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Items that are chained, or blocked, together appear on many of the conceptual assessments utilized for
physics education research. However,when items are chained together there is the potential to introduce local
dependence between those items, which would violate the assumption of item independence required by
classical test theory, unidimensional item response theory, and other measurement theories. Local
dependence can be divided into two categories: (i) underlying local dependence, which can be adequately
modeled with multidimensional measurement theories, and (ii) surface local dependence (SLD), which
cannot be modeled using multidimensional measurement theories. The act of chaining items is thought to be
one of the many potential sources of SLD between items. Using previous local dependence research results,
this study proposes two methods for detecting the presence of local dependence and SLD between items on
an assessment. These methods were applied to the Force Concept Inventory (FCI) and the Force andMotion
Conceptual Evaluation (FMCE). It was found that the assumption of item independencewas violated for both
assessments, implying that unidimensional measurement theories may not adequately model either the FCI
or FMCE. Further, both detection methods identified the potential for a minimal amount of SLD present for
FCI and a significant amount of SLD present for the FMCE. This implies that even multidimensional
measurement theories may not be capable of adequately modeling the FMCE when scoring items
individually. This result supports the claim made by Thornton et al. that the items on the FMCE should
be scored in groups; however, the currently proposed grading scheme was found to be inadequate.
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I. INTRODUCTION

Identifying the optimal conceptual instrument is often
difficult for both researchers and educators. This is com-
pounded when multiple tools exist for a single domain of
physics knowledge. For example, both the Force Concept
Inventory (FCI) and the Force and Motion Conceptual
Evaluation (FMCE) attempt to probe students’ understand-
ing of Newtonianmechanics [1,2]. Deciding betweenwhich
of these instruments to use can be done by comparing their
validity and/or the specific concepts each instrument probes.
The FCI is a 30-item, five-option, multiple-choice con-

ceptual assessment with a suggested duration of 30 minutes
[1,3]. Whereas, the FMCE is a 47-item, shared response

pool, multiple-choice conceptual assessment with a
suggested duration of 35 minutes [2,3]. Each assessment
was designed to probe student understanding of Newton’s
laws and kinematics. The FMCE further probes position and
velocity versus time plots as well as conservation of
mechanical energy.
Both assessments have been exposed to numerous

statistical analyses ranging from unidimensional to multi-
dimensional treatments; see the following studies for a
sample of the kinds of analysis that have been performed
[2,4–17]. Also, both have been used numerous times in
classrooms to assess the understanding of students and/or
the effectiveness of new and innovative curricula; see, for
example, Refs. [18,19]. Overall, each assessment is
designed to take a similar amount of time to complete,
probes similar concepts, and has been shown to function
well statistically.
Another feature shared by both instruments is the

utilization of item chaining. The technique of item (ques-
tion) chaining, or item blocking, is present on many of the
current conceptual assessments used in physics education
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research (PER) [1,2,20–22]. Items are said to be chained
together when groups of items appear in close physical
proximity while probing the same concepts or when items
use the same figures, response pools, reading prompts, etc.
[23,24]. This is done by test developers for numerous
reasons, which include, but are not limited to (i) less space
is used to print the assessment, (ii) more items can be asked
using a single figure, reading prompt, etc., and (iii) false-
positive detection possibilities can be added.
The reasons for utilization of item chaining are sensible,

and in some cases desirable; however, they can introduce
unintended statistical consequences. The most critical issue
associated with item chaining is the high potential for loss
of local item independence between the chained items.
Local item independence, or local independence, is the
assumption that items are conditionally independent of
each other, and is required for many measurement theories
used in PER [24,25]. For example, unidimensional item
response theory (IRT) assumes local item independence to
estimate item parameters within student response models
[25]. Similarly, classical test theory (CTT) assumes the
errors of items are independent from one another, which
implies the items themselves are independent [24].
Understanding if an assessment breaks this assumption
is vital to selecting appropriate measurement theories and
models. As a result, the total score reported for an assess-
ment depends on which grading model is used. This then
affects the gains measured for students and classes. Thus,
understanding which measurement model should be used is
critical to generating the accurate gain measurements
needed for curricular intervention research.
The loss of local independence, referred to as local

dependence (LD), has been investigated in the psycho-
metric field for some time now [26–32]. However, few—if
any—of these results have been implemented into assessing
the conceptual assessments used in PER.
In 1997, Chen and Thissen proposed separating LD into

two categories: surface LD (SLD) and underlying LD
(ULD) [30]. Underlying LD occurs when groups of items
on an assessment share a common latent trait (e.g., a
physics conception) that links items together. As a result,
this kind of linking can also be called a conceptual linking
since students interact with the linked questions through the
underlying trait they share. Effects of this nature can be
modeled using multiple latent variable models, like multi-
trait IRT and factor analysis, but are not described within
unidimensional models [25,33].
Surface LD occurs when students answer an item based

on superficial characteristics of previous items; they are not
independently interacting with the items on the assessment.
A situation like this could occur for items which are
chained together. Item chaining is an example of what
may cause items to be possibly linked via SLD, and could
cause students to answer items based partially, or entirely,
on how they responded to the previous items. Thus, this

kind of linking could be referred to as an artificial linking
as students are no longer using only a shared concept when
interacting with the linked questions. Chaining items of
similar content together is a prime situation for the
existence of SLD. This form of LD is problematic as all
commonly used psychometric theories cannot properly
account for artificial linking.
An investigation into the presence of SLD between items

is one way to test for the potential influences of item
chaining. Since SLD is not caused by a shared latent trait
which links the items, resulting effects of SLD cannot be
accounted for using current multidimensional models.
The first article that we are aware of that investigated LD

between items on a conceptual assessment in PER was the
original validation of the relativity concept inventory (RCI)
[34]. The article discussed initial results for the RCI and
identified some item pairs that were likely breaking local
item independence. However, it did not go into detail about
the effects that detected LD would have on parameter
estimations, within IRT or CTT.
Recent efforts made toward understanding the impacts of

chaining items within PER conceptual assessments can be
found in Refs. [8,9]. These studies looked into the effects of
“blocking” items on the Force Concept Inventory (FCI)
using multitrait item response theory (MIRT) and modular
network analysis. The methods used in these studies were
then applied to the Force and Motion Conceptual
Evaluation (FMCE) in Ref. [35]. It was found that the
FCI’s and FMCE’s factor structures were likely being
significantly impacted by the “blocking” of items on each
assessment.
Concept inventories have been used extensively in the

field of physics education. One main repository for these
inventories is found in Ref. [3], which has 95 such
assessments listed. The authors of this website encourage
users to upload their own class data, as one goal of
PhysPort is to allow investigators to compare their data
with a national dataset they are building. Many types of
data analysis are possible with large datasets, including
factor analysis, structural equation modeling, and item
response theory. However, each of these types of analysis
assumes local item independence. It is, of course, possible
to test this assumption, but it would appear that in the field
of PER, it is merely assumed to be true and not actually
tested before the data are analyzed statistically. For exam-
ple, in 2019 Physical Review Physics Education Research
published a special focus issue, “Quantitative methods on
PER: A critical examination.” Only two of the articles in
this collection mention testing for item dependence [9,36].
However, these articles are fairly typical in our field in that
they do not provide this level of detail regarding specifi-
cally how the data are, or should be, treated before analysis
is completed. Further, on the PhysPort website, the
“research” tab for the FMCE includes a number of articles
related to the validation of the instrument itself, as well as
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analysis of the results of using the instrument. None of the
articles listed on this website and published within the last
ten years mention tests of item independence as part of their
preanalysis work on the data.
This perusal of the literature in PER suggests that local

item dependence is not being treated correctly by the field
as a whole. Thus we argue that this current work will help
jump-start a much needed conversation among fellow PER
researchers that statistical assumptions such as item inde-
pendence are indeed just that, assumptions, and in order for
us to gain useful information from the use of concept
inventories, we must begin by assessing whether or not our
concept inventories are or are not breaking the assumptions
used in currently popular types of statistical analyses.
Initially, this study sought to examine the factor structure

of the FMCE within an exploratory factor analysis (EFA)
framework. Upon implementation of EFA, results similar to
those found in Ref. [35] were obtained. It was found that the
developed factor structure simply mimicked the blocked
items that appear sequentially on the assessment itself.
Further, a modular network analysis of the FMCE resulted
in a structure which mimics the blocking structure of the
assessment [37]. The fact that the correlational structure of
items follows the chained item blocks is troubling, and leads
to the investigation of the effects of chaining items.
A clear example of item chaining can be seen with items 1

and 4 on the FMCE. Both ask students to analyze a situation
where a person pushes a sled across an icy surface (i.e., a
frictionless surface). Item 1 prompts students to consider
which force is required to push the sled to the right while
speeding it up. In item 4 the sled instead moves to the left
while still speeding it up. Both of these items use the same
response pool and figures while asking extremely similar
questions; only the direction of motion changes. It is
reasonable to infer that students could be answering item 4
based partially, or entirely, on how they responded to item 1.
Since both assessments were designed to probe multiple

concepts and both employ the use of item chaining, it is not
unrealistic to expect some form of LD to be present. It is
expected that both assessments will display some amount of
both ULD and SLD. If local independence is found to be
broken, then theories commonly used to analyze assess-
ments will give statistically biased results [29]. For example,
the presence of local dependence on an assessment analyzed
using IRTor CTT can result in incorrect estimations for item
difficulty, item discrimination, test reliability, and student
ability. These impacts are likely less important to instructors
assessing their own class. However, as these measures are
used to assess both the quality of the assessment and the
gains of the students, any errors in their estimations are of
critical importance to researchers investigating the impact of
new curricular interventions.
If the local dependence in an assessment can be entirely

described by conceptual linking (ULD), then multidimen-
sional analysis methods can, and should, be used to

properly assess the quality of the instrument. However,
if the linkings are artificial, then there will be some level of
inherent error built into the results of multidimensional
analysis methods. If there is a large amount of SLD present,
many items that are artificially linked, then this error may
lead to incorrect conclusions. In this case, special grading
criteria (e.g., testlet grading methods) will need to be
generated and assessed before research should use the
assessment to examine new pedagogical techniques.
This study investigated the extent to which local depend-

ence and artificial linking (SLD), assumed to be caused by
item chaining, were present on the FCI and FMCE through
considering the following research questions:
RQ 1: To what extent is the assumption of local item

independence valid for each assessment?
RQ 2: To what extent is SLD present on either of the

assessments?
RQ 3: By examining the item pairs identified in research

question 2, is it correct to assume that item chaining is
responsible for the SLD inferred?
The rest of this work is organized as follows, First, the

data used in this study are specified in Sec. II. Then a
detailed methodology is discussed in Sec. III, followed by a
presentation of the methodology’s results in Sec. IV. The
implications of the results are considered in Sec. V. Lastly,
the limitations of the study, a summary of the study, and
suggestions for the future direction of PER can be found in
Secs. VI–VIII, respectively.

II. DATA

The data for the FCI and the FMCE came from students
taking algebra- or calculus-based first-year introductory
mechanics (i.e., Physics I) before and after instruction had
taken place. PhysPort supplied the data for both assess-
ments [3]. The supplied data for both assessments had
incomplete demographic information, so complete details
of the demographic breakdown of the data are unknown.
The data for the FCI originally contained 22 029

students. However, after removing any students with blank
entries in their pre- or postinstruction response vectors, the
sample was left with 19 745 matched student responses.
Similarly, the original FMCE data contained 19 708 pre-
and/or postinstruction student responses. Many of these
student repressions were only for before or after instruction,
not both. After removing students that did not take both a
pre- and postinstruction administration, and any student
with blank responses, the FMCE sample was left with 10
084 matched student responses. Test statistics for each of
these samples can be found in Table I.
The models used in this analysis required the data to be

graded dichotomously, meaning questions are sorted
between two different categories for each student. In this
case questions are answered either correctly or incorrectly.
In the response vectors this is represented by a “1” for
correct and “0” for incorrect.

DETECTING THE INFLUENCE OF ITEM CHAINING… PHYS. REV. PHYS. EDUC. RES. 16, 020122 (2020)

020122-3



Dichotomous scoring is common for the FCI, but is not
recommended for the FMCE. It has been proposed that the
FMCE should be graded in a blocked fashion [2,17].
However, since this study is looking into the LD between
individual items, each item will be graded separately.

III. METHODOLOGY

The following section contains a detailed methodology
of how conceptual and artificial links (ULD and SLD)
between items can be detected. A brief explanation of how
this is done can be found in Sec. III A and a technical
discussion of the methods used can be found in Sec. III B.

A. Brief methodology

Identifying the possible presence of conceptual and
artificial linking (ULD and SLD) within an assessment
can be done using simulations. Both conceptual and
artificial linking can be modeled in a simple manner.
These simple models are used to simulate student responses
to questions on an assessment that incorporated either of
these linkings. Each model contains a single parameter
which characterizes the amount of linking present between
the items. The ULD parameter has an understood range of
values for typical assessments. Thus, if the ULD model
using a parameter at the maximum of this range, or higher,
cannot account for all of the local dependence detected
between a pair of items, then some amount of SLD must be
present. This is how the possible presence of SLD can be
detected. When these parameters are set to zero, the linking
is “turned off,” and when increased from zero simulate
stronger links between items.
The artificial linking model is parametrized by a prob-

ability, πLD. This represents the probability that the inde-
pendent question in the linked pair informs the correctness
of the other, dependent question, regardless of the relative
difficulty or content of the questions. This parameter ranges
from 0 (i.e., no linking) to 1 (entirely linked). For example,
within an assessment where questions 3 and 4 are artifi-
cially linked, question 4 is assumed to be the dependent
question. Thus, there is a probability of πLD that a student
will have the same result on question 4 as question 3 (i.e.,
both correct or incorrect). This form of dependence is
assumed to be how item chaining impacts student
responses to the questions.

The ULD parameter, or ULD weight, ranges from 0 (i.e.,
no linking) to an unbounded maximum. However, for
typical assessments, ULD weights above 1.5 are rarely
observed [32]. This weight corresponds to the strength of
the underlying concept (or trait) that links the question pair
together. As the ULD weight parameter increases, the
apparent ability of a student also increases for these linked
questions. This models the manner in which an underlying
concept (e.g., Newton’s third law) could be used by
students to assist them in answering conceptually linked
questions on an assessment. It is important to remember
that these conceptual linkings can be modeled using
multiple latent trait methods.
The presence of local dependence is quantified by three

measures: (i) Cramer’s V of Pearson’s χ2, (ii) Cramer’s V of
the G2 statistic, and (iii) the tetrachoric correlation. The
expected values of these statistics for an assessment that
contains totally independent items can be calculated
through simulations. Thus, it is safe to assume that any
deviations from these values are caused by the presence of
local dependence. This methodology allows for the iden-
tification of pairs of questions that are linked by some form
of LD, but does not differentiate between conceptual and
artificial linking.
However, since the ULD weights for typical conceptual

linkings are bound between 0 and 1.5, any measures of LD
which are not explained by ULD weights in this range are
assumed to be, at least partially, a manifestation of artificial
linking. That is, if an assessment’s statistics of LD are
found to be significantly larger than those generated using
this range of ULD weights, it can be concluded that
conceptual linking is not the only source of LD between
the questions. This implies that some amount of artificial
linking is present to account for all of the detected LD.
This describes how local dependence and artificial

linking can be detected on the FCI and FMCE. For more
technical details of how this was carried out, see the
following section of the methodology. However, those
not interested in the technical specifics can skip the
following section and go to Sec. IV.

B. Technical methodology

1. Item response theory

Item response theory is a latent trait theory that attempts to
measure students’ ability scores through their interactions
with items (i.e., questions) on an assessment. Lord and
Novick proposed two assumptions that must be met for a
mathematical IRT model to be viable [38]. The first of these
assumptions pertains to the mathematical models them-
selves, and simply asserts that the model must describe the
data well [38]. For example, a function that predicts a
decreasing probability of a student answering a problem
correctly as their ability increases would not match the
qualitative or quantitative nature of how questions are

TABLE I. Test statistics for each of the samples used in this
study. The data are matched pre- to postinstruction. The mean is
represented by μ and the standard deviation by σ. The scores for
the FMCE are calculated using the blocked grading proposed in
Ref. [17].

Assessment N Pre μ Pre σ Post μ Post σ

FCI 19 745 0.437 0.213 0.608 0.221
FMCE 10 084 0.317 0.244 0.537 0.296
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answered. A function of this nature would break the first
assumption of IRT, and would not be an adequate IRT
model.
One model which satisfies this assumption is the two-

parameter logistic (2PL) model. The 2PL model returns the
probability that a student with an ability of θ will respond
correctly to item i given the item’s discrimination index αi
and intercept index di. Mathematically, the 2PL model can
be given as

PðXi ¼ 1jθ; αi; diÞ ¼
1

1þ e−DðαiθþdiÞ :

The constantD is taken to be 1.702 to make the metric of
the ability scale more closely relate to the traditional normal
ogive metric (i.e., θ ¼ 1 is approximately 1 standard
deviation in student ability). Typically, the item discrimi-
nation is factored out of the parentheses in the exponent and
then the substitution δi ¼ −di=αi is made, where δi is
called the item difficulty index [25]. The item difficulty
index is equal to the student ability required such that the
probability a student will have responded correctly is 50%.
Item discrimination relates to the slope of the 2PL curve at a
student ability equal to the item difficulty. Lastly, Xi ¼ 1
indicates a correct response for item i, and Xi ¼ 0 indicates
an incorrect response.
The second assumption states that item responses are

locally independent from one another, meaning students
respond to an item without being influenced by the other
items on the assessment [38]. This assumption is used in
parameter estimation techniques to find student ability
scores and the item parameters for an assessment.
Specifically, using the assumption of location item inde-
pendence, an assessment’s likelihood function can be
written as the multiplicative product of all of the items’
individual likelihood functions. Item and student parame-
ters are found through maximizing the assessment’s like-
lihood function with a given set of student responses. This
parameter estimation technique is referred to as maximi-
zation of the likelihood. All of the item and student
parameter estimations performed in this study used the
R package MIRT [39,40].

2. Local dependence

The assumption of local item independence can be
mathematically represented in the following manner:

PðXi ¼ 1; Xj ¼ 1jθÞ ¼ PðXi ¼ 1jθÞ · PðXj ¼ 1jθÞ:

This means the probability of getting items i and j correct
simultaneously is equal to the probability of getting each
item correct individually multiplied together. The same
principle applies to getting both items incorrect, and one
correct and the other incorrect. Any deviations away from
this relation are an indication that students are not answering

items i and j in a completely independent manner, which is
to say local dependence exists between the two items.
Local dependence is separated into two categories: sur-

face local dependence and underlying local dependence
[30]. By definition, ULD results from unmodeled latent
variables (i.e., modeling a multitrait assessment using a
single trait), which can link multiple items together [30].
This could occur on an assessment that is designed to assess
multiple conceptions (e.g., Newton’s three laws, kinematics,
etc.). These conceptions can be thought of as being linked to
a global conception (e.g., Newtonian mechanics), but will
appear in the statistics as different traits from a latent trait
perspective.On the other hand, SLDoccurs between pairs of
items that contain highly similar content and/or are in close
proximity on an assessment (e.g., chaining items of similar
content together, using the same figure, response pool,
reading prompt for a set of items, etc.).
Currently, it is not understood how to completely

distinguish between the two types of LD when analyzing
an assessment. Research into the effects of LD has been
performed, and research into possibly distinguishing
between the two types of LD on an assessment is ongoing
[29,30,32,41].
Of the two, ULD is less concerning since it can be

modeled using higher-dimensional models. That is, an
assessment could be designed to independently measure
both kinematics and Newton’s three laws, which would be
properly described by a four-trait multidimensional IRT
model or a four-trait factor analysis model [25,42].
Alternatively, SLD can only be addressed by altering the
structure of an assessment (i.e., moving items around,
removing items, changing the wording of an item, etc.).
Mathematically, a simple model for SLD which links

items m and n can be given as

with a probability of πLD∶

Xn ¼
�
1 if Xm ¼ 1

0 if Xm ¼ 0;

with a probability of 1 − πLD∶

Xn ¼
�
1 with PðXn ¼ 1jθ; αn; dnÞ
0 with PðXn ¼ 0jθ; αn; dnÞ;

ð1Þ

where Xm ¼ 1=0 and Xn ¼ 1=0 are the correct/incorrect
responses to item m and n, respectively, and πLD represents
the degree, or severity, of SLD that has formed between the
two items. For example, if πLD ¼ 0.2, then 20% of the time
a student will answer item n based entirely on how they
responded to item m. Thus, a student does not interact with
item n in the manner assumed by IRT and CTT. This could
occur on an assessment when multiple items that probe the
same concept are asked sequentially (i.e., the items are
blocked together). In this case, if the wording of the items is
highly similar, then students may treat all of these items as
if they were a single item. This effect is apparent with items
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1–7 on the FMCE, where all of these items use the same
response pool and figures while probing the same con-
ception. Situations of this nature are prime locations for
students to “use the test against itself” and respond to some
items while being influenced by how they answered other
items in this block.
Items with close proximity and similar wording and/or

content will result in a higher likelihood of developing
SLD. Because of the nature in which SLD is likely to occur,
this analysis can effectively identify if the act of chaining
items of similar content on an assessment superficially
influences how students are responding.
UnderlyingLDcanbemodeled via a simple bifactormodel

which links multiple items through a shared underlying trait.
As a result of this, however, a student’s apparent ability on the
linked items will be a combination of their unidimensional
ability and the unmodeled underlying trait ability. In the
following model, θ�1 is a student’s unidimensional ability
score and θ�2 is their ability score on the underlying trait in
question. The strength of the ULD between the paired items
can be represented by a ULDweight, wtij. This effect can be
modeled in the following manner:

2
666664

θitem 1

θitem 2

θitem 3

..

.

3
777775 ¼

2
666664

1 wt12
1 wt22
1 0

..

. ..
.

3
777775
�
θ�1
θ�2

�

¼

2
666664

θ�1 þ wt12θ�2
θ�1 þ wt22θ�2

θ�1

..

.

3
777775: ð2Þ

From Eq. (2), the effective student ability for item i
(θitem i) will be the ability a student uses to answer item i.
This effective student ability has the potential to be
significantly different from students’ actual unidimensional
ability θ�1 if the ULD weight is large. The effective student
ability will be the ability with which a student will answer
item i. This will artificially make the item appear more or
less difficult compared to if the ULD were not present. The
larger the ULD weight, the more significant the unmodeled
trait is in determining how a student is responding to the
items. On the other hand, if wtij ¼ 0, for all i and j, then no
ULD exists and the items are all locally independent,
provided no SLD exists between the items. The assessment
can then be assumed to be unidimensional.
From a multitrait IRT perspective, the weights in the

presented model of ULD can be interpreted as the ratio of
the underlying trait item discrimination and the unidimen-
sional trait discrimination, wti2 ¼ αi2=αi1. This can be seen
in the 2PL multitrait model:

Pðθ; αi1; αi2; diÞ ¼
1

1þ exp½−Dðαi1θ�1 þ αi2θ
�
2 þ diÞ�

¼ 1

1þ expf−D½αi1ðθ�1 þ αi2
αi1

θ�2Þ þ di�g

¼ 1

1þ expf−D½αi1ðθ�1 þ wti2θ�2Þ þ di�g
¼ 1

1þ exp½−Dðαi1θitem i þ diÞ�
; ð3Þ

where αi1 is the unidimensional trait’s item discrimination
and αi2 is the ULD trait’s item discrimination. Equation (3)
demonstrates how a multidimensional assessment could,
incorrectly, be modeled unidimensionally by ignoring
ULD. Consequentially, estimations of item parameters
for the items influenced by the ULD will be inaccurate
in a unidimensional framework.
Since student IRT ability scores are estimated using all

items on an assessment, they will be relatively robust to the
effects of ULD, and also SLD, provided “enough” items on
the assessment are locally independent. The more items on
the assessment that are locally independent, the more
robust the estimated student abilities will be as a result.
Thus, ULD and SLD can be expected to significantly
impact linked-item parameter estimations, while leaving
the estimated student abilities relatively unchanged [43,44].
The structure of ULD can be investigated using a multiple

latent variable model like factor analysis or multitrait IRT,
which both attempt to model underlying latent trait struc-
tures. This underlying latent trait structure has been well
explored for the FCI; see Refs. [6,10,11]. These factor
models can then be assumed to represent the ULD that
existswithin theFCI. It shouldbenoted that thesemodels can
be influenced by the presence of SLD, and disentangling the
effects of ULD from those of SLD is not currently well
understood [32].

3. Detecting local dependence

A common way to detect LD between a pair of items is
through the utilization of contingency tables. A contin-
gency table displays the number of occurrences for a
particular combination of events. For items m and n, the
contingency table records the number of times the items
were answered correctly and incorrectly simultaneously or
one was answered correctly while the other was not. This is
displayed as follows:

Item n
0 1

Item m
0 O00 O10

1 O01 O11

where Opq is the observed number of occurrences when
items m and n were answered correct/incorrect (p ¼ 0=1
and q ¼ 0=1).
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Many useful statistics can be obtained from these tables
when each element is derived from IRT-probability models.
For instance, the expected number of occurrences for the
contingency table above can be estimated from these
probability functions. Since the parameters used in the
IRT models are estimated assuming all of the items on the
assessment are locally independent, any deviations between
the observed and expected contingency tables can be
assumed to be a result of LD between the item pairs.
Within the literature two statistics are commonly used to

characterize the deviations between the observed and
estimated contingency tables, Pearson’s χ2 and the loga-
rithmic ratio G2 statistic. Pearson’s χ2 can be calculated in
the following manner:

χ2 ¼
X1
p¼0

X1
q¼0

ðOpq − EpqÞ2
Epq

;

and the G2 statistic is calculated using

G2 ¼ −2
X1
p¼0

X1
q¼0

Opq ln

�
Epq

Opq

�
;

where Opq and Epq are the observed and expected number
of occurrences from the contingency table for the pair of
items being investigated [45]. Both of these statistics will
depend on the size of the sample being used and compare
the observed and expected number of observations from the
contingency table.
Since these statistics are sample-size dependent, it is

often useful to employ a Cramer’s V standardization to
control for the sample size. This is given by

Vχ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

χ2

nðk − 1Þ

s
;

where n is the total number of observations and k is the
number of rows in the contingency table; for this study,
k ¼ 2. A similar expression can be written for VG2.
Each of these statistics measure variations between

observed and expected values of the contingency table.
Thus, values closer to zero indicate good agreement
between observations and expected results. Since the
model’s parameters are estimated assuming no LD, any
deviations of Vχ2 and VG2 away from 0 are an indication of
potential LD linking between the items, which is unac-
counted for by the model. These statistics have been found
to be good indicators that LD exists [29–31,41].
It was recently demonstrated that the tetrachoric corre-

lation can be used to detect LD independent of IRT models
[32]. The tetrachoric correlation is a special case of the
polychoric correlation used when the sample is dichoto-
mous. The tetrachoric correlation is calculated numerically,
but can be approximated as

rtet ≈ cos

0
B@ π

1þ
ffiffiffiffiffiffiffiffiffiffiffi
O00O11

O10O01

q
1
CA;

where the argument of cos is in radians. Note that, if rtet ¼ 0,
then O00O11 ¼ O10O01, which implies that there was no
preference to answering both items correct/incorrect simul-
taneously. For example, if rtet < 0, then students tended to
answer one item correctly and the other incorrectly, and vice
versa.Other types of correlations could be used to detect LD;
however, the tetrachoric correlation tends to be more
sensitive to correlations for dichotomous data [46].
Correlations are expected between items on assessments

that probe a single concept (i.e., a unidimensional assess-
ment). This is due to students answering items based on their
latent ability, and not randomly (which would yield a
correlation of zero). As a result, more difficult items will
often be answered incorrectly together and visa versa for
easier items. This generates nonzero correlations between
the itemson a single-conception assessment.When items are
linked by ULD and/or SLD, the tetrachoric correlation will
be artificially inflated. For this reason, item pairs with larger
correlations than typical could potentially be linked via LD.
For brevity, Vχ2 , VG2 , and the tetrachoric correlation

together will be referred to as the “statistics of LD” for the
remainder of the article.

4. Simulation specification

As it currently stands, no models exist that can differ-
entiate between ULD and SLD for student responses. In
order to understand the effects ULD and SLD may have on
the statistics of LD, simulations using existing models were
performed. This simulation methodology was proposed by
Chen and Thissen [30], and was further used by Houts and
Edwards [32] with minor variations. The main goal of these
simulations was to identify whether LD is present and then
how much of it can likely be modeled by ULD alone. This
then allowed for the testing of statistics of LD, above which
ULD can no longer reasonably account for all of the LD.
That is, these simulations assume that all of the LD present
on a theoretical assessment is varying levels of either ULD
or SLD. This allows for a comparison between the statistics
of LD for these simulations and actual student responses.
In order to generate a baseline to test for LD, 200

assessments of 30-items each were generated by randomly
sampling 2PL item parameters. For each generated assess-
ment, a class of 1000 students were assigned randomly
sampled latent abilities. The student and item statistics were
sampled in the following manner:

• θ ∼ normal distributionðmean ¼ 0; SD ¼ 1Þ
• α ∼ normal distributionðmean ¼ 1.7; SD ¼ 0.3Þ
• d ∼ normal distributionðmean ¼ 0; SD ¼ 1Þ.
Locally independent dichotomous data were constructed

for each of the randomly sampled class and assessment
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pairs. From these data the tetrachoric correlation matrix of
the items for each simulated assessment was calculated.
This tetrachoric correlation matrix served as a baseline for
comparison when testing item pairs for LD; see Sec. III B 5.
Item characteristics and student abilities were then

estimated from the locally independent simulated data.
This enabled a fair comparison of the locally independent
simulations and the LD simulations (see below) while
controlling for possible differences due to the numerical
estimation of the item parameters. The Cramer’s V stand-
ardization of Pearson’s χ2 and G2 (Vχ2 and VG2) were then
calculated using these estimated values.
The statistics of LD used in this study are all bivariant in

nature. As such, the calculation of these statistics is inde-
pendent of the number of items on an assessment [32]. This
was tested by running the simulations for 20-item assess-
ments and 30-item assessments, and the resulting statistics of
LD were found to be independent of the number of items on
an assessment. All simulation results presented in this study
used 30 items for each assessment.
Surface local dependence simulation.—To simulate

SLD, items 3 and 4 of the simulated assessments were
linked using Eq. (1). Simulations were run for πLD values
that ranged from 0 to 1 in steps of 0.01. For each value of
πLD, 200 simulated assessments were generated using the
same criteria as discussed previously, while modifying item
4’s responses as per the SLD model. It is important to note
that the data for item 3 remained unchanged as a result of
the SLD model used for this study. Student abilities and
item parameters were then estimated for each of the
modified simulated datasets, and statistics of LD were
calculated. This resulted in a distribution of 200 values for
each of the statistics of LD for every πLD value.
Underlying local dependence simulation.—Similar to

the SLD simulations, items 3 and 4 in the randomly
generated assessments were treated as a pair of items
linked by ULD, as modeled by Eqs. (2) and (3). For
simplicity, the ULD weights for each item were taken to be
the same. Simulations were run for ULD weight values that
ranged from 0 to 5 in steps of 0.1. For each value of ULD
weight, 200 simulated assessments were generated. Student
abilities and item characteristics were then estimated and
statistics of LD were calculated for each assessment. This
resulted in a distribution of 200 values for the statistics of
LD for each ULD weight values.

5. Identifying likely LD pairs

Identification of item pairs on an assessment that are
potentially linked by LD was done using two different
methodologies. The first method involved the development
of cutoff values for the statistics of LD found from the
simulations. Stricter cutoff values were generated from the
ULD simulations to test for the potential presence of SLD
between a pair of items. Since the simulation results are
independent of the number of items on the assessment, the

cutoff values presented in Table II can be used as they
appear to test for LD and/or SLD on any assessment. This
methodology requires a high level of LD between items for
the pair to be flagged. The other method discussed uses
one-tail t-testing to compare the simulation statistics of LD
to those for an assessment. It should be noted that these
methodologies yield different item pairs with the t-test
method generally flagging more item pairs than the cutoff
value method. This will be expanded upon in Sec. IV.
Using cutoff values.—A pair of items is assumed to be

linked by LD if their statistics of LD are significantly larger
than those of the baseline model. To test for LD, cutoff
values for the statistics of LD were generated from the
results of the baseline simulation. If a pair of items had
statistics of LD significantly above the generated cutoff
values, then the pair was said to have LD between them.
Generation of the cutoff values will be discussed below.
Items identified in this manner would violate local

independence needed for IRT and CTT [24,25]. These
item pairs would thus be a source of error for any
unidimensional IRT models and CTT statistics of the
assessment. As a result, IRT and CTT may not accurately
model the assessment and thus multidimensional models
should be considered, such as MIRT and factor analysis.
However, these statistical frameworks model only ULD and
do not accurately model SLD [30].
Differentiating between whether the LD is caused by SLD

orULD is currently notwell understood for small tomoderate
severity. Coincidentally, midrange (πLD ¼ 0.4–0.7) and
high-end (πLD ¼ 0.7–0.8) SLD severity result in particularly
large statistics of LD. In order for ULD to result in similar
statistics of LD, unusually large ULD weights must be used.
These large ULD weights manifest in a 2PL model as larger
slope parameters than typically found for conceptual assess-
ments [32]. Given values of the statistics of LD, it can be
inferred how likely it is for all of the LD between a pair of
items tobe explainedwith reasonableULDweights. If it is not
likely that ULD can account for all of the LD, then it can be
assumed that some SLD must be present.
If it is reasonable to assume that ULD is the sole cause of

any LD detected, then multiple latent trait models—like
MIRTor factor analysis (FA)—can be used to properlymodel
the assessment. Item pairs whose LD are unlikely to be a
result of solely ULD imply that there is likely some SLD
present for the item pair. Since SLD is not modeled in MIRT

TABLE II. The proposed cutoff values for the statistics of LD
for some given ULD weight values. The cutoff values for a ULD
of “0” were used to detect the presence of general LD within an
item pair.

ULD weight 0 1.5 2.0 2.5

rtet 0.613 0.851 0.895 0.927
Vχ2 0.060 0.455 0.564 0.650
VG2 0.060 0.478 0.596 0.693
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or FA, any item pairs in an assessment identified as likely
possessing SLDwould be a source of error. As a result, MIRT

or FA would not be appropriate for the assessment.
To test for the existence of LD and to possibly distin-

guish between SLD and ULD, cutoff values for the
statistics of LD were proposed using the distributions from
the baseline and ULD simulations. Then, these cutoff
values were compared to item pair statistics of LD for
both the FCI and FMCE.
The cutoff values used in this study were taken to be the

upper 95% confidence value of the statistics of LD’s
distributions generated by the simulations. The upper
95% confidence values are given by

CutoffðwtÞ ¼ μsimðwtÞ þ 1.667σsimðwtÞ;
wherewt is the ULDweight value being used to generate the
cutoff values and μsim and σsim are the mean and standard
deviation of the statistics of LD given a ULD weight. Four
sets of cutoff values were generated for this study. One set
was generated from the baseline simulations to test for the
presence of LD, represented using wt ¼ 0. Three sets of
cutoff values for the statistics of LD were generated to test
for SLD using different ULD weights: wt ¼ 1.5, 2.0, and
2.5. These weights used for the analysis are larger than
detected for typical conceptual assessments [32], but any
ULDweight above 1.5 could be used to generate reasonable
cutoff values to test for possible SLD.All of the cutoff values
for ULD weights ranging from 0 to 5 in steps of 0.1 can be
found in Table VII located in the Appendix.
The proposed cutoff values were compared to the

distributions of the statistics of LD from student data.
These distributions were generated by randomly sampling
200 classes of 1000 students for both the FCI and FMCE.
From here, the mean and standard deviation for each of the
item pairs were calculated and representative normal
distributions were used to test the significance of the
proposed cutoff values. If 95% of an item pair’s distribution
was found to be above the corresponding cutoff value, then
the item pair was concluded to likely have LD and/or SLD.
Using t-testing.—An alternative method for identifying

likely pairs of items that break local independence utilized
t-testing for significance. This method compares randomly
sampled student responses with the simulation results via a
two-sample pooled t-test [47]. To test for the presence of
LD, one can use the statistics of LD that resulted from the
baseline simulation. If the distributions of an item pair’s
statistics of LD are significantly larger than the baseline’s
distributions, then the item pair is likely not locally
independent. The possible presence of SLD can be inferred
in a similar manner by using the ULD simulations with
weights larger than 1.5. All of the t-testing done in this
study used α ¼ 0.001 for the significance level.
To reiterate, these analyses only identify pairs of items

that are likely to possess LD and/or SLD. An item pair that
is determined to likely possess SLD implies that some

amount of SLD is required to explain the statistics of LD
observed between items. This does not suggest that all of
the LD is accounted for by SLD alone, but that some
amounts of ULD and SLD are likely.

IV. RESULTS

Presented below are the pairs of items flagged by the
cutoff and t-testing methodologies for the FCI and FMCE.
Item pairs were first tested for LD then subsequently tested
for SLD.

A. Using cutoff values

Proposed cutoff values for the statistics of LD were
generated using the procedure described in Sec. III. For
reference, the cutoff values from the locally independent
simulation can be found in the column labeled “0” within
Table II. These results are independent of the total number of
items, so the cutoff values in Table II can be used to test for
the presence of LD in any assessment. For brevity, the results
for the three individual statistics of LD will be given in a

ðVχ2 results; VG2 results; rtet resultsÞ

format.
The postinstruction FCI was found to possess (17, 18, 9)

pairs of items that are not locally independent, involving a
total of (17, 18, 11) individual items. This represents 2%–
4% of the total item pairs possible for the FCI and involves
30%–60% of the individual items. The preinstruction FCI
was found to contain (21, 21, 8) pairs of items as not being
locally independent, including (18, 18, 10) individual
items. This accounts for 1.8%–5% of the total item pairs
on the FCI and 33.33%–60% of the total items.
The postinstruction FMCE results found (249, 256, 222)

item pairs as not being locally independent, involving a total
of (45, 42, 45) individual items. These results account for
21%–24% of the total number of item pairs on the FMCE
and 90%–96% of the individual items. The preinstruction
results for the FMCEwere more severe with (386, 390, 203)
item pairs being identified as losing local item independ-
ence. This involved (47, 47, 40) individual items, represent-
ing 19%–30% of the total possible item pairs on the FMCE
and 85%–100% of the items. For a summary of these results
for the FCI and the FCME, see Table III.
From these results it can be seen that both assessments

contain LD between items. This is expected since both
assessments were originally constructed to measure multi-
ple conceptions. Provided no SLD is present on either
assessment, they both can be properly modeled using a
multiple latent variable theory (such as MIRT or FA).
To test for the possible presence of SLD, cutoff values

were generated using ULD weights of 1.5, 2.0, and 2.5,
which can be found in the last three columns of Table II. In
conjunction with the distributions of the statistics of LD
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from the student data, these cutoff values were used to
identify item pairs where the LD is unlikely to be explained
solely by ULD.

For the FCI, zero item pairs were flagged for potentially
being linked through SLD for both pre- and postinstruction
administrations. This implies that the detected LD on the
FCI is likely a result of only ULD, which can be modeled
using a multiple latent variable model. Thus, the act of
chaining items on the FCI is not significantly affecting how
students respond to items. Note that this result disagrees
with previous literature, see Ref. [9], which found that item
blocking was significantly affecting the results for the FCI.
This suggests that more research should be performed to
fully understand the effects item chaining has on this
instrument.
The FMCE had many pairs of items flagged as poten-

tially being linked through SLD. That is, the likelihood that
ULD alone can account for the observed statistics of LD is
very low, and thus there is likely a combination of both
ULD and SLD linking the items. Table IV shows the items
flagged by the cutoff value methodology for the FMCE.
For the postinstruction FMCE data, (2, 2, 25) pairs of

items were identified as possibly being linked through SLD
when using the smallest ULD weight (wt ¼ 1.5). When
considering the larger ULD weights, (1, 1, 13) and (0, 0, 2)
item pairs were identified; see Table IV. For the prein-
struction data, (1, 1, 21) pairs of items were identified as
possibly being linked through SLD when using the smallest
ULD weight. When considering the larger ULD weights,
(0, 0, 9) and (0, 0, 2) item pairs were identified.

B. Using t-testing

The results presented using the cutoff values method
were sufficient for revealing that both the FCI and FMCE
do not posses local item independence. Consequentially,
the results of the t-test method add little extra information
to what has already been revealed about the existence of
LD. The results presented below for the t-testing method
investigated only the possible presence of SLD.
For the FCI, two pairs of items were identified as

possibly being linked by SLD, items 5∶18 and items
25∶26. These item pairs were flagged using a ULD weight

TABLE III. The number of item pairs identified via t-testing as
potentially breaking local item independence for the FCI and
FMCE pre- and postinstruction. The N column represents
the number of item pairs detected. The % column denotes the
percentage of the total item pairs made up by the values in the N
column.

Vχ2 VG2 rtet

Assessment N % N % N %

Pre FCI 21 2.4 21 2.4 8 0.92
Post FCI 17 2.0 18 2.1 11 1.3
Pre FMCE 386 17.9 390 18.0 203 9.4
Post FMCE 249 11.5 256 11.8 222 10.3

TABLE IV. The pairs of items identified as possibly linked by
SLD on the FMCE via the cutoff values method. The numbers in
the table separated by a colon indicate the question pairs whose
statistics of LD are significantly larger than the cutoff. Items
listed in regular text indicate pairs detected on both the pre- and
postinstruction assessments, items in parenthesis indicate pairs
flagged only on the preinstruction assessment, and bold for only
the postinstruction assessment.

Cramer’s V of Pearson’s χ2

ULD weight 1.5 2.0 2.5

32∶34 36∶38
36:38

Cramer’s V of G2

ULD weight 1.5 2.0 2.5

32:34 36∶38
36∶38

Tetrachoric correlation

ULD weight 1.5 2.0 2.5

1∶2 1∶4 1∶2 14∶17
3∶7 8∶9 1∶4 (24∶26)
8∶10 8∶11 8∶9 36∶38
9∶12 11∶12 (11∶12)
11∶13 14∶16 11∶13
14∶17 14∶18 14∶16
14∶19 16∶17 14∶17
16∶18 16∶19 16∶18
17∶18 (17∶19) 16∶19
18∶19 22∶23 22∶23
(22∶26) 24∶26 24∶26
27∶28 27∶29 (27∶28)
32∶34 36∶38 27∶29
46∶47 32∶34

36∶38

TABLE V. The pairs of items identified as possibly linked by
SLD on the FMCE via the t-testing method. The numbers in the
table separated by a colon indicate the question pairs whose
statistics of LD are significantly larger than the cutoff. Items
listed in regular text indicate pairs detected on both the pre- and
postinstruction assessments, items in parenthesis indicate pairs
flagged only on the preinstruction assessment, and bold for only
the postinstruction assessment. All of the found pairs have a
significance of p < 0.001.

Cramer’s V of Pearson’s χ2 and G2

ULD weight 1.5 2.0 2.5

(1∶4) 30∶32 32∶34 36∶38
30∶34 32∶34 36∶38
36∶38 46∶47
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TABLE VI. The pairs of items flagged on the FMCE and FCI as likely being linked with some SLD via the polychoric correlation and
the t-testing method. All of the item number listed were found to have paired with the items number of the far left, for the varying ULD
weight values. Items listed in regular text indicated pairs detected on both the pre- and postinstruction assessments, items in parenthesis
indicate pairs flagged only on the preinstruction assessment, and bold for only the postinstruction assessment. All of the found pairs have
a significance of p < 0.001.

FMCE–Tetrachoric correlation

ULD weight values

Item 1.5 2.0 2.5

1 2, 3, 4, 14, 16, (17), 18, 19 2, 4 2, 4
2 1, 3, 4, 14, 16, 17, 18, 19 1, 4, 14 1
3 1, 2, 4, 6, 7 7 7
4 1, 2, 3, 14, 16, 18, 19 1, 2 1
6 3, 7
7 3, 6 3 3
8 9, 10, 11, 12, 13, (14), (16), 18, 21, 27, (28), (29) 9, 10, 11, 12, 13 9, 10, 11
9 8, 10, 11, 12, 13, 28 8, 10, 11, 12 8, 12
10 8, 9, 11, 13 8, 9, 13 8
11 8, 9, 10, 12, 13, (18), 21, 27, 28, 29 8, 9, 12, 13, 27 8, 12, 13
12 8, 9, 11, 13, 27, 28 8, 9, 11, 13, 28 9, 11
13 8, 9, 10, 11, 12, 27, 29 8, 10, 11, 12 11
14 1, 2, 4, (8), 16, 17, 18, 19, (20), 23, 24, 25, 26 2, 16, 17, 18, 19 16, 17, 18, 19
16 1, 2, 4, (8), 14, 17, 18, 19, 20, 23, 25 14, 17, 18, 19 14, 17, 18, 19
17 (1), 2, 14, 16, 18, 19, (20), 23, 24, 26 14, 16, 18, 19 14, 16, 18, (19)
18 1, 2, 4, 8, (11), 14, 16, 17, 19, 20, 21, 22, 23, 24, 25 14, 16, 17, 19, (20), 23 14, 16, 17, 19
19 1, 2, 4, 14, 16, 17, 18, 20, 23, 25 14, 16, 17, 18 14, 16, (17), 18
20 (14), 16, (17), 18, 19 (18)
21 8, 11, 18
22 18, 23, 24, 25, 26 23, 24, 25, 26 23, (26)
23 14, 16, 17, 18, 19, 22, 24, 25, 26 18, 22, 24, 26 22
24 14, 17, 18, 22, 23, 25, 26 22, 23, 25, 26 26
25 14, 16, 18, 19, 22, 23, 24, 26 22, 24
26 14, 17, 22, 23, 24, 25 22, 23, 24 (22), 24
27 8, 11, 12, 13, 28, 29 11, 28, 29 28, 29
28 (8), 9, 11, 12, 27, 29 12, 27, 29 27, (29)
29 11, 13, 27, 28 27, 28 27, (28)
30 31, 32, 34 32, 34
31 30, 32, 34
32 30, 31, 34 30, 34 34
34 30, 31, 32 30, 32 32
36 38 38 38
38 36 36 36
40 42
42 40
44 45
45 44
46 47 47 47
47 46 46 46

FCI–Tetrachoric correlation

ULD weight values

Item 1.5 2.0 2.5

5 18
18 5
25 26
26 25
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of 1.5 and the tetrachoric correlation for pre- and post-
instruction data. None of the other ULD weights or
statistics of LD flagged any item pairs, pre- or postin-
struction. It can be inferred that either the FCI has a small
amount of SLD or these items are linked through a strong
underlying trait.
The results of the t-test analysis for the FMCE can be

found in Tables V and VI. The item pairs identified using
the Cramer’s V of Pearson’s χ2 and G2 were identical.
These statistics flagged 5 pairs, 2 pairs, and 1 pair of items
when using ULD weights of 1.5, 2.0, and 2.5, respectively.
The tetrachoric correlation flagged 78, 36, and 23 pairs of
items for the ULD weights postinstruction. Similarly, for
the preinstruction data 77, 35, and 23 item pairs were
flagged. Because of the number of flagged item pairs on the
FMCE, it is unlikely that all pairs can be explained via
strong underlying traits alone.

V. DISCUSSION

Discussed herein is the likelihood that SLD invalidates
multivariate models for the FCI and FMCE. Further, a
discussion of unidimensional scoring and possible solu-
tions is presented.

A. Multivariate models of the FCI and FMCE

As was presented in Sec. IV, most of the LD flagged item
pairs on each assessment can be explained using only ULD.
For the FCI only two itempairswere flagged as potentially

being linked, in part, via SLD. These were found using only
the most lenient of testing criteria presented in this article.
Thus, it can be assumed that these items are linked either by
small πLD values or by a very strong underlying trait. This
implies that the error introduced to a multiple latent variable
model of the FCI by these item pairs will likely be small.
Researchers concerned about this error should perform their
own investigation to test for the possible presence of SLD
between items 5 and 18 and items 25 and 26.
Of the two instruments, the FMCE was found to contain

far more SLD. For the most lenient testing criteria, 78 pairs
of items were flagged as likely containing some amount of
SLD (compared to the two found for the FCI). As a result,
multiple latent variable models that assume local item
independence may not accurately represent the FMCE.
Recall that in some cases item chaining is the practice of

using the same figures, response pools, reading prompts,
etc. for groups of items [23]. From this it can be seen that of
the two item pairs flagged for the FCI, only the item pair
25∶26 actually meets this criteria. Thus, only this item pair
on the FCI can be assumed to be impacted by item
chaining. However, on the FMCE 78 item pairs were
identified as likely being linked in part by SLD. Of these
78 identified items, more than half meet the criteria of being
chained or blocked items. This implies that item chaining is

having a significant impact on how the items on the FMCE
are functioning.
In a previous study of the FMCE, Yang et al. obtained

exploratory FA and MIRT models [35]. Since both explor-
atory FA and MIRT assume only ULD exists between items,
the possible presence of SLD may significantly impact the
results of these methodologies. In fact, a comparison of the
flagged item pairs in Table VI and the results of the factor
analysis presented in Ref. [35] reveals that many of the
factors identified may be linked through a combination of
ULD and SLD. Similarly, many of the major links present
in the partial correlation networks are flagged in this
analysis as likely containing some level of SLD. This,
however, does not imply that the results presented in
Ref. [35] are incorrect. The results of this study imply
that some of the observed correlations used to generate the
factor models and network structures are likely being
artificially inflated due to SLD. To test the validity of
the proposed models, further exploration into the effects of
SLD on multivariate models is recommended.

B. Scoring the FCI and FMCE

Both assessments were found to violate the assumption of
local item independence. This implies that unidimensional
models, which assume local item independence, should not
be used to analyze or score either of these assessments. The
effects of LD on the results of unidimensional IRT models
have been explored in detail; see Ref. [23]. Therein, Yen
details the effect LD can have on total scores, assessment
validity, IRT test information, and IRT item parameter
estimations. The exact details of these effects are outside
the scope of this study. From the results presented in
Ref. [23] it can be inferred that unidimensional IRT will
not be accurate if LD is present in an assessment.
Similarly, CTT statistics are affected by the presence of

LDwithin an assessment. For example, the effects of SLD as
a proxy of LD on classical item difficulty and discrimination
are shown in Figs. 1 and 2. Within each figure the SLD
influenced values are plotted versus the original locally item
independent values for varying severity of SLD. Details
concerning CTT statistics can be found in Ref. [48]. From
these figures it is apparent that as SLD severity increases, the
induced error of observed classical measures also increases.
Because of the detection of potential SLD for the item pairs
listed in Tables IV–VI, it can be assumed that the CTT
statistics measured for these items are likely inaccurate. It
can then be inferred that aggregate total scores made up of
SLD linked item will not accurately reflect student knowl-
edge. As these preliminary results show, the presence of LD
on an assessment can drastically impact the observed CTT
statistics for an assessment.
To address the possible effects of LD, Yen suggests using

locally independent testlets (grouped items that are graded
together) in place of locally dependent item blocks [23].
Testlets can be formed by grouping items that share LD,
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then a grade can be assigned to each testlet individually. If
each of the testlets is locally independent, then IRT can be
performed by treating each of the individual testlets as
“items.” This would result in a reliable measure of student
ability, while controlling for the effects of LD.
Testlets for the FCI could be formed using one of the three

models tested in Ref. [6], where each testlet would contain a
single factor. This would result in students receiving one
score for their understanding of each Newtonian concept
represented by these models. These testlets could then be
used to generate an IRT model of the FCI which would
supply a student with their “Newtonian” ability.
Because of the potential presence of SLD on the FMCE,

multiple scoring options may be considered: (1) forming
testlets from LD linked items, (2) rearranging the items
which appear on the FMCE, and (3) splitting the FMCE
into two smaller assessments. Each of these methods
contain drawbacks, and it is possible that the best option
is to simply rewrite the instrument.
The testlet scheme for the FMCE proposed by Thornton

et al. is well in line with Yen’s suggestion; however, some
of the suggested testlets are not locally independent and
thus do not meet all the specifications indicated by Yen
[17,23]. The required modifications to ensure these testlets
are locally independent would result in the FMCE being
made up of one dominant testlet and many smaller testlets.
Rearranging the items on the FMCE would entail gen-

erating unique physical descriptions, response options, and
figures for each of the items on the assessment. The separated
items could then be randomized to ensure students are being
primed for concepts as minimally as possible. The resulting
assessmentwould need to undergo extensive analysis to fully
elucidate its statistical properties. However, considering the
initial reasons for chaining the items, and the added false-
positive detection benefits, this “fix” may make the assess-
ment something completely different than what the creators
of the FMCE originally intended [2,16,17].
The splitting of FMCE could be done in a similar manner

to howboth the FCI and theConceptual Survey ofElectricity
and Magnetism were separated in Refs. [49,50]. However,
due to the potential SLD found in this study, any estimated
characteristics for each individual item are likely not
accurate, and will need to be reexamined after any of these
suggested changes are made. It should be noted that these
new assessments may not contain the same false-positive
detection abilities as the original form of the FMCE. This
would suggest that splitting the assessment in half may not
be recommended; see Ref. [16].
Ultimately, a single-number grading scheme could be

readily created for the FCI using current research results.
However, given the extent of LD found and the large
possibility of SLD being present, the FMCE should not be
graded using a single number until a new grading scheme
has been proposed and studied.

FIG. 1. Plots of the classical test theory item difficult indices of
the SLD modified results versus the original item difficulties.
Beginning from the top left, these plots are for πLD ¼ 0.00, 0.25,
0.50, 0.75, and 1.00. Notice as πLD gets larger, the classical
difficulty becomes increasingly affected.

FIG. 2. Plots of the classical test theory item discrimination
indices of the SLD modified results versus the original item
discrimination. Beginning from the top left, these plots are for
πLD ¼ 0.00, 0.25, 0.50, 0.75, and 1.00. Notice as πLD gets larger,
the classical discrimination becomes increasingly affected.
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Considering the LD present on each of the assessments,
only multivariate models should be used to assign scores
for either of the assessments. Until the SLD which is likely
present on the FMCE is better understood, any multidi-
mensional measures for the FMCE should be treated as
being inaccurate. Thus, the results of this study suggest that
the FCI, and not the FMCE, be used in conjunction with a
multidimensional model to probe the Newtonian under-
standing of students.

VI. LIMITATIONS

The data used in this study were a mixture of algebra-
and calculus-based introductory physics courses. Some of
the LD found in this study may belong more to one of these
groups over the other. However, since the FCI and FMCE
are intended to be used for both courses, the presence of
potential LD suggests that both assessments should be
modeled multidimensionally. Despite this, the potential
presence of SLD on the FMCE is alarming and researchers
should be aware of this critical limitation.
The interpretations made in this study assumed that LD

was generated only through ULD and SLD. There could be
effects other than ULD and SLD that generate some of the
LD present on the FCI and FMCE. As it currently stands,
the literature into LD does not offer any other classifica-
tions aside from ULD and SLD. The interpretations made
in this study ignored the possibility of LD sources other
than ULD and SLD.
The models used for SLD and ULD are extremely

simplistic in nature and may not fully capture the effects.
This may be particularly true for models that contain more
traits, and thus better explain the ULD possibly linking
items. In a future study, simulations will be performed
using FMCE specific models to better replicate the ULD
present, such as the MIRT model presented in Ref. [35]. Any
unexplained LD could then be interpreted as potential SLD.
Also, multiple models would need to be used to ensure the
unexplained LD is likely SLD and not from unmodeled
ULD. However, since interactions between questions, and
groups of questions, can be broken up into collections of
two-question interactions, the simple models used for the
simulations here likely encapsulate the fundamental inter-
actions between questions. As a result, the results presented
in this study are not expected to change.

VII. SUMMARY

The FCI and FMCE were examined to determine the
extent to which local independence was broken on each
assessment. Local dependence occurs when multiple items
influence one another in a manner that prevents students
from responding to the items as though they were inde-
pendent. Chen and Thissen [30] differentiated the causes of
LD by defining two categories: surface local dependence
and underlying local dependence.

When multiple items on an assessment share a common
conception (or trait), it is said that ULD is linking the items.
Since unidimensional IRT does not model multiple traits,
its results are affected by ULD. Conveniently, the effects of
ULD on an assessment can be accounted for by using
multidimensional models when analyzing the assessment,
such as factor analysis and multitrait item response theory.
Items which share common wording, figures, answer

banks, reading passages, etc. or which are chained (blocked)
together are likely linked via SLD. These effects cause
students to answer items based entirely on how they
responded to the previous SLD linked items. As a result,
students do not interact with items independently; item
independence is assumed by IRT and CTT. Since SLD is
not due to a shared latent trait between the items, the effects of
SLD cannot be accounted for by using multidimensional
models. If an assessment contains SLD, then all statistics and
models related to the assessment should be called into
question for correctness and validity. For this reason, SLD
is more concerning than ULD.
Simulations utilizing simple SLD and ULD models,

Eqs. (1) and (3), constructed distributions of statistics of
LD as functions of corresponding LD severity. The statistics
of LD used in this study were Pearson’s χ2, G2, and the
tetrachoric correlation. Cutoff values for these statistics of
LD were proposed based on the simulation results. These
cutoffs were used to identify item pairs where the measured
LD was unlikely to result entirely from ULD alone. It was
then inferred that some level of SLD must link the items to
account for all the LD present. Thus, the item pairs flagged
using thismethodology should reveal the effect that chaining
items has on the FCI, FMCE, and other assessments.
A supplementary methodology utilized t-testing to

compare the statistics of LD for the ULD simulations to
those measured for the FCI and FMCE. If the statistics of
LD for an item pair were found to be significantly larger
than those generated by the ULD simulations, then the item
pair was said to likely be linked by SLD.
RQ 1: To what extent is the assumption of local item

independence valid for each assessment?
The assessments in question were found to contain item

pairs that break local item independence. Of the items on the
FMCE, anywhere from 85% to 100% where found to likely
break the assumption of local item independence. For the
FCI, 30%–60% of the items were found to lack local
independence. As a result, results of unidimensional models
for the FMCE will likely contain a significant amount of
error.Models for the FCI, on the contrary, will likely contain
some error, but not as much as models for the FMCE.
RQ 2: To what extent is SLD present on either of the

assessments?
It was found that the FCI only had two item pairs

with LD that could not be explained solely by ULD.
This implies that the chaining of items on the FCI is not
likely affecting student responses. This result disagrees
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with previous literature; see Ref. [9]. Further, the results
presented in this study imply that the interactions between
the FCI and students can likely be modeled using a
multitrait model with minimal errors being introduced in
the parameter estimations.
In comparison, the FMCEwas found to likely have many

SLD linked item pairs. This implies that the FMCE will
need to be either graded in a special manner or modified to
correct for the detected SLD. Suggestions of how to modify
the FMCE were presented in Sec. V. Any grading model
proposed for the FMCE will need to be studied in detail
before it is used in practice or research. Until these studies
have been performed, researchers and instructors should be
aware that, due to the discovered statistical issues, scores
reported using the FMCE will likely be inaccurate unless a
corrected scoring procedure is used. This also holds true for
reporting Hake gains and the normalized change of student
scores on the FMCE [19,51].
RQ 3: By examining the item pairs identified in research

question 2, is it correct to assume that item chaining is
responsible for the SLD inferred?
On the FCI, only one pair of items (25 and 26) is

assumed to be linked due to item chaining as a result of
their close proximity. Whereas due to the manner in which
the FMCE was constructed (distinct blocks of items that
share response pools and figures), most of the item pairs
identified as likely being artificially linked can be assumed
to, at least partially, be a result of item chaining. Thus, it can
be concluded that item chaining is likely having little effect
on the FCI, but is having a significant impact on
how students are responding to items on the FMCE.
These results draw serious attention to what the FMCE
is actually measuring due to the artificial influences likely
present.

Since the results of the presented analysis may be data
dependent, researchers analyzing and/or using any PER
conceptual inventories are encouraged to assess the extent
of local dependence present within the data being analyzed.
This allows for a direct check of the assumption of local
item independence. Implementing the ULD or SLD analy-
sis discussed in this study, and subsequently eliminating all
instances of detected SLD, will help researchers mitigate
any possible effects of SLD. This will result in multitrait
models generated from exploratory methods that are less
likely to be a consequence of SLD.

VIII. IMPLICATIONS FOR PHYSICS
EDUCATION RESEARCH

This article serves as a cautionary warning to all research-
ers and instructors who currently use the FMCE.Although it
is possible that the simple models used in this study may not
fully represent the behavior of LD, it is recommended that
the future use of the FMCE be paused until more inves-
tigations of the instrument are completed. In the meantime,
the FCI should be favored over the FMCE for use in research
and in the classroom. Until the effects of SLD on multi-
variate models are better understood, any assessment which
is found to likely contain SLD should not be used. That is, if
future research into the effects of SLD on student responses
finds that SLD significantly impacts the results of educa-
tionalmeasures, then it is imperative all previous studies that
used the FMCE reconfirm their results.
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APPENDIX: CUTOFF VALUES

Cutoff values generated using the methodology described Sec. III B 5 using cutoff values are located in Table VII. These
cutoff values have been found to be consistent regardless of the number of items included on the modeled assessment. As a
result, they can be applied to any assessment as given.

TABLE VII. The proposed cutoff values for ULD weights ranging from 0 to 5 in steps of 0.1. The bold faced rows are the cutoff values
used in this study.

ULD weight Vχ2 VG2 rtet

0.0 0.064 225 41 0.064 161 94 0.620 856 8
0.1 0.061 365 77 0.061 537 79 0.611 923 7
0.2 0.070 930 6 0.071 402 07 0.612 132 2
0.3 0.076 721 11 0.077 610 15 0.626 537 9
0.4 0.102 402 9 0.104 319 7 0.648 17
0.5 0.121 908 0.124 515 6 0.656 883 3
0.6 0.161 894 8 0.166 214 2 0.701 905 5
0.7 0.196 358 4 0.202 425 9 0.718 134
0.8 0.222 544 4 0.230 823 2 0.727 579 1

(Table continued)
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