeping in
mind how the societal stereotypes and biases about who
belong in physics and who can excel in physics impacts the
stereotyped groups. Some social-psychological interven-
tions such as value-affirmation intervention and ecological-
belonging intervention have been shown to reduce gender
gaps in students’ performance [125,126]. However, further
studies are needed to understand whether they help to
improve students’ perceptions of learning environment and
motivational outcomes in a course.
In our study, responses to the survey were all self-

reported by students. It would be helpful to interview more
students to get a deeper qualitative understanding of what
they had experienced during the learning process and how
the perception of learning environment influenced their
learning behavior and motivational characteristics. In
addition, it would also be interesting to look at the relation
between the perception of learning environment and
students’ motivational outcomes in algebra-based physics
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TABLE VII. Paired-sample t test for matched pairs (matched pair refers to students who took both pre- and postsurveys) of pre- and
post-self-efficacy and interest for female and male students.

Pre-Interest Postinterest Pre-SE Post-SE

(1-4) (1-4) Statistics (1-4) (1-4) Statistics

Gender Mean Mean p value Cohen’s d Mean Mean p value Cohen’s d

Male (N ¼ 662) 3.19 3.07 <0.001 0.24 3.12 2.98 <0.001 0.25
Female (382) 2.89 2.72 <0.001 0.33 2.96 2.70 <0.001 0.45

courses. Is the self-efficacy and interest of female students
higher in algebra-based physics courses than that in
calculus-based physic courses? Are the gender differences
in students’ motivational beliefs smaller in algebra-based
physics courses because female students are overrepre-
sented in these courses? Even though the general societal
stereotype threat still exists even for female students in
algebra-based physics courses, if their motivational beliefs
can be protected by a classroom where they have many
female peers, this may itself be a useful finding.
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APPENDIX A: MODERATION ANALYSIS

We did a moderation analysis to test whether gender
moderates the relationship between any two constructs in
the models (i.e., Does the strength of relationships given by
the standardized regression coefficients between any two
constructs in the models differ for women and men?). We
used the R [127] software package “lavaan” to conduct
multigroup SEM. We initially tested for measurement
invariance. In other words, we looked at whether the factor
loadings, intercepts, and residual variances of the observed
variables are equal in the model for the latent constructs so
we can confidently perform multigroup analysis. The
analysis involved introducing certain constraints in steps
and testing the model differences from the previous step. In
each step, we compared the model to both the previous step
and the freely estimated model, i.e., the model in which all
parameters are freely estimated for each gender group.
First, to test for “weak” or “metric” measurement invari-
ance, we ran the model in which only factor loadings were
fixed to equality across both gender groups, but intercept
and errors were allowed to differ. The model was not
statistically significantly different from the freely estimated

model according to a likelihood ratio test, so weak
measurement invariance holds (chi-square difference
Δχ2 ¼ 21.324, degree of freedom difference Δd:o:f: ¼
21, and nonsignificant p ¼ 0.439). Next, we tested for
“strong” or “scalar”measurement invariance by fixing both
factor loadings and intercepts to equality across gender
groups. This model was not statistically significantly
different from either the metric invariance model
(Δχ2 ¼ 25.314, Δd:o:f: ¼ 21, p ¼ 0.234) or the freely
estimated model (Δχ2 ¼ 46.637, Δd:o:f: ¼ 42, p ¼
0.288), so strong measurement invariance holds. Finally,
to test for “strict” measurement invariance we fixed factor
loadings, intercepts, and residual variances to equality. In
this step, there was a statistically significant difference from
the previous models, therefore “strict invariance” did not
hold when we compared to scalar measurement
(Δχ2 ¼ 64.732, Δd:o:f: ¼ 27, p < 0.001). However, strict
invariance is unlikely to hold in most situations. Therefore,
since strong measurement invariance holds for this model,
we continued on to perform other group comparisons.
Next, we ran a multigroup SEM in which all regression

estimates were fixed to equality for female and male
students in addition to the factor loadings and intercepts,
and we compared this model with freely estimated
model. There was no statistically significant difference
between the two models, so we reported the model where
regression pathways are equal for men and women.
The model fit parameters for this case were acceptable
(RMSEA ¼ 0.051, SRMR ¼ 0.057, CFI ¼ 0.931, TLI ¼
0.928). The multigroup SEM results suggest that regression
pathways among the constructs did not show differences
across gender when we compared to freely estimated model
(Δχ2 ¼ 77.059, Δd:o:f: ¼ 62, p ¼ 0.094) or to the scalar
model (Δχ2 ¼ 30.422, Δd:o:f: ¼ 20, p ¼ 0.063). How-
ever, the means of the latent variables showed the
same gender differences that have been reported in the
mediation models. That is, there were large gender
differences in students’ pre-self-efficacy and interest and
slight differences in peer interaction, perceived recognition,
and sense of belonging.

APPENDIX B: PAIRED-SAMPLE t TEST
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FIG. 6. Schematic diagram of the path analysis part of the structural equation modeling of perception of learning environment models
including only peer interaction, only sense of belonging and both peer interaction and sense of belonging. The solid lines represent
regression paths, and the dashed lines represent residual covariances. The regression line thickness corresponds to the magnitude of β
value (standardized regression coefficient) with 0.01 < p < 0.05 indicated by * and 0.001 < p < 0.01 indicated by **. Other
regression lines show relations with p < 0.001.

APPENDIX C: SEM RESULTS OF OTHER MODELS

The figure below presents the path analysis results of the SEM models including only peer interaction, only sense of
belonging, and both peer interaction and sense of belonging as learning environment constructs.
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APPENDIX D: SEM RESULTS OF THE MODEL INCLUDING PRE-IDENTITY

The figure below presents the path analysis results of the SEM model including pre-identity.
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