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Two set of studies were conducted to better understand grades and grading practices in physics courses,
and how these might influence demographic representational disparities in physics. The first study
investigates the relationships between grades and the student-level factors of standardized test scores,
(binary) gender, underrepresented minority (URM) status, first generation (FG) status, citizenship status,
and age of over 20 000 students enrolled in algebra-based and calculus-based introductory physics courses.
Consistent with other studies, we find differences in mean grades for all of these factors, except for gender,
and when standardized test scores are included in a regression model predicting grades, the demographic
differences in grades decreases, though typically remain nonzero. We also find gender by test score and
URM by test score interactions when predicting grades. The second study examines grade component
scores, and replicates the finding that compared to men, women achieve higher scores on nonexam
components and lower scores on exam components. We also find that the gap in score between URM and
FG students and their counterparts is less for non-exam components than for exam components. Because of
these differentials in components, we compared different models of grade components weighting and find
that women and URM students differentially benefit from stronger weighting of nonexam components.
While the benefit to grades is relatively small, the relative shift in percentages of grade rates of A, D, and F
can have dramatic differential shifts. We also find that while exam components are moderately strongly
correlated with standardized tests scores, nonexam components are not. These results suggest that grade
component weighting is inevitably tied to issues of demographic equity, in the sense that altering the
weights may change demographic disparities in grades and change the dependency of grades on
standardized test scores. We conclude with a call for more attention to grading practices and what is

physics

rewarded in introductory physics courses.

DOI: 10.1103/PhysRevPhysEducRes.16.020125

I. INTRODUCTION

It is readily noticed and well documented that women,
black or African Americans, Hispanic or Latinos, and
American Indian or Alaskan Natives are substantially
underrepresented—often by more than a factor of 2—in
university enrollment and degrees received in the physical
sciences, especially in physics [1-3]. What is less straight-
forward is why. The vast number of papers and projects that
have been dedicated to understanding why this underrep-
resentation occurs or how to address it suggests that there is
a complex array of causes and contexts. The focus of this
paper is on the topic of grades and grade components in
introductory physics courses in order to gain more insight
as to whether grades and grading practices may indicate or
compound issues of demographic biases or may play a role
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in demographic disparities in participation. It is important
to note that we are investigating grades not because we
suppose they are a measure of learning, but because they
are valued by students, instructors, and programs, and they
play an important role in continued participation in pro-
grams. Grades are concrete outcomes with real-world
consequences for students, and, for better or worse, grades
provide feedback for and inform decisions by students,
instructors, and programs. We begin with a discussion of
relevant prior work.

Historically, it had been somewhat common and com-
pelling to put forth the argument that the demographic
disparities in science, technology, engineering, and math-
ematics (STEM) participation are due to differences in
preparation or prior achievement (e.g., see a brief critical
review of this perspective in Ref. [4]). However, several
researchers have shown that, at best, demographic
differences in prior achievement can only account for a
portion of the disparity in participation. For example,
controlling for academic preparation, women and minor-
ities still disproportionally enter and leave STEM physical
science and engineering major programs [4—10]. Further,
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even for the studies that find some lower relative grades or
higher failure rates for women and minorities compared
to white or Asian males for a given physics course, the
differences are relatively small such that they are unlikely
to be the major contributor to that massive difference in
participation (see, for example, Ref. [3]). Therefore, there
must be other more important factors besides preparation
causing disparities in participation.

In fact, in contrast to considering deficits in science
achievement as the cause for disparities in participation, a
number of researchers have pointed out that, compared to
men, women commonly have high levels of achievement in
verbal skills and the humanities. Thus it has been proposed
that, for example, women with high levels of math and
science achievement also have, compared to men, relatively
more viable options for careers in other fields, thus are
more likely to leave STEM, especially areas that are male
dominated and perceived as relatively unwelcoming to
women (see, for example, Refs. [4,6-8,11]).

Grades are also a natural and compelling factor to
consider as related to, and perhaps responsible for, dem-
ographic disparities in STEM participation. For this pur-
pose, a number of researchers have investigated whether
there are significant differences in university-level physics
course grades among various demographic groups. When
comparing grade performance by gender, the results are
mixed with a relatively slight overall trend indicating that,
while there is some variation favoring either side, men
score roughly 0.1 grade points higher than women on the
four-point grade scale averaged over many classes and
institutions [12]. The variation may be due to unidentified
contextual factors; for example, Lauer et al. [13] found no
grade differences in physics. Hazari et al. [9] found that
men had a similar level of higher grades even when
controlling for numerous prior factors such as standardized
test scores. Kost, Pollock, and Finkelstein [14—15] also
found a similar small grade difference but propose that this
difference—along with other small differences in attitudes
and beliefs—accumulate over time to significantly influence
participation. When comparing grades by underrepresented
minority status, the differences are somewhat larger and thus
more potentially impactful, averaging around 0.2-0.4 grade
points lower for minorities [9,16—17], controlling for various
factors such as standardized tests scores. In sum, there are
differences in grades on average between women and men
and minorities and nonminorities in directions consistent
with disparities in participation, but the differences are
relatively small, are reduced when other factors such as
ACT scores are taken into account, and are thus likely to
account for only a portion of the disparities in participation.

What may be more important to consider is the extent to
which students use grades as feedback for deciding whether
to stay in a particular STEM major program [4,6,8,10,
18-20]. There is evidence that all students use grades
to revise their own beliefs about their ability in a field

(e.g., Ref. [21]), but the important point here is whether
there are differential sensitivities between demographic
groups in which grades plays a role in driving disparities
in STEM retention. For example, in modeling a large
national dataset of approximately 9000 students, Astorn-
Figari and Speer [18] provide some evidence that students
with low grades switch majors more, and all students tend
to switch to majors with demographics similar to their own.
Further, they found that the gender disparity in switching
out of physical science and engineering is not due to gender
differences in grades or measures of ability, rather women
tend to switch out of these fields to go into those that are
less male-dominated and where they have higher grades.
Kugler et al. [8] found somewhat similar results with a
sample of ~9000 students from a large private university:
both women and men are equally more likely to switch
majors if they have low grades, and this is even true
regardless of gender composition of the major except in the
case of male-dominated STEM majors. In that case women
are more likely than men to leave such majors. They
hypothesized that the context of external stereotype threat
in male-dominated STEM majors is a critical additional cue
signaling “lack of fit” to women and causes the disparity.
Using more direct analysis of persistence in a major, Ost
[10] samples ~15 000 students from a “large elite research
university” and found that students are “pulled away” from
STEM by their high grades in non-STEM and “pushed
away” by their low grades in STEM, and among physical
science majors, not only do females tend to have higher
grades in non-STEM courses, but they are also found to be
more responsive to grades than males, consistent with
theories of stereotype vulnerability. In studying over 8000
students who took General Chemistry I, Witherspoon et al.
[6] do not find such differences in retention between
genders for students receiving lower grades, but they do
find that competency beliefs moderate a gendered differ-
ence in enrollment in 2nd year chemistry for students
receiving an A or B. They hypothesize that because of the
presence of stereotype threat in science courses, women
who receive high grades also perceive the relatively high
effort to achieve such grades (compared to non-STEM
courses), and this may be attributed by them as evidence of
lack of ability. Ahn et al. [19] model data from 16 000
students from the University of Kentucky and also find, as
expected, that grades play an important role in major choice,
but that women value grades more than men (see also for
example Rask and Tiefenthaler [22]). Since they find that
STEM fields award significantly lower grades than non-
STEM fields, their models suggest that parity in average
grades among departments in a university would signifi-
cantly increase gender participation in STEM majors.
Since grades appear to play an important but nuanced
role in demographic disparities in participation, under-
standing differences in performance in the components of
the course that make up the grade may provide important
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insights into the mechanisms driving disparities. In short,
there is substantial evidence that differences in performance
on specific grade components exist between demographic
groups. Kost et al. [14-15] examined exam, homework,
and participation scores over numerous semesters and
consistently found that women scored higher than men
on homework and participation scores and lower on exams.
These differences offset each other, resulting in small or
negligible differences in course grade. Kortemeyer [23]
found results consistent with this and found small
differences in how men and women interact with the online
homework assignments. For example, he found that women
more frequently report using the multiple attempt feature of
the assignment to explore their own thinking about their
own problem-solving approaches without worrying about
the score while men more frequently report that they use the
multiple attempts for guessing.

In a more comprehensive study, Salehi et al. [24]
investigated the grade component performance of ~6000
students in STEM courses including biology, physical
science, and engineering courses. They reported a signifi-
cant and persistent “gender penalty” for women in exam
performance in first- or second-year physical science or
engineering courses. That is, women tended to score lower
on exams than men. In contrast, for lab scores, and in-class
scores such as participation and groupwork, women per-
formed the same (or better) than men. When ACT scores
were included in the model, these differences remained.
Further, ACT score was a much weaker predictor of non-
exam and lab scores, with beta estimates for ACT scores
about one-third as large for non-exams scores than for exam
scores. They also found that when ACT scores were taken
into account, underrepresented minorities (URM) tended
to score about the same on exams as non-URM students,
but lower on nonexam components and labs, while first-
generation (FG) students on average scored the same as
their counterparts. Salehi ef al. also provided evidence that
the moderately strong association of exam scores with ACT
scores was mediated (though somewhat weakly) by test
anxiety for women (and not men), and this may partially
explain the disparity in exam performance.

In sum, grades themselves appear to play an important
role in students’ perception of ability and their sub-
sequent choices for a major, and these perceptions and
choices can depend on the demographic group and the
perceived climate of the major for that group. Further,
mean performance on a given grade component varies by
demographic group, and this variation varies by grade
component. Exam grade components, which typically
comprise the majority of the final grade, are fairly
strongly correlated with ACT scores, while other grade
components are not.

This variation of grade component performance with
demographic group raises important questions about how
various grade components should be weighted to maximize

fairness and represent what is valued by the instructors, the
major program, and the students. For introductory physics
courses at Ohio State University, tests (exams and quizzes)
comprise 70% of the grade, and informal conversations
with colleagues at other institutions indicate that this
majority weighting of tests is common. As discussed, those
that score highest on exams are non-URM males with high
ACT scores. To what extent do grade disparities change
when the weighting is changed?

In this paper we will investigate grades and grade
components of students in algebra-based and calculus-
based introductory physics courses at Ohio State
University, a large public research university. Because
prior research such as Matz et al. [12] report some variation
in demographic disparities, we will first characterize grade
outcomes in our local context, including demographic
differences in grades and grade components. Then we will
present several models that explore hypothetical outcomes
of a slightly different grade weighting scheme that reduces
the weights of tests—and, consequently, ACT scores—on
grades. In short, this study seeks to answer the following
research questions:

(1) What are the mean ACT math scores, ages, and
grades by gender, URM status, first-generation
status, and international student status?

(2) To what extent are there demographic differences in
grade performance controlling for ACT scores, age,
and lecture section? Are there significant inter-
actions of demographic groups with ACT score
when comparing grades?

(3) To what extent are there demographic differences in
performance on grade components, both controlling
and not controlling for ACT scores?

(4) If the test components are weighted less than the
current weight (70%), how does this change the
answers to research questions 1 and 2?

Overall, this paper will contribute to the field in two
ways. First, it provides a novel exploration of the effect of
changing the weighting of grade components on grade
outcomes for several important demographic groups. This
will lead us to a commentary on ACT scores, grades, and
grading practices. Second, we confirm and extend results
of previous studies mentioned above on demographic
differences in grade outcomes. Such careful reporting of
results is critical in order to increase confidence in the
generalizability of conclusions, especially when there is a
surprising relative paucity of formal results and studies in
this area, and for the data that exists there is significant
variation. We also describe a wholistic picture of our local
context, allowing for a richer, more specified setting of the
results. Finally, note that this study is the first of two parts.
In the first part reported here, we investigate student-level
effects, and part two, to be presented in a separate paper,
will model and discuss unexplained variance in grades due
to semester, section, and instructor-level effects.
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II. METHODS
A. Data

The data used in this study were collected from the
university registrar records on students who were enrolled
between Autumn 2012 and Spring 2018 in either the first
semester of the algebra-based (N =9017) or calculus-
based (N = 11256) introductory physics two-semester
sequence at Ohio State University. Both courses were
large, traditional lecture-style courses with a typical enroll-
ment of approximately 200 students in each lecture section.
Lectures were 2—-3 times per week and each lecture section
was divided into smaller (~24 students) recitation meetings
1-2 times per week, where quizzes were administered and
students reviewed homework and other example problems,
as well as a lab class once per week. The algebra-based
course consists primarily of pre-health students, and the
calculus-based course is largely pre-engineering students,
with a small fraction of science and math majors. Thirteen
different instructors taught the 52 algebra-based lecture
sections included in the 12 semesters in this dataset.
Nineteen instructors taught the 60 calculus-based lecture
sections offered between Autumn 2012 and Spring 2018.

In addition, grade component scores were collected for
both courses from Autumn 2016 through Spring 2018
(N = 6587) for both the algebra-based and calculus-based
introductory physics courses. The grades are composed of
nonexam components (online homework, online essential
skills assignments [25], labs) and test components (in-class
formal quizzes, midterm exams, and final exam).

In the physics department at OSU during the time these
data were collected, a grade curving system was used. In
the algebra-based course, the quiz total, the first midterm,
the second midterm, and the final exam each were shifted
so that the median score of each was a 77% if the median
was under 77%. If the median was above 77%, no curve
was awarded. In the calculus-based course, each instructor
determined a grade scheme for each lecture section by
assigning grade cutoffs that would result in a C+ to B—
average for the course.

Frequencies for gender, URM status, FG status, and
citizenship status along with ACT math score and course
outcomes are reported by demographic information and
course in Table I. Note the URMs were defined here as black
or African Americans, Hispanic or Latinos, and American
Indian or Alaskan Natives as reported in the university
student database. In the algebra-based course, women
represent 57% of the population. URM students comprise
10% of the students, and 19% of students are first-generation
college students. In the calculus-based course, female
students make up only 23% of the population, URM students
represent 9% of the population, and 17% of this population
are first-generation students. Since registrar records only
categorize gender as binary, we are unable to provide
statistics on nonbinary gender populations.

Note that in this paper, the student’s highest math ACT
score was used. For students that reported SAT scores, we
used the ACT and College Board’s ACT/SAT concordance
tables to determine the ACT equivalent to recorded SAT
scores. About 9% of the students in this sample do not have
either an ACT or SAT Math score reported. As seen in
Table I, these students on average receive substantially
lower course grades, a higher DFW rate, a lower A rate, and
lower retention as compared to the rest of the population.
Although there are several reasons a student may not have
an ACT or SAT score on record, the higher mean age of this
population and our informal discussions with OSU enroll-
ment staff indicate that the overwhelming majority of these
students are likely transfer students.

First-generation status is considered in this study as
growing amounts of research show differences in motiva-
tion and behavior in STEM between first-generation and
non-first-generation students. For example, one study of
engineering students shows differences in identity, perfor-
mance and competence beliefs, interests, and family sup-
port for science [26]. Another study shows particular
importance of early college performance in retention of
first-generation students [27].

We analyze data based on foreign or domestic status (i.e.,
citizenship) of the students as well. The principle reason for
doing so is the considerable increase in foreign students in
our institution in the last decade, and they comprise a
sizable proportion of our students (~10%). Since there is
very little reported on the performance of foreign students,
we were interested to see if there are any important
differences that may warrant attention.

Finally, the age of the student is also considered in the
following analyses given the known retention issues for
older students in STEM fields. For example, students who
begin their college education at age 19 or younger are more
likely to complete a bachelor’s education in STEM than
students who entered at 20 or older. Additionally, when
students left a STEM field, a higher percentage of younger
students changed to a non-STEM field while a higher
percentage of older students left university without any
degree [28].

B. Statistical analysis
Because of the nested nature of our student data (students
clustered within lecture sections), multilevel modeling was
used to determine demographic differences in performance
outcomes controlling for ACT math, age, and the lecture
section as given by
Grade,j =700 + M()j =+ ylo(CWC ACTU)

+ 720(CWC Age; j) + 730(Gender;;)

+ 740(URM;;) + y50(FGy;)

+ ]/60(Citizen,’j) + rl-j, (1)
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where subscript i refers to an individual student, and
subscript j refers to their lecture section. Grade;; refers
to an individual student’s grade, y is the overall intercept
or grand mean when all predictors are zero, and u;
accounts for the random effect of lecture section: it is
the group-level random error of the mean of group j from
the grand mean, and this can account for variations by
section such as time of day, lecturer, scheduling priority
given to different groups, cohorts of students in programs,
etc. The r;; term indicates the student-level random error
that is not explained by the model. Each y term indicates the
regression coefficient between its predictor and the out-
come. ACT math score and age were mean-centered within
cluster (CWC). Thus, CWC ACT;; describes how many
points a given student earned above or below the mean
score within that student’s course section. For each cat-
egorical demographic variable, the reference group was
chosen as the majority value; for gender, male students are
the reference group. For underrepresented minority status
(URM), nonminority students are the reference group. For
first-generation status (FG), non-first-generation students
are the reference group, and for citizen status (Citizen),
domestic students are the reference group. Both random
intercept models and random slope models were tested, but
there were no appreciable differences between the estimates
in the two models as measured by the Akaike information
criterion (AIC), so random intercept models were used. In
this paper we have chosen to model the effects of lecture
section, which can include factors such as mean ACT, mean
age, time of day, and instructor, as a random effect; we are
not studying any potential systematic or casual effects of
such factors in this paper.

In addition to modeling the grade as an outcome, we will
also model binary outcomes such as the probability of
receiving a DFW (grade of D, fail, or withdraw), the
probability of receiving an A in the course, or “retention” to
the second course in the introductory sequence. Retention
is calculated only for those students majoring in programs
(while enrolled in the course) requiring the second physics
course in the sequence and is defined as enrolling in the
second course within one year from the last time the student
took the first course (note that some students, ~5% for the
algebra-based students and ~10% for the calculus-based
students, took the first course more than once). For
example, if the last time the student took the first course
was in Autumn of 2015, then if they enrolled in the second
course in Spring 2016, Summer 2016 or Autumn 2016,
they were considered retained.

These outcomes allow us to gain more insight beyond
mean scores and into information about the grade distri-
butions. Such grades are also important outcomes for
students, who need to either pass the course or receive a
high grade in the course in order to enter into subsequent
competitive programs such as medical school or an
engineering major. For these binary outcomes, the

following multilevel (i.e., levels of clustering) logistic
regression model was used:

logit(p(DFW;;)) = 79 + tg; + 71o(CWC ACT;;)
+ 720(CWC Age;;) + 730(Gender;;)
+ 740(URM;;) + 750(FG;;)
+ 760(Citizen;,), (2)

where given a probability p of an outcome, logit(p) =
log[p/(1 = p)], or

1

_ —1 _
p = logic” (p) = 1= 3)

We also examined interactions between demographic
group and ACT score in Sec. III B 2. To determine, for
example, whether there was significant interaction between
gender and ACT score, we implement the following model:

Grade;; = ygo + ug; +710(CWC ACT};)
+ 720(CWC Age;;) + y30(Gender;;)
+ 720(URM;;) + 750(FGy;) + r60(Citizen;;)
+ ]/70(CWC ACT”) (Genderl‘j) =+ rl-j. (4)

When interpreting the interaction term estimates, it is
important to remember that the ACT score is mean
centered, so the sign of the interaction effect changes from
above to below the ACT mean. Only the demographic
groups with statistically significant interaction terms are
reported, and these models all had significantly better AIC
than the same model without the interaction term.

Finally, when investigating demographic differences in
performance in various components of the course grade in
Sec. II C, multilevel modeling was used to account for
student level factors and clustering within lecture sections.
Using gender as the demographic factor, an example model
equation using both gender and ACT to predict, say,
homework grade was

HW,; = yoo + ug; +710(CWCACT;;)
+ 720(Gender;;) + ry; (5)

Throughout analysis in each section, we use Nakagawa
and Schielzeth’s method for finding R?> for multilevel
models [29]. Since the goal is to quantify the total
amount of variance explained by each model, we use the
conditional R?, denoted by RoGLmm(c)» Which provides the
proportion of variance explained by both the random and
fixed factors.
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III. RESULTS

A. Mean demographic differences in performance

The descriptive table of mean ACT math scores and
grade outcomes by demographics in Table I addresses our
first research question and provides a general characteri-
zation of our local context. Overall, we find no significant
difference in mean grade between male and female students
in both algebra-based and calculus-based courses (however,
we do find an important interaction with ACT score, as
discussed below). This finding is consistent with the
findings discussed in the introduction, namely that gender
differences are varied but relatively small. Note also that no
significant mean grade difference exists, even though there
is a small but significant difference in ACT scores, with
males scoring about 0.15 SD higher. In the algebra-based
course, males had significantly higher DFW rates (18.7%)
than females (14.6%), but males also received A’s at a
higher rate (36%) than female students (33.4%), indicating
that males have a broader, flatter grade distribution. This
difference in grade distribution was not observed in the
calculus-based course.

Also consistent with prior literature, URM students and
FG students receive significantly lower grades than their
non-URM and non-FG counterparts, with mean differences
of approximately 0.5 and 0.3 grade points, respectively.
This translates to about 0.4 and 0.3 standard deviations.
URM and FG students also have higher DFW rates, lower
retention, and receive fewer A’s than non-URM and non-
FG students. However, it is also important to note
differences in ACT score among these groups: URMs
and first-generation students have scores about 0.7 standard
deviations below their comparison groups. Therefore, it
will be important to account for ACT score when consid-
ering the causes for demographic differences, as we will do
in the next section.

There are some significant differences in retention rates
among some of the demographic groups. URMs have about
10% lower retention in both courses, and FG students are
about 8% lower only in the calculus-based course. Perhaps
surprisingly, we found no significant difference in retention
rates between men and women. The overall retention rates
are of concern, especially for the calculus-based course,
which is at about 70%. These rates seem to be low, though
we do not have comparative data. What is an “acceptable”
rate is not clear and should be subject to further inquiry, but
beyond the scope of this paper. Of special concern is the
very low rates of retention for students with no standardized
test scores reported, which are typically students who have
transferred from other institutions.

Statistically significant but relatively small differences in
age exist between gender, URM status, first-generation
status, and citizenship status groups. The only exception is
the age difference between the students with and without an
SAT or ACT score reported. This difference highlights the

existence of a possibly underserved population of older
students, who on average are scoring 0.3-0.4 grade points
lower than the rest of the population. While this group is not
part of the current focus of this paper, we speculate that age
may act as another indicator for early (i.e., high school)
preparation for the calculus-based introductory physics
course. As most students take this course as a prerequisite
for engineering requirements, students need to take this
course early in their college careers. Thus, the younger the
students are at the time of taking the course, the more likely
they had the necessary preparation in high school. In the
algebra-based course, the effect of age is less clear, but it may
also be due to high school preparation. Many students enroll
in this course later in their career since it is not a prerequisite
for most of their major programs. Subsequently, students
often put off taking the course until the end of students’
college career, which is more temporally distant than their
math and possibly physics preparation they completed in
high school or their first few semesters in college.

Clear differences in performance between foreign and
domestic students were found; as seen in Table I, foreign
students earn a higher mean grade, lower DFW rates, and
more A’s than domestic students. In the algebra-based
course, foreign students have a 15% lower retention rate,
though it is not clear why.

Finally, about 10% of the population did not report ACT
or SAT scores. This subpopulation is not proportionally
representative of this whole population of students (6% and
7% more men, 13% and 12% fewer non-URMSs, 6% and
3% fewer first generation students, and 20% and 19% more
foreign students in the algebra- and calculus-based courses,
respectively), and beyond the possibility that many are
transfer students who tend to not report scores, it is not clear
why they do not report standardized test scores. Certainly,
this subpopulation warrants further investigation but that is
beyond the scope of this paper.

B. Differences in grades controlling for
ACT math, age, and lecture section

The summary table of descriptive statistics indicates
some important differences in mean grades by demographic
group, but there are also differences in mean ACT scores
and ages. To what extent do differences in ACT scores and
age “account” for differences in the grades? Essentially this
is our second research question. To address this, we first
look at the main effects of demographic group. Since we
find, as others have found, that ACT is strongly associated
with grade, we also explore the question as to whether there
are any interaction effects between demographic group and
ACT score.

1. Main effects of demographic group

Table I displays main-effect estimates of demographic
differences in grade, DFW, A, and retention rates, using
the models represented by Eqgs. (1) and (2). These models
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control for ACT score, age, and lecture section. The results
indicate that ACT math, age, URM, first-generation status,
and citizen status are all significant predictors of grade in
the calculus-based course, and all but citizenship status are
significant predictors of grade in the algebra-based course.

As expected, the model estimates that ACT score has a
strong association with grade: increasing the ACT score by
one point (about 0.25 SD) increases the grade by about 0.13
grade points, or about 0.1 SD. Age has a much weaker but
negative effect on grades: increasing age by one year
(0.5 SD) decreases the grade by 0.05 grade points. The
effect of gender on grade is small or nonsignificant. If
anything, controlling for ACT reveals that women have
slightly higher grades (0.05) than men in the algebra-based
course.

The estimated effect of URM and FG status on grades is
also fairly small, of order 0.1 grade points. Notice that this
magnitude of difference for URM and FG is smaller than
the 0.3-0.5 grade point differences found in Table I. Thus,
controlling for ACT scores substantially reduces these
demographic differences, though they are still not zero:
something more than just differences in ACT scores is
causing differences in grades for URM and FG students.
Finally, the model indicates that, after controlling for ACT,
international students (who score almost 1 SD higher in
ACT math) score 0.14 grade points higher than domestic
students in the calculus-based course, but there is no
difference in the algebra—based course.

One can determine the grade outcome probabilities by
using Egs. (2) and (3) and the logistic regression estimates in
Table II. The logistic regression for the probability of
receiving an A decreases significantly for URM and FG
status but not for gender in both courses. For example, mean-
aged and mean-ACT white male, non-first-generation stu-
dents have a 0.31 and 0.17 probability of receiving an A in
the algebra-based and calculus-based courses, respectively,
while similar URM students have a 0.26 and 0.12 probability
and similar FG students have a probability of 0.25 and 0.14
for receiving an A in those respective courses. In that same
group of students, international students have a probability
of 0.23 for receiving an A compared to domestic students in
the calculus-based course.

Table II indicates a pattern for DFW probabilities that is
consistent with the patterns for receiving an A. For mean-
aged and mean-ACT white male, non-first-generation
students, the probability of receiving a DFW is 0.10 and
0.12 for algebra-based and calculus-based students. For
women it is 0.07 and 0.11, for URM it is 0.12 (not
significant) and 0.17 and for FG it is 0.13 and 0.15, for
algebra-based and calculus-based students, respectively.

The retention probabilities are also dependent on ACT
scores, as shown in Table II and perhaps as expected. Even
accounting for ACT score, FG students are still retained at a
lower rate in the calculus-based course, and international
(noncitizen) students are much less likely to be retained in

TABLE II. Nonstandardized multilevel model fixed effects
estimates with standard errors reported in parentheses. A sig-
nificance of p < 0.05 is indicated by *. The random effect of
lecture section and its standard deviation are reported in italics.

Predictor of grade Algebra based Calculus based

Intercept 2.81 (0.03)* 2.56 (0.02)*
CWC ACT math 0.131 (0.003)* 0.127 (0.003)*
CWC age —0.05(0.01)* —0.03 (0.01)*
Gender 0.05 (0.02)* 0.04 (0.02)
URM —0.11(0.03)* —0.19 (0.04)*
First generation status —0.14 (0.03)* —0.13(0.03)*
Citizen status —0.03 (0.04) 0.14 (0.03)*
Lecture section SD = 0.17 SD =0.11
Student-level residual SD =0.91 SD =0.93
RoGrvM(e) 0.28 0.21
Predictor of DFW

Intercept —2.20(0.08)* —1.95(0.07)*
CWC ACT math —0.26 (0.01)* —0.23(0.01)*
CWC Age 0.12 (0.03)* 0.11 (0.02)*
Gender —0.37(0.08)* —0.19 (0.07)*
URM 0.18 (0.11) 0.39 (0.10)*
First generation status 0.33 (0.09)* 0.23 (0.08)*
Citizen status —0.04 (0.17) —0.10 (0.13)
Lecture section SD = 0.38 SD = 0.39
RoGLvM(e) 0.29 0.21
Predictor of A

Intercept —0.78 (0.07)* —1.61 (0.06)*
CWC ACT math 0.28 (0.01)* 0.29 (0.01)*
CWC age —0.04 (0.02) 0.02 (0.02)
Gender —0.05 (0.06) 0.06 (0.07)
URM —0.26 (0.10)* —0.36 (0.12)*
First generation status —0.33(0.07)* —0.24 (0.08)*
Citizen status —0.01(0.09) 0.42 (0.08)*
Lecture section SD = 0.35 SD =0.32
Rogimm(e) 0.31 0.26
Predictor of retention

Intercept 1.51 (0.13)* 0.93 (0.07)*
CWC ACT math 0.11 (0.01)* 0.11 (0.01)*
CWC age —0.18 (0.04)* —0.03 (0.03)
Gender —0.09 (0.10) 0.05 (0.08)
URM —0.21(0.14) —0.12(0.11)
First generation status 0.10 (0.12) —0.24 (0.09)*
Citizen status —0.86 (0.20)* 0.08 (0.13)
Lecture section SD = 0.68 SD = 0.42
RoGivm(e) 0.19 0.09

the algebra-based course, though it is not clear why this
would be the case.

In sum, we still see many demographic differences in
grade outcomes, and when “controlling” for ACT scores,
age, and lecture section, these differences are reduced for
URM, FG and citizenship status, and are slightly increased
in favor of women. Here, it is important to keep in mind
that distributions of ACT scores differ by population, as
seen for example in Table L.
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TABLE III.

Multilevel model results with significant interaction terms. Nonstandardized fixed effects estimates are reported with

standard errors given in parentheses. A significance of p < 0.05 is indicated by *. The random effect of lecture section and its standard

deviation are reported in italics.

Algebra-based course

Calculus-based course

Predictor of grade Gender x ACT math

Citizen status x ACT math

Gender x ACT math URM status x ACT math

Intercept 2.81 (0.03)* 2.56 (0.02)* 2.56 (0.02)*
CWC ACT math 0.134 (0.003)* 0.122 (0.004)* 0.124 (0.003)*
CWC age —0.05 (0.01)* —0.03 (0.01)* —0.03 (0.01)*
Gender 0.05 (0.02)* 0.04 (0.02) 0.04 (0.02)
URM —0.12 (0.04)* —0.18 (0.04)* —0.15 (0.04)*
First generation status —0.14 (0.03)* —0.13(0.03)* —0.13 (0.03)*
Citizen status 0.05 (0.05) 0.14 (0.03)* 0.15 (0.03)*
Interaction term —0.03 (0.01)* 0.023 (0.007)* 0.03 (0.01)*
Lecture section SD =0.17 SD =0.11 SD =0.11
Student-level residual SD =091 SD =0.93 SD =0.93
RoGLvMm(e) 0.29 0.21 0.21
Predictor of DFW

Intercept —2.14(0.09)* —1.93(0.07)*

CWC ACT math —0.23(0.02)* —0.22 (0.01)*

CWC age 0.12 (0.03)* 0.11 (0.02)*

Gender —0.50(0.09)* —0.31 (0.09)*

URM 0.17 (0.11) 0.38 (0.10)*

First generation status 0.32 (0.09)* 0.23 (0.08)*

Citizen status —0.04 (0.17) —0.10(0.13)

Interaction term —0.06 (0.02)* —0.07 (0.03)*

Lecture section SD = 0.39 SD = 0.39

RoGLMM(e) 0.30 0.22

Predictor of A

Intercept —0.74 (0.07)* —1.56 (0.06)* —1.60 (0.06)*
CWC ACT math 0.25 (0.01)* 0.26 (0.01)* 0.28 (0.01)*
CWC age —0.05 (0.02)* 0.04 (0.02) 0.02 (0.02)
Gender —0.12 (0.06)* —0.16 (0.08) 0.06 (0.07)
URM —0.25 (0.1)* —0.34 (0.12)* —0.42 (0.13)*
First generation status —0.33(0.07)* —0.24 (0.08)* —0.24 (0.08)*
Citizen status —0.02 (0.09) 0.42 (0.08)* 0.43 (0.08)*
Interaction term 0.06 (0.02)* 0.13 (0.02)* 0.10 (0.05)*
Lecture section SD = 0.36 SD =0.32 SD =0.32
RoGLvM(e) 0.31 0.27 0.27

2. Demographic effects conditional on ACT score

Because the grades depend so strongly on ACT score, it
is natural to investigate whether the effects of demographic
group are conditional on ACT score, or in other words, if
there are interactions between demographic groups and
ACT score when predicting grade outcomes. We modeled
only one interaction at a time, using Eq. (3) for each
demographic group.

Table III presents results for models with significant
interaction terms. For the algebra-based course, there were
no interactions with URM or FG status, but as seen in
Fig. 1, there is a small crossover interaction of gender and
ACT math score on the probability of receiving an A. For
students with below average ACT math scores, males were
more likely to receive an A. For students with above
average ACT math scores, females were more likely to

receive an A. Further, male students were more likely
than female students to receive a DFW for all but the
lowest ACT math scores. There was also a small negative
interaction with international status and grade for the
algebra-based course: international students with higher
ACT scores tended to have slightly lower grades than
domestic students and those with lower ACT scores tended
to have slightly higher grades than domestic students.
For the calculus-based course, there were significant
interactions for gender and URM status with ACT score.
As seen in Fig. 2, there is a small crossover interaction
effect of gender on the effect of ACT math on course grade.
One of the most striking interaction results here is the
interaction of URM status and ACT math on course grade.
Only the highest ACT math score URM students receive
the same grade as their non-URM counterparts; the
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FIG. 1. Algebra-based course plots of significant interactions; probability of receiving an A vs group-centered ACT math score by
gender and probability of receiving DFW vs group-centered ACT math score by gender.

majority of URM students earn lower course grades than C. Demographic differences in grade components
non-URM students with the same ACT math scores. The

When examining grade outcomes in Table I, we observe
lower the ACT math score, the more the URM grade gap

gaps between demographic groups. However, as mentioned

widens, in the introduction, the gaps between demographic groups
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FIG. 2. Calculus-based course plots of significant interactions; probability of receiving a DFW vs group-centered ACT math score by
gender, course GPA vs group-centered ACT math score by gender, probability of receiving an A vs group-centered ACT math score by
URM status, and course GPA vs group-centered ACT Math score by URM status.
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may depend on the components that comprise the grade
[14]. To determine whether we could confirm these find-
ings in our context and to further understand demographic
differences in course performance, we investigated the
extent to which all the components of grade: nonexam
components (lab grade, homework scores) and test or exam
components (in-class formal quiz, midterm exam and final
exam scores) depended on demographic group and ACT
score. We report the full results for all components in
Tables X and XI in the Appendix, and a more summarized

compact form for the total of the exam and nonexam
components in Table IV.

Overall, for gender we found trends similar to previous
findings: female students score higher on nonexam com-
ponents than male students and about the same or slightly
worse than male students on exam or test components. For
example, in the calculus-based course there is a cross-over
effect; women on average scored 0.24 standard deviations
higher than male students on the nonexam components
(labs, homework, and online essential skills practice

TABLEIV. Nonstandardized multilevel model fixed effects estimates with standard errors reported in parentheses.
A significance of p < 0.05 is indicated by *. The random effect of lecture section and the student-level residual
standard deviations are reported in italics. The maximum score on components is 100 (percent), and units of all

numbers are in these units.

Exam components

Nonexam components

Predictor: Algebra-based course M =176.0 SD =175 M =930 SD =140
Gender byender = —0.04 (0.65) Dyender = 4.26 (0.51)*
SD. = 2.05 SD). = 1.42
SDy.. = 17.37 SDg g = 13.76

Gender + Math ACT

URM

URM + Math ACT

FG

FG + Math ACT

RzGLMM(c) =0.014

byender = 0.34(0.55)
byt = 223 (0.07)*
SDec = 2.00
SDSLR = 1404
chLMM(c) =0.291

SDje. = 2.16
SDSLR == 1716
RZGLMM(L‘) = 0042

buga = —2.63 (0.86)
byt = 2.18 (0.07)*
SDy.. = 2.06
SDSLR - 1401
Rocrvm(e) = 0.296

by = —5.87 (0.75)*
SDy, = 2.05
SDg g = 17.20
Rogmm(e) = 0.034

brg = —2.40 (0.65)
byah = 2-18 (0.07)*
SDye = 1.99
SDSLR == 1400
Rycrmm(e) = 0.295

RogLvm(e) = 0.033

Daender = 4.08 (0.51)*
batan = 0.61 (0.06)*
SDSLR = 123
SDSLR = 1290
Rycrvm(e) = 0.060

burs = —2.95 (0.80)*
SDy. = 1.73
SDSLR - 1395
Rogiam(e) = 0.020

bytan = 0.54 (0.07)*
SDlec = 147
SDSLR = 1308
RZGLMM(L‘) == 0043

by = —1.23 (0.60)*
SDy.. — 1.66
SDg g = 13.91
Rogimm(e) = 0.015

brg = —0.72(0.61)
byan = 0.56 (0.06)*
SD.. = 1.43
SDSLR - 1303
RogLmm(e) = 0.041

Exam components

Nonexam COIl’lpOIlel’ltS

Predictor: Calculus-based course M =720 SD =175 M =914 SD =13.6
Gender Doenger = —2.14 (0.66)* Doender = 3.28 (0.51)*
SD.. =3.73 SDy.. = 1.77
SDSLR — 1716 SDSLR — 1341

RycLmm(e) = 0.048

RogLam(e) = 0.028
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TABLE 1V. (Continued)

Predictor: Calculus-based course

Exam components

Nonexam COl’IlpOIleIl[S

M =720

SD =175

M =914

Gender+Math ACT

URM

URM + Math ACT

FG

FG + Math ACT

byender = —0.96 (0.48)*
by, — 2.31 (0.08)
SDy. = 3.53
SDg g — 14.54
Rogiam(e) = 0.252

bury = —9.32 (0.97)*
SDy.. = 3.69
SDSLR - 1691
RogLym(e) = 0.068

burw = —3.75 (0.91)
by = 2.26 (0.08)*
SDy.. = 3.52
SDg g = 14.53
Rogrvm(e) = 0.259

bpg = —5.95 (0.69)*
SDye. =3.73
SDSLR — 1702
RzGLMM(c) = 0.063

beg = —2.15 (0.64)
by, = 2.27 (0.08)*
SDy. = 3.53
SDSLR - 1451
Rocimm(e) = 0256

byender = 3.36 (0.50)*
by, — 0.58 (0.07)
SDy. = 1.57
SDg g — 12.64
RogLam(e) = 0.046

bugs = —2.37 (0.77)
SDy. — 1.62
SDSLR - 1347
RogLam(e) = 0.017

burw = —1.28 (0.80)
bagan = 0.54 (0.07)*
SD,.. — 1.48
SDg g = 12.81
RycLmm(e) = 0.034

brg = —2.78 (0.55)*

SD. = 1.62
SDSLR = 1342
RZGLMM(C) =0.021
brg = —1.79 (0.56)*
bytas = 0.51 (0.07)*
SDleC - 140
SDSLR - 1269

RocLmm(e) = 0.034

SD =136

assignments). However, for the exam components (quizzes,
midterm 1, midterm 2, and final exams, respectively),
women scored 0.12 SD lower than men. Note that when
controlling for ACT score, these gaps remain.

Further, when considering differences between gender, it
is important to note that ACT scores only accounted for
about 2% of the variance in scores on nonexam components
but a much larger portion—about 20%—of the variance for
exam components. This change in variance explained can
be determined by examining the Rgpmwm(c) for each model.

Examination of Table IV (and Tables X and XI in the
Appendix) reveals that both URM and FG status students
tended to have lower scores on both exam and nonexam
components, though the biggest differences were typically
with the exam scores. Controlling for ACT score appreci-
ably decreased the differences, especially for exam com-
ponents. However, there was still a noticeable difference
between nonexam and exam grade components: URM and
FG students scored significantly worse on the exam
components. Further, similar to the case for gender, for
URM and FG students ACT scores only accounted for
1%—2% of the variance for nonexam components, but
typically accounted for about 20% for exam components.

Note also that, comparing our results to the results from
Salehi et al. [30] for final exam scores in physics courses at

a large midwestern public research university (similar to
OSU), we found most of our results to be similar to theirs,
and a couple that appear to be different. The differences,
though statistically significant, are not large (in effect size)
and may simply reflect relatively minor variations in local
contexts. It is worth noting that one clear agreement
between our study and Salehi et al. was that the ACT
scores were moderately well associated with final exams
scores: ACT scores explained about 13%-15% of the
variance in final exam scores in their dataset.

In sum, different demographic groups perform differently
on exam vs nonexam grade components, with minority
students typically performing worse on exam components.
Further, the exam components are moderately associated
with ACT scores, but the nonexam components are not.

D. Grade outcomes using different grading models

Since demographic performance gaps depend on the
grade component, it is reasonable to consider that changing
the grade component weights could affect different dem-
ographic groups in different ways. Specifically, reducing
the weight of exam components could differentially benefit
women, URM, and FG students. Put another way, the
current weighting may be disadvantaging these groups.
Further, the common weighting of components strongly
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favors exam components, and these components are more
strongly correlated with ACT score than nonexam compo-
nents. Thus, it follows that reducing the weighting of exam
components could also reduce the correlation of final grade
with ACT scores. One caveat to this “thought experiment”
is that shifting the grade weights could significantly
influence student behavior and performance as well as
instructor behavior and construction of the course compo-
nents themselves. We will discuss this issue more in
Secs. IV.C and IV. D, but for now we will assume that,
with relatively small shifts in the weights, there will be
relatively small shifts in behavior and even smaller relative
differences in behavior among demographic groups.

In order to determine what could have been the effect of a
modification of grade weights on the grade outcomes on
women, URM, and FG students, we use the original student
grade component data to counterfactually model a decrease
in the exam component weight. Specifically, we compare
four different grading models: two grade components
weighting (original weight vs lower exam score weight)
crossed with two different mean course grades (original
mean grade vs higher mean grade). The four models are
outlined in Table V. Model 0 is the actual original,
unmodified grade component data. Model III changes
the grade component weighting according to Table VI:
the weight of exam components is reduced from 70% to
50% with a corresponding increase in the non-exam
components. We chose these weightings as a relatively
small and potentially feasible (and departmentally accept-
able) change from the original weighting. Since students
typically have higher scores in non-exam components (see
Table IV and Tables X and XI in the Appendix) changing
the weights in model III also inadvertently increases the
mean grade for the course. In order to compare different
weightings but with identical mean grades, we introduced
model 1 which linearly adjusts all of the grade cutoffs
[translating total points (such as 85%) to grade points (such
as 3.3)] such that the mean grade is the same as the original
mean. Finally, to compare to a simple increase in mean
grades, we introduced model II which maintains the
original grade component weighting, but linearly adjusts
all of the grade cutoffs such that the mean grade is the same
as model III.

1. Comparison of mean grade outcomes

The results are presented in Table VII. Note that the
model 0 outcomes are slightly different than the outcomes
in Table I. This is because Table VII represents only a

TABLE V. The four grading models.

Original weighting Modified weighting

Original mean grade 0 I
Higher mean grade II I

subset (2 years) of the data in Table I (6 years), since we
only were able to obtain grade component data for this
subset. Also note that for whole-course mean grades, the
difference between the original mean and “higher mean
grade” was +0.23 grade points and the median changed
from a B to a B+ for the algebra-based course, and for
the calculus-based course, the overall course mean shifted
by +0.28 grade points, and the median remained constant
at a B.

There are several noteworthy outcomes from the grade
weight models. Most notably, as expected from the results
of Table IV, the four grading models have different grade
outcomes for different demographic groups. Let us con-
sider the mean GPA outcomes first. Figure 3 graphically
presents differences in mean grades between a given
demographic group and its comparison group. The error
bars were calculated using nonparametric bootstrapping.

Overall, in most cases women, URMs, FGs, and foreign
students differentially benefit from the modified grade
weighting, namely, models I and III. For example, for
the calculus-based course, In model O women have a 0.09
lower mean grade than men while in models I and III they
have the same mean as men. Further, in model 0 URMs
have a 0.60 lower mean grade than non-URMSs, but in
model III this difference is decreased to 0.49. These
differences between models are somewhat small in size
but statistically significant (p < 0.05).

Table VII also shows that the DF and A rates also vary
significantly among models. This is to be expected since
the weighting to nonexam components or higher mean-
grade shift both increased grades. What is more interesting
is that the relative differences in the DF and A rates among
the models and demographic groups are dramatic in some
cases. The relative percent changes compared to model 0
can be difficult to discern in Table VII, so we produced
Figs. 4 and 5 to make these changes more visible. Figure 4
presents the decrease in percentage of D’s or F’s given to
students compared to model 0. For example, in the
calculus-based course, about 22% fewer females, compared

TABLE VI. Original percentage of grade components used to
calculate the grades students received vs modified percentage of
grade components used as a comparison model.

Grade Original percentage Modified percentage
component of grade of grade
Online homework 15 25
Essential skills 1 5
Lab 14 20
Quizzes 15 7.5
Midterm 1 15 7.5
Midterm 2 15 10
Final Exam 25 25
Total exam 70 50
component
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FIG. 3. Demographic differences in grade on a 4.0 scale for

each model presented in Table V. The four grading models.
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FIG. 4. Relative percent differences in D’s and F’s between
model 0 and models I, II, or III, by demographic group and
course. For example, if model I were used instead of model 0 in
the algebra-based course, about 2% fewer males and about 25%
fewer females would have received a D or F.

to 6% fewer males, would have received a D or F grade if
model I were used, compared to what they actually received
in model 0. For model I there is also an 18% drop in DF’s
for URMs compared to an 8% drop for non-URMs
compared to model 0. For model III, there is 42% drop
in DFs for women and 26% drop for men compared to
model 0. Note that there are no differential DF rate effects
for FG versus nonFG students.

There are corresponding differential benefits from the
grade reweighting for women and URMS in receiving an A
as well. For example, in model III, 50% more women and
35% more men would receive an A compared to model 0,
and a dramatic 75% more URMs compared to 40% more
non-URMs would receive an A. The increase in A’s in
models II and III is understandable given the mean grade
is higher for these two models. Note that Model I has

Algebra-based Calculus-based
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O | e m———
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100 B Male
M Female
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_ i || M nonURM
0 M FirstGen

& NonFirstGen
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T :
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Gender URM FirstGenCitizen ~Gender URM FirstGenCitizen
Demographic
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FIG.5. Relative percent differences in A’s between model 0 and
models I, II, or III, by demographic group and course. For
example, if model II were used instead of model O in the algebra-
based course, about 50% more URMs and about 30% more non-
URMS would have received an A.

fewer A’s and fewer DFs, indicating a more narrow grade
distribution for this model.

Finally, the grade-weighting models also show that
students who are noncitizens tend to fare differentially
worse in the modified grade weight. This is largely due to
the fact that noncitizen students tend to score higher on
exam grade components.

2. Grade weight models: demographic differences
and ACT scores

Similar to Sec. III B 1 we can also model demographic
differences for the four grade models including effects of
ACT scores and random effects of lecture sections. We
have computed such models and found two main results.
The first is that, except for the estimates of the coefficient
for the ACT scores, there were no statistically significant
differences in the estimates of the regression coefficients
compared to those found in Table II.

The second result, as summarized in Table VIII, is that
the modified grade weight models reduced the dependency
of grade on ACT score. Specifically, the ACT coefficient
for the standard grade weight (model 0 and model II) was
about 0.13 grade points per ACT point, while for the
modified weighting (Models I and III) the ACT coefficient
was less than 0.11 grade points for the ACT point.
Mathematically speaking, this difference in slope translates
to a difference in grade performance among demographic
groups. For example, for the calculus-based course URMs
tend to score 2.5 ACT points lower than non-URMs (see
Table I). The change in ACT coefficient for model 0
(bact ~ 0.13) to model I or III (bpcr ~ 0.10) results in an
average reduction of the gap between URMs and non-
URMs by about 0.07 grade points.
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TABLE VIIL

Conditional R? and regression coefficients of ACT Math using models outlined in Egs. (1) and (2) with ACT score and

without ACT score as a predictor, both times including demographic factors (DEMO = gender, URM, FG, Citizen status, and age) as
predictors and lecture section as random effect). The regression coefficients are not normalized, and the R? values reported are
conditional R?, which describes the proportion of variance explained by both the fixed and random factors.

Algebra based

Predictor of grade Model 0 Model 1 Model I1 Model III

DEMO RoGrmm(e) 0.14 0.13 0.13 0.12

DEMO + Math ACT bMath 0.135 (0.005)* 0.111 (0.005)* 0.127 (0.005)* 0.107 (0.005)*
RocLmm(e) 0.31 0.25 0.20 0.17

Predictor of DF

DEMO RoGLmm(e) 0.14 0.14 0.12 0.12

DEMO + Math ACT bMath —0.30 (0.02)* —0.23 (0.02)* —0.29 (0.02)* —0.20 (0.02)*
RoGLmm(e) 0.36 0.28 0.33 0.23

Predictor of A

DEMO + Math ACT DMath 0.27 (0.02)* 0.25 (0.02)* 0.27 (0.02)* 0.24 (0.02)*
RoGLmm(e) 0.29 0.25 0.28 0.25

Calculus based

Predictor of grade Model 0 Model I Model II Model 1T

DEMO RoGrmm(e) 0.10 0.09 0.09 0.09

DEMO + Math ACT DMath 0.129 (0.006)* 0.106 (0.005)* 0.122 (0.006)* 0.103 (0.005)*
RZGLMM(C) 0.22 0.18 0.20 0.17

Predictor of DF

DEMO RoGrmm(e) 0.19 0.17 0.17 0.17

DEMO + Math ACT bMath —0.25 (0.02)* —0.21 (0.02)* —0.26 (0.02)* —0.21 (0.02)*
RoGmm(e) 0.30 0.26 0.30 0.26

Predictor of A

DEMO RoGLmm(e) 0.10 0.12 0.11 0.08

DEMO + Math ACT DMath 0.29 (0.02)* 0.29 (0.02)* 0.27 (0.02)* 0.24 (0.02)*
RoGrmm(e) 0.26 0.26 0.24 0.20

Another way to consider the diminished influence of
ACT score on the modified grade weight is to compare
(subtract) the R-squared values for the models including
versus not including the ACT score as a predictor. For the
calculus-based course, the R-squared value attributable to
the ACT score for models I and IIT (~0.08) is lower than
that for model O (~0.12). This diminished influence of ACT
score is expected, since the modified grade weight more
strongly weights grade components that are not strongly
correlated with ACT score.

IV. CONCLUSIONS AND DISCUSSION

Let us conclude by first summarizing our findings in
terms of grades, grade components, and grade models, then
we will discuss broader implications about ACT scores,
grades, and grading policies.

A. Grades

We have investigated the grades for over 20 000 students
in algebra-based and calculus-based introductory physics
courses at our large, public research university and found

that the mean grade differences between gender, URM, and
FG status are consistent with findings in previous studies:
there are small and nonsignificant differences between
women and men (<0.03 SD) and significantly lower mean
grades for URM students (~0.4 SD) and FG students
(~0.3 SD). It is important to note, however, that there was
a gender by ACT score interaction when predicting grade
such that even though the mean grades did not vary by gender,
women with high ACT scores had significantly higher grades
than men, and women with low ACT had significantly lower
grades than men. There was URM status by ACT score
interaction for grades as well. We also found that significantly
higher grades for foreign vs domestic students (~0.4 SD).
There were no significant differences in retention between
genders, but retention of URM students was about 10 per-
centage points lower than non-URM students in both courses,
and FG student retention was also about 10 percentage points
lower in the calculus-based course.

We found, as expected, that ACT scores are moderately
strongly correlated with grades and that there are
differences in mean scores, with women scoring about
0.1 SD lower, URM students scoring about 0.7 SD lower,
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and FG students scoring about 0.6 SD lower. Further,
we found that age is negatively correlated with grade and
that men, URM students, and non-FG students tend to be
0.2-0.3 years older.

When ACT score, age, and the random effects of lecture
section were included in multilevel model predicting grade,
we found that URM, FG, and citizenship status remain
significant factors, though when controlling for ACT score
and age, the grade gap for URM and FG students is cut
roughly in half. It should also be noted that, even
accounting for ACT score, URM, and FG students had
significantly higher DFW rates. Further, there were some
notable interactions; for example, there was a small
interaction between gender and ACT score in predicting
course grade with women with high ACT scores achieving
higher grades than men with high ACT scores, and there
was in interaction between URM status and ACT scores,
with the grade gap at zero for the highest ACT scores, but
widening as ACT score decreased.

It is important to keep in mind that this model is additive
in intersectionality: for example, if a student is both a URM
and FG, then each effect is added separately, compounding
the gap.

B. Grade components

There were two important findings for grade compo-
nents. First, we replicated and confirmed previous findings
that women tend to do better than men on nonexam
components (40.3 SD) and the same or worse on exam
components (—0.1 SD). In contrast to previous results, we
also find a similar differential bias between grade compo-
nents for URM and FG students: The gap tend to be smaller
for nonexam components (—0.1 to —0.2 SD) than for exam
components (—0.3 to —0.5 SD).

The second important result, consistent with previous
findings as well, is that exam components tend to be more
highly correlated with ACT scores than nonexam compo-
nents. In other words, ACT scores typically account for
about 20% of the variance of exam components but only
about 2% of the variance of nonexam components.

C. Grade models

Given that performance on exam vs nonexam grade
components varies by demographic group, it is possible
that changing the weighting of the exam components could
have differentially changed the mean grades for each
demographic group, and, with the simplifying assumption
that students and instructors would not have significantly
changed their performance with the different weighting,
this is indeed what we found. The reason for explicit
modeling was to provide insight into how large the
differences might be. The reduction in the exam component
weight did tend to differentially benefit the minority
demographic groups. For URM and FG students the mean
grade gap was closed by a fairly small amount (at most

0.1 grade points). For women, the gap was eliminated in the
calculus course, and for the algebra-based course, women
performed 0.1-0.2 grade points better than men. It is
interesting to note that from Table VIII and Fig. 3 that
“simply raising the mean grade” with no changes to the
grade weights (i.e., model II), does not help to close the gap
between demographic groups, though it does differentially
affect grade A rates.

In contrast to mean grade shifts, the relative changes in
the percent of demographic groups receiving a DF or A was
dramatic in some cases. For example, comparing model III
with model O (the actual model), 42% fewer women vs 26%
fewer men would have received a DF, and 75% more URM
students vs 40% more non-URM students would have
received an A.

An additional important outcome of the grade models
was that the dependence of final grade on ACT score
decreased when the weight of the exam components was
decreased. This follows naturally, since the exam compo-
nents were moderately corrected with ACT score while the
nonexam components were not.

As mentioned earlier, an important caveat to these results
is that a shift in the grade weights may also change student
behavior and performance, and this could modify the
results of the simple models used in this paper. But this
caveat does not invalidate the general point of the findings
in the paper, namely, that shifting grade weights may have a
significant impact on achieving grade equity, and thus must
be more explicitly considered. Further, whether or exactly
how student behavior and performance would change if
the weighting were changed is an empirical question that
clearly warrants further investigation. In fact, there are
credible reasons to believe that decreasing the exam
component grade weight could also facilitate more equit-
able student performance in addition to the purely math-
ematical shifts shown in this paper. For example, test
anxiety has been documented to influence exam perfor-
mance for women more than men in several STEM areas
[24], and decreasing the weight of exams has been shown
to reduce the gap between men and women in biology
classes [31-32].

Shifting grade weights may also prompt changes in
instructional materials and methods, such as the content
and nature of the newly weighted course components
themselves. This will be discussed more at the end of
the next section, which begins with a general discussion of
issues regarding ACT scores.

D. Commentary and implications
for grades and grading

ACT scores are often used by researchers as proxies for
preparation or ability. As such, they are used to “control”
for these student level characteristics. We use control in
quotation marks because it is important to keep in mind that
while it is an empirical fact that grades are correlated with
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ACT scores and distributions of ACT scores differ by
population, the extent to which this may, at least in part,
“explain” differences in grade depends on what is assumed
about what ACT scores and grades are measuring. We
found that “even after controlling for ACT scores” there
were differences for URM and FG students. One could ask
why there is a remaining difference, and that is an important
questions to ask, but the fact that “controlling” for ACT
scores reduces demographic differences—even if it reduced
the differences to zero—should only be considered as, at
best, a partial mitigation or explanation of the differences in
grades. Instead, the dependence itself of grades on ACT
scores could also be a symptom of more systemic problems
with our assessments and grading practices.

Yet ACT scores currently do empirically have predictive
power for physics grades. We emphasize here that grades
are correlated with ACT because the exam components—
and only exam components—are appreciably correlated
with ACT in our study. Consider Table IX, determined from
our dataset, which shows the correlations among exam
components, nonexam components, and ACT score. As
stated earlier, it is clear that ACT scores are correlated with
exam components and at best only weakly with non-exam
components. This is perhaps not surprising: ACT tests,
perhaps by design, are administered in a very similar format
and context to traditional physics tests or exams. They are
in sequestered, time limited venues, typically multiple
choice, and high stakes. This context is somewhat different
than the context for nonexam components, namely, home-
work and labs.

Table IX has one more important result to consider:
nonexam components are moderately to strongly correlated
with exam components. This implies that there is some set
of skills and knowledge measured by the nonexam com-
ponents that is independent of the ACT yet is directly
related to performance on the exams. Put another way, if
high performance on exams is something that is valued by
the instructor, then this valued attribute is at least partially
measured by the nonexam components of the course. In
fact, it measures this attribute better than ACT scores. We
performed a multiple regression on the data in Table IX
and found that nonexam scores accounted for about 30%
of the variance in exam scores, and ACT scores separately
account for only about 20% of the variance.

The moderately strong dependence of exam components
on ACT scores could be viewed as problematic: given that
there are concerns that using ACT scores for admission into

TABLE IX. Correlations for the calculus-based course. The
results are very similar for the non-calculus-based course.

ACT score Nonexam Comp
Exam components 0.46 0.61
Nonexam components 0.15 e

universities is contributing to the relatively low diversity of
students accepted to the extent that many institutions are
moving away from using ACT scores [33], are grades in
college courses simply doing the same thing with current
grading practices? This question is especially salient given
that students use grades to make decisions whether to stay
in STEM and oversubscribed STEM major programs use
minimum grades as filters into their programs (cf.
Ref. [20]). Is this at least partially equivalent to simply
using ACT scores as cutoffs? Put another way, it appears as
though at least to some extent traditional exams are filtering
out diversity like ACT scores are filtering out diversity.
From this perspective, exams and ACT score are two sides
of the same problematic issue: using traditional tests to
measure and award achievement.

The nonexam components, however, are worthy of more
consideration for at least three reasons. First, they have the
virtues of not depending on ACT score and having smaller
demographic biases, while still being strongly correlated
with exam scores. This suggests that the nonexam compo-
nents are measuring physics knowledge and skills as
typically assessed by exams, yet do not suffer from the
same demographic biases as the exam components. It is not
clear why different demographic differences occur in
exams vs nonexam components, though known effects
of stereotype threat and stress may be strong candidates. It
is certainly an interesting topic for further investigation.
Second, it is clear that successful completion of nonexam
components themselves, such as labs, homework, and in-
class group work, are highly valued by instructors. These
components are better suited for developing and assessing
different and perhaps more important attributes of students
valued by the physics community [34] that extend beyond
physics knowledge to scientific, communication, and
professional skills: working in groups, managing time,
consistent weekly work, handling more difficult problems
(that cannot be done in exam setting), using a variety of
resources, etc. Third, shifting grade weights to such
nonexam components may also send a positive message
to students about the importance of these attributes.

These are important arguments for reconsidering grade
weights and, by extension, grading practices in general.
More specifically, we see two interrelated issues here. The
first is that the instructor (or the entity responsible for
grading policy) must determine what is an acceptable mean
grade and grade distribution. A more detailed discussion of
this issue, such as why we use grade curving rather than
fixed standards, goes beyond the scope of this paper, but, as
mentioned in the introduction, students (and programs) use
grades to make choices about majors. There appears to be
differences among demographic groups in how grades are
interpreted, thus, the decision for an instructor to choose a
given grade distribution is inevitably linked to the issue of
demographic representation. Naturally, this issue could be
mitigated by reducing the amount that grades factor into
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admissions into programs. We bring up the issue of grade
distributions because since grade components typically
have different distributions themselves, changing the
weights changes the grade distributions.

That leads to the second issue about grading policy. The
increased attention, and possibly weight, to nonexam
components leads us to reconsider how nonexam compo-
nent grades are awarded and what they should award. For
example, for the lab component, our department currently
awards full points for reasonable group-work participation
and a reasonable, though somewhat minimal, write-up. As
a consequence, most students receive full credit for good
faith efforts and performance. However, if more weight is
given to the lab component, then should we reexamine
how points are awarded, for example, requiring a higher
level of performance? Consider also the homework
component, which was online. If more weight is given
to this, then this will likely provide incentive for more
students to misuse available resources to complete the
homework assignment (e.g., using online answering
sites). Given this, how do we change the homework task
to prevent students from completing it in unintended
ways? We have recently made a change to have some
component of the homework be hand-in, show-your-work
format using specific rubrics for problem solving with the
idea that this will increase student engagement—and
allow for richer assessment of their work—in ways that
are more aligned with our instructional goals.

All told, we will not know exactly how shifting weights
will affect grade equity until it is tried, and we hope that

this study can help to motivate instructors and depart-
ments to consider it. This brings us to our final point. A
question that may help to guide an instructor or program
to construct beneficial grading policies is as follows: are
we awarding what we value? Both sides of this “equation”
warrant deep consideration. On one side is what we as
instructors or as a program must decide what we value and
prioritize among goals such as physics knowledge, phys-
ics ways of thinking, problem solving and reasoning
skills, professional skills, people skills, ethics, equity
and inclusion. On the other side is a careful look at what
we are awarding. Besides considering the knowledge,
skills, and ways of thinking we value for our students, we
must acknowledge that what we are awarding is inevitably
tied to which students we are rewarding. In support of the
views and empirical documentation in the literature
discussed earlier, we find that current grades and grading
may not be awarding what we value, and we should
continue to investigate this issue and adopt policies and
practices that bring us closer to balance.
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APPENDIX

Disparities in grade between demographic groups may depend on individual grade components, as discussed in
Sec. III.C. To investigate the extent to which specific grade components depend on ACT score and various demographic
variables, multilevel modeling was performed according to the example equation given in Eq. (5). Table IV presents a
compact summary of the results; the full results for each individual grade component for both the algebra- and calculus-
based courses are presented in this appendix in Tables X and XI.
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