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As a method to shorten the test time of the Force Concept Inventory (FCI), we suggest the use of
computerized adaptive testing (CAT). CAT is the process of administering a test on a computer, with items
(i.e., questions) selected based upon the responses of the examinee to prior items. In so doing, the test
length can be significantly shortened. As a step to develop a CAT-based version of the FCI (FCI-CAT), we
examined the optimal test length of the FCI-CAT such that accuracy and precision [which we measure in
terms of bias, standard error, and root-mean-square error (RMSE)] of Cohen’s d would be comparable to
that of the full FCI for a given class size. First, we estimated the item parameters of the FCI items based on
the three-parameter logistic model of item response theory, which are used in the algorithm of CAT. For this
estimation, we used 2882 responses of Japanese university students. Second, we conducted a Monte Carlo
simulation to analyze how the bias, standard error, and RMSE of Cohen’s d depend upon the test length.
Third, we conducted a post hoc simulation to examine the consistency of the Monte Carlo results with what
would have been obtained using empirical responses. For this comparison, we used 86 pairs of pre- and
post- test responses of Japanese university students. As a result, we found that for a class size of 40, we
may reduce the test length of the FCI-CAT to 15–19 items, thereby reducing the test time of the FCI to
50%–63%, with an accompanying decrease in accuracy and precision of only 5%–10%. The results of the
Monte Carlo study and the post hoc simulation were consistent, which supports the adequacy of our
Monte Carlo study and its relevance in terms of administering the FCI-CAT in real classrooms.
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I. INTRODUCTION

The Force Concept Inventory (FCI) is one of the most
widely used research-based assessments in physics educa-
tion [1,2]. It probes student conceptual understanding of
Newtonian mechanics, particularly regarding the concept of
force. The test has 30 items with five choices, and students
typically take 20 to 30 min to complete the test. The
items use everyday speech in order to better elicit what
the student personally considers to be correct as opposed
to an answer memorized by rote from physics class [3].

Futhermore, the distractors are designed based upon knowl-
edge of students’ common naïve conceptions [4,5]. The FCI
has been examined from various viewpoints and validated in
various regards [6–19], and it has played an important role in
analyzing the effects of newly developed pedagogy [20–23].
When administering the FCI in a classroom, instructors

typically require about 40 min, including the time needed to
orient students to the survey. To administer the survey as a
pretest, an instructor must thus be willing to sacrifice nearly
an entire class period; a second class period is required if
the survey is also given post-test. (The situation is described
for the United States in Refs. [24–27], and Japan is similar.)
Many instructors feel pressure to cover as much content
as possible by the end of the semester, and they are likely to
be reluctant to find time in their crowded schedules to
administer the assessment.
To avoid using class time for assessments, some instruc-

tors administer the assessment via online platforms which
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enables students to complete the assessment outside of
class [24,25]. Although this preserves in-class time, it does
not solve the problem of consuming student time, time that
students could otherwise spend doing additional homework
or independent study. Moreover, administering ungraded
conceptual questions online outside of class can decrease
response rate and compromise test security [28]. To shorten
the test time, Han et al. [26,27] divided the FCI into two
half-length tests which contain different subsets of the
original FCI, but still cover the same set of concepts. They
showed, using empirical data (that is, actual data collected
by respondents), that the difference of the average normal-
ized gain between either half-length FCI and the full FCI is
on the order of 0.03.
We have the same goal in mind as the above-mentioned

approaches; namely, our objective is developing a method
to reduce the time needed to administer research-based
assessments, specifically, in this paper, the FCI. In this
study, we suggest an alternative approach to accomplish
this goal: the use of computerized adaptive testing (CAT)
[29,30], which is the practice of using a computer to
administer a set of items taken from an item pool, with the
items chosen based on the student’s responses to prior
items. In one model of CAT, if a student answers an item
correctly, the student will next need to answer a more
difficult item. On the other hand, if a student answers an
item incorrectly, the student next answers an easier item
(Fig. 1). In this way, high (low) proficiency students do not
need to answer items that are too easy (difficult) for them;
thereby, the test length can be significantly shortened.
Previous studies found that CAT typically requires no more
than half of the items of a given test to obtain equivalent
reliability and validity as when the full test is administered
in a conventional manner [29,31,32]. Because of this
efficiency, CAT is becoming widely used, for example,
with the Graduate Record Exam (GRE) [33], with PISA
2018 [34], and recently in physics education research [35].
When developing a computerized adaptive test version

of the FCI (FCI-CAT), one of the key questions is, how
much can we shorten the test length without excessively

compromising the quality of proficiency estimates, espe-
cially in terms of accuracy and precision?1 We represent
accuracy and precision by the systematic error and random
error. Because the FCI itself is 30 items long, we can
choose the length of the FCI-CAT to be anything from 1 to
30 items. In terms of minimizing testing time, the fewer the
questions the better. On the other hand, if the test is too
short, then the accuracy and precision of analyses is
compromised. Our aim is to balance these two factors;
namely, we aim to see how short one can make the
FCI-CAT with minimal loss of accuracy and precision.
To examine the accuracy and precision of the FCI-CAT,

like Han et al. [26,27], we focus on the pre- and post-group
difference measured by the FCI; namely, we compare the
accuracy and precision of group difference calculated with
the FCI-CAT scores to those calculated with the full FCI
scores for a given class size. If the accuracy and precision
are comparable, it implies that the FCI-CAT is comparable
to the full FCI in regards to measuring pedagogical effects.
In our analysis, the measure we focus on is the standardized
mean difference (Cohen’s d) [37–39]. Cohen’s d is defined
by the difference of means divided by the pooled standard
deviation, and it is used to compare effects across studies in
meta-analysis, even when the variables are measured in
different ways. DeMars [40] analyzed the accuracy and
precision of Cohen’s d in the context of item response
theory (IRT) with a simulated item bank. We utilize the
results of Ref. [40] as a consistency check for our analysis
of the FCI-CAT. Although we focus on the accuracy and
precision of Cohen’s d, there are other criteria (upon which
we elaborate in Sec. IV) with which one can examine the
optimal length of a CAT-based assessment. As we describe
below, by providing a method to analyze optimal length
which future researchers of the FCI-CAT can reference, our
work serves as a starting point for the FCI-CAT.
The procedure of our analysis is as follows. First, we

calibrate (estimate) the item parameters of the 30 FCI items
based on the models of IRT [41], which are used in CAT
algorithms. Then, to analyze the optimal length of the FCI-
CAT, we conduct two simulations that are commonly used
in CAT development, a Monte Carlo simulation and a
post hoc simulation [29,42,43]. Monte Carlo simulations
generate responses with pseudorandom numbers, while
post hoc simulations utilize empirical data (in this case,
from the full-length FCI). To ensure that the simulated data
are compatible with actual data one might obtain from a
real classroom, we examine the consistency of the results of
the Monte Carlo and post hoc simulations.
The remainder of this paper is organized as follows.

In Sec. II, we describe the models of IRT we considered,

FIG. 1. Example of computerized adaptive testing. In this
model of CAT, if a student answers an item correctly (incor-
rectly), the student will next need to answer a more difficult
(easier) item.

1Accuracy is the closeness of agreement between a measured
value and a true value, and precision is the closeness of agreement
between measured values obtained by replicate measurements on
similar objects under specified conditions [36].
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our CAT settings, our approach to examine optimal test
length, and our methods to conduct both the Monte Carlo
and post hoc simulations. In Sec. III, we present our
estimates for item parameters, the validity of the IRT
model we used, and the results of the simulations.
Finally, in Sec. IV, we summarize this study and discuss
the limitations of our research and future prospects for it.
All of our analyses were conducted using R [44] and

RStudio [45]. In addition to the basic package of R, the
item parameters of the FCI were calibrated using the
package mirt [46] and the simulations of the FCI-CAT
were conducted using the package catR [47,48].

II. METHODOLOGY

A. Models of item response theory

Models of IRT describe the relationship between the
latent trait measured by the instrument and the response to
an individual item [41]. An advantage of IRT that makes it a
popular choice with CAT is that it uses the same scale to
place items and respondents, which allows the CAT
algorithm to readily match respondents to the item most
appropriate for them [29]. Both IRT models and Rasch
models (the basic form of which is mathematically identical
to the simplest IRT model) have recently been used in the
field of physics education research to analyze the structure
of assessment tests, especially of the FCI [49–58]. Since a
response on the FCI is scored as correct or incorrect (coded
as 1 or 0), we consider only the dichotomous models of
IRT. Furthermore, we consider only the unidimensional
models, for we assume that the latent trait measured by the
FCI is dominated by a single proficiency, namely, student
conceptual understanding of Newtonian mechanics. This
assumption is consistent with the findings of other
researchers [49,50]. Furthermore, a unidimensionality test
that we describe below confirms that this is an acceptable
assumption for our study as well.
Among the dichotomous unidimensional models in IRT,

the simplest model is the one-parameter logistic (1PL)
model. Based on the 1PL model, the empirical data is fit
with the following logistic function:

PiðθÞ ¼
1

1þ exp½−ðθ − biÞ�
; ð1Þ

where θ represents the proficiency level and PiðθÞ is the
probability that an examinee with a given θ answers the ith
question of the FCI correctly. The proficiency distribution

in a reference population is often standardized; namely, the
estimated mean of θ is set to 0 and the estimated standard
deviation of θ is set to 1. In Eq. (1), bi is the difficulty
parameter, which is inversely proportional to the correct
answer rate for the item.
The two-parameter logistic (2PL) model is mathemati-

cally represented by

PiðθÞ ¼
1

1þ exp½−aiðθ − biÞ�
; ð2Þ

where ai is the discrimination parameter. The discrimina-
tion parameter corresponds to the slope at θ ¼ bi, where the
slope of the curve is steepest. Items with steeper slopes, that
is larger ai, can better distinguish examinees who have
different levels of proficiency.
The three-parameter logistic (3PL) model is re-

presented by

PiðθÞ ¼ gi þ
1 − gi

1þ exp½−aiðθ − biÞ�
; ð3Þ

where gi is the asymptotic value of PiðθÞ when θ
approaches negative infinity. It hence represents the prob-
ability that an examinee would answer an item correctly by
guessing. For example, if respondents with low θ chose
randomly among five choices, gi would approach 0.2.
As we will describe in a later section, our FCI response

data cannot be fit sufficiently well to the 1PL model. They
can, however, be fit to the 2PL model, as well as to the 3PL
model. We examined the optimal length of the FCI-CAT
using the 2PL and 3PL models and found better results (that
is, the accuracy and precision is better for a given test length
and class size) with the 3PL model. Therefore, we describe
only our findings with the 3PL model in this paper.

B. Empirical data collection

Our study utilizes two sets of empirical FCI data
(Table I). The first empirical dataset (dataset α) is com-
prised of 2882 responses from Japanese university students.
This dataset is used to calibrate the item parameters of the
FCI. The second empirical dataset (dataset β) consists of
86 pairs of pretest and post-test responses from students
across 3 classes. This dataset is used for our post hoc
simulation of the FCI-CAT.
Dataset α was collected in Japan from April 2015 to

April 2018. The examinees were students at the beginning
of introductory physics courses at one public university and

TABLE I. Empirical datasets and their usage.

N (valid) Administration Usage

Empirical dataset α 2882 (2812) Pre To calibrate IRT item parameters of the FCI
Empirical dataset β 86 (85) pairs Pre and Post To conduct post hoc simulations
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four private universities. All five of these schools are
middle-rank universities in Japan. The total number of
survey responses was 2882. From this dataset, we removed
the responses of students who did not answer some of the
questions, who wrote a letter which was not one of the
choices available for a given question, or who wrote
the same or serial letters continuously. In total, the number
of valid responses was 2812.
Dataset β was collected in Japan from April 2015 to

April 2018. The examinees were students of introductory
physics courses at a public middle-rank university in
Japan. The instructor of the courses utilized interactive-
engagement teaching methods, for example, Open Source
Tutorials [59]. The FCI was administered at the beginning
and the end of the courses. In total, there were 86 pairs of
pre- and post-test responses from students across
3 classes. From this, we excluded invalid responses in
the same manner as for dataset α. In total, the number of
valid pairs was 85.
Most of the examinees in both empirical datasets α and β

were first-year students. Most students were in the depart-
ment of science or the department of technology. The
examinees were not given any incentive to participate (in
the form of money or extra credit). However, the survey
was administered during class, so as to help ensure that
students would concentrate on the survey.

C. Settings for computerized adaptive testing

We model our survey respondents as having a true
proficiency level. In CAT, the testing algorithm estimates
this proficiency level based upon the respondent’s answers
to prior items, and this estimate is updated with each item
responded to. The next item administered is based upon this
estimated proficiency and the calibrated item parameters of
the items available. This process can be conceptualized as
consisting of four successive steps [30,47]: (i) initial step,
(ii) test step, (iii) stopping step, and (iv) final step. Our
settings for the four steps are as follows.
(i) Initial step: In this step, the first item administered to

an examinee is selected. As is commonly done, we used the
maximum Fisher information (MFI) criterion [30]. The
MFI criterion calls for selecting the most informative item
for the examinee based upon the current estimate of the
proficiency. (Generally speaking, the “most informative
item” is the one that will minimize the standard error of the
proficiency estimate [41].) When nothing is known about
the respondent (as is often the case when the first item is
chosen), the information of the items is calculated using the
mean proficiency value of the prior population. As is
commonly done, we set the prior population mean profi-
ciency value to be zero to have the scale be centered on
examinees [29,30].
(ii) Test step: In this step, the proficiency of the examinee

is estimated using the current set of item responses and the
next item is selected to be administered. As is commonly

done, we chose the expected a posteriori (EAP) method to
estimate the proficiency and the MFI criterion to select the
next item [30,47]. The EAP is a common method to
estimate the proficiency, and, compared to several alter-
natives, it has been found to be less biased [40,60] and to be
more effective at reducing the test length [61].
(iii) Stopping step: This is the step where the test checks

that a certain criterion has been met and the test ends. This
criterion is set prior to the test. We chose length to be the
stopping criterion, such that the FCI-CAT stops after a
predetermined number of items have been administered,
ranging from 1 to 30.
(iv) Final step: The final step involves the calculation of

the final estimate of the examinee’s proficiency level. As in
the test step, we chose the EAP method to estimate the
proficiency.

D. Approach to analyzing optimal test length

As mentioned above, to analyze the optimal length of the
FCI-CAT, we varied the test length l from 1 to 30 items and
then compared the accuracy and precision of Cohen’s d
calculated for that l with that calculated for the full FCI
(l ¼ 30). The population parameter of Cohen’s d is given
by [37,38]

d ¼ μpost − μpre
σ

; ð4Þ

where μpre and μpost are the population means for the pretest
and post-test, respectively, and σ is the standard deviation
of either pre- or post-population (we assume that the two
population standard deviations are the same, as is done in
most parametric data analysis techniques [38]). The numer-
ator of d has the same structure as Rasch gain, which
Planinic et al. [50,55] as well as Nitta and Aiba [62]
suggested to use. The advantage of d is that it compares the
group (pre- and post-) proficiencies in relation to σ.
We express the estimator of d on the test length l as d̂l.

From within the family of estimators for d, we use the
following definition for repeated measures [38,39,63]:

d̂l ¼
θ̄lpost − θ̄lpre

sl
; ð5Þ

where θ̄lpre and θ̄lpost are the means of the final estimated
proficiencies of the l-length pre- and post- test, respec-
tively. sl is the pooled standard deviation for dependent
(paired) data defined as

s2l ¼
ðslpreÞ2 þ ðslpostÞ2 − 2rlslpreslpost

2ð1 − rlÞ
; ð6Þ

where slpre and slpost are the standard deviations of the final
estimated proficiencies of the l-length pre- and post- test,
respectively, and rl is the Pearson correlation coefficient.
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Since we simulate the case of class size larger than 40, we
do not consider Hedge’s correction to the estimator [64].
In our Monte Carlo study (described below), we generate

pre- and post-responses to the FCI-CAT and, keeping class
size and population parameters fixed, calculate d̂l 10 000
times for each l to analyze the sampling distribution of d̂l.
Following this, we analyze the quality of d̂l, especially in
regards to the accuracy and precision. We represent the
accuracy and precision by the systematic error and random
error, which we measure in terms of the bias and standard
error. The measurement error of d̂l is defined by the
difference between d̂l and the true value of d as [65]

el ¼ d̂l − d: ð7Þ

The bias of d̂l is defined by the expected value of el as

Bðd̂lÞ ¼ EðelÞ ¼ Eðd̂lÞ − d; ð8Þ

where Eðd̂lÞ is the expected value of d̂l, estimated by taking
the average of 10 000 samples of d̂l. The standard error of
d̂l is given by

SEðd̂lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef½d̂l − Eðd̂lÞ�2g

q
: ð9Þ

These quality measures of the estimator d̂l are summa-
rized by the root-mean-square error (RMSE) defined by the
following equation, which equals the square root of the sum
of the squared bias and squared standard error:

RMSEðd̂lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðd̂l − dÞ2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ SE2

p
: ð10Þ

With these statistics, we can represent the magnitude
of the systematic error and random error, thereby the
accuracy and precision. Specifically, we compare the

systematic error and random error of the FCI-CAT to those
of the full FCI based on the difference of the RMSE,
RMSEðd̂lÞ − RMSEðd̂30Þ. If this difference is sufficiently
small (see below), we regard the quality of the l-length
FCI-CAT to be comparable to that of the full FCI. We are
unaware of any other studies that compare bias, SE, and
RMSE of Cohen’s d obtained from CAT. As such, there are
no typical benchmark (or cutoff) values proposed by prior
related studies for us to utilize. Researchers who follow this
line of work in the future can benefit by comparing their
statistics with ours.

E. Procedure of Monte Carlo simulation

An overview of the steps involved in our Monte Carlo
study is as follows (see also Table II).

(i) Generate paired pre- and post-true proficiency levels
for the simulated respondent (simulee) in a given
class size (say, 100 students) with designated pop-
ulation parameters for the true proficiencies (means,
common standard deviation, and correlation).

(ii) Generate paired pre- and post-responses to the FCI-
CAT for each simulee based on the true proficiencies
generated in step 1.

(iii) Using the paired responses, estimate the proficien-
cies of the simulees and calculate Cohen’s d for the
class on the test of length l.

(iv) Repeat the above three steps 10 000 times with
different random seeds but with fixed class size and
population parameters.

(v) Repeat the above four steps with different class
sizes.

(vi) Analyze the dependence of the measurement error of
d̂l on the test length and class size to then examine
the optimal test length of the FCI-CAT.

Actually, the procedure in our R script deviates some-
what from the above outline for computational efficiency.
For example, we actually generated paired pre- and

TABLE II. The first three steps of the Monte Carlo simulation described in Sec. II E. The designated population parameters are mean
(μ), standard deviation (σ), and correlation (ρ). θj is the true proficiency of the jth simulee. The ith response for jth simulee in the pre-
and post- test (uji and v

j
i ) take values of 0 (incorrect) or 1(correct). θ̂

j
l is the estimate of θj obtained with the l-length FCI-CAT. θ̄l and sl

are the mean and the pooled standard deviation of the estimated proficiencies of the l-length test for class size n.

Step Input Output Process

1. μpre; μpost; σ; ρ ðθ1pre;…; θjpre;…; θnpreÞ Generate paired pre- and post-true proficiencies for class size n.
ðθ1post;…; θjpost;…; θnpostÞ

2. θjpre
θjpost

ðuj1;…; uji ;…; uj30Þ Generate pre- and post-responses for the FCI-CAT.

ðvj1;…; vji ;…; vj30Þ
3. ðuj1;…; ujl Þ θ̂jl;pre Estimate pre- and post-proficiencies of each simulee for the l-length FCI-CAT.

ðvj1;…; vjl Þ θ̂jl;post
(θ̂1l;pre;…; θ̂nl;pre) d̂l ¼ θ̄lpost−θ̄

l
pre

sl
Calculate the value of Cohen’s d.

(θ̂1l;post;…; θ̂nl;post)
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post-true proficiencies and the subsequent FCI-CAT
responses for 100 000 simulees and then resampled
10 000 times for each class size. We explain the details
of our procedure in the following paragraphs (see also
Appendix for mathematical notes).
We followed a two-step process to generate paired pre-

and post-responses. In the first step, we used the function
mvrnorm of the MASS package [66] to generate a pair of
proficiencies for a given simulee, one corresponding to the
pretest and one corresponding to the post-test. Our simu-
lations consider these values to be the “true” values of the
simulee’s proficiency, and these are used in predicting how
the simulee will answer a given item (see second step,
below). We made three assumptions for the population
distributions of the pre- and post-true proficiencies. First,
we assumed that true proficiency follows a normal dis-
tribution, since we found that the distribution of the
estimated proficiency for our empirical dataset α (estimated
using all 30 FCI items) is unimodal and almost symmetric.
Second, we assumed that the standard deviations are the
same for both the pre- and post-population distributions,
since the standard deviations of the estimated proficiency
for the pre- and post-responses of our empirical dataset β
took similar values. These assumptions are consistent with
Ref. [67] and the articles cited within. A third and final
assumption we made was that the pre- and post-true
proficiencies are correlated with each other, since the
estimated proficiencies for the pre- and post-responses of
our empirical dataset β are highly correlated.
We designated typical values for the population param-

eters (the pre- and post-means, common standard deviation,
and correlation) of the bivariate normal population distri-
butions for pre- and post-true proficiencies. Specifically,
we chose the parameters such that the estimates by the
simulation for the 30-item length test are as close to the
statistics calculated with our empirical dataset β as possible
(the details are described in Sec. III). These parameters
were pretest true proficiency mean ¼ 0.45, post-test true
proficiency mean ¼ 0.75, standard deviation for both sets
of true proficiency ¼ 0.8, and correlation ¼ 0.99. From
these parameters, we generated a pair of pre- and post-true
proficiencies for each of 100 000 simulees.
In the second step, we generated the responses for the

FCI-CAT using the function simulateRespondents
of catR package. As discussed above, the CAT algorithm
we used selects the next item based upon the MFI criterion.
In the simulation, the response to that item is generated
based upon the calibrated item parameters of that item and
the value of true proficiency for the simulee. For example,
suppose that the probability of a correct response for an
item is calculated to be 0.75 for a simulee with a given true
proficiency [see Eqs. (1)–(3)]. A random number is gene-
rated from a uniform distribution within a range of 0 to 1. If
the value is 0.75 or less, the generated response is coded
as “correct” for that item. If the value is greater than 0.75,

then the generated response is “incorrect.” The EAP
method is used to estimate the proficiency for the respond-
ent, the MFI criterion is then used to choose the next item
based upon that estimated proficiency, and the process
repeats until all 30 FCI items have simulated responses.
To summarize, provided calibrated item parameters
and a true proficiency value for a given simulee, the
simulateRespondents function generates an entire
set of correct or incorrect responses and calculates esti-
mated proficiencies for each length (from 1 to 30) of the
FCI-CAT. This is done for the simulee both on the pretest
and on the post-test (with a different value of true
proficiency calculated in the first step, above). In this
manner, we generated paired pre- and post-responses and
estimated proficiencies for 100 000 simulees for each
length of the FCI-CAT.
From the 100,000 paired pre- and post-responses, we

resampled with replacement, 10 000 paired responses for
each simulee in various class sizes (40, 60, 80, 100). For
example, in the case with class size of 100, we resampled
10 000 times 100 paired responses with replacement from
the 100 000 paired responses. Then, we calculated the
estimate d̂l and the corresponding measurement error.

F. Procedure of post hoc study

Since the responses generated via the Monte Carlo
simulation are just imaginary responses, we conducted
another simulation using empirical responses (that is, a
“post hoc simulation”) and examined the consistency of the
results with the Monte Carlo study. Post hoc simulations
are commonly used to determine how short a CAT-based
assessment can be without excessively sacrificing accuracy
and precision [29,48]. In a post hoc simulation, a CAT-
based assessment is simulated for each respondent based
upon their actual responses to the full-length assessment.
For example, if the CAT simulation for a given respondent
determines that the respondent should next be administered
item 8, the simulation algorithm would look up and utilize
the actual answer of the respondent to item 8. In this way,
although examinees have not taken the FCI-CAT, we can
simulate their testing experience as if they had.
In the post hoc simulation, we used the empirical dataset

β and the function simulateRespondents of the catR
package. The estimator for the standardized mean differ-
ence on the test length l in the post hoc simulation is
represented as d̂phl and is calculated by Eq. (5), as was done
in the Monte Carlo simulation. The estimate for the
variance of d̂phl is computed using the formula for matched
groups [38],

�
1

n
þ ðd̂phl Þ2

2n

�
2ð1 − rlÞ; ð11Þ

where n is the number of pairs.
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III. RESULTS

A. Calibration of item parameters

Table III shows the result of the calibration for the item
parameters of the FCI based on the 3PL model. In the
calibration, we used the empirical dataset α and the
function mirt of the package mirt. From the dataset α,
we removed aberrant responses using the standardized
person fit index Zh [68,69], where large negative Zh values
indicate misfit and large positive Zh values indicate overfit
[70]. As is commonly done for the standardized person fit
index in Rasch analysis [71], we chose to keep responses
with −2 < Zh < 2. In total, we kept 2712 responses. Using
these filtered responses, we obtained the estimates and the
standard errors in Table III. Since we used a large number
of responses, the standard errors of the estimates are
quite small.
The estimate of the discrimination parameter (that is, the

a parameter) of item 29 is exceptionally small in compari-
son to the other items. Although an administrator of the

FCI-CAT might thus consider eliminating the item, we
chose to keep it in our study since we want to examine the
optimal length of the FCI-CAT in terms of its accuracy and
precision in comparison to that of the full FCI. Since the
information function is proportional to the square of the
discrimination parameter, the information function of item
29 is relatively small. As we use the MFI criterion in
selecting the next item administered, item 29 ends up being
one of the last items of the assessment (usually, it is the last
item administered). Hence, we expect that its inclusion has
no significant effect on our results.

B. Examination of the assumptions of the IRT model

Users of IRT should check that certain assumptions
made by the models are satisfied. We confirmed that the
assumptions of unidimensionality and local independence
at the whole test level are satisfied, and we confirmed that
the IRT model we use is a good fit for our data.

1. Unidimensionality and local independence

We examined the unidimensionality of the FCI via a
principal component analysis with the tetrachoric correla-
tion matrix [41] using the filtered empirical dataset α.
Figure 2 shows the scree plot for the eigenvalues of the
correlation matrix. The vertical axis measures the eigen-
value of the components labeled on the x axis. The first
eigenvalue (far left on the x axis) is about 5 times larger
than the rest, which suggests there is one dominant
dimension and it is reasonable to assume unidimensionality
for our FCI dataset as was done in Ref. [49].
Since our dataset is unidimensional, it can be argued

that the assumption of overall local independence must
be satisfied as well [49]. In addition, we also explicitly
evaluated the local independence assumption by using
Yen’s Q3 statistic [72]. Yen’s Q3 is defined as the
correlation of the residuals between each pair of items.

TABLE III. The results of the estimation for the item param-
eters of the FCI based on the 3PL model (N ¼ 2712). The
estimates and the standard errors (SEs) for the item parameters
are shown.

â SEðâÞ b̂ SEðb̂Þ ĝ SEðĝÞ
Item 1 1.23 0.16 −0.66 0.28 0.14 0.12
Item 2 1.32 0.18 0.35 0.14 0.27 0.05
Item 3 1.16 0.20 −0.88 0.46 0.42 0.14
Item 4 1.10 0.07 0.59 0.05 0.00 0.01
Item 5 1.75 0.15 0.37 0.06 0.06 0.03
Item 6 1.54 0.22 −0.05 0.17 0.46 0.05
Item 7 0.96 0.13 −0.84 0.39 0.02 0.16
Item 8 1.71 0.18 −0.36 0.14 0.34 0.05
Item 9 1.72 0.19 0.12 0.10 0.24 0.04
Item 10 1.69 0.19 −1.13 0.23 0.23 0.13
Item 11 1.38 0.07 0.25 0.04 0.00 0.01
Item 12 1.87 0.25 −0.48 0.17 0.55 0.05
Item 13 3.67 0.28 0.18 0.03 0.04 0.01
Item 14 1.31 0.14 0.27 0.11 0.07 0.04
Item 15 0.61 0.05 0.71 0.09 0.00 0.01
Item 16 1.24 0.07 −0.69 0.05 0.00 0.01
Item 17 1.56 0.14 0.56 0.06 0.01 0.02
Item 18 1.89 0.15 0.11 0.06 0.08 0.03
Item 19 1.25 0.15 −0.20 0.19 0.14 0.08
Item 20 1.26 0.07 −0.31 0.05 0.00 0.01
Item 21 2.13 0.29 0.86 0.06 0.20 0.02
Item 22 2.72 0.32 0.52 0.05 0.28 0.02
Item 23 1.86 0.18 0.47 0.06 0.10 0.03
Item 24 1.58 0.18 −0.31 0.15 0.21 0.07
Item 25 2.76 0.22 0.35 0.04 0.09 0.02
Item 26 2.38 0.17 0.61 0.04 0.03 0.01
Item 27 1.47 0.20 0.27 0.13 0.31 0.05
Item 28 1.20 0.07 −0.60 0.06 0.00 0.02
Item 29 0.20 0.05 −6.00 1.85 0.01 0.14
Item 30 2.88 0.20 0.53 0.03 0.05 0.01
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FIG. 2. The scree plot for the tetrachoric correlation matrix via a
principal component analysis using the filtered empirical dataset
α (N ¼ 2712).
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It is common to flag the pair of items as being locally
dependent if the absolute value ofQ3 is larger than 0.2 [73].
In the present study, we found that the values of Q3 for 4
pairs (out of a total of 435 item pairs) were flagged in
the 3PL model. These values and the item pairs are 0.203
(1–2), 0.224 (5–18), 0.230 (8–9), 0.310 (23–24). Although
these item pairs may violate local independence, since there
were only a small number of such pairs (4=435), and since
the magnitudes of the Q3 values are not so large, our
assumption of local independence is by and large supported
[74]. Furthermore, it can be argued that, as was done in
Ref. [75], since the mean value ofQ3 in the present study is
small (e.g., –0.027 for the 3PL model), our dataset has
sufficient local independence at the whole test level.
However, in future studies, we recommend separating these
items either by dropping one item from each dependent pair
or combining each high-Q3 pair into a single polytomous
item as was done in Ref. [76]. Doing so will help both
ensure that items are locally independent and to improve
estimations.

2. Goodness of fit and model selection

We evaluated the goodness of fit of 1PL, 2PL, and 3PL
IRT models to the response data with the standardized
root mean square residual (SRMSR) [77]. We calculated
the values of SRMSR for the models using the filtered
empirical dataset α. A value of SRMSR less than 0.05 is
considered to indicate that the model is well fitted [77]. We
found that the SRMSR is 0.079 for the 1PL model, 0.041
for the 2PL model, and 0.041 for the 3PL model. This result
indicates that the 2PL and 3PL models fit the data well; the
1PL model, on the other hand, does not.
In choosing a model, we want to fit the response data as

closely as possible while using minimal parameters. The
balance of these conditions can be examined using the
Bayesian information criterion (BIC) [78]. BIC increases if
the deviance of the model from the data increases and if the
number of parameters increases; thus, the model with the
lowest BIC is the most preferable. Using the filtered
empirical dataset α, we found that BIC is 9.22 × 104

for the 1PL model, 9.00 × 104 for the 2PL model, and
9.00 × 104 for the 3PL model. This finding indicates that
BICs of the 2PL and 3PL model are comparable, and
smaller than that of the 1PL model. As we mentioned
above, since we obtained greater accuracy and precision
with the 3PL model, we describe only our findings with the
3PL model in the following analysis.

C. Results of the Monte Carlo study

1. Descriptive results

All results in this and the following section (Sec. III D)
are based on the 3PL model. As we described in Sec. II E,
we first chose population parameters (left column of
Table IV) such that the estimates produced by the

simulations when all 30 FCI questions are used (middle
column) are as close to the statistics of our empirical data
(right column) as possible.
Figure 3 shows a typical example trend (one of the

10 000 samplings) of d̂l when the class size equals 80 and
the true value of Cohen’s d is 0.38. As shown, d̂l first
approaches d̂30 at l ∼ 10, although there are fluctuations
thereafter. Again, Fig. 3 is just one example out of the
10 000 simulated cases. We illustrate how d̂l varies from
case to case in Fig. 4, which shows the sampling distri-
bution of d̂l at l ¼ 10 for the same class size and true d as in
Fig. 3. From the histogram, we can see that d̂10 is close to
being a normal distribution (a result we found for any test
length). The bias, standard error, and RMSE of the
distribution in Fig. 4 was calculated as Bðd̂10Þ¼−0.043,
SEðd̂10Þ¼0.076, and RMSEðd̂10Þ ¼ 0.088. In the follow-
ing section, we analyze how these measures depend on the
test length and the class size. Then we discuss how we
should interpret the magnitude of these values.

TABLE IV. We chose population parameters of true proficiency
for the Monte Carlo simulation (left column) such that the
parameters estimated by the simulation for the full-length FCI
(center column, N ¼ 100 000) would be similar to the parameters
measured by the empirical data β (right column, N ¼ 78).

Population
parameters

Monte Carlo
estimates

Empirical
estimates

Pre Post Pre Post Pre Post

Mean 0.45 0.75 0.41 0.68 0.40 0.68
Standard deviation 0.80 0.80 0.81 0.78 0.82 0.79
Correlation 0.99 0.85 0.85
Cohen’s d 0.38 0.34 0.35
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FIG. 3. The typical trend of Cohen’s d as a function of test
length of the FCI-CAT, determined by Monte Carlo simulation
(class size ¼ 80). The true value of Cohen’s d is 0.38 as shown by
a dotted line.
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2. Test length and class size dependence of the statistics

Figure 5 shows the test length dependence of the bias
Bðd̂lÞ, which was calculated by Eq. (8) with 10 000
samples of d̂l for the true d of 0.38. The figure also shows
the class size dependence of Bðd̂lÞ for the class size of 40,
60, 80, and 100. Three major observations on the bias can
be made from the figure. First, the dependence on the class
size is too small to be visible in the figure (the differences in
bias are less than 0.001 for any given test length). Second,

the absolute value of the bias decreases as the test length
increases but it is somewhat less than zero even if l ¼ 30.
In the case when n ¼ 40, Bðd̂30Þ is −0.031 at l ¼ 30. This
result is consistent with the study by DeMars [40], which
showed that the bias of Cohen’s d of a 30-item test reaches
−0.02 when d ¼ 0.2, and −0.04 when d ¼ 0.5 using the
3PL model and EAP method. Third, Bðd̂lÞ gets close to
Bðd̂30Þ as the test length l increases. In the case when
n ¼ 40, the difference Bðd̂lÞ − Bðd̂30Þ is −0.028 at l ¼ 5,
−0.012 at l ¼ 10, and −0.007 at l ¼ 15.
Figure 6 shows test length dependence of the standard

error SEðd̂lÞ, which was calculated by Eq. (9) with 10 000
samples of d̂l for the true d of 0.38. Three major
observation on the SEðd̂lÞ can be made from the figure.
First, the SEðd̂lÞ decreases as the test length increases.
Second, the SEðd̂lÞ decreases as the class size increases.
The dependence for the class size n is 1=

ffiffiffi
n

p
, as expected

from Eq. (11). Third, SEðd̂lÞ gets close to SEðd̂30Þ as the
test length increases. For example, when the class size is
40, the difference SEðd̂lÞ − SEðd̂30Þ is 0.030 at l ¼ 5, 0.014
at l ¼ 10, and 0.007 at l ¼ 15.

3. Examining the optimal test length of the FCI-CAT

Finally, we examine the optimal test length of the FCI-
CAT based on the root-mean-square error of Cohen’s d.
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FIG. 4. The simulated sampling distribution of Cohen’s d for a
test length of 10 items and class size of 80 (sample size ¼ 10 000
classes). The true value of Cohen’s d is 0.38.
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FIG. 5. The bias of Cohen’s d as a function of test length
of the FCI-CAT, as calculated by Monte Carlo simulation
[class size ¼ ð40; 60; 80; 100Þ, sample size ¼ 10 000 classes].
The true value of Cohen’s d is 0.38. The values in the table
are characteristic points plotted in the graph.
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FIG. 6. The standard error of Cohen’s d as a function of
test length of the FCI-CAT, as calculated by Monte Carlo
simulation [class size ¼ ð40; 60; 80; 100Þ, sample size ¼ 10 000
classes]. The true value of Cohen’s d is 0.38. The values in the
table are characteristic points plotted in the graph.
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Figure 7 shows test length dependence of the RMSE,
which was calculated by Eq. (10) with 10 000 samples of
d̂l for the true d of 0.38. From the figure, we can see that
the trend of RMSEðd̂lÞ is similar to that of SEðd̂lÞ, namely,
it decreases as the test length increases and as the class
size increases.
Since there is no typical benchmark for the magnitude

of RMSE, assuming that the RMSE of the full-length test
is sufficient, we analyze the percent increase of the
RMSE from the full-length test, %Inc ¼ ½RMSEðd̂lÞ−
RMSEðd̂30Þ�=RMSEðd̂30Þ × 100. The result is summarized
in the table of Fig. 7.
Remember that our objective is to examine the test length

of the FCI-CAT in which the accuracy and precision of the
l-length test are comparable to those of the full-length test
for a given class size. As an illustration, for the class sizes
n ¼ 40 and n ¼ 100, we examine the optimal test length
of the FCI-CAT as follows. If we take 10% as a cutoff for
the percent increase of the RMSE, the optimal test length
is 15 items (RMSE ¼ 0.109, %Inc ¼ 9.0) for n ¼ 40 and
16 items (RMSE ¼ 0.074, %Inc ¼ 8.9) for n ¼ 100.
Similarly, if we take 5% as a cutoff, the optimal test length

is 19 items (RMSE ¼ 0.104, %Inc ¼ 4.7) for n ¼ 40 and
20 items (RMSE ¼ 0.071, %Inc ¼ 4.7) for n ¼ 100. The
decision of whether to use 10% or 5% (or some other value)
as the cutoff of the percent increase may be determined by
the researcher in coordinating with the teacher regarding
available testing time.
Note that the case of n ¼ 100 requires slightly more test

items, although the RMSE of n ¼ 100 is smaller than that
of n ¼ 40 at the same test length. This is because the
RMSE of the full-length test (denominator of the percent
increase) is larger for the smaller class size. This could be
problematic, depending upon a researcher’s goals, but since
our objective is to examine the test length with which
the accuracy and precision of the l-length test are compa-
rable to that of the full-length test for each class size, this
has no effect on the merit of our findings. This issue could
be resolved were we to use a fixed denominator of the
percent increase instead of RMSEðd̂30Þ as our measure of
error. However, defining such a denominator is beyond the
scope of this paper. An additional alternative for a denom-
inator would be the true value of Cohen’s d itself as in
Ref. [65]. In our case, the true value of d was equal to 0.38
and so this would be potentially useful as a measure of
error. However, this could not be used as a general
approach, as it is possible for d to be very close to zero
(when post-test scores are the same as pretest scores), and
the ratio would diverge.
We can summarize the above results as follows. For a

class size of 40, we may reduce the test length of the FCI-
CAT to 15–19 items, thereby reducing the test time of the
FCI to 50%–63%, with an accompanying decrease in
accuracy and precision of only 5%–10%. For a larger
class size of 100, the result is very similar (16–20 items are
needed). It is important to note that these findings are
specific to a given value of true Cohen’s d, which was
determined from our empirical data. Additional research is
necessary to see how the results are different for other
student populations.

D. Results of post hoc study

As described above, we conducted an additional simu-
lation using empirical responses (a post hoc simulation) to
compare with the results from the Monte Carlo study. First,
from the dataset β, we removed aberrant responses using
the standardized person fit index Zh [68] as was done
for dataset α, resulting in 78 pairs of preresponses and
postresponses.
Figure 8 shows Cohen’s d calculated with this

data as a function of the length of the FCI-CAT. Upon
inspection, this graph appears similar to Fig. 3, and this
similarity is expounded by numerical values in the table
of Fig. 8. As there are 78 students in dataset β, we
compare simulation results with what was obtained with
the Monte Carlo simulation for a class size of 80. The
absolute difference between the estimate d̂phl and the
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FIG. 7. The root-mean-square error of Cohen’s d as a function of
test length of the FCI-CAT, as calculated byMonteCarlo simulation
[class size ¼ ð40; 60; 80; 100Þ, sample size ¼ 10 000 classes]. The
true value of Cohen’s d is 0.38. The values in the table are
characteristic points plotted in the graph. The percent increase of
the RMSE from the full-length test is denoted by %Inc.
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expected value Eðd̂lÞ calculated with the Monte Carlo
simulation for d ¼ 0.38, n ¼ 80 is less than the standard
error SEðd̂phl Þ calculated by Eq. (11). In addition, the

estimated standard error SEðd̂phl Þ takes similar values to
the SEðd̂lÞ calculated with the Monte Carlo simulation for
d ¼ 0.38, n ¼ 80.
From these results, we can see that the results of the

Monte Carlo study and the post hoc simulation are
consistent. This consistency supports the adequacy of
our Monte Carlo study and its relevance in terms of
conducting the FCI-CAT in real classrooms.

IV. DISCUSSION

A. Summary

In order to shorten the test time of the FCI, we examined
the optimal length of a computerized adaptive testing
(CAT)-based version of the FCI. Using a Monte Carlo
simulation, we analyzed the bias, standard error, and root-
mean-square error of Cohen’s d of the l-length FCI-CAT to
find values that are comparable to those obtained when all
30 items of the FCI are used. We also conducted a post hoc
simulation to examine the consistency of the results from
this simulated data with what would have been obtained in

an actual classroom. As a result, we found, that for a class
size of 40, we may reduce the test length of the FCI-CAT to
15–19 items, thereby reducing the test time of the FCI to
50%–63%, with an accompanying decrease in accuracy and
precision of only 5%–10%. The result is almost identical
for a larger class size of 100. Note that the threshold of
5%–10% is one that we arbitrarily chose, as there are no
prior reference values published in literature. Teachers
or education researchers faced with more limited class
time may opt to more dramatically reduce the length of
the FCI, accepting the greater decrease in accuracy and
precision. The results of the Monte Carlo study and the
post hoc simulation were consistent, which supports the
adequacy of our Monte Carlo study and its relevance in
terms of conducting the FCI-CAT in real classrooms. It
is important to note that these findings are specific to a
given value of true Cohen’s d, which was determined
from our empirical data. Additional research is neces-
sary to see how the results are different for other student
populations.

B. Limitations and future work

As we mentioned in the introduction, we have provided
a starting point for the FCI-CAT. There are many options
to explore that may improve the effectiveness (that is,
shorten the test time) of the FCI-CAT. For example, using
other models in IRT (e.g., multidimensional models
[51,54,57,79]) in the parameter estimations and/or using
other algorithms in the CAT steps (e.g., using the
precision criterion instead of the length criterion in the
stopping step) may allow for a shortening of the test.
The FCI-CAT can be improved in other means as well. For
example, one may wish to prioritize content balancing
[30] to ensure that the same set of concepts is covered in
the FCI-CAT as in the original FCI. The FCI can also be
improved by removing gender unfair items [53,80–82] or
by dropping one item from each locally dependent pair
[76]. The use of the FCI-CAT instead of the full length
FCI also invites work concerning reducing item exposure
[30], to reduce the risk that the FCI items leak into the
public sphere, thereby compromising the instrument.
In order to prevent item parameter drift [83] and maintain
the item pool for longitudinal testing (e.g., pre- and
post- testing), it is necessary to examine the CAT
algorithm to control for item exposure. These concerns
are important aspects of instrument validity, and they
must also be considered. Doing so, however, may
require a longer test length than what our analysis has
suggested. As future work is done to further improve the
FCI-CAT, the results we have presented in this paper can
serve as reference values for comparison with the results
obtained from studies focusing on these other aspects of
instrument validity.
In our work, we have utilized a Monte Carlo

simulation to measure the quality of the FCI-CAT,
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FIG. 8. Cohen’s d as a function of test length of the FCI-
CAT, as calculated by post hoc simulation (sample size ¼ 78
respondents). The dotted line shows d ¼ 0.35, which is the
value of Cohen’s d at a test length of 30. The values in the
table are characteristic points plotted in the graph and
associated values calculated from the Monte Carlo simulation
(see description below).
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focusing on the accuracy and precision of the effect
size; however, there are other statistics that could
alternatively be used. For example, it is possible to
consider the coverage of the confidence intervals [84] of
the effect size instead of the point estimators as we have
done. Furthermore, there are other criteria one can use
to compare a CAT-based assessment with a conventional
test, such as reliability and validity [31,35].
We are also interested in how the FCI-CAT can be

optimized for analyzing the pre- and post-test difference
in the performance of individual students. For such a
study, since Cohen’s d is an effect size defined for the
group difference, a different measure (one appropriate
for use with single cases) is necessary. Using such a
statistic, it would be possible to examine, on a student-
by-student basis, the minimal test length without exces-
sively compromising the accuracy and precision of the
score. Instead of using the fixed length criterion, another
possible approach to evaluate individual change is using
the classification criterion for the stopping step of the
FCI-CAT [30]. With this criterion, the items are admin-
istered until the provisional confidence interval of the
current proficiency estimate no longer overlaps a pre-
defined proficiency threshold, so that we can evaluate
whether an individual student has a proficiency level
greater or less than the proficiency level of interest. For
example, we could choose the threshold to be the point
at which students are considered to have Newtonian
Mastery (this threshold for the paper-and-pencil FCI is
the score of 85% [2]). If too few items are administered,
such that the confidence interval overlaps this threshold,
there would be insufficient certainty to make conclu-
sions about the students’ mastery of Newtonian mechan-
ics. Sufficient items should be administered such that
the confidence interval does not overlap the classifica-
tion threshold and the student can be classified as
having mastered Newtonian mechanics (or not). These
are only some of the possible approaches for analyzing
individual change between pre- and post-instruction.
Concurrently with the analyses we reported here, we

have conducted a trial administration of the FCI-CAT to
Japanese students. In the deployment of the FCI-CAT, we
utilized the Concerto platform [85], which is an open
source online adaptive testing platform. Students used their
smart phones to take the FCI-CAT, enabling them to take
the survey in the classroom instead of moving to a place
where there are computers (computer room or their home,
etc.). This allows for greater concentration of students,
since instructors can monitor the students during the test.
After this trial, we interviewed a number of the examinees
to find any problems with the test, for example, in regards
to the interface. We next plan to administer the FCI-CAT
with real classes of students both pre and post-semester
to analyze the effect size distribution. We will compare
these results with what we discussed above from our
Monte Carlo simulation.
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APPENDIX: MATHEMATICAL NOTE FOR THE
PARAMETRIZATION OF PROFICIENCY

We define the two-dimensional random vector Θ, which
contains the random variables to represent the pre- and
post-true proficiencies as

Θ ¼
� Θpre

Θpost

�
:

The random vector Θ follows a bivariate normal dis-
tribution which is represented as

Θ ∼N ðμ;ΣÞ;
where μ is a two-dimensional mean vector and Σ is a 2 × 2
covariance matrix,

μ ¼
�

μpre

μpost

�
; Σ ¼

 
σ2pre ρσpreσpost

ρσpreσpost σ2post

!
:

We parametrize the standardized mean difference by

d ¼ μpost − μpre
σ

;

where we assumed σpre ¼ σpost ¼ σ. The estimator of the
standardized mean difference is represented by

d̂ðΘÞ ¼ Θ̄post − Θ̄pre

Spl
;

where for the class size of n,

Θpre ¼ ðΘ1
pre;…;Θn

preÞ;
Θpost ¼ ðΘ1

post;…;Θn
postÞ;

Θ̄pre ¼
Θ1

pre þ � � � þ Θn
pre

n
;

Θ̄post ¼
Θ1

post þ � � � þ Θn
post

n
;

S2pl ¼
S2pre þ S2post − 2RθS2preS2post

2ð1 − RθÞ
;

S2pre ¼
1

n − 1

Xn
k¼1

ðΘk
pre − Θ̄preÞ2;

S2post ¼
1

n − 1

Xn
k¼1

ðΘk
post − Θ̄postÞ2;

Rθ ¼
CovðΘpre;ΘpostÞ

SpreSpost
:
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We define θ as the value of the random vector Θ
to be estimated in the observation. Using the l-length
FCI-CAT with EAP method, we obtain the estimates θ̂l
for θ,

θ̂l ¼
�

θ̂lpre

θ̂lpost

�
:

Then we calculate the estimates for d with d̂lðΘ ¼ θ̂lÞ.
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