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In two earlier studies, we developed a new method to measure students’ ability to transfer physics
problem-solving skills to new contexts using a sequence of online learning modules, and implemented two
interventions in the form of additional learning modules designed to improve transfer ability. The current
paper introduces a new data analysis scheme that could improve the accuracy of the measurement by
accounting for possible differences in students’ goal orientation and behavior, as well as revealing the
possible mechanism by which one of the two interventions improves transfer ability. Based on a 2 × 2

framework of self-regulated learning, students with a performance-avoidance oriented goal are more likely
to guess on some of the assessment attempts in order to save time, resulting in an underestimation of the
student populations’ transfer ability. The current analysis shows that about half of the students had frequent
brief initial assessment attempts, and significantly lower correct rates on certain modules, which we think is
likely to have originated at least in part from students adopting a performance-avoidance strategy. We then
divided the remaining population, for which we can be certain that few students adopted a performance-
avoidance strategy, based on whether they interacted with one of the intervention modules designed to
develop basic problem-solving skills, or passed that module on their first attempt without interacting
with the instructional material. By comparing to propensity score matched populations from a
previous semester, we found that the improvement in subsequent transfer performance observed in a
previous study mainly came from the latter population, suggesting that the intervention served as an
effective reminder for students to activate existing skills, but fell short of developing those skills among
those who have yet to master it.
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I. INTRODUCTION

In addition to learning physics concepts, a key objective
of physics instruction is to facilitate students’ development
of robust problem-solving skills and, in particular, the ability
to transfer the skills that they learned to novel contexts [1–4].
How instructional methods can be developed and evaluated
to enhance students’ transfer ability is a highly valuable
research question for science, technology, engineering, and
mathematics education.However,most existing instruments
that assess students’ conceptual understanding [5,6] or
problem-solving skills at scale [7,8] are not designed to
directly measure their ability to transfer, since students were
not explicitly provided with the opportunity or the resources
to learn and develop new skills during the test. Another
challenge for accurately assessing students’ transfer ability

is that the transfer process often involves multiple inter-
leaved stages of learning and problem solving, leading to
much richer and more diverse student behavior during the
process. Yet traditional assessments often lack the ability to
provide detailed information on those different student
behaviors, and how they affect the outcome. Therefore, it
is important to develop new assessment and data analysis
methods that can properly capture the complexity of
students’ behavior during transfer, in order to improve both
the accuracy of transfermeasurement and our understanding
of the mechanism of instructional materials designed to
improve transfer.
In an earlier paper [9] we proposed a new method for

measuring students’ ability to transfer their learning from
online problem-solving tutorials to new problem contexts
by analyzing the log of clickstream data of students
interacting with a sequence of online learning modules
(OLMs). Each module contains both learning materials
and assessment problems, as explained in more detail in
Secs. I A and II A. We found that while introductory-
level college physics students are highly capable of learn-
ing to solve specific problems from online tutorials, they
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struggled to transfer their learning to a slightly modified
problem given immediately afterward on the next module.
In a follow-up study [10], we tested two different methods
to enhance students’ ability to transfer in an OLM sequence
and found evidence suggesting that the addition of an “on-
ramp” module (a scaffolding module designed to solidify
essential basic skills and concepts [11,12]) prior to the
tutorial resulted in significant improvement in students’
ability to transfer their knowledge in the rotational kin-
ematics sequence, while the second intervention did not
result in significant differences in the outcome.
The design of the OLM modules enabled multiple levels

of transfer to take place by integrating the instruction and
assessment, but our initial analysis did not examinewhether
students interacted with those modules as we had intended,
nor did our previous analysis verify the mechanism by
which the on-ramp module improved transfer. Therefore,
the current study will improve the quality of analysis by
answering the following research questions. First, since the
OLMs are assigned for students to complete on their own,
what fraction of students interacted with the modules as we
had intended? For those who did not, to what extent did
their alternative strategy, as described in Sec. I B, affect the
validity of our measurement of students’ transfer ability,
and how can we mitigate those impacts for a more accurate
measurement? Second, as earlier analyses suggested that
the on-ramp modules may be effective, what is the
mechanism by which those modules enhance students’
transfer performance in subsequent modules? Are the
benefits of those modules exclusive only to students
who interacted with them in a certain way, as explained
in Sec. I C?

A. Measuring transfer in an OLM sequence

As will be explained in more detail in Sec. II, each OLM
consists of an instructional component (IC) and an assess-
ment component (AC) which contains one or two prob-
lems, as demonstrated in Fig. 2 adapted from Ref. [9].
Students are required to complete at least one attempt on
the AC before being allowed to study the IC, a design that
was inspired by the frameworks of preparation for future
learning [1] and productive failure [13]. Students who
failed their first attempt can learn to solve the specific type
of problem from the IC. When students complete a
sequence of two or more OLMs in sequence on the same
topic involving similar assessment problems, their required
first attempt on the subsequent module serves as an
assessment of their ability to transfer their learning from
the IC of the previous module. When more than two
modules are involved, students’ performance on later
modules could be attributed to indirect transfer due to
a preparation for future learning effect; that is, completing
the first module better prepares students to learn from the
second module, which in turn increases performance on
the third and subsequent modules.

Data from OLMs can be visualized in a “zigzag” plot
(Fig. 1, adapted from Ref. [10]), developed in earlier
studies and explained in detail in Sec. II D. Every two
points represent the total assessment passing percentage of
the student population on attempts before and after learning
from the IC of each module. Students’ ability to learn to
solve a specific problem is reflected by an increase in
passing percentage from pre to post on the same module.
The odd-numbered points in Fig. 1 (i.e., those labeled “Pre”
as well as “Quiz”) show passing rates on initial attempts
prior to learning from the IC of each module, and an
increase from one point to the next reflects students’ ability
to transfer their learning from the previous module(s).

B. Students’ different learning strategies
and possible impact on assessment

Measuring students’ transfer ability from their perfor-
mance on OLM assessment attempts requires that the
majority of students either seriously took the required first
attempt of each module or made a quick guess only when
they feel that they cannot solve the problem. However,
research on students’ self-regulated learning (SRL) proc-
esses suggests that learners may choose to guess regardless
of their ability or confidence to solve an assessment
problem according to their motivational goal orientation.
Using a 2 × 2 achievement goal framework [14,15], learn-
ers’ goals can be classified along both the definition
dimension and the valence dimension. On the definition
dimension, the learner can be either mastery oriented or
performance oriented. Simply put, mastery-oriented learn-
ers focus more on and are mostly motivated by the intrinsic
value of mastering the subject, while performance-oriented
learners are motivated by extrinsic values (see also the
summary of Pintrich’s model [16,17] by Winne [18]), such
as obtaining the homework credit for each module. On the
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FIG. 1. An example of a zigzag plot, adapted from Ref. [10].
Each point represents the passing rate of students either before
(“Pre”) or after (“Post”) being given access to the instructional
material in each module. Passing rates in the Post stage of a
module are cumulative with Pre stage attempts. See Sec. II D for
more details.
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valence dimension, learners focus either on a “positive
possibility to approach (i.e., success)” or on a “negative
possibility to avoid (i.e., failure).”
It is easy to imagine that if a learner has a performance-

avoidance type achievement goal, then they are likely to
adopt a strategy akin to a “coping mode,” described by
Boekaerts [19] as primarily focusing on “preserving [study]
resources and avoiding damage.” In the context of inter-
acting with OLM modules, a student with a performance-
avoidance goal is likely to randomly submit an answer on
their required first attempt to avoid “unnecessary failure”
and save time, and then study the IC to ensure success on
their next attempt. For those students, their initial attempts
reflect their learning strategy, rather than their level of
content mastery, transfer ability, or even their confidence.
If some students in our sample did adopt such a strategy,

then the log data of their interactions with the modules will
have two characteristic features: (i) their initial attempts
will frequently be significantly shorter in time and have
much lower passing rates when compared to other students,
at least on some of the easier modules; (ii) their passing rate
on attempts after study will be similar to everyone else.
If a non-negligible fraction of students indeed adopted

the performance-avoidance strategy, their data could sig-
nificantly distort the estimation of transfer ability for the
entire student population. Properly identifying and remov-
ing those students from the sample will improve the
accuracy of the measurement using data from OLMs.

C. Distinguishing between two different mechanisms
of the on-ramp module

In our earlier study [10], we found that the addition of an
on-ramp module at the beginning of the OLM sequence
resulted in better performance on the required first attempts
for subsequent modules compared to students from the
previous semester. The on-ramp modules contain practice
problems designed to develop and enhance students’ pro-
ficiency of essential skills necessary for problem solving.
However, students who passed the AC of the on-ramp
module on their required first attempt (or on attempts before
accessing the IC) can choose to directly move on to the next
module without interacting with the IC of the on-ramp
module. Therefore, if the on-ramp module enhances stu-
dents’ transfer ability by improving their proficiency on
essential skills, then the improvementwill not be statistically
significant among thosewho passed on the first attempt, and
statistically significant among those who failed their initial
attempt and accessed the IC. Alternatively, if the on-ramp
module mainly serves as a “reminder” for students to
activate existing knowledge of essential skills, then the
benefit should be more significant among those who passed
on the first attempt, and much smaller for those who studied
the IC. Distinguishing between those two mechanisms can
better guide the future development of instructional materi-
als to enhance students’ ability to transfer.

D. Research questions

To summarize, in this study we will answer the following
three research questions:

RQ 1What fraction of students display the characteristic
features in the log data that is indicative of adopting a
performance-avoidance strategy when interacting with
OLM sequences?

RQ 2 If we assume that a significant portion of stu-
dents who display the characteristic features of a
performance-avoidance strategy did adopt that strat-
egy, how would the results of previous studies change
if we restrict the study to those students who did not
display those features?

RQ 3 Did the on-ramp module enhance students’ ability
to transfer by improving students’ proficiency in
essential skills or by serving as a reminder for those
who are already proficient?

The first two research questions are important for the
accuracy of the measurements, and lay the groundwork for
answeringRQ3. In Secs. II A–II C, we will explain in detail
the structure and implementation of the OLM sequence,
as well as the data collection process. In Sec. II D, we
present our operational definition of key concepts such as
assessment passing percentage and performance-avoidance
strategy in the context of OLMs and outline our analysis
procedure for measuring transfer and answering the
research questions. In Sec. III, we present the results of
our analysis, which are interpreted in Sec. IVA, and their
implications are discussed in the rest of Sec. IV.

II. METHODS

A. OLM sequence structure

The study was conducted using OLMs [9,10,20,21]
implemented on the open source Obojobo platform [22]
developed by the Center for Distributed Learning at the
University of Central Florida (UCF). Each OLM contains
an assessment component and an instructional component
(see Fig. 2). Students have 5 attempts on the AC, which
contains 1–2 multiple-choice problems, and must make at
least one attempt before being allowed to access the IC. The
IC contains instructional text, figures, and/or practice
questions in general. Specific contents of the IC used in
each of the modules in the current study will be detailed in
the next section. In an OLM sequence, a student must either
pass or use up all five attempts on the AC before being
allowed to access the next module. Students’ interaction
with each OLM can be divided into three stages: The
prestudy (Pre) stage in which a student makes one or more
attempts on the AC, the study stage in which those who
failed in the Pre stage study the IC, and the poststudy (Post)
stage in which students make additional attempts on the
AC. A small fraction (approximately 10%) of students have
also been observed to choose to skip the study stage after
more than 3 failed attempts in the Pre stage. A student is
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counted as passing an AC if the student correctly answers
all problems in the AC within their first 3 attempts,
including both Pre and Post stage attempts. In other words,
students who either failed on all 5 attempts or passed on
their 4th or 5th attempts are considered as failing the
module in the current study. Because students who skipped
the study stage after 3 or more failed attempts will always
be categorized as “Fail,” the fact that they never accessed
the instructional material will not impact any of the analysis
in the current study.

B. Study setup

In Fall 2017, two sequences each containing 3 OLMs
(specifically, OLMs 2, 3, and 5 in Fig. 2) were assigned as
homework to 235 students enrolled in a calculus-based
introductory physics class at UCF [9]. The 6 modules were
worth 3% of the total course credit. The first OLM
sequence teaches students to solve Atwood machine type
problems with blocks hanging from massive pulleys using
knowledge of rotational kinematics (RK). The second
sequence teaches students to solve angular collision prob-
lems such as a girl jumping onto a merry-go-round using
knowledge of conservation of angular momentum (AM).
Both sequences are designed to develop and measure
students’ ability to transfer problem-solving skills to
slightly different contexts. The modules used in this study
are free and available to the public at Ref. [23].
The AC of each OLM contains one problem that can be

solved using the same physics principles as other ACs in
the OLM sequence. The IC of OLM 2 (Fig. 2) contains an
online tutorial developed by DeVore and Singh [24,25], in
the form of a sequence of practice questions. The IC of
OLM 3 contains a worked solution to the AC problem, and
the IC of OLM 5 is empty since it is intended to serve the
role of a quiz.
In Fall 2018, the two OLM sequences were each

modified by adding two additional OLMs (shown in
Fig. 2) and implemented again in the same course taught
by the same instructor as homework to 241 students. Both
sequences were assigned as homework that was worth 3%
of the total course credit. The first new module in each

sequence is the on-ramp module (OLM 1 in Fig. 2), which
contains an AC focusing on one or more basic procedural
skills necessary for solving the subsequent ACs in the OLM
sequence. For the RK sequence, the on-ramp module
presents students with two Atwood machine problems of
the simplest form, involving one or two blocks hanging at
the same radius from a single massive pulley. For the AM
sequence, the on-ramp module addressed the common
student difficulty of calculating both the magnitude and
sign of the angular momentum of an object traveling in a
straight line about a fixed point in space. The second new
module in each sequence is the “example 2” module (OLM
4 in Fig. 2), which contains in its AC a new problem that
shares the same deep structure as the one in the previous
module, but differs in surface features. The IC of the
module was designed in two formats: a compare-contrast
format in which students were given questions that
prompted them to compare the similarity and difficulty
of the solutions to the problems in AC3 and AC4, and a
guided tutorial format consisting of a series of tutorial-style
scaffolding questions guiding them through the solution of
the problem in AC4. Each form was provided to half of the
student population at random. We found no difference
between the two cohorts in terms of students’ behavior and
performance on the subsequent module 5 [10].

C. Data collection and selection

Anonymized clickstream data were collected from the
Obojobo platform for all students who interacted with the
OLM sequences. The following types of information were
extracted from the log data following the same procedure
explained in detail in Ref. [26]: the number of attempts on
the AC of each module, the outcome of each attempt (pass
or fail), the start time and duration of each attempt, and the
start times of interaction with the IC. The duration of
interaction with the IC was also extracted but was not used
in the current analysis.
In addition, students’ exam scores and overall course

grades, each on a 0–100 scale, were also collected,
anonymized, and linked to each students’ log data. The
exam scores consist of two midterm exams, each counting
for 12% of the final course grade, and a final exam counting
for 16% of the final course grade. The final course grade
also contains scores from homework, lab, and classroom
participation.
In order to maintain a consistent sample across our

analyses, only data from students who attempted every
module in a sequence at least once are included. Data from
seven students for the 2017 RK sequence were removed
because of this reason, and two or fewer students were
removed for all other OLM sequences. Data from 202
students were retained for the RK sequence in 2017, 198
students in the RK sequence for 2018, 198 students for the
AM sequence in 2017, and 189 students for the AM
sequence in 2018.

FIG. 2. The sequence of OLMs designed for this experiment.
Each OLM contains an assessment component and an instruc-
tional component. Students are required to make at least one
attempt on the AC first, then are allowed to view the IC, and go on
to make subsequent attempts on the AC. OLMs 1 and 4 were
added for the 2018 implementation.
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In the Fall 2017 implementation, half of the students
were given the option to skip the initial AC attempt of
OLM 2 (the first OLM in that implementation) and proceed
directly to the tutorial in the IC. However, we found in
an earlier study [9] that very few students chose to
exercise this option and among those who did there was
no detectable impact on subsequent problem-solving
behavior and outcome. Therefore, in the current analysis,
we combined those two groups into one. Similarly, for the
Fall 2018 semester, we combined data from students
encountering the two different versions of IC in module
4, since no difference in their behavior and outcome on
module 5 could be detected [10].

D. Data analysis

To estimate the fraction of students adopting a perfor-
mance-avoidance strategy (RQ1), we will analyze the
frequency of students making a very brief first attempt
on each module. As explained in Sec. I B, students who
adopt such a strategy are more likely to consistently guess
on their first attempts and gain access to the instructional
material.
In the current analysis, we categorize each student’s first

attempt as a “brief attempt” (BA) if the duration of the
attempt is less than 35 sec. This cutoff time is inherited
from a careful analysis of similar OLMs in an earlier
study [26], and chosen as a conservative estimate for the
minimum amount of time needed to read and submit an
answer to a given question. Students are categorized into
three “BA groups” based on the number of BAs on the
first four modules: 0–1 BAs, 2–3 BAs, and 4 BAs. Table I
shows the number of students in each BA group for each
OLM sequence. BAs on the quiz module were not
considered since there was no IC for the students to access.
The 0–1 BA group is the one with the fewest performance-
avoidance focused students, and are most likely to make
valid first attempts on the AC, whereas students in the 4 BA
group are most likely to adopt such a strategy.
To examine the extent to which the behavior of perfor-

mance-avoidance focused students affect the measurement
of transfer (RQ2), we will compare the Pre and Post stage
passing rates of the three BA groups on all modules in the
two sequences, and plot the outcomes in Fig. 3. Following
the convention established in two previous studies [9,10],

the pass rates are defined as follows. On each OLMmodule
except for module 5, the pass rates (P) of students was
calculated for both the Pre-study (Ppre) and Post-study
attempts (Ppost). The Pre-study pass rate on each module is
calculated as

Ppre ¼
Npre

Ntotal
; ð1Þ

with Npre being the number of students who passed Pre-
study and Ntotal being the total number of students who
attempted the module. Similarly, the Post-study pass rate on
each module is calculated as

Ppost ¼
Npre þ Npost

Ntotal
; ð2Þ

with Npost being the number of students who passed Post-
study. By including both Npre and Npost, the Post passing
rate reflects the total number of students able to pass the
assessment after being given the access to the IC, assuming
that students who passed in the Pre stage can also pass in
the Post stage if retested. This definition is similar to the
Post test score in a pretest or post-test setting. For module 5,
the passing rate does not distinguish between Pre and Post
stage because the IC of the module contains no instruc-
tional resources. The Ppre on modules 2–4 and P on module
5 measures students’ ability to transfer their learning from
modules 1–4. We hypothesized that the 0–1 BA group
would have significantly better performance than the other
two BA groups on their Pre stage attempts on modules 2, 3,
and 4 because the other two BA groups are more likely to
forfeit the first attempt opportunity regardless of their
ability to solve the problem. We further hypothesized that
the Post-study pass rates for each BA group will be very
similar, because Ppost reflects students ability to learn from
the modules and solve the specific problem (if they are not
already proficient), and the dominant factor separating the
three groups is students’ engagement strategy, not their
ability to learn from the modules.
Finally, to examine the mechanism by which the on-

ramp module improves transfer of knowledge (RQ3), we
first separate the student sample from Fall 2018 into three
“on-ramp cohorts”:

• Pass On-Ramp Pre: students who passed the on-
ramp AC before accessing the IC,

• Pass On-Ramp Post: students who passed the on-
ramp AC only after accessing the IC, and

• Fail: students who did not pass the on-ramp AC
within 3 attempts.

For this analysis, only data from the 0–1 BA group will be
retained. As will be discussed in more detail in Secs. III
and IV, the analysis ofRQ1 andRQ2 suggests that students
in the other two BA groups indeed displayed the character-
istic features of a performance-avoidance strategy and thus

TABLE I. The number of students in each OLM sequence by
their number of brief attempts. The brief attempt groups consist of
those who had 0–1, 2–3, or 4 brief attempts throughout the first
four modules.

No. of brief attempts

OLM sequence 0–1 2–3 4

RK 100 82 16
AM 91 71 27
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are much more likely to have adopted such a strategy.
Therefore, it is possible that including those students will,
which could result in an underestimation of students’
ability to transfer. To that end, the following analysis
method will produce accurate results for students in the
0–1 BA group only.
Next, we identified three comparable cohorts of students

from the 2017 sample. We first retained students who only
made 0–1 BA on modules in the 2017 sequence, then
identified comparable cohorts using propensity score
matching, since the general ability of the 0–1 BA group
could be different from the rest of the student population.
Propensity scores were constructed using a combination of
standardized scores from two midterm exams and one final
exam in both semesters. Each exam is largely identical
across the two semesters, with one or two questions being
replaced or modified.
Pass rates on modules 2–5 in both sequences are

compared between the three 2018 cohorts and the three
propensity score matched 2017 cohorts in order to

distinguish between the two possible mechanisms for of
the on-ramp module. If the “improve proficiency” effect
was dominant, then the performance differences should be
observed mostly among the Pass On-Ramp Post cohort and
its matched cohort in 2017. If the reminder effect was
dominant, then the differences will be observed for the Pass
On-Ramp Pre cohort and its counterparts.
Propensity score matching was performed using R [27]

and the MatchIt package [28]. The MatchIt algorithm
retains all treated data and attempts to find either an exact
one-to-one match or balance the overall covariant distri-
bution for the control data. As shown in Table II, the
matching program reduced the difference in the mean of the
normalized propensity score in every case.
Data analysis, statistical testing, and visual analysis were

conducted using R [27] and the tidyverse package [29].

III. RESULTS

First, we measure the fraction of students that displayed
characteristic features in their activity log indicative of a
performance-avoidance strategy (RQ1). We start by listing
the number of students with 0–1, 2–3, or 4 BAs on the first
four modules of each sequence in Table I. The result shows
that, even with relatively conservative criteria for classify-
ing brief attempts, we still identified 10%–15% of the
students who made four brief attempts at the four modules
(4 BA group). On the other hand, around 50% of the
students belong to the 0–1 BA group.
Figure 3 shows the Pre and Post stage pass rates of

students on modules 2–5, separated by BA groups. Pass
rates from the two sequences are plotted separately: the RK
sequence in Fig. 3(a) and the AM sequence in Fig. 3(b). In
both Figs. 3(a) and 3(b), the most prominent difference
between the three BA groups is that students in the 0–1 BA
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FIG. 3. Comparison of performance on OLMs between students with different numbers of brief attempts: (a) Rotational kinematics
and (b) angular momentum. The error bars represent standard error. Passing rates on the on-ramp module is not shown since it is
irrelevant to the discussion of transfer.

TABLE II. The mean difference in propensity scores between
the listed 2017 and 2018 on-ramp cohorts both before and after
propensity score matching was carried out. All students in these
samples are in the 0–1 BA group.

OLM
sequence On-ramp cohort

Mean
difference

before matching

Mean
difference

after matching

RK All 0.0272 0.0083
RK Pass On-Ramp Pre 0.0061 0.0003
RK Pass On-Ramp Post 0.0410 0.0044
AM All 0.0388 0.0105
AM Pass On-Ramp Pre 0.0599 0.0126
AM Pass On-Ramp Post 0.0286 0.0001
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group significantly outperformed the other two groups in
Pre stage attempts for the example 1 module (OLM 2,
Fig. 2) (Fisher’s exact test on 2 × 3 contingency tables,
p < 0.001 for the RK sequence, and p ¼ 0.001 for the AM
sequence). Students in the 0–1 BA group also outperformed
the 2–3 BA group on RK Tutorial Post Stage attempts
(p ¼ 0.028) and RK example 1 Post stage attempts
(p ¼ 0.018), but those two groups did not show a sta-
tistically significant and consistent difference with the 4 BA
group. None of the other data points showed significant
differences between the three groups.
The observations that the 0–1 BA group significantly

outperforms the 2–3 BA and 4 BA groups on the Pre stage
attempts on the example 1 module and that the performance
differences are much smaller on most of the post-study
attempts fits the description of students adopting a perfor-
mance-avoidance strategy, described in Sec. I B and dis-
cussed further in Sec. IVA. Therefore, it is reasonable to
assume that at least some of the students in those two
groups had adopted a performance-avoidance strategy to
some extent. If we accept this assumption, then the statis-
tically significant performance differences on example 1
[Figs. 3(a) and 3(b)] also support our hypothesis (RQ2) that
students adopting a performance-avoidance strategy could
have a measurable impact on the estimation of the transfer
ability of the student population using performance data
from OLMs. To mitigate the impact of such strategic
guessing as much as possible, we will limit ourselves to
studying the 0–1 BA group for both the 2017 and 2018
student sample in the following analysis, for which we are
confident that few if any students adopted the performance-
avoidance strategy, and the measurements will be accurate.
It is possible that the other two BA groups, especially the

2–3 BA group, also contain students who frequently
guessed due to other reasons such as lack of confidence.
However, as discussed in Sec. IV, those students are less
likely to be the majority in the other two BA groups, and
that our current analysis cannot distinguish them from those
who guessed because of a performance-avoidance strategy.
We compared the pass rates of the 0–1 BA group from

2018 on modules 2–5 with a propensity score matched
subsample in 2017 who also had 0–1 BAs on the first two
modules. The pass rates for both sequences are shown in
Fig. 4, while the p values from Fisher’s exact test
comparing each pair of data points on the figures is listed
in the first two rows of Table IV. All p values are adjusted
for type I error due to conducting multiple tests using the
Benjamini-Hochberg method [30]. The data show that there
are significant performance differences in the success rate
between the two student populations on tutorial Pre
and example 1 Pre attempts in the rotational kinematics
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FIG. 4. Comparison of the performance on the pre and post attempts of module for students with 0–1 brief attempts. A subset of 2017
students were selected to match the background knowledge of 2018 students using a propensity score derived from exam scores. Passing
rates on the on-ramp module is not shown. Data on example 2 from 2017 are absent because the module was added in 2018.

TABLE III. The number of students in each OLM sequence that
fall into each on-ramp cohort among those with 0–1 brief
attempts. The cohorts consist of those who passed during on-
ramp Pre-study attempts (“Pass On-Ramp Pre”), those who
passed during on-ramp Post-study attempts (“Pass On-Ramp
Post”), and those that failed the on-ramp assessment (“Fail”).
Since the on-ramp module was only included in Fall 2018, only
students from 2018 are included here.

Pass On-Ramp Pass On-Ramp

OLM sequence Pre Post Fail

RK 32 57 11
AM 32 47 12
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sequence, whereas the difference in the angular momentum
sequence is less prominent, possibly due to the success
rate being very high in both samples. The differences
are similar in nature but larger in magnitude compared
to what was observed in our earlier study that did not
consider alternative learning strategies [10], suggesting that
the earlier study could have underestimated the transfer
ability of the student population due to some students
adopting performance-avoidance goals.
To examine the mechanism by which the on-ramp

module improves the transfer of knowledge (RQ3), we
divided the 2018 0–1 BA population into three cohorts, the

number of students in each cohort is listed in Table III for
each OLM sequence. Since the Fail cohort is much smaller
than the other two cohorts and too small for reliable
propensity score matching, we will only analyze the
Pass On-Ramp Pre and Pass On-Ramp Post cohorts (see
Table III). In Fig. 5, we compare the performance of those
two cohorts to their counterparts in the Fall 2017 semester,
using propensity score matching to select a group with
similar overall physics ability. The pass rates of the two
cohorts on the same module sequence are shown side by
side. Data from the RK sequence are shown on the top row
[Figs. 5(a) and 5(b)] and the AM sequence in the bottom
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FIG. 5. Comparison of the performance on the pre and post attempts of modules for students with 0–1 brief-attempts and different on-
ramp performance (a) and (c): Pass On Ramp Pre. (b) and (d): Pass On Ramp Post. The student population in 2017 students was selected
to match the background knowledge level of students in 2018 using a propensity score derived from exam scores. Passing rates from the
on-ramp modules are not shown. Data on example 2 from 2017 is absent because the module was added in 2018.
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row [Figs. 5(c) and 5(d)]. The adjusted p values of Fisher’s
exact test between each pair of points are listed in the last
four rows of Table IV.
It can be seen from Fig. 5 that the Pass On-Ramp Pre

cohort is responsible for the majority of the differences on
Pre-study attempts between the 2017 and 2018 samples for
the RK sequence, since none of differences are statistically
significant for the Pass On-Ramp Post cohort after p-value
adjustment. For the AM sequence, neither cohorts showed
any statistically significant differences after p-value adjust-
ment. It should be emphasized that these results are valid
only for the 0–1 BA group, which clearly did not display a
strategic-guessing behavior.

IV. DISCUSSION

A. Interpretation of results

We found that roughly half of the students frequently or
consistently made abnormally short submissions on their
required first attempts on some or all of the first four
modules, probably by either guessing or copying the
answer from a peer. While students may submit an occa-
sional brief attempt due to many reasons, such as lack of
self-confidence, we believe that repeated brief attempts are
more likely a strategic choice because of the follow reasons.
First, 35 sec is barely enough time to carefully read the
problem texts. There is no clear reason why students who
lack confidence would repeatedly and consistently submit
answers in such a short amount of time. A more likely
interpretation is that many of those students are trying to
save time. Second, failing the first attempt will unlock the
instructional materials that significantly boost students’
chances of success on the assessment with no grade
penalty, providing a good incentive for students to guess
without thinking about the problem on their first attempt.
Third, there were no significant performance differences
between the 2–3 brief attempt and 4 brief attempt groups,
but a significant difference between the 0–1 brief attempt
group and the other two groups, indicating that the 2–3

brief attempt group is more similar to the 4 brief attempt
group than the 0–1 brief attempt group. Finally, there were
no detectable performance differences between any of the
three brief attempt groups on attempts after studying the
learning material, suggesting that the lower performance on
initial attempts is less likely due to lower ability level, and
more likely the result of strategic random guessing.
Because of these reasons, we believe that many students
with two or more brief attempts likely did so out of a
performance-avoidance strategy, which fits well with
Boekaerts’s description of students being in a “coping
mode” [19]. For those students, their goal is to pass the
module while saving time and “unnecessary” possible
failures.
However, it is also worth noting that completely deter-

mining the motivation behind student behavior is very
difficult by analyzing clickstream data alone. While the
current analysis shows that students with 0–1 brief attempts
are less likely to adopt a performance-avoidance strategy,
future studies utilizing additional sources of data such as
survey and interview will be needed to better estimate how
many students did actually adopt such a strategy.
If a student chose to adopt the performance-avoidance

strategy, their transfer ability can no longer be measured
using OLMs, since their brief Pre study attempts on the
following modules do not always reflect their true ability to
transfer their learning from the current module. If in fact
many students in the 2–3 BA and 4 BA group adopted such
a strategy, then our follow-up analysis including data from
those students resulted in an underestimation of students’
ability to transfer knowledge from the tutorial module
(module 2) to the example 1 module (module 3) in our
earlier study, although most of the qualitative conclusions
remain the same.
An alternative interpretation is that students who fre-

quently adopt the strategy have a lower level of overall
mastery on the subject, and possibly a higher level of self-
awareness of their lack of knowledge. Therefore, they
would not have been able to pass the required Pre stage
attempt even if they had tried, and thus including those
students would not underestimate students’ transfer ability.
However, this interpretation seems less likely because
students in the 2–3 brief attempt and 4 brief attempt groups
performed similarly to the 0–1 brief attempt group on the
tutorial, example 2, and quiz modules, as well as on the
Post stage of the example 1 module, which suggests that
their overall physics abilities are similar and therefore the
observed differences are more likely due to differences in
strategical choice. It must be pointed out that the fact that
we excluded almost half of the students in our analysis is by
no means an indication that the OLMs are a problematic
means of assessment. In fact, the average student is likely to
adopt avoidance oriented goals on any type of assessment,
especially on not for credit assessments such as pre-post
conceptual surveys. The ability of our current method to

TABLE IV. A list of p values from Fisher’s exact test
comparing the performance of 2018 students and matched
2017 students on each common assessment in the listed figure.
The p values have been adjusted using the Benjamini-Hochberg
method [30]. Significant (p < 0.05) and highly significant
(p < 0.01) values are marked using * and **, respectively.

Tutorial Tutorial Example 1 Example 1

Figure Pre Post Pre Post Quiz

4a 0.003** 0.330 <0.001** <0.001** 0.054
4b 0.333 0.265 0.166 0.306 0.166
5a 0.001** 1.000 0.001** 0.395 0.438
5b 0.498 1.000 0.008** 0.028* 0.028*
5c 0.764 0.766 0.267 1.000 0.766
5d 0.835 0.835 0.835 0.835 0.835
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estimate the prevalence of such strategies in the student
population is actually an advantage over analysis schemes
based on traditional paper and pencil tests, or even some
earlier studies of online problem solving such as in
Ref. [31], that did not take into account the impact of
different student strategies.
Given those results, the current OLM design can provide

an accurate measurement of the transfer ability for the
subpopulation of students who did not frequently make
brief submissions on their initial attempts, and an upper
bound for the transfer ability for those who did. For the
latter population, more research is needed to determine
whether most students did engage in strategic guessing on
their first attempt. If that is indeed the case, then an
improved instructional design that discourages such behav-
ior will be needed to more accurately measure their transfer
ability.
Another major finding of the current analysis is that, for

the remaining students who did not frequently guess on the
first attempts, the benefit of the on-ramp module in
facilitating transfer (as measured by Pre stage attempts
of subsequent modules) predominantly occurs among
students who can pass the on-ramp module before access-
ing the instructional component. In other words, some
students’ abilities to transfer on subsequent modules were
improved by simply doing and passing the problems in the
on-ramp module. The difference is much more prominent
for the more challenging rotational kinematics sequence,
and less so for the easier angular momentum sequence.
This observation holds true even after we used propensity
score matching between the two semesters to control for the
possibility that the Pass On-Ramp Pre cohort could include
students with better overall physics knowledge or higher
motivation than students in the Pass On-Ramp Post cohort.
A possible explanation could come from the basic

principles of information processing theory [32,33].
For students who already possess the essential skills or
procedures, attempting the on-ramp module assessment
prompted them to retrieve those skills from long-term
memory and retain them in working memory. All or part
of those skills remained either in the working memory or in
a more active state when those students moved on to the
subsequent modules, thereby freeing up cognitive capacity
for them to better comprehend the additional complexity of
the tutorial and example 1 modules. On the other hand, for
those who had not yet mastered those essential skills, the IC
of the on-ramp module was sufficient for them to pass the
assessment on the next attempt, but not enough for them to
achieve a higher level of proficiency. Therefore, activating
those skills on the subsequent modules required a higher
amount of cognitive load, limiting students’ abilities to
process the additional complexities.
A straightforward and testable implication of this explan-

ation is that providing students with more practice oppor-
tunities on those essential skills will increase the ability to

transfer on subsequent modules for students with a less
solid grasp on those basic skills. In addition, it may be
beneficial to distribute those practices rather than clustering
them immediately prior to the tutorial sequence, as dis-
tributed practice has been shown to be beneficial for skill
acquisition and recall [34,35], and practices of distributed
retrieval of factual knowledge have been shown to improve
students’ physics exam scores [36]. It is also worth noting
that the significant benefit of having the on-ramp module
did not extend to the last quiz module, despite also having
an additional example 2 module in 2018. It is possible that
additional modules that practice additional basic skills are
needed for students to transfer their learning to the last two
modules, as they are more complicated and require more
skills than was covered in the current on-ramp module.
Additionally, future studies are needed to apply the same
design to other modules or even other courses to examine
whether the current results are generalizable across differ-
ent topics or different disciplines.
Finally, it must be pointed out that our use of propensity

score matching to control for the fact that our selected
student populations likely have different knowledge and
motivation than the rest of the population is far from
perfect, since overall exam scores may not fully reflect
knowledge on the specific topic involved. A more accurate
propensity score could be constructed in the future, when
additional modules on the same topic are created and
assigned to students prior to the tutorial sequence. Such
modules have been created and administered in the Fall
2019 semester, enabling more accurate analysis to be
conducted in the future.

B. Implications for online education research

Our analysis shows that students’ behaviors in a self-
regulated online learning environment frequently deviate
from what was intended or expected by the instructor.
Those behaviors, such as frequently guessing (or cheating
in some cases) on problems, could have a substantial
impact on the accuracy of assessment and data analysis
if not properly accounted for. Therefore, the ability to detect
the presence of diverse student behavior, and account for
their potential impact on outcomes of data analysis is a
significant advantage of the current OLM based method
over conventional assessments such as paper on pencil
tests, since students are equally likely to adopt a variety of
strategies in both situations, yet conventional assessments
provide significantly less data on student behavior.
The results of the current analysis can also highlight the

importance of future developments in instructional strate-
gies to reduce performance-avoidance strategies among
students in an online environment. In particular, future
studies could explore different designs to encourage stu-
dents to take their first attempts more seriously, such as
giving a little bit of extra credit for passing, or do not
explicitly reduce the number of attempts after the first try to

WHITCOMB, GUTHRIE, SINGH, and CHEN PHYS. REV. PHYS. EDUC. RES. 17, 010112 (2021)

010112-10



reduce the perceived cost of attempting to solve the
problem.
Furthermore, in our earlier analysis [10] on the same

module sequences, we found that instructional resources
designed based on well-documented learning science
principles may not always generate expected outcomes
due to variations in the actual implementation. The current
analysis further reveals that even when the instructional
resource did result in the expected outcome improvement,
the underlying mechanism may be different from what was
expected. In this case, modules that were designed to train
the proficiency of essential skills among students actually
benefited those who were already proficient and did not go
through the training by serving as a reminder to activate
those skills. Those results demonstrate the high level of
complexity and unpredictability involved in designing and
creating effective instructional resources. Moreover, they
highlight the importance of discipline-based education
researchers’ role as “education engineers” who bridge
the gap between learning theories and actual instructional
practices by applying and testing the same design on
different content areas and different disciplines.
Last but not least, the current study is an exploratory

attempt at evaluating the effectiveness of instructional
materials by comparing the outcomes of students enrolled
in two consecutive semesters and controlling for the
extrinsic variances using propensity score matching.
Compared to the more common method of conducting

randomized AB experiments [37,38], the current method is
significantly easier to implement in actual classroom
settings and introduces fewer disruptions for students
compared to randomized control experiments. In addition,
this method allows for a larger sample size since each group
consists of an entire class rather than a fraction of the class.
While it introduces more variances due to the treatment and
control groups coming from different semesters, we dem-
onstrated that the impact from those variances could be
controlled to some extent by methods such as propensity
score matching. Even though AB testing can provide more
rigorous control over extraneous variables, the current
setup is far less disruptive to classroom instruction and
can be particularly valuable under certain situations, such
as during the current COVID-19 pandemic which presents
students with many obstacles as institutions shift to fully
remote instruction, and instructors are reluctant to introduce
more potential sources of confusion.
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