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This paper extends prior work establishing an operationalized framework of mathematical sense making
(MSM) in physics. The framework differentiates between the object being understood (either physical or
mathematical) and various tools (physical or mathematical) used to mediate the sense-making process. This
results in four modes of MSM that can be coordinated and linked in various ways. Here, the framework is
applied to novel modalities of student written work (both short answer and multiple choice). In detailed
studies of student reasoning about the photoelectric effect, we associate these MSM modes with particular
multiple choice answers, and substantiate this association by linking both the MSM modes and multiple
choice answers with finer-grained reasoning elements that students use in solving a specific problem.
Through the multiple associations between MSM mode, distributions of reasoning elements, and multiple-
choice answers, we confirm the applicability of this framework to analyzing these sparser modalities of
student work and its utility for analyzing larger-scale (N > 100) datasets. The association between
individual reasoning elements and both MSM modes and MC answers suggest that it is possible to cue
particular modes of student reasoning and answer selection. Such findings suggest potential for this
framework to be applicable to the analysis and design of curriculum.
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I. INTRODUCTION

Mathematical reasoning and mathematical problem solv-
ing play fundamental roles in scientific reasoning.
Recently, much attention has been given to the concept
of mathematical sense making (MSM) [1–7]. Though there
exist multiple and complementary definitions for MSM,
most consider it to explicitly involve the simultaneous use
of physical and mathematical reasoning. The conversation
has begun to progress from defining and describing MSM
to assessing engagement in MSM [6]. In prior work [8], we
have contributed to the definition and description of MSM,
developing a categorical framework that draws on socio-
cultural theories of cognition [9–11] and the broader
definition of sense making synthesized by Odden and
Russ [12]. This framework, which we summarize briefly
in Sec. I A, provides an operational approach to describing
student sense making and is consistent with many other
definitions of MSM [1–3,5] and mathematical problem
solving more generally [13–21].

Previously, we have applied this framework to describe
the nuanced reasoning exhibited by students in extended,
focus group (interview) settings [8,22]. In the present work,
we expand this analysis by applying the framework to new
modalities of student work, in particular the sparser data
streams of individual written responses and multiple-choice
answers. We note that this is not only a different data stream
than before (e.g., different content) but a different kind of
data. In shifting to these new modalities, we also consider a
much larger sample size (N ∼ 100). The expanded analysis
corroborates our prior work and is a necessary step to
establish the utility of the MSM framework as a tool for
describing student reasoning across multiple modalities of
student work and across sample sizes. In particular, we
establish that the framework can be applied productively
to data streams more commonly observed by physics
educators.
Recently, the conversation in the literature has extended

beyond descriptions of MSM and has begun to assess
student engagement in it. The present work establishes that
the framework can contribute to these discussions and
could be a useful tool for researchers and educators in
describing and assessing reasoning across modalities of
student work. We also begin to establish a theoretical
foundation for the framework to be used in the design and
assessment of curriculum. Applications to curricular design
are an important practical and theoretical step as the
discussion in the physics education research (PER) and
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science education communities moves beyond describing
and assessing MSM and begins to develop ways to support
student engagement in MSM.
As an attempt to understand some of the mechanisms

underpinning these reasoning modes, and as a first step
towards the predictive use of this framework, we also look
at the association between MSM modes and the use of
finer-grained cognitive tools that we term reasoning ele-
ments. The varied, contextually specific use of these
reasoning elements provides a more detailed description
of widespread student reasoning around a given topic and
brings greater specificity to the associated MSM modes.
These reasoning elements are consistent with a

knowledge-in-pieces [23] or resources perspective [24,25]
and are akin to facets [26,27]. The reasoning elements, either
individually or specific clusters, can be associated with both
the MSM modes and multiple-choice answers leading to
bidirectional mappings between reasoning elements, MSM
modes, and multiple-choice answers. These associations
suggest that student sense making (i.e., engagement in the
various MSM modes) and answer selection can be scaf-
folded by targeted activation of particular reasoning ele-
ments. We test this predictive hypothesis here, the results of
which offer preliminary validation of this approach and
support the potential for this framework to be applied to the
analysis and design of curricula and other instructional
interventions.
The present work is conducted in the context of the

photoelectric effect and much attention is given to the
development of, and student reasoning on, a novel instruc-
tional item we call the “KE vs λ task.” This task involves
multiple representations (symbolic and graphical) and the
interplay between mathematical and physical interpreta-
tions of mathematical formalisms. Student reasoning on
this task is an interesting result in and of itself, but as this is
not the primary focus of the paper a large part of this
discussion is placed in the Appendices. However, much of
the analysis presented in the main text does focus on the
task itself and associated reasoning. Grounding our dis-
cussion in the items of the task allows us to establish
connections between relevant reasoning and the MSM
modes. Our goal here is not to make claims about student
sense making in general, but to show that the framework
can be used to validly associate sense-making modes and
answer choices on a given problem.
Over the course of this study we (i) demonstrate that the

MSM framework can be applied to analyze student written
work and to make inferences from multiple choice
responses allowing for the analysis of larger sample sizes
(N > 100), and (ii) establish associations between MSM
modes, reasoning elements, and answers. In addition to
these two points, which attend to the descriptive utility of
the framework, we also begin to attend to the potential
predictive utility of the framework. To that end, we show
that (iiia) the targeted cueing of specific reasoning elements

has a predictable role on both student answers and
associated MSM modes, and (iiib) that this cueing likely
depends on the representational format of the prompts
provided. These results provide preliminary indication that
this framework can be applied to analyze and design
curricula, which will be the subject of future work.

A. Framework of MSM

Here, we briefly summarize the categorical MSM
framework. For a more in-depth discussion of scientific
sense making, mathematical sense making, and the cat-
egorical framework, see our prior work [8,22] and Russ and
Odden’s review of scientific sense making [12].
Odden and Russ offer a general definition of sense

making as the “process of building or revising an explan-
ation in order to ‘figure something out’—to resolve a gap or
inconsistency in one’s understanding.” This general defi-
nition is made more concrete as they show that sense
making has been conceptualized in the science education
literature in three distinct but complementary ways: as
(i) an epistemological stance towards science learning, (ii) a
cognitive process, and (iii) a specific discourse practice.
Our categorical framework for mathematical sense making
(in physics) builds from the cognitive process strand of
scientific sense making and draws on Vygotsky’s notion of
mediated cognition [9].
In mediated cognition, a mediator (some sort of tool) is

used to aid the subject’s understanding of an object, e.g.,
using the equation F⃗ ¼ ma⃗ (tool) to predict what will
happen when you push on a heavy box (object). This
mediated understanding is a complement to our direct
understanding of the object (in this case not the box alone
but the scenario of a box being pushed on by you) which is
built up from experience and experimentation. Mediated
cognition is often represented as a triangle with the nodes
subject, tool, and object, as shown in Fig. 1, where the base
of the triangle represents a direct understanding of the
object by the subject and the two legs represent a mediated
(by the specific tool) understanding.
The MSM framework defines four basic modes of

mathematical sense making in physics, that are

FIG. 1. A representation of mediated cognition, showing the
mediated (by a tool) and direct pathways by which a subject
interacts with an object. Drawn from Vygotsky [9].
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characterized by the object of sense making (whether it is
mathematical or physical) and the tool used to mediate that
sense making (mathematical or physical). The four modes
of the framework are shown in the left of Fig. 2. For a more
detailed explanation of mediated cognition and the MSM
modes see our prior work [8,22], here we present only a
brief example.
In an Msm-P mode of reasoning (mathematical sense

making of a physical object)—perhaps the canonical mode
of MSM in physics—mathematical formalisms are used as
a tool to understand physical phenomena. Consider an
electron in a finite double square well, a sketch of this
potential and the first two energy eigenstates are shown in
Fig. 3. The Schrödinger equation

−ℏ2

2m
∂2

∂x2 ψðxÞ ¼ ½E − VðxÞ�ψðxÞ

can be solved to give the wave function [ψðxÞ], and this
function can be leveraged to understand the behavior of the
electron; for example, where it is most likely to be found,
how excited a state the electron is in, or the probability that,
if released in one well, it will tunnel to the other. While this

abstract mathematical formalism can be used to understand
the behavior of the electron, physical reasoning can also be
used to understand why the wave function has the shape
that it does, this would be a Psm-M mode of reasoning
(physical sense making of a mathematical object). In this
case, one could consider that E − VðxÞ is the kinetic energy,
which has a negative value in the tunneling region. This
negative kinetic energy is not classically possible and
implies that the electron does not have the energy to be
in this location, which means that the wave function should
be exponentially decaying rather than oscillating.
While it is possible that entire episodes of student

reasoning can be categorized into one of these four modes,
our prior work showed that often sense making, the process
of figuring something out, involves building connections
between these modes. If the modes are seen as “atoms of
reasoning,” then the larger process of sense making leads to
a reasoning structure that can be considered a “molecule of
sense making.” In prior work [8] we identified three
prevalent processes by which these larger scale structures
of sense making are constructed: translation, a shift
between any one of the four modes; chaining, where the
object of sense making is used subsequently as the tool for
future sense making; and coordination, the combination of
two different tools (MSM modes) to understand the same
object.
The generation of this larger sense-making “molecule”

can be represented visually in a sense-making diagram. A
sense-making diagram is shown on the right of Fig. 2 and
shows the generation of a coordinated reasoning structure.
While most definitions of mathematical sense making in
the context of physics involve leveraging multiple cognitive
and representational tools (both mathematical and physical)
to develop an understanding of physical phenomenon, our
framework makes this explicit with the process of co-
ordination. One particular example of coordinated

FIG. 2. Left: the four modes of the MSM framework, defined by the tool and the object of sense making. Right: a sense-making
diagram, showing the processes of translation and coordination that lead to a coordinated reasoning structure.

FIG. 3. A representation of the finite, double square well, and
the first two energy eigenstates (wave functions).
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reasoning occurs in the context of the photoelectric effect,
where physical reasoning imposes constraints on the use of
a mathematical tool.

B. Photoelectric effect background

The present study occurs in the context of the photo-
electric effect. Here, we present a detailed examination of
the physical and mathematical principles that the student
will be drawing on in answering the KE vs λ task, which is
discussed in Sec. II B and Appendix A. We also specifically
highlight how the coordination of physical and mathemati-
cal reasoning is required to properly apply the relevant
mathematical formalism to make sensible predictions of the
physical system.
In the canonical photoelectric effect experiment, light of

frequency f is incident on a metal plate of work functionΦ,
where the work function is a measure of how energetically
bound electrons are to the metal. A schematic showing the
simplified experimental setup is shown in Fig. 4.
Regardless of the intensity (brightness) of the light,
electrons are not ejected from the plate if the frequency
is below a threshold (“cutoff”) frequency. Above this
frequency, the kinetic energy of the ejected electrons is
again independent of the intensity, instead depending
directly on the frequency. The common expression for
the max kinetic energy (KE) of an ejected electron is given
by [28]

KEmax ¼ hf −Φ: ð1Þ

However, this is an incomplete description of the
phenomenon, and Redish and Kuo note [7] that a math-
ematician would more likely (and more correctly) include
the Heaviside step function [θðx − x0Þ] to write

KEmax ¼ ðhf −ΦÞθðf −Φ=hÞ ¼
�
0; for f < Φ

h

hf −Φ; for f ≥ Φ
h

;

ð2Þ

which accurately describes both the linear frequency
dependence of the energy and the cutoff frequency, the
two most essential aspects of the photoelectric effect in
terms of the photon model. This difference is well exem-
plified by the graphical representations of these two
functions, as shown in the left of Fig. 5. The first function
(the red dashed plot), suggests that for frequencies below
the threshold frequency the kinetic energy of the electrons
will be negative, while the later (the solid blue plot)
correctly shows that the kinetic energy is zero below the
threshold frequency, as no electrons will be ejected. As the
piecewise nature of this function is rarely made mathemati-
cally explicit, this is an instance where the simultaneous
coordination of physical and mathematical reasoning is
required to accurately apply this equation to a physical
system.
Because of the hidden mathematical structure and the

rich connections between the physical system and the
symbolic and graphical representations used, the photo-
electric effect is an excellent context to consider math-
ematical sense making. To investigate student reasoning
and the interplay between mathematical and physical sense
making, we extended the traditional discussion of the
photoelectric effect (which focuses on the frequency of
light) and considered the maximum kinetic energy as a

FIG. 4. A schematic of the photoelectric effect experiment,
taken from the PhET simulation [29]. Light incident on the metal
plate ejects electrons which travel to the right. The rate at which
electrons reach the right plate is measured by the ammeter, the
max current is a measure of the ejection rate and is independent of
the battery voltage when the voltage is positive. If the battery is
turned around (the voltage is negative), the electrons are slowed
down and the less energetic electrons no longer cross the gap. The
voltage at which no electrons make it to the right plate is called
the stopping potential (V0) and is a measure of the kinetic energy
of the most energetic electrons (KEmax).

FIG. 5. Left: Plots of kinetic energy versus frequency as defined
by Eq. (1) (dashed and plotted in red) and Eq. (2) (solid and
plotted in blue, the canonical representation), which differ in their
implicit [Eq. (1)] and explicit [Eq. (2)] inclusion of the cutoff
frequency. Right: A plot of the max kinetic energy of the ejected
electrons versus the wavelength of light as described by Eq. (3).
Note that this is a noncanonical equivalent representation to KE
vs f and that the minimum cutoff frequency has become a
maximum cutoff wavelength.
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function of the wavelength of light. This is a noncanonical
approach, and a plot of KE vs λ does not appear in the
textbook (Knight [28]), or any modern-physics textbook
that we know of. Furthermore, in a review of the PER
literature concerning the photoelectric effect, we found no
mention of a plot of KE vs λ, and only a single mention of
an instructor explicitly including a discussion of the
symbolic function KEðλÞ [30]. In fact, the bulk of the
literature [30–33] has built on work by Steinberg, Oberem,
and McDermott that led to the development of the
computer program photoelectric tutor [31] and focuses
on the experimental design and the creation and interpre-
tation of IV (current versus voltage) plots. More recent
work has continued to taxonomize the common difficulties
(predominantly conceptual) that students (or pre or in-
service teachers) face [34,35] and investigated the hidden
mathematical grammar of the photoelectric effect [7], but
little work has been done to study MSM, and particularly
the coordination between mathematical and physical rea-
soning, in the context of the photoelectric effect.
Formally, the function KEðλÞ can be determined by

substituting the frequency for the wavelength given that, for
an EM wave in vacuum, c ¼ fλ. Written piecewise to
explicitly include the threshold wavelength, this function is

KEmax ¼
� hc

λ −Φ; for λ ≤ hc
Φ

0; for λ > hc
Φ

: ð3Þ

This substitution must be made for the bounds as well as
the function and, due to the inverse relationship between
frequency and wavelength, the minimum cutoff frequency
now corresponds to a maximum cutoff wavelength. While
this is a somewhat trivial algebraic substitution, it is worth
noting that the idea of an inverse is not trivial and poses
many conceptual issues for students [36]. Additionally, in
conversations with students, we realized that this algebraic
substitution provides another example of the reasoning
associated with what Redish has called “Corinne’s shib-
boleth” [7,37]—which highlights differences between the
“dialects” of math-in-mathematics and math-in-physics.
In his analysis of Corinne’s shibboleth [7], Redish

introduces the idea of a physical function as opposed to
a mathematical function. A physical function, he argues,
represents a particular quantity that depends in some way
on the specified variables, for example the kinetic energy as
a function of frequency [KEðfÞ] or wavelength [KEðλÞ].
Where the label KE indicates the kinetic energy, regardless
of the functional dependance on the variable. A math-
ematical function, on the other hand, establishes a particu-
lar operation to be performed on arbitrary quantities. Thus,
the label KE would represent the specific mathematical
operation “multiply the variable by h and subtract Φ”
giving KEðλÞ ¼ hλ −Φ—which no longer accurately
describes the kinetic energy. This exact reasoning was

evident in some student responses to the KE vs λ task.
Further discussion on the KE vs λ task, Corinne’s shibbo-
leth, and this “photoelectric shibboleth” can be found in
Appendix A.

II. METHODS

This work is part of a larger project aimed at describing,
understanding, and promoting student reasoning and math-
ematical sense making. To continue the investigation of
student reasoning regarding the photoelectric effect, and to
test the utility of the categorical framework in describing
student reasoning based on written work and multiple-
choice answers (versus the original interview protocols),
we developed the KE vs λ task, and implemented it in a
three-stage fashion in two separate semesters.
This is a naturalistic study [38] in that the data come in

the form of homework and exam responses collected
naturally through the course of the semester. While the
prompts were designed to elicit MSM, there was little done
to control for external factors and students were not told
explicitly that these responses would be collected as data
for this particular study. In this sense, these data are akin to
observations made on students in a natural educational
environment. This study does differ from a standard
naturalistic study in comparing aggregate student responses
between semesters 1 and 2. Traditionally, there is no
manipulation to the environment; however, in comparing
between semesters we actively altered the form of the
prompt to observe a natural—but anticipated—response.

A. Course context and data collection

The data presented come from two semesters of a
middle-division modern physics course at CU Boulder,
primarily intended for engineers. In both semesters the
second author (N. D. F.) was the instructor of record and the
first author (J. D. G.) was a co-instructor and course co-
designer, playing a substantial role in both curriculum
design and instruction. There were 114 students enrolled
during semester 1, and 68 students enrolled during semester
2; in both courses ∼17% of students were female. The
majority of students are mechanical, electrical, or computer
science engineers, and most are upperclassmen.
In each semester, the KE vs λ task was implemented in

three stages for all students. First as a multiple-choice
pretest survey administered before any instruction (week 1)
for which students were given homework credit for
completion; second, as a two-part homework question—
a repeat of the multiple-choice pretest with a free response
follow up—(due week 3) following interactive instruction
on the photoelectric effect (including ConcepTests [39]
involving the symbolic expression KE ¼ hc=λ −Φ and a
tutorial that calls attention to the implicit limitations of the
expression KE ¼ hf −Φ); and finally as a question on the
first midterm exam (week 5).
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The pretest and homework questions were identical over
the two semesters (“version A” of the task, see Sec. II B
below) and instruction was essentially the same; however,
the exam questions were substantially different in semester
1 (version B) and semester 2 (version C). Both the pretest
and homework questions were administered online (using
Qualtrics and Canvas, respectively) and student responses
were collected using the course management system. The
exam question in semester 1 was a required free response
question and handwritten student work was collected and
scanned. In semester 2 the exam question was a required
multiple-choice question, and responses were collected via
scantron. Statistical hypothesis testing was conducted on
these data sets, discussed in greater detail in the analysis
sections below. While Pearson chi squared (χ2) is a
common statistic for determining the significance of con-
tingency tables, it loses considerable statistical power for
tables containing cells with N < 5 [40]. In these cases, we
instead (or in addition) use the Fisher exact test [41].
At the end of semester 1, two 3-student focus group

interviews were conducted by the first author (J. D. G.).
Included in these interviews was a question similar to
version B of the KE vs λ task. These data were used to
validate the code book of reasoning elements (see Sec. II C
3) and for comparison with the written work analyzed in
Sec. III A. Beyond this validation of the sparser data
streams (written and multiple-choice responses) presented
in this paper, these data will not be discussed in the present
work; however, a detailed analysis is available in prior work
[8]. No focus groups were conducted during semester 2.
The goals of data collection differed slightly between the

two semesters. The focus of semester 1 was to expand and
validate the prior use of the MSM framework by triangu-
lating among multiple modalities of student data (focus
group interviews, written work, multiple-choice answers).
This addresses our first two research questions, which
attend to the descriptive utility of the framework. The
primary goal here was to determine how and if the
categorical framework can be productively applied to
describe student reasoning and sense making using data
from these sparser data streams, and if the signal seen in
these data is consistent with the more fine-grained and
richer data obtained from focus group interviews. To that
end, the KE vs λ task involves multiple modalities of
student work (Multiple-choice and written) and includes
iterations framed both more mathematically (pretest and
homework) and more physically (exam). These data are
used to substantiate this association and, as shown below,
we have indication to believe that student multiple-choice
answers can be correlated to specific modes of the MSM
framework.
Following our preliminary analysis of semester 1, in

semester 2 we further corroborate the associations between
individual reasoning elements and multiple-choice
answers. This further addresses the descriptive utility of

the framework (our first two research questions) and also
begins to address the predictive utility of the framework
(our third research question). Specifically, we test the
hypothesis that cueing (the style of prompt) can directly
influence the use of specific reasoning elements, and so is
associated with answer choice and hence correlated with a
particular MSM mode. In line with Podolefsky’s work on
representation and analogy [42], we designed a multiple-
choice exam question presenting the KE vs λ task in a
physics context using a graphical representation. This is
intended to scaffold student use of two specific reasoning
elements while suppressing the use of a third. As will be
discussed below, the use of these reasoning elements has a
predictable effect on student answers.

B. The KE vs λ task

As noted above, there were three versions of the KE vs λ
task. Version A was implemented on the pretest and
homework for both semesters, it is framed in a mathemati-
cal (rather than physical) context and student responses are
multiple choice, with a free response follow up on the
homework. Version B was implemented on the exam in
semester 1, it is framed in a physical context and student
responses are free response. Version C was implemented on
the exam in semester 2, it is framed in a physical context
and student responses are multiple choice. Each of these
tasks will be discussed briefly here to establish context for
the analysis of student data. An in-depth examination of
these tasks, including both their design and analysis from
an MSM perspective, is presented in Appendix A. The bulk
of our analysis will be focused on student responses to the
exams in semesters 1 and 2, though we draw on the results
of the pretest and homework for two reasons: (i) to establish
a statistical baseline allowing for a comparison between the
two semesters and (ii) to support our discussion of overall
framing in scaffolding student engagement in MSM. A
detailed discussion of student responses to the pretest and
homework is provided in Appendix B.

1. Version A: Pretest and homework

Version A, shown in Fig. 6, asks students to make an
algebraic substitution to a given piecewise function and
plot the result. The five distractors were designed based on
preliminary results from prior focus group studies and
several assumptions of possible student difficulties based
on this algebraic substitution. Our intention was to establish
how students used the mathematical formalism when
isolated from the physical context of the photoelectric
effect.
In the context of the photoelectric effect there is an

unambiguously correct answer: plot (f). However, there are
actually two “correct” answers to this question, depending
on whether fðxÞ is treated as a mathematical function or a
physical function. When treated as a mathematical function,
neither the function fðxÞ nor the variables x and y represent
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specific physical quantities, and so regardless of the
variable used the function f specifies the relationship
represented by plot (a). The effect of framing will be
discussed further below.
Ultimately, version A requires students to select a

graph—an object that is fundamentally mathematical in
nature, though inarguably contains physical significance
given appropriate context. All five of the distractors were
designed based on assumed difficulties with the math-
ematical formalism (conflation of inverse and negative
linear, failure to switch or include the bounds, etc.).
Because of the form of the distractors and the lack of
physical context, it is expected that the framing of this
question cues students towards an Msm-M mode of
reasoning, where the generation (selection) and under-
standing of the plot is based primarily on the use of
mathematical tools and procedures.
Physics follow-up (HW): On the homework, version A

of the KE vs λ task was repeated as shown but with a free
response follow-up question. The follow-up stated that the
mathematical formalism is a relevant description of some
aspect of the photoelectric effect experiment and asked
students to consider relevant parameters in the experiment
(current, voltage, kinetic energy, work function, incident
light, etc.) and explain what this formalism represents. This

follow-up question provides a physical system and was
intended to encourage Psm-M reasoning such that students
would draw on relevant knowledge of the photoelectric
effect to contextualize the mathematical formalism. The
implementation of the pretest and homework questions
were identical across the semesters, other than that the
ordering of the graphs was changed on the homework in
semester 2 to mitigate direct copying of prior solutions.

2. Version B: Semester 1 exam

Version B, shown in Fig. 7, presents a physical system—
a specific photoelectric effect experiment—and has two
parts. Part i provided students with specific values for the
frequency of light and the work function of the plate and
asked for an explicit calculation of the maximum kinetic
energy of the electrons. The values given were such that the
frequency was below the threshold frequency and so the
correct answer to part i is zero, though simply calculating
the value from KE ¼ hf −Φ yields a negative number. Our
intention was to scaffold engagement in a Psm-M mode of
reasoning, using the physical impossibility of “negative
kinetic energy” to interpret an unusual mathematical result
in terms of the physical system. The intended outcome was
that students would be cued into recalling the cutoff
frequency and limitations of the standard symbolic

FIG. 6. Version A of the KE vs λ task is framed in a mathematical context and responses are multiple choice. This question was asked
in both semester 1 and semester 2 on the pretest (week 1) and again on the second homework (week 3). The homework included a free
response follow up asking students to link this abstract mathematical formalism to the photoelectric effect experiment.

FIG. 7. Version B of the KE vs λ task is framed in a physical context and student responses are free response including a sketch of the
graph. This question was asked on the exam (week 5) in semester 1.

APPLYING A MATHEMATICAL SENSE-MAKING … PHYS. REV. PHYS. EDUC. RES. 17, 010138 (2021)

010138-7



formalism (equation (1). This approach was less effective
than anticipated, as many students simply accepted a
negative value for KE. This suggests either direct plug
and chug (which is not necessarily considered to be sense
making) or engagement in an Msm-M mode of reasoning,
where the equation KE ¼ hf −Φ is treated as a math-
ematical equation with no physical significance. The failure
of this type of cueing prompted our study of semester 2
using a different kind of cueing.
Part ii asked students to make a plot of KEðλÞ, indicating

any special features and discussing what the plot suggests
about the photoelectric effect experiment. Though Part ii of
version B is “isomorphic” in content to version A, there are
several relevant differences between them. In particular, the
format of version B is free response rather than multiple
choice, and so the task is to create a graph rather than select
one. Additionally, the problem statement does not explic-
itly provide the mathematical form of KEðfÞ in either the
traditional or piecewise notation. Instead, the physical
system is specified, and the canonical symbolic expression
KEðfÞ is implicitly requested. Because of this framing, the
physics context version is, arguably, a more difficult
question that less strongly cues a direct Msm-M mode
of reasoning. While these two versions are not directly
comparable, by the time of the exam (the fifth week of the
semester) students had seen version A twice and extensive
solutions to the HW detailing both the algebraic substitu-
tion and physical implications for the photoelectric effect
had been available for two weeks.

3. Version C: Semester 2 exam

To test the hypothesis that a graphical representation
presented in a physics context will provide stronger cueing
for the cutoff frequency or wavelength, a multiple choice,
physics context version was developed (shown in Fig. 8).
Version C presents a physical scenario, a repeated photo-
electric effect experiment with varied wavelength, and
asks for the corresponding plot of KE vs λ. As this is a

multiple-choice format the task is to select rather than
generate a graph, and so is an arguably easier task than
version B. Though the answers were presented to students
as choices (a)–(e), for clarity in this paper we maintain a
consistent labeling scheme for the plots, and so the labels in
Fig. 8 read (a) and (d)–(g). The distractors include plot (a),
the more mathematically motivated plots (d) and (e), and a
more physically motivated distractor plot (g). As will be
discussed below, plot (g) was emergent from student
responses to version B on the semester 1 exam.
In discriminating between the answers there are three

relevant characteristics: (i) is the plot straight or curvy,
(ii) increasing or decreasing, and (iii) is there a cutoff or can
it be negative? Our hypothesis is that addressing these
questions in the context of the photoelectric effect now
more strongly cues students into a Psm-M mode of
reasoning than the calculation of part i of version B.
To establish similarity between the student populations,

responses to the pretest and homework (both version A)
were compared between the two semesters. Based on
Fisher’s exact tests, we do not reject the null hypothesis
that the distribution of responses and semester are inde-
pendent at the p ¼ 0.05 level for the pretest, or even at the
p ¼ 0.1 level for the homework. As such, it is reasonable to
assume that these two populations of students, who had
experienced effectively identical instruction, were similar
going into the exam and that the only significant difference
was the format of the exam question. Further discussion of
the student populations and responses to the preteset and
homework can be found in Appendix B.

C. Coding student responses

In the analysis below we take a mixed-methods
approach, triangulating across two modalities of student
work: written responses, and multiple-choice answers. This
analysis is compared with an extended analysis of student
reasoning from the focus groups, discussed in a prior paper
[8,22]. While the prior analysis explored the fine-grained

FIG. 8. Version C of the KE vs λ task is framed in a physical context and student responses are multiple choice. This question was
asked on the exam (week 5) during semester 2. Note that the labels [(a) and (d)–(g)] are used here to consistently indicate the associated
plots throughout this paper; however, they were not labeled as such on the exam.
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shifts in student reasoning on longer problems, in the
present analysis the MSM framework is applied to describe
the dominant reasoning modes present in student written
work and to associate multiple-choice answers with indi-
vidual reasoning elements, clusters of reasoning elements,
and a corresponding MSM mode. To that end, student
responses to the semester 1 exam (version B) were coded in
three ways: for the answer (plot drawn), for the MSMmode
associated with their written work, and for the reasoning
elements present in their response.
Responses to the pretest and homework were collected

for all students in both semesters, and are used primarily to
establish statistical similarity between the two semesters.
Our primary arguments do not draw heavily on these
results, but a detailed analysis of these data (for semester
1) that explores the utility of the framework in considering
change over time is presented in Appendix B.

1. Coding plots (multiple-choice answer)

For comparison with the pretest and HW, the exam
responses were first coded for the plot drawn, using the
lettered plots from version A [plots (a)–(f)] and “other” as
an initial code book. From the responses categorized as
other, initially 30% of all responses, two new codes were
defined—plots (g) and (h), shown in the right of Fig. 9.
With the addition of plots (g) and (h) only 8% of responses
remain coded as other, and many of these plots have a
strong resemblance to the lettered plots (a)–(h), albeit with
some notable difference. For example, the left side of Fig. 9
shows a response that strongly resembles plot (f) but was
coded as other due to the unusual jump to zero and the
vertical asymptote at a nonzero value of wavelength.

2. Coding MSM modes

All semester 1 exam responses with a graph coded as
plots (d)–(h) (99=114 responses) were coded by the first
author for a dominant MSM mode, labeling each explan-
ation as Msm-M, Psm-M, or coordinated—where coordi-
nated implies bothMsm-M and Psm-M reasoning. Though
an additional code of other was meant to capture any
responses that could not be coded as such, this code was
ultimately not necessary. A subset of these responses
(33=96) was also coded by the second author to establish
inter-rater reliability on this assessment of MSM mode.

Before any discussion, there was 88% agreement (29=33)
on the codes, and after a brief discussion the authors
reached 100% agreement. As the semester 2 exam (version
C) was entirely multiple choice, no MSM coding was
conducted on these data.

3. Defining and coding reasoning elements

In addition to the holistic, if coarse-grained, coding of
MSM reasoning structure, all written work on the semester
1 exam was also coded for the presence or absence of
particular tools or approaches which we have termed
“reasoning elements.” These reasoning elements are in
line with a resources perspective [24,25], which focuses on
cognitive elements rather than full blown concepts [23].
They may exist on a scale larger than p prims [23], and are
akin to explanatory primitives [43] or facets [26,27]. Since
they are explicitly dependent on the context, they can be
fundamentally incorrect and are not necessarily a “given” in
the sense of p prims or e prims. However, if student work
included an equation resembling KEðλÞ ¼ hc=λ −Φ, their
response was coded as including the full equation reason-
ing element even if the equation was written or used
incorrectly.1 We anticipate that unique combinations of the
various reasoning elements are suggestive of different
modes of MSM. That is, the prevalence and/or combination
of certain reasoning elements used in solving a particular
problem may distinguish between engagement in the
different MSM modes.
The development of this code book of reasoning ele-

ments was an iterative process. Initially student responses
were coded only for the graph drawn, and brief notes were
taken on the explanations provided by each student. From
these notes a preliminary set of reasoning elements was
identified, and each student response was then coded as
either including or not including each of these reasoning
elements. During this second round of coding three new
reasoning elements were identified and a third round of
coding was conducted, after a discussion between the
authors, using these new elements. Following the third
round of coding J. D. G. met with another professor at CU
Boulder who was teaching an upper division Quantum
Mechanics course. Version B of the KE vs λ task was
presented to the professor and many hypothetical student
responses were considered. After this period of hypoth-
esizing, J. D. G. presented the eight coded plots (a)–(h) and
the code book of reasoning elements. The code book
captured the entirety of the hypothetical responses

FIG. 9. Left: An example of a plot coded as other that bears a
strong resemblance to one of the lettered plots. The two circles
are marks made by the grader. Right: Examples of the novel plots
(g) and (h), emergent from the version B free response exam data.

1While this framing is in line with a resources perspective, to
avoid conflation with the specifics of the resources literature, we
term them reasoning elements rather than resources and note that
while the use of a tool is similar to the activation of a resource (or
cluster of resources) these cognitive processes are likely not
identical.
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generated in this discussion, suggesting it is sufficient to
describe the major moves students might make.
The authors then met again to finalize the code book. In

finalizing the code book, the authors analyzed the structure
of the reasoning elements and coded these various tools as
predominantly mathematical, predominantly physical,
coordinated, or indeterminate in nature. The first three
reasoning elements [full equation, inverse (symbolic), and
asymptotes] are considered more mathematical in nature;
cutoff (calculate) is considered to be coordinated as it
requires both the use of a mathematical calculation and a
sufficient understanding of the physical system to know
that there is a cutoff wavelength; cutoff (verbal) is con-
sidered physical in nature as student use of this reasoning
element generally focused on the physical system, and
nothing about the implicit mathematical formalism sug-
gests there should be a cutoff. The remaining three
reasoning elements [inverse (v), linear (KE vs f), and KE
vs f (plot)] are indeterminate in nature as they can, but do
not necessarily, involve either mathematical, physical, or
coordinated reasoning. The final code book, including
descriptions and examples of the reasoning elements, is
shown in Table I.

Coding the presence or absence of specific reasoning
elements is necessarily reductionist. We do not claim that
the presence of any one of these can capture the full
nuances of student reasoning, or that a single reasoning
element is always sufficient to code an associated MSM
mode. Additionally, we do not believe that the presence or
absence of any particular reasoning element is necessarily
good or bad. However, again taking a resources perspec-
tive, we argue that the patterns of use of these reasoning
elements (the frequency of use, and the clustered use of
multiple reasoning elements) can provide a sense of the
varied reasoning students are engaged in (as indicated by
their MSM modes), as well as the dominant reasoning that
leads students to draw a particular plot. We aim to
categorize this reasoning as a mode of the framework,
and show that reasoning elements can be used both to
indicate an overall MSM mode and to highlight variations
with these modes.
Following coding, two contingency tables were con-

structed relating the frequency of use of these reasoning
elements to the plots drawn. The first table produces
distributions of the reasoning elements present for students
drawing each of the plot types. This association is largely

TABLE I. Code book of reasoning elements, emergent from student responses to version B of the KE vs λ task on the semester 1 exam.

Reasoning element Description Example

Full equation—Mathematical Student work included a full functional
expression for KEðλÞ. This RE was
still coded as present even when the

mathematical expression was incorrect.

KEmax ¼ hc
λ −Φ

Inverse (s)—Mathematical Any symbolic relation indicating that
wavelength is inversely realted to
KE or frequency. Note: Any
response that included full eq

automatically includes inverse (s).

KE ∝ 1=λ OR f ∝ 1=λ

Asymptotes—Mathematical Any discussion (or calculation) of the
asymptotes or limiting values of the

plot for λ ¼ 0 and/or λ → ∞.
Note: this is distinct from the cutoff codes.

“As λ gets large the kinetic energy
approaches zero” OR “as the
wavelength gets shorter the

KE blows up”
Cutoff (c)—Coordinated A calculated value for the cutoff

wavelength above which there
is no ejection (Ephoton ¼ Φ OR KE ¼ 0).

λcutoff ¼ hc
Φ OR 354 nm

Cutoff (v)—Physical A verbal discussion that there
exists a cutoff wavelength

above which electrons will not eject.

“When λ is too large (above the
threshold frequency) no
electrons will be ejected”

Inverse (v)—Indeterminate A verbal discussion suggesting that
wavelength is inversely related

to KE or frequency.

“As the wavelength decreases
the KE increases” OR “KE is inversely

proportional to wavelength”
Linear (KE vs f)—Indeterminate Any explicit mention (symbolic or verbal) that

kinetic energy and frequency are directly
proportional

KE ∝ f OR “the kinetic energy
depends directly on the frequency”

KE vs f (Plot)—Indeterminate An explicit plot of KE versus frequency,
whether it was their final answer or used

as support for a different answer.

A sketch resembling plot (a)
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descriptive in nature, providing a sense of the common
reasoning involved in generating each plot based on the
unique distribution of activated reasoning elements. It
addresses the question: “if a student draws a particular plot,
which reasoning elements are they likely using?”The second
contingency table produces distributions of the plots drawn
by students using a particular reasoning element. This view,
while also descriptive, offers potential predictability, provid-
ing a sense of how likely a student is to draw a particular plot
if they use a given reasoning element. Statistical hypothesis
tests (Fisher exact and/or Pearson chi square)were conducted
on these distributions where appropriate.

III. RESULTS AND ANALYSIS

The primary goal of this work is to show that the
categorical framework, developed in the context of focus
group interviews, can be productively applied to describe
student reasoning and sense making using sparser data
streams (written work and MC responses). In doing so, we
also seek to provide an example of how this analysis is
conducted, specifically the process of defining and using
reasoning elements (both individually and in clusters) to
validate the association of particular answers with MSM
modes and to investigate variation within the MSM modes.
Additionally, we provide preliminary evidence that reason-
ing and answer selection can be scaffolded by cueing
particular reasoning elements, thus expanding the utility of
the framework from a tool that is primarily descriptive to
one that is also predictive of student reasoning. This first
goal is accomplished through an in-depth analysis of
student work on version B of the KE vs λ task from the
semester 1 exam, while the second involves a comparison
between student responses in semester 1 and semester 2 on
versions B and C of the task, respectively.
To focus attention on these goals, our analysis of the

semester 1 data revolves primarily around the four most
common responses to version B of the KE vs λ task [plots
(d)–(g)] which account for ∼85% of student responses. The
complete results of the semester 1 exam are shown in
Table II. We briefly discuss plot (h), but ultimately lump
these three responses and the single response for plot (b)
into the other category. Likewise, our discussion of plot (a)
is limited to the effect of overall framing (mathematical
versus physical context) on engagement in the MSM
modes. For those interested, a detailed discussion of the
results of the pretest and homework for semester 1,
including change-over-time through the exam, are provided
in Appendix B.

A. Association of MSM modes with
plots and written work

Before discussing the aggregate results from the semes-
ter 1 exam, characteristic reasoning accompanying plots
(d)–(f) are qualitatively analyzed using the categorical
MSM framework. These examples are representative of
general student responses and specific student work for
each of these four plots are shown in Fig. 10. By coding
student responses for their MSM mode we establish a link
between plot type (answer) and MSM modes. This link is
explored more systematically using the finer-grained rea-
soning elements in later sections. We note that the analysis
conducted here is consistent with the analysis of focus
group interviews presented in prior work [8,22]. This
consistency supports the use of the framework in analyzing
written work. Additionally consistency between the rea-
soning present on the exam and in the focus group suggests
that the framework captures aspects of sense making even
in an exam environment with heightened stakes, where
some sense-making activities may be subdued.

1. Plot (d): Msm-M

Plot (d) shows an inverse relationship, and while it is not
explicitly negative there is no discussion of a specific cutoff
wavelength (or frequency). As shown in Fig. 10, the
reasoning accompanying plot (d) focuses on this abstract
inverse relationship, citing without justification that KE ∝
1=λ and verbalizing this mathematical relationship as “the
longer the wavelength is the less KE it will produce.”
Though one might argue that this verbalization of the
symbolic relationship counts as a physical interpretation,
there is no reference to any particular physical entities (e.g.,
light as either a wave or photon, electrons, experimental
setup), nor does this student explain a physical mechanism
for “producing” KE. As is shown in Fig. 11 below, many
students drawing plot (d) indicated the asymptotes of the
plot in their work. However, this was generally only an
indication that the axes were asymptotes, and student
reasoning (as with that shown in Fig. 10) did not rely
on this. Viewed together, this reasoning makes use almost
exclusively of a symbolic, mathematical relationship as a
tool for generating the plot. This is consistent with Msm-M
reasoning. Though this plot does not completely describe
the physical experiment it is a reasonable response based
off a mathematical tool. While the tool itself is insufficient
in its description of the phenomenon, use of this tool does
represent productive, if incomplete, sense making.

2. Plot (e): Msm-M

Plot (e) is an accurate plot for the equation KEðλÞ ¼
hc=λ −Φ without considering the cutoff wavelength.
Importantly, as the question specifically asks for the kinetic
energy, and the axes provided are labeled as KE, plot (e)
allows for negative kinetic energy. As negative kinetic

TABLE II. Results of the semester 1 exam (version B). Because
of the low counts, our analysis largely ignores plots (a),(b), and
(h).

Plot a b c d e f g h Other

Percent 4 1 0 12 15 39 18 3 8
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energy is not a physically allowable concept (ignoring
quantum tunneling) this is a strong indicator that students
drawing this plot are not using a conceptual model of the

physical experiment as a tool in their reasoning. As shown
in Fig. 10 the reasoning supporting this plot draws
predominantly on the mathematical equation written above.

FIG. 10. Example student reasoning and associated MSM reasoning structure for plots (d)–(g). The color of the background (green or
yellow) holds no meaning, these were simply the colors of the paper used for the two versions of the tests. The test versions were
identical save for the ordering of some earlier questions. Note that the circle drawn on the tail of the graph in plot (d) was drawn by a
grader, not the student.

GIFFORD and FINKELSTEIN PHYS. REV. PHYS. EDUC. RES. 17, 010138 (2021)

010138-12



In addition to an accurate plot of the equation, this student
also examines (symbolically) limiting values for λ ¼ 0,
λ ¼ 1, and λ → ∞. Despite explicitly calculating the wave-
length at which KE ¼ 0, the physical significance of
negative kinetic energy does not override the mathematical
formalism scaffolding the plot. Like plot (d) above, this plot
is also consistent with Msm-M reasoning, though it shows
an even stronger reliance on mathematical equations and
processes as tools in sense making. As with plot (d), plot (e)
does not accurately describe the physical phenomenon and
even suggests a physically impossible negative kinetic
energy, but this reasoning still shows productive sense
making through accurate use of mathematical tools.

3. Plot (g): Psm-M

Plot (g) shows thewrongmathematical dependence below
the cutoff wavelength but does explicitly show a cutoff
wavelength abovewhich the kinetic energy is zero rather than
negative. As shown in Fig. 10, this plot was drawn with a
strong consideration of the physical system in mind. This
student mentions the relationship between wavelength and
photon energies (verbally rather thanwith a symbolic inverse
proportionality) and discusses the physical mechanism for
electron ejection—the transfer of energy from the photon to
the electron and the need to overcome the work function.
They also correctly argue that as the energy of the light
increases the energy of the electronswill too. Though there is
no specific justification for this, they also state that λ cannot
be negative, which is true only when λ is interpreted

physically as thewavelength rather than a purely mathemati-
cal symbol. While this explanation relies on the inverse
relationship between wavelength and photon energy, the
relationship is discussed in a largely physical sense rather
than in predominantlymathematical terms. This strong use of
physical entities and quantities (photons, electrons, energy,
work function) suggests this student is relying predominantly
on a physical model of the phenomenon to generate this plot,
which is consistentwithPsm-Mreasoning. Though the shape
of the plot is incorrect below the cutoff wavelength it is true
that the energy increases for shorter wavelengths. Thus,
while not perfectly accurate mathematically, this plot accu-
rately captures the main qualitative aspects of the photo-
electric effect and shows productive sensemakingdespite the
incorrectmathematicalmapping between an inverse relation-
ship and the plot.2

FIG. 11. The distribution of reasoning elements used by students who drew plots (d)–(h) on the semester 1 exam (version B of the KE
vs λ task). The colors refer to our categorization of these tools as dominantly mathematical (red), physical (blue), coordinated (green), or
indeterminate (gray). As inverse (s) is automatically included in full equation, the second bar is always greater than or equal to the first.
The null hypothesis, that the distribution of reasoning elements is independent of plot, is rejected at the p ≪ 0.05 level when comparing
all five plots and the p < 0.05 level when comparing only plots (e)–(g).

2Anecdotally, this same physical reasoning was used by an
expert in chemistry as she drew plot (g). In a course on Teaching
and Learning Chemistry, J. D. G. was discussing this research
project with the instructor following a class discussion regarding
the photoelectric effect and quantization of energy. After J. D. G.
posed version B of the KE vs λ task to her, the instructor began by
considering the cutoff frequency below which there was no
ejection, related this to a region above a cutoff wavelength and
then stated that smaller wavelengths correspond to larger energies
drawing a line rather than a curve. Thus, even for content experts,
this Psm-M reasoning is compelling and productive when
considering the physical phenomena without an explicit math-
ematical formalism.
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4. Plot (f): Coordinated [M&P]sm-M

Plot (f), the correct answer, includes both the correct
shape for the inverse relationship and an explicit cutoff
above which the energy is zero. As shown in Fig. 10, the
reasoning involved is generally more complicated than for
plots (d),(e), and (g) and makes extensive use of both
mathematical and physical tools. As with the reasoning
accompanying plot (e), this student accurately generates the
full equation KE ¼ hc=λ −Φ, and considers limiting
values of KE ¼ 0 and KE → ∞. However, unlike with
plot (e), this student also relies on a physical model of the
experiment to suggest that wavelengths above the calcu-
lated cutoff will not lead to ejection. While they indicate
with a dashed line the negative values indicated by the
expression (suggesting an asymptote at a negative KE),
they use physical reasoning to override the explicit math-
ematical formalism, instead drawing a flat line that is
“similar to [the] cutoff frequency.” This reasoning is not
fundamentally physical in nature, as with plot (g), or
mathematical in nature, as with plot (e). Rather, this student
makes use of both mathematical tools (the full equation
plus asymptotes and limiting values) and physical tools (an
understanding of the physical outcome of insufficient
incoming energy). Though the plot is faithful to the
equation, physical reasoning is used to override the
(incomplete) mathematical formalism and create a plot
that accurately describes the physical phenomenon. This
complementary use of multiple tools is indicative of a
coordinated reasoning structure, as discussed in the intro-
duction and diagrammed in Fig. 2.
Though this particular explanation shows a coordinated

use of mathematical and physical tools, it is possible to
arrive at this plot through entirely mathematical reasoning
(as in version A) or entirely physical reasoning that looks
largely like the reasoning for plot (g) but with an accurate
representation of an inverse.3 Thus, while a student drawing
(or selecting) plot (f) is not necessarily engaged in a
coordinated reasoning structure, we argue both that it is
likely that their reasoning is coordinated and that this
coordinated reasoning structure is the preferred end goal of
instruction showing fluid use of both mathematical and
physical tools.
The analysis of written work for plot (f) is consistent

with the analysis of the end of semester focus group
presented in an associated paper [8]. In particular, while
the focus group allowed for a finer grained analysis of

student reasoning, the overall reasoning structure is the
same. That is, the students in the focus group also
developed a coordinated reasoning structure involving both
the mathematical expression KE ¼ hc=λ −Φ and a physi-
cal model in which negative kinetic energy is not allowed
and Φ determines whether or not the light has sufficient
energy to eject an electron.

B. Semester 1 exam: MSM codes

While the characteristic reasoning of the last four
subsections offers a preliminary link between plot type
(answer) and MSM mode, it is expected that there will be
variation in individual responses. To substantiate these
associations, all student responses coded as plots (d)–(g)
were coded for their MSM mode. Table III shows the
percentage of students engaged in each reasoning mode for
plots (d)–(g). These distributions are statistically signifi-
cantly different at the p ≪ 0.001 level using a Fisher
exact test.4

In agreement with the analysis above, students that drew
plots (d) and (e) are almost exclusively coded as engaging
in an Msm-M mode. The one student who drew plot (d)
using a coordinated MSM mode had reasoning more akin
to that of students drawing plot (f), save that they said the
kinetic energy would approach zero, rather than reach zero
at a specific cutoff value. In contrast, plots (f) and (g) have a
more diverse spread of MSM modes.
Responses for plot (f) included all three reasoning

modes, with the Msm-M and Psm-M modes present
equally but an order of magnitude less than the coordinated
mode. This substantiates our analysis above that plot (f) can
be associated predominantly with a coordinated MSM
mode, while also capturing the (less likely) possibility that
students are engaged primarily in either mathematical
(Msm-M) or physical (Psm-M) reasoning. The greatest
divergence between the analysis above and the results from
the entire class occurs for plot (g). While plot (g) shows the
greatest engagement in Psm-M of the four plots, this is not
the majority mode. Rather, the majority of students drawing

TABLE III. Percent engagement in the modes of the MSM
framework for students drawing plots (d)–(g). These distributions
are statistically significantly different at the p ≪ 0.001 level
using Fisher’s exact test.

Msm-M Psm-M Coordinated N

Plot (d) 93% 0 7% 14
Plot (e) 100% 0 0 17
Plot (f) 9% 9% 82% 44
Plot (g) 5% 38% 57% 21

3A relevant conceptual aspect of the inverse is that the rate of
change is not constant. While we find this to be a particularly
interesting conceptual interpretation that likely draws on an
Msm-M mode, there was no indication that this reasoning was
explicitly present for students. It could simply be that this was not
externalized by students in this sparser data stream. We do not
wish to imply that an accurate depiction of an inverse is trivial or
does not involve Msm-M, merely that we do not have specific
evidence of this reasoning here.

4The small counts in this contingency table, specifically the
cells with values of zero, suggest the use of Fisher’s exact test
over Pearson chi square. As there are no marginal violations, the
calculated p values are exact.
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plot (g) were engaged in a coordinated MSM mode, and
pure Msm-M was also present (though only for one
student). This partially supports the analysis above, show-
ing that plot (g) has a substantial association (N ¼ 20=21)
with Psm-M reasoning, but with the caveat that for the
majority of students this Psm-M mode is coordinated with
an Msm-M mode. Thus, while it is safe to say that students
drawing plot (g) are engaged in a Psm-M mode, it is likely
that they are engaged in Msm-M as well.
The MSM codes across the entire class are largely

consistent with the specific examples of student reasoning
presented above. This outcome suggests that the framework
can be consistently applied to describe written work and
establishes an association between MSM modes and
specific plots (answers) in the context of the photoelectric
effect. However, the high engagement in a coordinated
mode for students drawing plot (g) suggests both that there
is more varied reasoning associated with plot (g) and also
that despite the large fraction of students engaged in a
coordinated mode there is a difference in the finer-grained
reasoning between students drawing plots (f) and (g). To
explore the differences in reasoning (a sense of the
mechanism of reasoning) for students drawing plots (f)
and (g) and to further substantiate the association between
MSM modes, written work, and MC answers, we now turn
to a finer-grained analysis using reasoning elements.

C. Semester 1 exam: Associating reasoning elements
and MSM modes

Figure 11 shows the distribution of reasoning elements
that were present in written work for students who drew
plots (d)–(h), e.g., 94% (N ¼ 16) of the 17 responses coded
as plot (e) discussed or calculated the asymptotes of their
plot. Following the categorization discussed above, the
mathematical reasoning elements [full equation, inverse (s),
and asymptotes] are plotted in various shades of red; the
coordinated reasoning element [cutoff (c)] is plotted in
green; the physical reasoning element [cutoff (v)] is plotted
in blue; and the three indeterminate reasoning elements
[inverse (v), linear (KE vs f), andKE vs f (plot)] are plotted
in shades of gray.
As each reasoning element could have been used by

students that drew a particular plot, the maximum for each
bar is 100%. This occurs only for plot (h), where all
responses included a verbal discussion of the inverse
dependence on wavelength; however, this is likely due
to the small number of students that drew plot (h) (N ¼ 3).
Across the other four plots with larger N, there is no
reasoning element present in all responses, though there are
clearly dominant reasoning elements (present in over 80%
of responses) for each. The clusters of these dominant
reasoning elements suggest that there are consistent pat-
terns of reasoning that lead to each plot, which we argue is
aligned with the coded MSM modes above. The variations
in these distributions suggest that these patterns of

reasoning are different for each plot—with the exception
of plot (h) which has too few responses to be statistically
significant—corroborating our prior codes. The various
distributions of reasoning elements by plot addresses the
question “if a student draws a particular plot, what sort of
reasoning are they likely engaged in?”
These distributions are statistically significantly differ-

ent; that is, we reject the null hypothesis that the distribu-
tion of reasoning elements is independent of the plot drawn,
at the p ≪ 0.05 level when all five plots are included and
when the low N plot (h) is removed. When considering just
the most prevalent plots (e)–(g), which together account for
almost 70% of total responses, we reject the null hypothesis
at the p < 0.05 level. These p values were determined
using Fisher exact tests with a simulated p value. For
consistency Pearson chi squared tests were also conducted
when considering only plots (d)–(g) and (e)–(g).5 Each of
these distributions will be analyzed individually below,
looking specifically at the clusters of dominant reasoning
elements.
Beginning with plot (d), the dominant reasoning ele-

ments are inverse (s) and asymptotes, which are both
mathematical in nature (see Table I). Inverse (s) was
present over three times more than full equation, suggesting
that the general idea of an inverse relationship took
precedence over a full mathematical formalism—a claim
that is validated with the high use of inverse (v) and linear
(KE vs f). Together, this suggests that the majority of
students that drew plot (d) followed similar reasoning to the
example analyzed above in Sec. III A 1. Thus, this dis-
tribution of reasoning elements is consistent with Msm-M
reasoning. We note that this distribution is qualitatively
similar to that of plot (h), suggesting that students who
draw plot (h) may follow similar reasoning to those that
draw plot (d) except for a conflation of negative linear with
inverse. While this may seem an obvious implication,
another possible interpretation is that students drawing
plot (h) held similar reasoning to those drawing plot (g) but
failed to explicitly draw the flat portion after the cutoff. Our
data suggest the former interpretation,6 though we note that
the small sample size is insufficient to validate this claim.
As such, we will not consider plot (h) further in this
analysis.
Plot (e) is similar in its distribution to plot (d). The three

dominant reasoning elements are all mathematically
focused, relying predominantly on full equation. Since
writing the full equation automatically includes inverse (s)

5The small number of counts, particularly zeros, in some cells
of these contingency tables lead to a chi warning, and suggest the
use of Fisher’s exact test. However, violations along both margins
go against Fisher assumptions and lead to a simulated rather than
exact p value.

6All students who drew plot (h) were coded as using an Msm-M
mode, which further supports the claim that plot (h) more closely
resembles plot (d) than plot (g).
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it is not possible for full equation to appear more frequently
than inverse (s); however, the distribution for plot (e) is
unique in that it is the only plot where these two reasoning
elements are equally represented. This means that all
instances of inverse (s) are associated with writing the full
equation, providing strong evidence that plot (e) is asso-
ciated with an Msm-M mode. This is consistent with the
example of written work from Sec. III A 2, where the full
equation is the primary tool used to mediate sense making.
In addition to a reliance on the equation, these students also
showed great attention to the asymptotes of their plot,
producing a plot with a high fidelity to the symbolic
formalism but ignoring the cutoff (an essential physical
feature of a KE plot in a photoelectric context). It is also
worth noting that the majority of the responses that include
cutoff (c) and cutoff (v) are actually discussing the crossing
point, as in the example from Sec. III A 2. While this
crossing point is called out as a relevant feature of the
graph, there is no indication that this point is interpreted as
a cutoff wavelength, which further supports the claim that
plot (e) is drawn using primarily Msm-M reasoning despite
the increased use of these physical or coordinated reasoning
elements.
The overall similarity between the distributions for plots

(d) and (e), and the consistency between these distributions
and the MSM modes above, offer strong support for the
association of plots (d) and (e) with Msm-M reasoning.
Despite the mutual association with a Msm-M mode, there
are notable differences between the distributions of reason-
ing elements for these two plots. While the overall structure
of the distribution can be associated with the MSM modes,
giving a sense of the larger scale mechanism of reasoning
(i.e., which tools are being used most frequently), the finer-
grained differences highlight the variation in reasoning for
students drawing these plots. This supports the utility of the
categorical framework in labeling overall approaches by
MSM modes and also indicates that not all instances of an
MSM mode are identical or will lead to the same answer.
This encourages the use of a reasoning element analysis
when a finer grained understanding is desired.
The more mathematically focused reasoning elements

that dominated responses for plots (d) and (e) play a
substantially smaller role in the distribution for plot (g),
being used by less than 50% of these students. Instead,
student reasoning is dominated by a discussion (though not
a calculation) of the cutoff wavelength [cutoff (v)] and a
verbal (rather than symbolic) explanation of the inverse
relationship between wavelength and frequency or kinetic
energy [inverse (v)]. This cluster of dominant reasoning
elements is in linewith the example for plot (g) in Sec. III A 3
above, and so is suggestive of a dominant Psm-M mode.
However, while this Psm-M cluster of reasoning elements
dominates, there is still substantial use of the three math-
ematical reasoning elements, which is suggestive of more
diverse reasoning than purePsm-M.Aswas discussed above,

there is strong evidence that students drawing plot (g) are
predominantly engaged in a coordinated ([M&P]sm-M)
reasoning mode, which is consistent with the substantial
use of the mathematical reasoning elements.
From an inspection of the reasoning elements one might

assume that the distribution for plot (e), in particular the
non-negligible use of cutoff (v), suggests that at least some
of these students are engaged in a coordinated mode. The
MSM codes do not support this, as 100% of student
explanations accompanying plot (e) were consistent with
an Msm-M mode. Rather, for students drawing plot (e) the
cutoff reasoning elements are more akin to the asymptotes
reasoning element, indicating attention to relevant points on
the graph but with no indication that these students view the
crossing point as having relevant physical meaning. While
the cutoff codes are categorized as being either physical or
coordinated in nature, their use by students drawing plot (e)
is suggestive of a bidirectionality between reasoning
elements and the MSM mode. In particular, that the use
of clusters of reasoning elements can be associated with
MSM modes but also that the MSM mode informs how
these reasoning elements are used.
Where plots (d), (e), and (g) have no more than four

reasoning elements present over 50% of the time [and for
plot (e) all instances of inverse (s) come from full equation]
the distribution of reasoning elements for plot (f) shows six
of the eight reasoning elements present in over 50% of
responses. This suggests that students who arrive at the
correct answer draw on multiple reasoning elements as they
generate and make sense of their plots. While one inter-
pretation of this is that good students are simply “good” and
give well-reasoned explanations, we argue for a more
nuanced interpretation: while the majority of these reason-
ing elements are present in a majority of responses, there is
still variation among them (not all elements are present
equally), which suggests that there are multiple approaches
to the correct answer. Additionally, only three reasoning
elements are present in over 80% of responses for students
selecting graph (f), which suggests that it is not simply
good (comprehensive) students covering all their bases.
It is interesting to note that for plots (d), (e), and (g) there

is a notable distinction between the use of reasoning
elements inverse (s) and inverse (v), however plot (f) has
roughly equal usage of verbal or conceptual and symbolic
argumentation around the inverse dependence on wave-
length. The similarity in frequency between symbolic and
verbal descriptions of the inverse, the high use of a majority
of reasoning elements, and the substantial use of cutoff (c)
all suggest that these students are largely engaged in a
coordinated MSMmode, in line with the example analyzed
in Sec. III A 4 and the MSM codes from Sec. III B. We note
that the cluster of mathematical reasoning elements for plot
(f) is more similar to that for plot (g) than plot (e)—that is,
use of inverse (s) is not entirely due to use of full equation,
and asymptotes is present comparatively less. This is
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suggestive that the use of the mathematical reasoning
elements for students drawing plot (f) is more akin to that
of students drawing plot (g) than students drawing plot (e),
offering further evidence that plot (f) is associated with a
coordinated MSM mode, rather than equal but individual
engagement in Psm-M or Msm-M. The amplification of the
mathematical reasoning elements compared to plot (g) also
hints at a more substantial coordination between the Msm-
M and Psm-M modes for students drawing plot (f). This is
in agreement with the MSM codes above, suggesting that
while plot (g) is associated with a coordinated MSM mode,
this coordination is less balanced and relies more substan-
tially on the Psm-M mode.

D. Semester 1 exam: Associating individual reasoning
elements with plots (answers)

The distributions above link clusters of reasoning
elements with both MSM modes and particular plots
(multiple-choice answers), substantiating the association
between the MSM modes and particular plots. To further
solidify this descriptive association, and as a first step at
considering a potentially predictive association that could
be leveraged to influence student approaches, we now look
at how individual reasoning elements link to particular
plots and MSM modes. That is, we ask the question: if a
student uses a particular reasoning element, what plot are
they most likely to draw and can this be associated with a
given MSMmode? To address this question, we present the
data not in terms of the distribution of reasoning elements
used to generate a given plot, but in terms of the percentage

of plots drawn based on the use of a particular reasoning
element, as shown in Fig. 12.
The vertical bars in Fig. 12 indicate the percentage of

student responses coded as containing each reasoning
element that went on to draw each of the four plots
[(d)–(g)], e.g., of the 57 students that used the full equation
reasoning element, 27 (47%) drew plot (f). The horizontal
lines show the overall response rate for each plot, e.g.,
44=114 ¼ 39% of all students drew plot (f). The sum of the
bars for each reasoning element do not necessarily add up
to 100%, as plots (a), (b), (h), and other are excluded. These
data help us to see patterns of use in student reasoning and
strengthen our claim that the use of specific reasoning
elements can be associated with both an MSM mode and a
particular answer (plot drawn). In key instances, discussed
below, a Pearson chi square analysis was conducted to
substantiate the claim that the use of a given reasoning
element is associated with graph selection.7

To isolate whether a given reasoning element can be
associated with any particular plot(s), we compare the
distribution of responses (plots drawn) for each reasoning
element to the overall use of that reasoning element across
all responses. If use of a reasoning element were equally
associated with any of the plots, i.e., it did not discriminate
among plot choices, we would expect that the distribution

FIG. 12. The distribution of plots drawn based on the use of a given reasoning element. The horizontal lines show the percentage of
overall responses corresponding to each graph, e.g., 39% of students drew plot (f)—the correct answer. These plots do not necessarily
add up to 100%, as plots (a), (b), (h), and other are excluded from this figure. The overall percentage of student responses (regardless of
plot drawn) that included each reasoning element is shown below each distribution, e.g., full equation was present in 57=114 ¼ 50% of
students responses.

7This is similar to asking whether a die is “fair”, i.e., reproduces
the expected distribution of outcomes. For a fair die the expected
distribution is uniform, here our expected distribution is the
overall response rate for each plot.
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of responses for that reasoning element would be identical
to the overall distribution. We observe that this is roughly
the case for inverse (v), where the distribution of plots in
Fig. 12 corresponds with the horizontal lines (the expected
usage). In contrast, when a particular plot is drawn
substantially more (or less) frequently than the average
response rate—i.e., when the vertical bar differs substan-
tially from its corresponding horizontal line—we take it as
a strong signal that the use of the given reasoning element
plays a relevant role in discriminating between the plots.
The reasoning elements that show the most discrimina-

tion from the expected distribution are cutoff (c) and cutoff
(v). Students using these reasoning elements are very likely
to draw either plot (f) or (g), with ∼25% of responses that
mention (but do not calculate) the cutoff drawing plot (g).
For both of these reasoning elements, we reject the null
hypothesis that the distribution of plots is independent of
reasoning element use at the p < 0.05 level, suggesting that
these reasoning elements show a strong association with the
final plot drawn and the associated MSM mode discussed
above. In particular, cutoff (c) is the reasoning element most
strongly associated with drawing the correct answer—a
notable association as this reasoning element was used
relatively infrequently (used by only 34% of students) but
by more than half of the students that drew the correct
answer. This association is unsurprising, as calculating the
cutoff requires use of the full equation and the conceptual
knowledge that kinetic energy cannot be negative and/or
that there is a cutoff frequency (wavelength) that deter-
mines whether or not electrons are ejected. As this
reasoning element relies on both mathematical and physical
tools, use of this reasoning element is a strong indicator of a
coordinated reasoning structure, consistent with the results
of Table III and our analysis above.
Use of the full equation reasoning element was coded for

50% of students; it is likely to be associated with plots (e)
and (f) and is less likely to be associated with plots (d) and
(g). We reject the null hypothesis at the weaker p < 0.1
level. While this is generally not considered to be sta-
tistically significant, it is suggestive that use of the full
equation reasoning element has a discriminating effect,
albeit a less stable one than the cutoff elements, which is
consistent with our argument. Based on these distributions,
cueing the full equation is likely to lead students towards
plots (e) and (f), cueing cutoff (v) is likely to lead students
towards plots (f) and (g), and cueing cutoff (c) is likely to
lead students specifically towards plot (f). However, the
weaker p-value and the smaller deviations from expectation
suggest that prompts cueing the full equation reasoning
element will be less discriminating for the correct answer
(f) than those cueing for the cutoff reasoning elements.
Use of inverse (v) was coded for 76% of students (the

highest frequency of any reasoning element) and shows
approximately equal association with all four plots. This
result suggests that while it plays an integral role in student

reasoning, this reasoning element does not discriminate
well among the different plots. The remaining reasoning
elements [inverse (s) and asymptotes] show weak discrimi-
nation, with a slight cue towards plots (d) and (e), which are
associated with Msm-M, and away from plot (g), which is
associated with Psm-M. Though there is only weak
discrimination among plots from these two reasoning
elements, their use is consistent with our categorization
of inverse (s) and asymptotes (as well as full equation) as
fundamentally mathematical reasoning elements. This out-
come suggests that cueing the use of these reasoning
elements is likely to encourage Msm-M reasoning (which
could lead to coordination), but since Msm-M (or coordi-
nated) reasoning is associated with all four of these plots
this offers limited discrimination in the final answer.
The associations between individual reasoning elements,

specific plots, and MSM modes further supports the link
between plots (answers) and MSM modes. Additionally,
the strong discriminatory effect of the full equation, and
cutoff reasoning elements suggest that prompts scaffolding
the use of these reasoning elements can play a predictable
role in student reasoning—specifically in their final answer
and engagement in particular MSM modes. Below, as a
preliminary test of this predictive association, we consider
the effect of a direct (visual) cue for the cutoff that does not
explicitly cue the use of the full equation.

E. Semester 2 exam: effect of visual cueing for the cutoff

In version B (see Fig. 7), implemented on the semester 1
exam, we attempted to scaffold engagement in a Psm-M
mode in drawing the graph through a calculation of a
negative kinetic energy. However, for many students there
was a mismatch between their responses to the calculation
in part i and the plot drawn in part ii. In part i, only 54% of
students clearly demonstrated reasoning that suggested
they had a working physical model of electron ejection
that was cohesive with their mathematical reasoning. More
specifically, over 50% (9=17) of the students who drew plot
(e) in part ii, which allows for negative KE, had explicitly
stated in part i that the energy would be zero when their
calculation returned a negative value. Exhibiting a similar
mismatch, 10% of the students that drew plots (f) [4=44]
and (g) [2=21] in part ii, which show zero KE above an
explicit cutoff wavelength, accepted a negative kinetic
energy when calculated in part i.
This mismatch between parts i and ii on the semester 1

exam suggests that our attempted scaffolding of Psm-M
was ineffective; that is, the calculation of a negative kinetic
energy did not necessarily cue students into a physical
interpretation of this result. Even when students recognized
this inconsistency in part i, this understanding did not
necessarily carry over into part ii. In retrospect, it was not
surprising that this intended cueing was somewhat inef-
fective, as it requires a calculation, a sufficient under-
standing of the physical system to accurately interpret the
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(unphysical) calculated result, and the continuation of this
logic into future problem solving—a process we have
called chaining in prior work [8].8

The results of the previous section establish a link
between particular reasoning elements and the plot drawn
(and so the associated MSM mode). Specifically, we note
that the cutoff reasoning elements are the strongest dis-
criminators for the correct answer. To test these associa-
tions, we designed version C of the KE vs λ task, predicting
that a direct, visual cue would more effectively scaffold use
of the cutoff reasoning elements. Since use of the cutoff
reasoning elements is associated with a Psm-M mode, we
expect to see a distribution of responses that is skewed
towards the plots associated with Psm-M or coordinated
reasoning.
As discussed in the methods section, version C (see

Fig. 8) presents a physical scenario, and asks students to
choose between the five most common results from
semester 1 [plots (a) and (d)-(g)]. While it is still possible
to use any combination of the reasoning elements observed
in the free response version, and so engage in any of the
prior MSM modes, this prompt provides more scaffolding
by directing student attention to three differences between
the plots. In choosing between these plots, students could
consider (i) should the plot be straight or curved, (ii)
increasing or decreasing, and (ii) is there a cutoff or can
kinetic energy be negative? These first two points suggest
activation of inverse (v)—perhaps strongly associated with
inverse (s) for some students—and the third point suggests
activation of cutoff (v). Additionally, the overall framing
suggests a Psm-M mode of reasoning rather than the Msm-
M mode framed in version A. While inverse (v) was
deemed as necessary but largely nondiscriminatory, the
primary difference is the stronger visual cue for cutoff (v).
As discussed above, use of cutoff (v) is strongly associated
with Psm-M (or coordinated) reasoning and leads towards
plots (f) and (g) and away from plots (d) and (e).
Results of the version C exam question are shown in

Fig. 13. A slightly larger fraction of students selected plot
(a) in semester 2 than in semester 1 (10% versus 5%). As

there is no mathematical formalism given, it is unlikely that
this is related to an interpretive difference between math-
ematical and physical functions, so—as in semester 1—
these students were likely purposefully (if mistakenly)
selecting a plot of KEðfÞ rather than KEðλÞ. In contrast
to semester 1, very few students selected plots (d) or (e),
suggesting a suppression of the pure Msm-M mode. Plots
(f) and (g), associated with Psm-M and coordinated
reasoning modes, make up the majority (∼80%) of student
responses here, and were selected substantially more than
they were drawn in semester 1.
The shift away from plots (d) and (e) and towards (f) and

(g) is in line with our predictions based on the use of cutoff
(v) with no cue for full equation. This outcome provides
evidence that cueing the cutoff wavelength through a visual
representation may be a more effective cue for Psm-M and/
or coordinated reasoning than asking students to perform a
calculation. Admittedly, there are limitations to the com-
parisons that can be drawn between versions B and C, as
they differ in format (free-response versus multiple choice)
and required work (version B asks for both a calculation
and a drawn plot while version C asks only for students to
select a plot). However, our comparison is limited to the
shift in plots chosen on version C from the plots drawn on
version B. We argue that this shift is consistent with greater
activation of the cutoff reasoning elements than was present
on version B. Since neither version explicitly references the
cutoff, this supports our hypothesis that a visual cue
indicating the cutoff is more effective at scaffolding
Psm-M reasoning than a calculation that gives a nonphysi-
cal result.
Additionally, representational form aside, these results

substantiate the links between individual reasoning ele-
ments, MSM mode, and particular answers (plots). We

FIG. 13. Results for version C on the semester 2 exam (blue)
and version B on the semester 1 exam (gray)—data for semester 1
are shown in Table II. The plot labels have been updated for
consistency with the labels used throughout this paper.

8It is worth noting that these data were collected from student
work on exams. While exams were lower stakes than in many
other courses, this is inarguably a time-sensitive and somewhat
high stakes environment that may not have offered all students
time to reflect on their work. We acknowledge this potential
complication, however, our primary purpose in noting the
inconsistencies between parts i and ii in semester 1 is to further
support our association between the plots and MSM modes, not
to make claims about a particular student’s ability to sense make
between problems. Both of these mismatches (rejecting negative
kinetic energy when calculated but drawing regions of negative
kinetic energy on their plot, or accepting negative kinetic energy
when calculated but explicitly drawing plots with a cutoff) show
that an understanding of the relevant aspects of the physical
system was present for all of these students. The question then is
not whether these students have the relevant resources, but
whether they were activated during a given task.
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argue that the distribution of responses to version C, shown
in Fig. 13, is in line with large-scale engagement in a Psm-
M and/or coordinated mode of reasoning, and thus take the
shift in responses from version B as evidence that engage-
ment in the various MSM modes can be scaffolded by
appropriate activation of associated reasoning elements.
The positive effect of a direct cue designed based on the
MSM framework is suggestive that targeted curricula
designed using this framework can scaffold both student
reasoning (engagement in MSM modes) and the responses
that they give.

IV. DISCUSSION AND CURRICULAR
IMPLICATIONS

Where prior work [8,22] has applied the categorical
MSM framework to analyze extended episodes of collabo-
rative student reasoning, here we have expanded our
analysis to multiple modalities of student work across a
larger student population. Expansion to a larger N included
sparser forms of student reasoning (individual written work
and multiple choice answers) which are more commonly
observed by physics educators. While it was not possible to
see the nuanced changes in student reasoning evident in
richer data streams (collaborative, think-aloud focus
groups), it was still possible to code entire units of student
work as being indicative of one or more modes of the MSM
framework in a consistent fashion to the analysis of focus-
group reasoning presented in our prior work [8]. This link
between written work and multiple choice answers and
MSM modes corroborates the utility of the framework in
describing student reasoning across sample sizes and
modalities of student work.
To further substantiate the link between MSMmodes and

particular plots (answers), a finer-grained analysis of student
work was conducted looking at distributions of reasoning
elements. The dominant clusters of reasoning elements were
consistent with the codedMSMmodes, validating the use of
the MSM modes in describing the overall approach used to
generate the various plots. These clusters of reasoning
elements were also consistent with the analysis of exemplar
written work, supporting the association of clusters of
reasoning elements with a given plot, and so substantiating
the link between MSM modes and particular answers. This
provides strong evidence that multiple-choice answers can
be indicative of specific MSM modes.
While the similarities between clusters of reasoning

elements substantiates the association of multiple choice
answers with MSM modes, variations in these clusters
between plots associated with the same MSM mode
provides more detailed information about differences in
these MSMmodes. For example, while plots (d) and (e) are
both associated with Msm-M—and both draw predomi-
nantly on the mathematical reasoning elements full equa-
tion, inverse (s), and asymptotes—the different frequencies
of use of these three reasoning elements indicate a more

sophisticated approach taken by students drawing plot (e)
than drawing plot (d). Likewise, while plots (f) and (g) are
both associated with a coordinated MSM mode, the
distribution of reasoning elements is consistent with a
more balanced coordination for plot (f) and a weaker
coordination and larger reliance on the Psm-M mode for
plot (g).
The agreement between the finer-grained coding of

reasoning elements and larger-scale coding of MSM modes
suggests that the categorical framework is a consistent and
accurate tool for describing student reasoning across
modalities of student work (focus group data, written,
and multiple choice responses). Based on the analysis
conducted here, we argue that the MSM framework can
be a useful tool in validating (or invalidating) the association
of multiple-choice answers with particular reasoningmodes.
This supports the use of the framework by both researchers
and educators as a potentially useful tool for the analysis of
student reasoning and performance on course artifacts.
Coding student work both for specific reasoning ele-

ments and the overall MSM mode also allows for dis-
crimination between incorrect or partially correct answers.
For example, in comparing between the incorrect answers
(e) and (g) there is no a priori reason to believe that one is
better or worse than the other. In fact, one could argue that
plot (e) is indicative of “better” reasoning as it shows a
more faithful understanding of the mathematical formalism
that might also suggest a better understanding of the
physical system. However, our analysis both of written
work and the distribution of reasoning elements suggests
that plot (e) is entirely based on Msm-M reasoning and
does not show a complete understanding of the behavior of
the physical system. On the other hand, plot (g) shows
greater diversity in reasoning and suggests a greater under-
standing of the physical phenomena. In particular, a
substantial fraction of student responses associated with
plot (g) were indicative of a coordinated reasoning struc-
ture. This analysis suggests that plot (g) is more likely to be
associated with the fluid use of multiple tools (an important
aspect of mathematical sense making) than plot (e), and so
could be seen as a better incorrect answer.
While not dwelt on here, the association between

multiple choice answers and MSM modes suggests that
the change in student responses over time can be used to
measure student learning both in terms of canonically
correct knowledge (content understanding) and also
engagement in sense making. For example, between the
pretest or homework and the exam in semester 1 there was a
substantial shift away from plots (a)–(d) and towards plots
(e)–(g), see Fig. 14 in Appendix B. This shift indicates
broader engagement in more sophisticated approaches to
this problem, whereas the shift towards plots (f) and (g) in
particular indicates greater engagement in coordinated
MSM modes and a more substantial use of multiple
reasoning elements. While a measure of “correctness” is
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certainly a relevant measure of learning, this analysis is also
suggestive of specific instructional interventions. For
example, a student who has drawn plots (d) or (e) is likely
engaged in purely Msm-M reasoning, and so a prompt to
consider the physical system—specifically energetic
requirements of electron ejection—could be a more pro-
ductive approach than returning focus to a more detailed
exposition of the full equation.
In addition to the descriptive utility of the framework, the

association of individual reasoning elements with specific
plots and associated MSM modes suggests a predictive
ability. From semester 1 we see that the full equation, cutoff
(v), and cutoff (c) reasoning elements discriminate among the
plots selected. Specifically that they likely lead students to
plots (e) or (f), (f) or (g), and (f), respectively. The results of
semester 2 suggest that the use of a given reasoning element
is dependent on the representational form of the cue [42], and
also that when effectively activated these reasoning elements
show a predictable association with both particular plots
(answers) and also with particular MSM modes.
Furthermore, the mismatch between responses to parts i

and ii on the semester 1 exam indicate that engagement in a
particular mode of MSM can inform the in-the-moment use
of specific reasoning elements. For example, almost 50% of
students who drew plot (e) on part ii, which is an accurate
plot of the mathematical expression but allows for negative
kinetic energy and so is not an accurate description of the
physical system, had explicitly stated in part i that negative
kinetic energy was not possible and so the electron would
not be ejected. Likewise, several students accepted a
negative kinetic energy in part i but went on to draw either
plot (f) or (g) using their understanding of the physical
system to state that there would be no ejection above the
threshold wavelength. In both cases, this mismatch indi-
cates that these students possessed a relevant understanding
of the physical behavior of the system, but that this
reasoning was differentially activated in parts i and ii.
This is suggestive of a bidirectional interaction between
reasoning elements and MSM modes: while the reasoning
elements used (either individually or in clusters) are
indicative of MSM mode, it is likely that engaging in a
particular MSMmode influences which reasoning elements
are used and to what end.
This predictability offers support for an approach to

instructional interventions that scaffold engagement in
MSM through the targeted activation of various reasoning
elements. This approach could encourage the use and
coordination of MSM modes, leading towards both greater
MSM competence and a deeper (and more canonically
correct) understanding of the relevant physical system. The
utility of the framework to both describe student reasoning
and support particular forms of student sense making and
answer selection provides a basis for the use of the
framework in the analysis and design of curricula.

V. CONCLUSIONS AND FUTURE WORK

We have expanded the application of the categorical
MSM framework from in depth focus group data both to a
larger sample size and to other modalities of reasoning, in
particular written work and multiple-choice answers. An
association between MSMmodes and particular answers in
the context of the photoelectric effect was established and
then validated with a finer-grained analysis of reasoning
elements. This suggests that the framework is a useful tool,
for both researchers and instructors, for describing both the
nuances of extended student reasoning and the general
structure of shorter written responses. It can also be used to
(in)validate the association between multiple choice
answers and MSM modes.
This work was conducted in the context of the photo-

electric effect, and in the main text and the Appendices we
present a detailed discussion of the development of a novel
task that links mathematical and physical reasoning and
student responses and associated reasoning on this task. In
Appendix Awe include a discussion that explores potential
conceptual issues regarding this task and show how it
functions as a photoelectric shibboleth—a novel applica-
tion of the reasoning associated with Corinne’s shibboleth
[7,37] that highlights differences between the interpretation
and use of formal mathematics in the contexts of math and
physics. In Appendix B we provide a detailed discussion of
student reasoning on these tasks, and provide an example of
how the framework might be used to track change-over-
time in student reasoning.
In addition to the framework’s utility in describing

student reasoning, the association of individual reasoning
elements with specific answers supports the potential
predictive power of the framework. This predictive asso-
ciation was tested with a modification to the KE vs λ task in
semester 2 that attempted a more direct form of cueing. The
results of semester 2 provide preliminary validation of this
approach, which could be employed to design curricula that
scaffold the use of particular reasoning elements. These
reasoning elements can be determined from an analysis of
student work, as was done here, or could be predicted from
assumed (or desired) reasoning.
In other work [44], we provide preliminary examples of

curricula based on this approach. Future work will expand
this pilot study to analyze existing curricula for the
reasoning structures (MSM modes) it offers students the
opportunity to engage in. We believe applying the frame-
work in this way provides a tool for faculty or instructors
(and curricular designers) to see the kinds of reasoning
structures—i.e., MSM modes and use of specific (clusters
of) reasoning elements—they are promoting. In addition to
the analysis and design of curricula, future work will also
test the efficacy of these approaches against more tradi-
tional (less scaffolded) curricula.
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APPENDIX A: THE KE VS λ TASK

Here we detail the development of the three versions of
the KE vs λ task, in particular the distractors in version A.
In addition, we discuss several anticipated issues (both
conceptual and procedural) with the mathematical formal-
ism and expand our discussion of the photoelectric
shibboleth.
As stated in the main text, version A (shown in Fig. 6)

asks students to make an algebraic substitution to a given
piecewise function and select the plot of the result. The five
distractors were designed based on preliminary results from
prior focus group studies and several assumptions of
possible student difficulties based on this algebraic sub-
stitution. The intention was for plot (f) to be the only correct
answer, with a shifted, inverse function before the cutoff
and a constant value of zero after the cutoff. However, as
discussed above, plot (a) is also a valid response for
students that treat fðxÞ as a mathematical function rather
than a physical function. This will be discussed more
below, but we briefly discuss the other distractors first.
Plots (b) and (c) retain the cutoff for small x and show

either a negative linear graph or an inverse graph, respec-
tively, for values above the cutoff. These distractors were
chosen to appeal to students struggling with the idea of an
inverse, as they might not consider the inversion of the
bounds and could conflate inverse and negative propor-
tionalities. This is in line with the work of Kwon et al. [36]
who investigate some of the many difficulties students have
with inverse functions and proportional reasoning. Plot (d)
shows a pure inverse function, intended to capture students
focused primarily on the inverse relationship between the
variables, while plot (e) is an inverse function shifted down,
effectively ignoring the piecewise nature of the function.
Plot (e) is analogous to the plot of equation (1) and shown
in Fig. 5; i.e., it is a correct plot of the primary functional
dependence when the cutoff is implicit rather than explicit.
Plot (a) is a plot of the initial function [in this case fðxÞ]

without making the change of variables. It was intended to
be an incorrect option that appealed to students who simply
chose the plot of the given function. Though we did not
initially consider it in designing the task, plot (a) is a valid

response due to the lack of physical context. It is analogous
to the mathematician’s answer to Corinne’s shibboleth.
The standard version of Corinne’s shibboleth gives the

temperature of a rectangular metal slab as Tðx; yÞ ¼ kðx2 þ
y2Þ and asks for the function Tðr; θÞ. There are two
“correct” answers to this question, that tend to distinguish
between mathematicians and physicists. As Redish argues,
a physicist sees T as a physical function (Tp) that represents
a particular quantity (in this case the temperature) in
whatever coordinates are specified. This suggests that
ðx; yÞ are Cartesian coordinates and ðr; θÞ are polar
coordinates, in which case Tpðr; θÞ ¼ kr2. On the other
hand, the mathematician sees T as a mathematical function
(Tm) that represents a particular functional relationship
between (an operation on) arbitrary quantities. Interpreted
this way, x, y, r, and θ are dummy variables that hold no
particular meaning and the mathematical function T spec-
ifies the operation “sum the squares of the two variables
and multiply by k” giving Tmðr; θÞ ¼ kðr2 þ θ2Þ.
Version A of the KE vs λ task involves a “pure-math”

context, presenting the piecewise function fðxÞ and asking
for a plot of fðyÞ given the relationship x ¼ D=y, as shown
in Fig. 6. Because of the lack of physical context and our
choice to use generic variables x and y, which are often
“meaningless” in a mathematical context, it is reasonable
that many students interpreted fðxÞ as a mathematical
function. In doing so, the stated relationship between the
variables is irrelevant and plots of fðxÞ and fðyÞ would
look identical. Thus, plot (a) is the mathematician’s answer
to this photoelectric shibboleth, which (like Corinne’s
shibboleth) highlights how physical reasoning can override
the traditional grammar of mathematical formalisms.
Beyond theoretical conjecture, this analysis was validated

by the large number of students that selected plot (a) on both
implementations of versionA; see AppendixB, and a private
(online) conversation a student had with J. D. G. In an email,
this student said: “If linear operator fðxÞ is defined as
Ax − B, then fðyÞ will be defined as Ay − B instead of
AðD=yÞ − B.From themathematical point of view, what you
are actually asking is: Please select the graph of gðyÞ ¼
fðxÞ ¼ Ax − B (where x ¼ D=y).We shouldn’t define f as
one function and use it as another function.”
Ultimately, version A requires students to select a graph

—an object that is fundamentally mathematical in nature,
though inarguably contains physical significance given
appropriate context. All five of the distractors, plots (a)–
(e), were designed based on assumed difficulties with the
mathematical formalism (conflation of inverse and negative
linear, failure to switch or include the bounds, etc.).
Because of the form of the distractors and the lack of
physical context, it is expected that this question cues
students towards an Msm-M mode of reasoning, where the
generation (selection) and understanding of the plot is
based primarily on the use of mathematical tools and
procedures.
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On the homework, this task was repeated as above but
with the addition of a follow-up question that suggested this
formalism is a relevant description of some aspect of the
photoelectric effect experiment. Students were asked to
consider relevant parameters in the experiment (current,
voltage, kinetic energy, work function, incident light, etc.)
and explain what this formalism might represent. This
follow up question provides a physical system and was
intended to encourage Psm-M reasoning such that students
would draw on relevant knowledge of the photoelectric
effect to contextualize the mathematical formalism.
In the context of the photoelectric effect experiment, this

formalism can be written either in terms of the maximum
kinetic energy or the stopping potential V0 (the external
battery voltage required to stop the most energetic ejected
electrons from making it across the gap between the
capacitor plates). The stopping potential is, effectively,
an experimental measurement of the maximum kinetic
energy: KEmax ¼ jeV0j. In this expression, e is the charge
of an electron, which can be either explicitly or implicitly
negative. Based on the orientation of the battery, the
stopping potential is conventionally a negative number,
which can also be either implicitly or explicitly written. If
both signs are either explicit or implicit then there is no
explicit minus sign relating the kinetic energy and stopping
potential; however, if the conventional battery orientation is
reversed, or one of the quantities but not the other is made
explicitly negative, the relationship is written KEmax ¼
−eV0. A growing body of research has shown consistent
difficulties with signed quantities in mathematics and phys-
ics, including a general trend to interpret all implicitly signed
symbols as positive [45–47]. Thus, it is reasonable to believe
that the signs in the relationship between kinetic energy and
stopping potential pose an additional difficulty for students in
understanding the mathematical formalism when consider-
ing the physical context of the photoelectric effect.
Additional difficulties in performing mathematical opera-
tions due to the physical context are consistent with thework
of Shaffer and McDermott, who found increased difficulty
with simple vector tasks in the context of a collision [48].
Version B (shown in Fig. 7) was a free-response question

implemented on the first midterm exam of semester 1. The
KE vs λ task was presented explicitly in a physical context,
and the standard mathematical formalism was not given.
The bulk of our analysis in the main text focuses on version
B, as we were interested in triangulating across written
work and associated multiple choice answers. Because of
the free-response context we expected that not all responses
would fit into the six (mathematically motivated) plots
present in version A, but save for the notable addition of
plot (g) (see Fig. 9) this was largely not the case. The two
parts of this question were intended to probe student facility
with the mathematical formalisms (both symbolic and
graphical) and to establish whether or not students had a
sufficiently robust understanding of the physical system to

“override” the mathematical formalism when it gave an
unphysical result (negative kinetic energy). In practice, as
discussed in the main text, for many students there was a
mismatch in responses to parts i and ii where students either
argued that kinetic energy cannot be negative when
calculated in part i but drew plot (e) which is explicitly
negative or accepted a negative kinetic energy when
calculated in part i but drew plots (f) or (g) based on their
understanding of the cutoff frequency or wavelength.
To test the hypothesis that a graphical representation

presented in a physics context will provide stronger cueing
for the cutoff frequency or wavelength, a multiple choice,
physics context version was developed (shown in Fig. 8).
Version C presents a physical scenario, a repeated photo-
electric effect experiment with varied wavelength, and asks
for the corresponding plot of KE vs λ. As this is a multiple-
choice format the task is to select rather than generate a
graph, and so is an arguably easier task than version B and
comparisons between them are limited. That said, the
possible answers on version C were the most common
answers drawn by students on version B, and the primary
task, to determine an accurate plot of KE vs λ, is the same.
We argue that the most important distinction between the
two versions are the ways in which attention to the cutoff is
cued. While neither version explicitly mentions a cutoff
wavelength, in version B a calculation is required that gives
a negative answer for kinetic energy and so encourages an
interpretation of no ejection while in version C the option of
negative kinetic energy or a cutoff is visually presented.
Responses to these two versions provide, at minimum, a
preliminary indication of the effect of a more direct cue for
the cutoff.

APPENDIX B: PRETEST AND HOMEWORK
RESULTS

In the main text, we were primarily concerned with
exploring the utility of the framework in describing student
reasoning and connecting answer choices with the MSM
mode. With that focus, a detailed discussion of student
responses to the pretest and homework was not necessary.
However, the framework can also be used to track change
over time. As an example of this process, and for
completeness in our presentation and analysis, we discuss
the results for the pretest (version A) homework (version A)
and exam (version B) for semester 1, which are shown
in Fig. 14.
Responses to the pretest and homework were collected

for all students in semester 1. Two students dropped the
course after responding to the pretest but before the second
homework and their responses have been removed from the
dataset, leaving 108 matched pretest-homework-exam
responses. On the homework, student responses to the
physics follow-up were coded based on the physical
relationship students stated the given mathematical formal-
ism represented—e.g. that the function fðyÞ represented the
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physical relationship KEðλÞ. There was a significant spread
in these responses, but of the 100 students that gave
responses to both parts of the homework all but 8 were
captured by the 8 codes shown in Table IV.
While there is nomajority response on the pretest, themost

common response was plot (a), suggesting that 34% of
students either selected the plot corresponding to the given
function fðxÞ without making the appropriate change of
variables or that these students interpreted fðxÞ as a math-
ematical rather than physical function—i.e., they gave the
“mathematician’s answer” to the photoelectric shibboleth.
The second most common response was plot (c), suggesting
students were aware of the inverse relationship for the
function, but did not attend to the inversion of the cutoff;

while the third most popular was plot (d) in which students
attended to only the inverse nature of the function and
completely ignore the cutoff. Only 12% of students chose
the correct (for a physicist) answer, plot (f), on the pretest.
All six options were well represented in the responses,

with no distractor chosen by less than 5% of students,
which we take to show validation that the assumed
difficulties led to sufficiently compelling distractors.
Taken together, these results suggest that (i) this task poses
difficulties on a purely mathematical level, regardless of its
connection to the photoelectric effect and (ii) the majority
of responses [59% across plots (c)–(f)] indicate an under-
standing that an inverse relationship appears as a curve
rather than a line. It is also interesting to note that the least

FIG. 14. Responses to the three implementations of the KE vs λ task for semester 1. Both the pretest (N ¼ 108) and homework
(N ¼ 109) implementations were version A—though the homework included a free response, physics-context follow-up—and the
exam (N ¼ 114) was version B. Plots (a)–(f) correspond to the plots from version A shown in Fig. 6 and plots (g) and (h) (emergent from
the free-response exam) are shown in the right of Fig. 9. Responses coded as o (other) make up less than 10% of the overall exam
responses.

TABLE IV. Results of the homework follow-up. Codes give the physical quantity and functional relationship students stated the
formalism represented. Any zero counts are left blank. The codes KE, Vstop, and current indicate responses that either gave no
dependent variable or cited a variable other than frequency or wavelength (e.g., position x). Responses coded as other referenced some
other relevant quantity (e.g., the work function Φ or potential energy), those coded as “NA” chose a plot but provided no answer to the
follow-up question.

KEðλÞ KEðfÞ KE VstopðλÞ VstopðfÞ Vstop CurrentðλÞ Current Other NA N

Plot (a) 18 1 1 1 3 3 3 30
Plot (b) 1 1
Plot (c) 1 1 1 2 2 1 8
Plot (d) 2 1 1 4
Plot (e) 2 1 1 1 2 7
Plot (f) 34 2 3 1 2 2 5 2 5 3 59

KE or VstopðsomethingÞ ¼ 71% currentðsomethingÞ ¼ 12%
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chosen distractor on the pretest, plot (e), becomes one of the
three most common responses on the exam.
The homework implementation shows a large shift

towards the correct answer; which is unsurprising due to
the significant support that was available to students in
conducting weekly homework. However, it is interesting to
note that though plot (a) is still chosen by 28% (N ¼ 30) of
students, only 10 of these students had also selected plot (a)
on the pretest. 18 of these 30 students also stated on the
homework that the function fðyÞ represents the kinetic
energy as a function of frequency. This suggests that, on the
homework, a majority of students selected plot (a) based on
considering fðxÞ as a mathematical function—indicating a
lack of physical interpretation of the mathematical relation-
ship between the variables x and y despite the explicit call
to interpret these general variables in a physical context.
As plots (b) and (c) allow for negative values, something

not physically possible for the kinetic energy, the shift away
from these plots is suggestive of greater consideration of
the physical system and engagement in physical reasoning
(Psm-M). Of the 9 students who selected these plots there
was a spread in their interpretation of what this function
represents, including the current, the stopping potential,
and the kinetic energy. While four students stated that these
plots (which include negative portions) should represent the
kinetic energy, this is perhaps a conflation with the stopping
potential which is generally a negative number. On the
other hand, six of these students stated that y represents the
wavelength, suggesting a physical interpretation of the
variables x and y, if not the function fðxÞ.
Of the 11 homework responses that selected either plot

(d) or (e), which are increasingly accurate mathematical
representations of the new function without considering the
piecewise nature of the original expression, 7 indicated that
fðyÞ represented either the kinetic energy or the stopping
potential, and 6 stated that y was the wavelength. Of the 59
students that selected the correct answer, 58% (N ¼ 34)
also correctly identified the function as KEðλÞ and another
6 indicated that it was either the current or stopping
potential as a function of wavelength. Across all responses,
71% of students indicated that the function represented

either the kinetic energy or stopping potential, 12%
indicated that it was the current, and 50% indicated that
y represented the wavelength of light. On the whole,
responses to the HW are indicative of learning in general
and substantial physical interpretation of the functions fðxÞ
and fðyÞ and the variables x and y (Psm-M reasoning).
Responses to the semester 1 exam question are again

indicative of learning, as only 5% of students drew a graph
resembling either plots (a) or (b), and no student drew a
graph similar to plot (c). All 5 students who drew plot (a) on
the exam had also selected plot (a) on the homework, and
their responses are consistent with explicitly drawing a
graph of kinetic energy versus frequency. While a plurality
(though not a majority) of students drew a graph resem-
bling the correct answer, there is a notable decrease
compared to the homework (39% vs 54%). This is not
particularly surprising as the format of the question is free
response rather than multiple choice and the context is
explicitly physical in nature rather than mathematical.
Perhaps more surprising is that, despite having seen version
A twice before with explicit solutions linking the function
KEðλÞ to the plots shown, 30% of exam responses include
novel plots [(g), (h), and other]. Since other plots constitute
only 8% of the overall responses, the eight lettered plots
[(d)–(g) in particular] seem to effectively capture the
dominant responses students give following instruction
on the photoelectric effect.
The exam data have been analyzed in detail in the main

text, so we will not repeat this analysis here. However, we
do note that the change in student responses over time can
be used to measure student learning both in terms of
canonically correct knowledge (content understanding) and
also engagement in sense making. For example, between
the pretest, homework, and the exam there was a substantial
shift away from plots (a)–(d) and towards plots (e)–(g).
This shift indicates broader engagement in more sophisti-
cated approaches to this problem, whereas the shift towards
plots (f) and (g) in particular indicates greater engagement
in coordinated MSM modes and a more substantial use of
multiple reasoning elements.
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